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Abstract

Recent models in cross-lingual semantic role
labeling (SRL) barely analyze the applicabil-
ity of their network selection. We believe that
network selection is important since it affects
the transferability of cross-lingual models, i.e.,
how the model can extract universal features
from source languages to label target languages.
Therefore, we comprehensively compare the
transferability of different graph neural net-
work (GNN)-based models enriched with uni-
versal dependency trees. GNN-based models
include transformer-based, graph convolutional
network-based, and graph attention network
(GAT)-based models. We focus our study on
a zero-shot setting by training the models in
English and evaluating the models in 23 tar-
get languages provided by the Universal Propo-
sition Bank. Based on our experiments, we
consistently show that syntax from universal
dependency trees is essential for cross-lingual
SRL models to achieve better transferability.
Dependency-aware self-attention with relative
position representations (SAN-RPRs) transfer
best across languages, especially in the long-
range dependency distance. We also show
that dependency-aware two-attention relational
GATs transfer better than SAN-RPRs in lan-
guages where most arguments lie in a 1-2 de-
pendency distance.

1 Introduction

Semantic role labeling (SRL) is a task to assign
semantic roles to words or phrases in a sentence
concerning a specific predicate, as shown in Figure
1. SRL supports many natural language processing
(NLP) tasks, e.g., information extraction (Chris-
tensen et al., 2010; Stanovsky and Dagan, 2016),
abstractive summarization (Khan et al., 2015), and
machine translation (Rapp, 2022). However, SRL
resource availability is still low, hindering the per-
formance of other NLP tasks in diverse languages.
Cross-lingual approaches try to solve this prob-
lem by enriching the models with knowledge from
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Figure 1: An example of SRL task (top) and depen-
dency parsing task (bottom) applied to a sentence taken
from Universal Proposition Bank (UPB). The bold lines
indicate path co-occurrences in both tasks.

resource-rich languages (source languages) so that
they perform better in resource-poor languages (tar-
get languages).

Existing studies in cross-lingual SRL improve
existing models by (1) separating language-
universal and language-specific components (Fei
et al., 2020; Conia et al., 2021) to capture both
language-universal and language-specific features
from each language and (2) minimizing the depen-
dence on external tools, e.g., word alignment and
machine translation tools (Cai and Lapata, 2020;
Conia et al., 2021). Nevertheless, existing studies
in cross-lingual SRL barely analyze the network
selection’s applicability, which affects the models’
transferability.

Therefore, in this work, we comprehensively
compare diverse graph neural networks (GNNs)
to investigate their transferability in cross-lingual
SRL. Various GNNs have been shown to be useful
to encode and transfer linguistic structures in simi-
lar tasks cross-lingually. Furthermore, we encode
universal dependency trees in the networks, for the
following reasons: (1) Many predicate-argument
paths and argument roles in SRL co-occur with de-
pendency paths and dependency relations in depen-
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dency parsing (Marcheggiani and Titov, 2017) (Fig-
ure 1). (2) A universal dependency tree represents
a sentence’s grammatical structure in a language-
universal scheme. (3) Universal dependency trees
help cross-lingual models achieve better transfer-
ability (Ahmad et al., 2021a; Ahmad et al., 2021b;
Zhang et al., 2021).

We conduct comprehensive experiments on vari-
ous networks as encoders, including transformer-
based, graph convolutional network (GCN)-based,
and graph attention network (GAT)-based encoders,
which we categorize as GNN-based encoders. We
also compare the results with a BILSTM-based en-
coder as a baseline. Transformer-based models
have been proven effective in performing cross-
lingually in dependency parsing (Ahmad et al.,
2019) and event argument role labeling (EARL)
(Ahmad et al., 2021b). Furthermore, we also in-
vestigate GCN-based and GAT-based models be-
cause different NLP tasks, e.g., monolingual SRL
(Marcheggiani and Titov, 2017), cross-lingual SRL
(Zhang et al., 2021), aspect-based sentiment analy-
sis (ABSA) (Wang et al., 2020; Jiang et al., 2021),
and relation prediction (Nathani et al., 2019), have
shown the effectiveness of exploiting the networks
to encode dependency trees in their models.

Following previous work (Fei et al., 2020), we
limit our exploration to argument detection and ar-
gument labeling in the dependency-based SRL. We
conduct experiments in a zero-shot setting to find
the most transferable network across languages.
We train and evaluate the models in 23 languages
provided by Universal Proposition Bank (UPB) v2.
We show that: (1) Universal dependency trees are
essential for cross-lingual SRL models to achieve
better transferability. (2) A dependency-aware
transformer-based model, i.e., SAN-RPRs, outper-
forms other models, especially as the dependency
distance increases. (3) A dependency-aware GAT-
based model, i.e., two-attention relational GAT's
(TAGATS), transfer best in languages where most
arguments lie in 1-2 dependency distance. In ad-
dition, our findings can also shed some light on
selecting the most appropriate network for building
cross-lingual models in similar tasks.

2 Background

2.1 Universal Proposition Bank

Universal Proposition Bank (UPB) is a corpus
containing SRL annotations for diverse languages.
UPB v2 (Jindal et al., 2022) provides SRL annota-
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Languages in UPB v2

English (EN) Czech (CS) Dutch (NL)
Chinese (ZH) Greek (EL) Polish (PL)
Finnish (FI) Korean (KO) Telugu (TE)
Italian (IT) Romanian (RO) Indonesian (ID)
Spanish (ES) Hindi (HI) Japanese (JA)
French (FR) Marathi (MR) Russian (RU)
German (DE) Tamil (TA) Ukrainian (UK)
Portuguese (PT) Hungarian (HU) Vietnamese (VI)

Table 1: The list of languages in UPB v2.

tions for 44 treebanks consisting of 24 languages,
including English as our source language, as shown
in Table 1. UPB is annotated semi-automatically
through filtered annotation projection and bootstrap
training (Akbik et al., 2015). UPB v2 has signifi-
cantly improved over UPB vl regarding SRL anno-
tation quality, language scope, and availability of
span-based SRL annotations (Jindal et al., 2022).
We use dependency-based SRL annotations in UPB
v2 that are annotated on top of UD v2.9 throughout
our experiments.

2.2 Universal Dependencies

Universal Dependencies (UD) is a corpus contain-
ing consistent syntactic annotations for diverse lan-
guages, such as part-of-speech (POS) tags, morpho-
logical features, and dependency tree annotations.
UD vl (Nivre et al., 2016) and UD v2 (Nivre et al.,
2020) have different annotation schemes' in terms
of word segmentation, POS tags, morphological
features, and syntactic relations. UD v1 and UD v2
have 40% and 373 universal dependency relations,
respectively. UD v2.9 contains dependency tree
annotations for 217 treebanks of 122 languages.

2.3 Dependency-based Semantic Role
Labeling

Instead of labeling the whole argument span with a
semantic role, dependency-based SRL only labels
the argument head, i.e., the head of the argument
span according to the dependency tree (Surdeanu
et al., 2008). For example, in Figure 1, the phrase
“to anyone” is the argument “ARG2” of the predi-
cate “recommend”. Based on the dependency tree
at the bottom of the figure, “anyone” is the head
of the phrase “to anyone”. Therefore, dependency-
based SRL annotates the edge that connects “rec-
ommend” to “anyone” with the argument “ARG2”.

"https://universaldependencies.org/v2/summary.html
“https://universaldependencies.org/docsv1/u/dep/
3https://universaldependencies.org/u/dep/



2.4 Related Work

Existing cross-lingual SRL models (Fei et al., 2020;
Cai and Lapata, 2020; Conia et al., 2021) utilize
BiLSTM-based models to encode sentences se-
quentially, even though LSTMs do not transfer ef-
fectively across languages (Ahmad et al., 2019).
On the other hand, GNNs have been used to en-
code dependency trees in building models for dif-
ferent NLP tasks, e.g., monolingual SRL, aspect-
based sentiment analysis (ABSA), event argument
role labeling (EARL), and relation prediction. In
monolingual SRL, Marcheggiani and Titov (2017)
employ syntactic GCNs (SGCNs) on top of BiL-
STMs to incorporate dependency trees as graphs.
In ABSA, Wang et al. (2020) and Jiang et al. (2021)
apply relational GATs (R-GATs) and attention-
based relational GCNs (ARGCNs), respectively,
over modified dependency trees to establish direct
connections between aspects and their correspond-
ing opinion words. In EARL, Ahmad et al. (2021b)
modify vanilla Transformers to encode syntactic
structures from dependency trees, i.e., graph at-
tention transformer encoders (GATEs). Finally,
Nathani et al. (2019) propose KBGATSs as a modi-
fication to original GATs (Velickovi¢ et al., 2018)
to encode nodes and edge relations for relation pre-
diction in knowledge graphs.

3 Models

We apply a standard encoder-decoder architecture
to compare transformer-based, GCN-based, GAT-
based, and BiLSTM-based cross-lingual SRL mod-
els. Section 3.1 describes a method to convert a
dependency tree into a graph for building graph
neural networks (GNNSs). Section 3.2, 3.3, and 3.4
describe the input layer, encoder, and decoder of
the architecture. The implementation of the model
architecture is available on github.com/mynlp/
syntax-aware-cross-lingual-srl.

3.1 Graph Construction

We explain how to construct dependency relation
representation (DR) as the edge representation of
the graphs in GNNs. DR encodes the dependency
direction (i.e., self-connection, head-to-dependent,
and dependent-to-head) and the dependency rela-
tion between a pair of nodes. Figure 2 displays the
dependency graph derived from the dependency
tree at the bottom of Figure 1. The self-connection
edge is labeled as self*, the head-to-dependent
edge is labeled with the original dependency re-
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Figure 2: Dependency graph of a sentence converted
from its dependency tree.

lation (e.g., "nsubj*), and the dependent-to-head
edge is labeled with the original dependency rela-
tion and ~ suffix (e.g., "nsubj~*).

There are two ways of generating DR to be en-
coded in the edge representation of the graphs, i.e.,
A-DR and B-DR. In A-DR, following Marcheg-
giani and Titov (2017), head-to-dependent edge
and dependent-to-head edge that share the same de-
pendency relation, have completely different repre-
sentations, e.g., “nsubj” (head-to-dependent edge)
and “nsubj~"" (dependent-to-head edge) have dif-
ferent representations. In B-DR, we first generate
the representations separately for each edge’s de-
pendency relation with d, dimension and depen-
dency direction with d; dimension. Then, we con-
catenate both representations to produce the DR
with (d, + d4) dimension.

In transformer-based models, we encode a sen-
tence as a fully-connected graph. Shaw et al.
(2018) modify the vanilla Transformers to incorpo-
rate relative position representation (RPR) among
the edges. We use the same approach to encode the
DR among the edges by taking the element-wise ad-
dition of DR and the other edge representation if ex-
ists, in this case, RPR. Edges in the fully-connected
graph that do not have the corresponding edges in
the dependency tree, do not have dependency re-
lations. Therefore, we label these edges as “norel”
(short for no relation) when constructing DRs.

We encode a sentence in GCN-based and GAT-
based models by forming a dependency graph
based on its dependency tree. We follow the
method proposed by Marcheggiani and Titov
(2017). They convert a dependency tree to a graph
by adding edges that flow in the opposite direction
(dependent-to-head) of the original dependency di-
rection (head-to-dependent) and edges that flow
from nodes to themselves (self-connection). We
encode either A-DR or B-DR in the edge represen-
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Figure 3: The illustration of predicate indicator, POS
tag, absolute position, structural absolute position, and
dependency relation of each word in a sentence.

tation.

3.2 Input Layer

To produce the word representation, h;, for each
word in a sentence, we concatenate: (1) predicate
indicator embedding (PIE), p;, which represents
whether a word is a predicate or not (Fei et al.,
2020), (2) contextualized multilingual word embed-
ding, c;, which is obtained from the concatenation
of the last four hidden layers (Conia et al., 2021) in
multilingual BERT (mBERT) (Devlin et al., 2019),
(3) POS tag embedding (POSE), o;, which is the
POS tag of each word, (4) absolute position embed-
ding (APE), a;, which is the position of each word
in the sentence (Vaswani et al., 2017), (5) structural
absolute position embedding (SAPE), s;, which is
the dependency depth of each word relative to the
root of the dependency tree (Wang et al., 2019b),
and (6) dependency relation embedding (DRE), d;,
which is the dependency relation attached to each
word as a dependent. While embedding (1) and (2)
are mandatory, we experiment with embedding (3)
- (6) to obtain the optimal combination of embed-
dings for building the word representation.

Figure 3 shows the example to obtain each em-
bedding. As shown in Equation 1, we apply a
dropout to the concatenation result and a linear
transformation following Ahmad et al. (2021b).

h; = W (dropout([p;, 0;, ai, si, di, ¢;])) +b (1)

3.3 Encoder

We experiment with transformer-based, GCN-
based, GAT-based, and BiLSTM-based encoders.
We apply an activation function, dropout, and resid-
ual connection in consecutive order after each layer
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for GCN-based and GAT-based encoders. As pro-
posed by GATs (Velickovié et al., 2018), we can
either apply or drop the activation function at the
final layer. For the BiLSTM-based encoder, we
only apply the consecutive operations at the final
layer.

Transformer-Based Encoders In transformer-
based encoders, we experiment with different mod-
ifications to vanilla Transformers, i.e., GATEs
(Ahmad et al., 2021b), self-attention with APE in
the node representation (Transformers) (Vaswani
et al., 2017), self-attention with relative posi-
tion representation (RPR) in the edge represen-
tation (SAN-RPRs) (Shaw et al., 2018), self-
attention with SAPE in the node representation
(SAN-SAPRs) (Wang et al., 2019b), and self-
attention with structural relative position represen-
tation (SRPR) in the edge representation (SAN-
SRPRs) (Wang et al., 2019b). We also combine
SAPE in the node representation with RPR in the
edge representation and refer to the self-attention
network as SAPR-RPRs. Furthermore, we com-
bine APE in the node representation with SRPR
in the edge representation and refer to the self-
attention network as Trans-SRPRs. We measure
the dependency distance in SRPR by calculating
the number of hops from one node to another based
on the dependency tree. Following Ahmad et al.
(2019), we take the absolute value when calculating
SRPR and RPR to make the models more robust
to word order differences. Furthermore, we ex-
periment with incorporating dependency relation
representation (DR) (Section 3.1) into the edge rep-
resentation.

GCN-Based Encoders In GCN-based encoders,
we experiment with different types of GCNs, i.e.,
syntactic GCNs (SGCNs) (Marcheggiani and Titov,
2017), relational GCNs (RGCNs) (Schlichtkrull
et al., 2018), and attention-based relational GCNs
(ARGCNs) (Jiang et al., 2021). Since SGCNs and
RGCNs encode the edge representation by differ-
entiating their weight matrices based on the edge
relations, they can only incorporate A-DR (refer to
Section 3.1).

GAT-Based Encoders In GAT-based encoders,
we experiment with different types of GATS, i.e.,
GATs (Velickovi¢ et al., 2018), simple hetero-
geneous GNNs (SHGNs) (Lv et al., 2021), rela-
tional GATs (RGATs) (Wang et al., 2020), and
knowledge-based GATs (KBGATS) (Nathani et al.,



2019). RGATs calculate the second attention
weight, 5, using position-wise feed-forward net-
work (FFN) (Vaswani et al., 2017). However,
we find that the original dot-product equation
used to calculate the attention weight proposed by
Velickovi¢ et al. (2018) works better for this task.
Therefore, we modify RGATs into TAGATS.

TAGATSs calculate the first attention weight,
«, using Equation 3 in the original GAT paper
(Velickovié et al., 2018). To calculate the second
attention weight, 3, TAGATS slightly modify the
equation to incorporate the DR, 7;;, as shown in
Equation 2, where £ is the current attention head,
[ is the current layer, N; is the neighbor nodes of
node ¢, W, is a weight matrix to linearly transform
the DR, 7;;, and LR is a Leaky ReLU.

B = softmaxjen; (LR(a™" [WH4rL])) @)

Furthermore, TAGATS obtain node representa-
tion from attention weight o using Equation 5 and
Equation 6 in the original GAT paper (Velickovi¢
et al., 2018). To obtain node representation from at-
tention weight 3, TAGATS employ Equation 3 and
Equation 4. TAGAT' concatenate node representa-
tions from K heads in the intermediate layers, as
shown in Equation 3. Meanwhile, in the final layer,
TAGATSs take the average of node representations
from K heads, as shown in Equation 4, where L is
the number of layers.

Lkvrr,
hig =o(lis Y BWhHRY), 1< L (3)
JEN;

hi = Z 7AW =1L (@)

k: 1jeN;

Finally, TAGATSs calculate the node representa-
tion for layer (I + 1), h.*!, by applying a linear
transformation to the concatenation of node repre-
sentation hfg} and node representation hi}l and
optionally apply an activation function, o, on top
of the linear transformation, as shown in Equation
5.

l l l
it = [hﬁal’ his ]

&)
+biy1)

I+1 _
hi™ = U(VVIHLU
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3.4 Decoder

We apply a linear scorer as the decoder. For
each word, we concatenate sentence representa-
tion, hg, predicate node representation, h,, and
node representation, h;. hg is obtained by apply-
ing max-pooling over node representations in the
sentence (Ahmad et al., 2021b). Meanwhile, h,,
is taken from the node representation of the sen-
tence’s predicate. After that, following Ahmad
et al. (2021b), we apply two feed-forward neural
networks (FFNNG), each followed by a ReLU (RL),
to produce the final node representation, h ¢, with
the dimension equal to the number of arguments, c,
as shown in Equation 6.

hy = RL(Wo(RL(Wilhs, hy, hi]+b1))+b2) (6)

Finally, we apply a softmax function to produce
the probability for each argument, z, as shown in
Equation 7. We train the model to minimize the
cross-entropy loss.

P(z) = softmax.(hy), z €

[1, c] )

4 Experiments

4.1 Corpus

We conduct experiments using the corpus from
UPB v2* (Jindal et al., 2022). UPB v2 contains
SRL annotations based on dependency tree anno-
tations in UD v2.9. Appendix A.2 shows some
preprocessing steps that we run to fix the shifted an-
notations in languages with enhanced dependency
tree annotations. In our experiments, we merge all
treebanks that belong to the same language.

4.2 Settings

We focus on conducting experiments in a zero-shot
setting, training the model in English and evaluat-
ing the model in 23 target languages provided by
UPB v2, as shown in Table 1.

In the training phase, we take the model from
the best epoch based on the evaluation using the
English validation set. After that, we find each
model’s best configuration based on the average
F1 scores of the validation sets in 23 languages.
Finally, we compare the transferability of different
models using the same strategy. The reason of
using the validation sets in 23 languages is that
we want to focus on how well each model can

*https://github.com/UniversalPropositions



Model Description

GATEs graph attention transformer encoders

Transformers self-attention with absolute position
embedding (APE) in node

SAN-RPRs self-attention with relative position
representation (RPR) in edge

SAN-SAPRs self-attention with structural absolute position
embedding (SAPE) in node

SAN-SRPRs self-attention with structural relative position
representation (SRPR) in edge

SAPR-RPRs combination of SAN-SAPRs and SAN-RPRs

Trans-SRPRs combination of Transformers and SAN-SRPRs

SAPR-RPR- SAPR-RPRs with dependency relation

DRs representation (DR) in edge

Trans-SRPR- Trans-SRPRs with DR in edge

DRs

SGCNs syntactic graph convolutional networks (GCNs)

RGCNs relational GCNs

ARGCNs attention-based relational GCNs

GATs graph attention networks

SHGNs simple heterogeneous GNNs

KBGATs knowledge-based GAT's

TAGATs two-attention relational GAT's

BiLSTMs bidirectional LSTMs

Table 2: Summary of models involved in the experi-
ments.

Model Node Representation Edge Representation
APE SAPE DRE RPR DR SRPR

GATEs v v

Transformers v v

SAN-RPRs v v

SAN-SAPRs v

SAN-SRPRs

SAPR-RPRs v v

Trans-SRPRs | v v v

SAPR-RPR-

DRs v B

Trans-SRPR-

DRs v v B v

SGCNs v A

RGCNs v A

ARGCNs v v A

GATs v v

SHGNs A

KBGATs v v B

TAGATSs v v A

BiLSTMs v v

Table 3: Best combination in node and edge represen-
tations of each model. SAPE, DRE, DR, and SRPR
are feature representations derived from the dependency
tree.

generalize to other languages. Choosing the best
configuration for each model based solely on the
English validation set may result in a model that
focuses too heavily on features specific to English.

We run comprehensive experiments to find the
best configuration for each model including feature
combination in node representation, feature com-
bination in edge representation, number of layers,
dropouts, and activation functions (Appendix B.2).
Table 2 summarizes the models we compare in the
experiments. Table 3 shows each model’s best fea-
ture combination in node and edge representations.
We can see that at least one feature representation
from the dependency tree is required to produce
the best configuration for each model.
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We use predicted dependency trees and POS
tags for model evaluation (Appendix B.1) obtained
from pre-trained models trained on UD 2.8 (Qi
et al., 2020). We use frozen mBERT as our contex-
tualized word embedding to observe each model’s
effectiveness solely, eliminating fine-tuned mBERT
as one of the factors that might affect the model
performance. Our preliminary experiments show
that taking the average of subword embeddings
from mBERT works best for our task, so we apply
this setting to all of our experiments. We report the
average F1 scores from five runs with the standard
deviation for model comparison.

4.3 Comparison Among Transformer-Based
Models

Table 4 compares transformer-based models
with the best configuration. Trans-SRPR-DRs
and SAPR-RPR-DRs perform worst among the
transformer-based models. To obtain DR in the
fully-connected graph, we label the edges that do
not reflect the edges in the corresponding depen-
dency tree as “norel”. However, naturally, many
more edges are labeled as “norel” than edges la-
beled as the actual dependency relations.” The im-
balanced proportion of dependency relations (i.e.,
number of edges labeled with “norel” is many more
than number of edges labeled with actual depen-
dency relations) might cause the model to overfit.
Furthermore, the table shows the superiority of
SAN-RPRs over Transformers, indicating that en-
coding the position of each word relative to another
word in the edge representation produces a more
general model than encoding the absolute position
of each word in the sentence in the node repre-
sentation. This finding aligns with the results in
Ahmad et al. (2019). On the other hand, SAN-
SAPRs outperform SAN-SRPRs, indicating that
encoding each word’s dependency distance relative
to the root of the dependency tree in the node rep-
resentation produces a more general model than
encoding each word’s dependency distance relative
to another word in the edge representation. We
further combine the information regarding the posi-
tion of each word according to the sentence and the
sentence’s dependency tree, i.e., SAPR-RPRs and

SEach word can only have one parent in the dependency
tree. Given that n indicates the number of nodes, each depen-
dency graph will have (n — 1) edges labeled with dependency
relations, (n — 1) edges labeled with opposite dependency
relations, and n edges that connect each node with itself. How-
ever, since there are n> edges in the fully-connected graph,
there will be (n? — 3n + 2) edges labeled as “norel”.



Model PR EN AVG
GATEs 122M | 78.96+0.31 52.57+0.23
Transformers 12.2M 76.164+0.51 52.07+0.21
SAN-RPRs 12.2M 78.26+0.40 | 52.7340.40
SAN-SAPRs 12.2M 75.93+0.47 51.98+0.10
SAN-SRPRs 12.IM | 78274050 | 51.5140.27
SAPR-RPRs 122M | 78.11+£042 | 52.64+0.38
Trans-SRPRs 122M | 79.034+0.32 | 52.2140.30
SAPR-RPR- 122M | 79.8340.19 | 50.6940.21
DRs

Trans-SRPR- 12.2M 79.85+0.21 50.60£0.14
DRs

SGCNs 5.99M 79.94+0.27 52.5240.38
RGCNs 323M | 78.28+0.29 | 51.48+0.35
ARGCNs 352M | 77.84+044 | 52.1340.32
GATs 5.09M 79.81+£0.19 | 52.6640.14
SHGNs 5.06M 78.8440.35 52.61+0.26
KBGATs 7.73M 79.53+0.31 52.3140.32
TAGATSs 6.31M 79.07+£0.19 | 52.78+0.14

Table 4: F1 scores (%) of transformer-based, GCN-
based, and GAT-based models evaluated on UPB v2
test set. AVG indicates the average F1 scores of a spe-
cific model evaluated in target languages. The bold
and underlined scores indicate each group’s highest and
second-highest scores. PR is the number of parameters
in each model.

Trans-SRPRs. Consistent with the previous results,
SAPR-RPRs, which consist of features from SAN-
SAPRs and SAN-RPRs, outperform Trans-SRPRs,
which consist of features from Transformers and
SAN-SRPRs.

According to the average F1 score, SAN-
RPRs and SAPR-RPRs are both strong models
with 52.73% and 52.64% average F1 scores, re-
spectively, outperforming GATEs (Ahmad et al.,
2021b), i.e., the model proposed for cross-lingual
EARL. Although SAN-RPRs have a better average
F1 score than SAPR-RPRs, based on our obser-
vation among transformer-based models, SAPR-
RPRs show their superiority in more languages
(Appendix C.1.1). Therefore, we compare both
models with other best models in Section 4.6.

4.4 Comparison Among GCN-Based Models

Table 4 compares GCN-based models with the
best configuration. SGCNs significantly outper-
form the other GCN-based models, i.e., RGCNs
and ARGCNs, with a 52.52% average F1 score.
RGCNs perform the worst among GCN-based mod-
els because RGCNs are the only networks that do
not apply the attention mechanism. ARGCNs apply
a self-attention mechanism, while SGCNs imple-
ment the attention mechanism as a gating mecha-
nism. Self-attention or gating mechanism measures
how much attention each node should pay to other
nodes when the network updates each node’s rep-
resentation. Those mechanisms help to emphasize
the edges in the dependency graph that co-occur
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with the predicate-argument paths.

4.5 Comparison Among GAT-Based Models

Table 4 compares GAT-based models with the
best configuration. TAGATS perform better than
SHGNSs, indicating that the GAT-based model
learns better when attention weight calculation is
separated based on node representations and edge
representations. Moreover, GATs also perform bet-
ter than SHGNSs indicating that encoding the SAPE
and DRE in the node representation is a better
way to encode dependency features than combin-
ing node representations with edge representations
when calculating the attention weight. According
to the average F1 score, TAGATSs and GATs are
both strong models with 52.78% and 52.66% aver-
age F1 scores, respectively. Therefore, we compare
both models with other best models in Section 4.6.

On the other hand, according to the average F1
score, KBGATSs perform worst among GAT-based
models. The significant difference between KB-
GATs and the other GAT-based models is that KB-
GATs update each node representation with (1)
neighbor node representations and (2) surround-
ing edges’ representations that contain information
about DR and RPR. Meanwhile, the other models
update each node representation only with (1). We
conjecture that the approach of KBGATs might
overpopulate each node in every update with in-
formation too specific to a particular language the
network learns from.

4.6 Comparison Among Best Models

We compare the best models from each group,
1.e., SAN-RPRs, SAPR-RPRs, SGCNs, GATs, and
TAGATS, with the BILSTM-based model, i.e., BilL-
STMs, in Table 5. We calculate each model’s supe-
riority score (SC) based on the model performance
in target languages. We allocate 2 points if the
model achieves the highest F1 score or 1 point if
the model achieves the second-highest F1 score for
a specific language.

TAGATSs have the best average F1 score among
the models, with a 52.78% average F1 score. How-
ever, SAPR-RPRs and GAT's perform best among
the models in slightly more languages, as indicated
by the higher SCs. Despite having the second-best
average F1 score of 52.73%, SAN-RPRs have a
lower SC than SAPR-RPRs, GATs, and TAGATS.
Overall, transformer-based and GAT-based mod-
els outperform SGCNs, indicating that the self-
attention mechanism better emphasizes the essen-



d>3 SAN- SAPR- SGCNs GATs TAGATs BiLSTMs
RPRs RPRs

EN 2.68 78.26+0.40  78.11+£042 | 79.94+0.27 79.81£0.19  79.07+0.19 | 76.86+0.34
AVG - 52.7340.40 52.6440.38 52.5240.38 52.66+0.14 52.78+0.14 51.8540.09
TA 17.18 37.96+£1.75  39.57+1.18 34.32+1.12 | 35.08+0.58  35.68+1.28 34.19+1.22
HI 8.46 47.514+062  45.04+035 48.2440.61 48.25+0.33  47.65+033 | 46.63+0.38
ZH 8.41 50.37+1.17  50.96+0.88 | 45.77+0.67 | 46.124039  46.80+0.64 | 47.56+0.89
JA 8.11 37.69+0.99  34.78+1.29 37.43+0.28 37994052 39.30+0.73 | 37.40+0.61
VI 7.89 28.694+0.79  29.10+0.45 27.95+056 | 28.06+0.59  28.31+0.55 28.1840.88
KO 6.88 42.61+1.84  4524+1.23 | 42924064 | 43224056  44.57+024 | 41.77+1.61
ID 5.52 58.78+1.09  59.974+0.53 | 58.54+082 | 58334069  59.1140.87 56.1140.84
HU 5.38 49.76+035  49.08+0.34 | 50.76+0.41 51.10+0.51  50.90+0.37 50.6440.39
RO 532 54234067  54.46+0.52 | 53.57+047 54.124£049  53.60+0.45 53.26+0.34
FR 4.55 62.19+041  62.114+047 | 60.93+0.38 61.64+044  61.13+022 | 61.22+0.27
MR 4.08 41.06+2.89  40.36+2.20 | 40.97+340 | 38.064+0.13  39.26+1.20 37.18+2.28
UK 4.06 58.924026  59.36+0.72 | 59.66+0.76 | 59.494+056  59.72+0.31 58.96+0.07
PT 3.75 66.0540.21 66.49+0.33 | 65.6240.43 65.99+032  65.61+0.15 64.40+0.33
IT 3.73 58.11+0.33  57.8040.39 57.43+£042 | 58.004+042  57.34+034 | 58.0240.27
ES 3.67 63.71£0.33  63.62+0.25 63.8740.61 64.294+0.36  63.9140.27 62.48+0.29
CS 3.66 56.87+0.27  55.80+0.51 57.954+052 | 58.024+0.21  57.62+0.28 56.59+0.36
EL 3.59 60.594+0.23  60.23+£0.40 | 60.56+0.69 60.74+048  60.86+0.34 | 59.76+0.45
FI 3.35 55.58+042  55.29+0.54 | 54.87+040 | 54.624+032  54.88+0.20 | 54.6240.20
RU 3.07 60.18+0.44  61.13+0.50 59.98+034 | 60.14+0.16  60.30+£0.22 | 59.7340.25
NL 3.05 62.844+037  62.2240.58 | 62.94+0.21 63.53+0.64  62.97+0.37 62.4740.36
TE 2.49 44.664+2.00  43.88+1.57 | 46.08+£1.07 | 46.96+149  46.96+1.82 | 45.95+0.51
DE 2.46 56.864+0.32  56.98+1.13 58.61+0.30 | 58.5240.26  58.52+0.18 57.7240.23
PL 1.71 57.67+036  57.284+046 | 59.08+0.31 59.00£044  58.92+0.52 | 57.73+0.23
SC - 13 18 9 16 15 1

PR - 12.2M 12.2M 5.99M 5.09M 6.31M 9.03M

Table 5: F1 scores (%) of best models evaluated on UPB v2 test set with predicted parsers. The bold score and
underlined score indicate the highest and second-highest scores. AVG indicates the average F1 scores of a specific
model evaluated in target languages. PR and SC are the number of parameters and the superiority score of each
model. d>3 column indicates the proportion of gold arguments (%) that fall in >3 dependency distance. We use

predicted dependency trees to measure d.

tial dependency paths than the gating mechanism.
Finally, BILSTMs perform the worst as the only
network that encodes sentences sequentially.

According to our experiments, stacking two lay-
ers of GAT-based encoders performs best. How-
ever, this approach has a drawback, as the infor-
mation can only travel as far as two hops from
the origin node. On the other hand, stacking
three layers of transformer-based encoders does
not affect the information’s traveling distance. In
transformer-based models, we construct a fully-
connected graph of a sentence, allowing informa-
tion to travel from one node to every other node,
regardless of how many layers are stacked together.

The second column in Table 5 shows the per-
centage of arguments in >3 dependency distance,
i.e., the number of hops from the predicate node to
a specific node according to the sentence’s depen-
dency tree. Some languages like Tamil (TA), Hindi
(HI), Chinese (ZH), Japanese (JA), and Vietnamese
(VI) have a relatively high number of arguments
(>7%) in >3 dependency distance. Transformer-
based models perform significantly better in TA
(>3%) and ZH (>4%), slightly better in VI (<1%),
and slightly worse in HI (<1%) and JA (<2%).
This evidence proves that transformer-based mod-
els are generally better in long-range dependency
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Figure 4: Average F1 scores (%) of best models grouped
by the dependency distance evaluated on UPB v2 test
set with predicted parsers.

distance than GAT-based models. On the other
hand, some languages have a relatively low number
of arguments (<3%) in >3 dependency distance,
i.e., Telugu (TE), German (DE), and Polish (PL).
For these languages, where most of the arguments
lie in 1-2 dependency distance, GAT-based models
perform better than transformer-based models.

Figure 4 shows the average F1 scores of each
model grouped by the dependency distance. Al-
though BiLSTMs perform worst among the mod-
els, BILSTMs are better in long-range dependency
distance than GCN-based and GAT-based mod-
els. The figure also shows the superiority of



Model SAN-RPRs | SAPR-RPRs
base 52.73+040 52.64+038
w/o POSE | 52.73+032 51.91+046
w/o PIE 51.54+036 51.14+043
w/o SAPE | - 51.65+0.28
w/o DRE 51.65+0.28 -

Table 6: Average F1 scores (%) of SAN-RPRs and
SAPR-RPRs with fine-tuned mBERT and certain em-
bedding removed from the node evaluated on UPB v2
test set with predicted parsers.

transformer-based models among all models as the
dependency distance increases.

4.7 Ablation Study

We conduct ablation studies for the best
transformer-based models, i.e., SAN-RPRs and
SAPR-RPRs, as shown in Table 6. We experiment
with removing DRE, POSE, or PIE from the node
representation in SAN-RPRs. Removing either
DRE or PIE from the node representation reduces
the performance of SAN-RPRs. However, based on
our observation, SAN-RPRs without POSE transfer
better to most languages (Appendix C.1.2).

Furthermore, we also experiment with removing
SAPE, POSE, or PIE from the node representa-
tion in SAPR-RPRs. Removing SAPE, POSE, or
PIE from the node representation reduces the per-
formance of SAPR-RPRs. We conjecture that the
combination of POSE and SAPE to provide syn-
tactic information in SAPR-RPRs is necessary to
replace the role of DRE in SAN-RPRs.

In Table 5, based on SC, we can see that SAPR-
RPRs perform best in more languages than SAN-
RPRs, even though the average F1 score of SAPR-
RPRs is worse than SAN-RPRs. Since our exper-
iments conclude that SAN-RPRs without POSE
perform better in most languages, we re-compare
SAN-RPRs without POSE with the other best mod-
els taken from Table 5. Based on our observation
(Appendix C.2.1), after removing POSE from SAN-
RPRs, the model performs best in more languages
than SAPR-RPRs.

In Table 7, we show the comparison of SAN-
RPRs without POSE with predicted parsers, i.e.,
SAN-RPRs (pred), and gold parsers, i.e., SAN-
RPRs (gold), along with the unlabeled attach-
ment score (UAS) and labeled attachment score
(LAS) of the predicted parsers. For languages
with LAS<80%, i.e., TA (72.30%), Indonesian
(ID) (77.33%), and Marathi (MR) (70.63%), the
F1 score difference is +2%. However, in most lan-
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SAN- SAN-
Lang RPRs RPRs UAS LAS
(pred) (gold)

EN 78.32+£0.32 | 79.73+035 | 9142  89.82
AVG 52.73+0.32 | 53.01+0.33 -

TA 36.53+1.32 | 38.56+142 | 80.89  72.30
HI 47.69+1.10 | 47.46+095 | 96.68  94.43
ZH 50.81+0.51 50.78+0.38 | 87.06  85.13
JA 36.07+£1.20 | 35.8241.27 | 9521  94.61
VI 28.30+0.92 | 28.30+085 | 77.58  74.16
KO 42.06+1.50 | 41.74+£150 | 90.19  88.76
D 57.77+£0.83 | 60.33+0.65 | 87.31 77.33
HU 50.02+042 | 50.78+0.61 86.72  83.25
RO 54944050 | 54974053 | 9225  89.12
FR 62.36+0.59 | 62.794+054 | 90.69  88.04
MR 41.83+3.50 | 43.50+3.19 | 79.85  70.63
UK 58.84+0.59 | 58.53+056 | 90.10  88.24
PT 66.65+0.44 | 66.80+036 | 94.51  93.38
IT 58.65+049 | 58.70+0.61 91.09 8843
ES 64.07+0.51 64.3440.51 9347  91.55
CS 57.204+0.14 | 57.11+0.15 | 9348 9181
EL 60.86+0.56 | 60.754+0.68 | 92.93  91.19
FI 55.40+0.16 | 55.4540.15 | 93.02  91.47
RU 60.12+036 | 60.744+035 | 87.58  84.46
NL 63.21+0.38 | 63.14+044 | 9249  89.75
TE 43.46+2.02 | 42.63+236 | 93.07 8558
DE 57.70+£043 | 57.944040 | 95.04 93.34
PL 58.16+0.35 | 58.104+037 | 9548  94.21

Table 7: The left-hand side shows the comparison of F1
scores (%) of SAN-RPRs w/o POSE evaluated with pre-
dicted dependency parsers and gold dependency parsers
on the UPB v2 test set. The right-hand side shows UAS
(%) and LAS (%) of predicted dependency parsers.

guages where LAS>80%, the F1 score difference
is less than 1% indicating that the inaccuracy of
predicted parsers is relatively negligible.

5 Conclusions and Future Work

Through comprehensive experiments, we consis-
tently show that incorporating syntax from depen-
dency trees can improve the transferability of cross-
lingual SRL models across languages. Overall, we
show that the transformer-based model, i.e., SAN-
RPRs that encode DRE without POSE in the node
representation and RPR in the edge representation,
stacked in three layers, is the most transferable
among all models, especially as the dependency
distance increases. However, TAGATS that encode
SAPE in the node representation and DR and RPR
in the edge representation, stacked in two layers,
transfer better than SAN-RPRs in languages where
most of the arguments lie in 1-2 dependency dis-
tance.

In the future, we can extend the model training to
a few-shot setting where we include a certain pro-
portion of target sentences in the training set. We
can modify the network’s objective function and/or
parameters to maximize the learning of universal
features without ignoring the language-specific fea-
tures.



6 Limitations

This work’s limitation is that we focus on argument
detection and argument labeling in cross-lingual
SRL, assuming that the sentences’ gold predicates
are easy to obtain. Furthermore, we focus on con-
ducting experiments in a zero-shot setting. The
availability of target sentences in the training set
might affect the models’ behavior, which should be
investigated further.

7 Ethics Statement

We believe there is no ethical issue raised in this
work. SRL is a low-level task that supports other
advanced NLP applications. Therefore, increasing
the coverage of SRL models in various languages
is beneficial for developing NLP tools that can help
solve problems in this diverse society.
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Lang Train Dev Test
English (EN) 12,542 1,974 2,062
Chinese (ZH) 3,997 500 500
Czech (CS) 102,993 11,311 12,203
Dutch (NL) 18,078 1,394 1,472
Finnish (FI) 27,198 3,239 3,422
French (FR) 17,968 2,970 1,712
German (DE) 166,849 19,233 19,436
Greek (EL) 1,662 403 456
Hindi (HI) 13,304 1,659 1,684
Hungarian (HU) | 910 441 449
Indonesian (ID) | 4,482 559 557
Italian (IT) 29,685 2,277 2,518
Japanese (JA) 14,100 1,014 1,086
Korean (KO) 27,410 3,016 3,276
Marathi (MR) 373 46 47
Polish (PL) 31,496 3,960 3,942
Portuguese (PT) | 16,633 2,376 2,367
Romanian (RO) | 35911 2,247 2,272
Russian (RU) 19,894 1,525 1,482
Spanish (ES) 28,474 3,054 2,147
Tamil (TA) 400 80 120
Telugu (TE) 1,051 131 146
Ukrainian (UK) 5,496 672 892
Vietnamese (VI) | 1,400 800 800

Table 8: Number of sentences available in each language
in UPB v2.

A Atrtifacts

A.1 Corpus Distribution

Table 8 shows the corpus distribution in UPB v2.
Since we run our experiments in a zero-shot setting,
we only use the dev set and test set for languages
other than English.

A.2 Corpus Preprocessing

Some treebanks have enhanced dependency tree
annotations that cause new tokens to be added to
the sentences. These tokens are called enhanced
tokens. The enhanced tokens cause some SRL an-
notations in UPB v2 to be shifted when merged
with UD v2.9, resulting in the wrong predicate or
semantic role annotations. For example, take a look
at the example of wrong predicate annotation taken
from the dev set in Finnish-TDT (UPB v2). Token
10.1 is an enhanced token.

# sent_id = w@63.9

# text = Osasto..........

1 _ _ _

2 _ _ _

3 be.@1 A1:2|AM-LOC:7 A1:1-2|AM-LOC:6-7
4 _ _ _

5___

6 _ _ _

7 _ _ _

8
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9 _

10 _ _ _

10.1 _ _ _

11 be.01 A1:9 A1:9-10
12 _ _ _

13 _ _

The corresponding annotation in UD v2.9 is as
follows. Note that we only present the tokenized
words, lemmas, and POS tags here since we only
show the UD annotation to highlight the shifted
annotation problem.

# sent_id = w@63.9

# text = Osasto N7 sijaitsee

samassa korttelissa

Naistenklinikan rakennuksessa

ja osasto LV37 Katiloopiston

sairaalassa.

Osasto osasto NOUN

N7 N7 SYM

sijaitsee sijaita VERB

samassa sama PRON

korttelissa kortteli NOUN

Naistenklinikan nais#klinikka

NOUN

rakennuksessa rakennus NOUN

8 ja ja CCONJ

9 osasto osasto NOUN

10 LV37 LV37 SYM

10.1 sijaitsee sijaita VERB

11 Katiloopiston katilo#opisto
NOUN

12 sairaalassa sairaala NOUN

13 . . PUNCT

If we compare the two annotations from UPB v2
and UD v2.9, we can see that the first predicate
annotated on token 3, i.e., “sijaitsee”, is correct.
However, the second predicate annotated on the
token 11, i.e., “Kétiloopiston”, is wrong. The cor-
rect second predicate is token 10.1, i.e., “sijaitsee”.
The annotation is somehow shifted because of the
enhanced token added, token 10.1. Therefore, we
fix the annotation in UPB v2 to be as follows.

sent_id = w063.9
text Osasto

o O AW N =

7

A1:2|AM-LOC:7 A1:1-2|AM-LOC:6-7

N o oA w N = H R



8 Treebank License
- T English-EWT CCBY-SA 4.0
9 - - - Chinese-GSD CC BY-SA 4.0
10 _ _ _ Czech-CAC CCBY-SA 4.0
. .0- Czech-CLTT CCBY-SA 4.0
10.1 be.01 A1:9 A1:9-10 Czech-FicTree CCBY-NC-SA 4.0
M __ Czech-PDT CC BY-NC-SA 3.0
12 _ _ _ Dutch-Alpino CCBY-SA 4.0
13 Dutch-LassySmall CCBY-SA 4.0
- - - Finnish-FTB CCBY 4.0
In some cases, the predicate annotations and the Finnish-TDT CCBY-SA 4.0
. . . French-GSD CCBY-SA 4.0
semantic role annotations are shifted. We run French-Rhapsodie CC BY-SA 4.0
a script to fix the annotation problems in all French-Sequoia LGPL-LR
treebanks with enhanced dependency tree anno- German-GsD CCBY-SA 4.0
. . German-HDT CCBY-SA 4.0
tations. The treebanks with enhanced dependency Greek-GDT CC BY-NC-SA 3.0
tree annotations are Czech-CAC, Czech-FicTree, Hindi-HDTB CCBY-NC-SA 4.0

Czech-PDT, Dutch-Alpino, Dutch-LassySmall,
Finnish-TDT, Italian-ISDT, Spanish-AnCora,
and Ukrainian-IU.

After we fix the shifted predicate and semantic

Hungarian-Szeged
Indonesian-GSD
Italian-ISDT
Italian-ParTUT
Italian-PoSTWITA

CCBY-NC-SA 3.0
CCBY-SA 4.0

CCBY-NC-SA 3.0
CCBY-NC-SA 4.0
CCBY-NC-SA 4.0

Italian-TWITTIRO CCBY-SA 4.0

role annotations, we notice that some predicates Italian-VIT CC BY-NC-SA 3.0
and their semantic roles are annotated in the Japanese-GSD CCBY-SA 4.0
. .. Japanese-GSDLUW CCBY-SA 4.0
enhanced tokens that do not appear in the original Korean-GSD CC BY-SA 4.0
sentence. The treebanks that contain this phe- Korean-Kaist CCBY-SA 4.0
nomenon are Dutch-Alpino, Dutch-LassySmall, Marathi-UFAL CCBY-SA 4.0
. . . Polish-LFG GNU GPL 3.0

Finnish-TDT, Ukrainian-IU, and Polish-PDB CC BY-NC-SA 4.0
Spanish-AnCora. We cannot accommodate Portuguese-Bosque CCBY-SA 4.0
: : : Portuguese-GSD CCBY-SA 4.0
these annotatlons’s1nc§ v've build the models based Romanian-Nonstandard | GG BY-SA 4.0
on the sentence’s original tokens. Therefore, Romanian-RRT CC BY-SA 4.0
we omit the predicates and their corresponding Romanian-SiMoNERo gg BY—g: 38

. . Russian-GSD BY- .
semantic .roles annotated on enhanced tokens in Russian-Taiga CCBY-SA 4.0
our experiments. Spanish-AnCora CCBY 4.0

Spanish-GSD CCBY-SA 4.0

A.3 License Tamil-TTB CC BY-NC-SA 3.0
Telugu-MTG CCBY-SA 4.0

Complete UPB v2 contains annotations from UD Ukrainian-IU CC BY-NC-SA 4.0
Vietnamese-VTB CCBY-SA 4.0

v2.9. Table 9 shows the license for each treebank
in UD v2.9. In addition to licenses inherited from
UD v2.9, UPB v2 also has a CDLA-Sharing-1.0
license.

We refer to publicly available codes to build the
corpus and models for experiments. We provide
the following list of GitHub repositories with their
corresponding licenses.

1. UniversalPropositions/tools: Apache-2.0

2. diegma/neural-dep-srl (Marcheggiani and
Titov, 2017): Apache-2.0

3. AnWang-Al/towe-eacl (Jiang et al., 2021): No
License

4. dmlc/dgl (Wang et al., 2019a): Apache-2.0

2019): No License

MIT

MIT

Table 9: License for each treebank in UD v2.9.

. deepakn97/relationPrediction (Nathani et al.,

. thudm/hgb (Lv et al., 2021): No License

. shenwzh3/RGAT-ABSA (Wang et al., 2020):

. wasiahmad/GATE (Ahmad et al., 2021b):

We access all the resources mentioned above solely
5. gordicaleksa/pytorch-GAT (Gordi¢, 2020): for academic research. We follow the intended
MIT usage of each artifact.
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https://github.com/UniversalPropositions/tools
https://github.com/diegma/neural-dep-srl
https://github.com/AnWang-AI/towe-eacl
https://github.com/dmlc/dgl
https://github.com/gordicaleksa/pytorch-GAT
https://github.com/deepakn97/relationPrediction
https://github.com/thudm/hgb
https://github.com/shenwzh3/RGAT-ABSA
https://github.com/wasiahmad/GATE

Treebank Dev Test

Flpos UAS LAS Flpos UAS LAS
English-EWT 96.79 9246  90.86 | 96.80 91.42 89.82
Chinese-GSD 95.35 85.11 83.19 | 95.52 87.06 85.13
Czech-CAC 99.26 9297 91.62 | 98.70 93.43  91.68
Czech-CLTT 99.44 89.13 86.98 | 98.98 88.32  86.09
Czech-FicTree 98.43 94.68 93.11 | 98.34 94.61 92.76
Czech-PDT 98.77 93.74 92.24 | 98.63 93.50 91.87
Dutch-Alpino 98.36 94.53 9224 | 97.33 92.87 90.42
Dutch-LassySmall 97.03 90.77 87.62 | 96.31 92.12 89.11
Finnish-FTB 96.90 93.77 9229 | 96.87 94.03 92.41
Finnish-TDT 98.08 91.97 90.41 | 97.78 92.24 90.74
French-GSD 98.45 95.66 94.45 | 98.20 93.47 91.87
French-Rhapsodie 98.12 87.75 83.25 | 97.64 86.42 81.88
French-Sequoia 99.03 93.54 9223 | 99.12 93.10 91.70
German-GSD 96.19 91.78 88.61 | 95.37 89.65 85.62
German-HDT 98.08 95.18 93.64 | 98.30 9530 93.72
Greek-GDT 97.74 91.77 9043 | 97.71 9293 91.19
Hindi-HDTB 97.89 96.62 9449 | 97.93 96.68 94.43
Hungarian-Szeged 96.66 87.64 84.10 | 96.06 86.72  83.25
Indonesian-GSD 94.64 86.49 76.25 | 94.73 87.31 77.33
Italian-ISDT 98.54 9441 92.84 | 98.62 94.37 93.16
Italian-ParTUT 97.86 92.76  90.52 | 98.54 93.10 91.40
Italian-PoSTWITA 97.35 87.21 83.20 | 96.96 88.33 84.41
Italian-TWITTIRO 96.79 87.25 81.64 | 96.20 84.85 79.77
Italian-VIT 98.12 90.63 88.82 | 98.16 91.54 89.05
Japanese-GSD 98.34 96.09 9547 | 98.10 95.11 94.21
Japanese-GSDLUW 98.54 96.12 95.82 | 98.58 95.35 95.12
Korean-GSD 95.79 88.22 8541 | 96.27 89.65 87.07
Korean-Kaist 96.19 91.35 90.39 | 95.58 90.41 89.45
Marathi-UFAL 89.32 74.55 64.32 | 90.53 79.85 70.63
Polish-LFG 98.94 97.56  96.73 | 99.05 97.80  96.92
Polish-PDB 98.75 94.17 92.69 | 98.74 94.58 93.16
Portuguese-Bosque 97.92 9425 9251 | 98.10 9485 93.54
Portuguese-GSD 98.36 94.44 9334 | 98.28 9421 93.23
Romanian-Nonstandard | 96.77 93.18 90.04 | 96.40 91.43 87.75
Romanian-RRT 98.06 91.96 88.60 | 97.92 91.93 88.45
Romanian-SiMoNERo 98.19 93.38 91.21 | 98.23 93.78 91.86
Russian-GSD 98.38 90.55 87.80 | 98.09 90.44 87.21
Russian-Taiga 95.80 83.94 79.32 | 97.06 84.42 81.41
Spanish-AnCora 98.99 93.83 92.16 | 98.96 93.82 92.00
Spanish-GSD 97.13 9191 89.79 | 97.26 91.93 89.58
Tamil-TTB 87.17 81.24 73.48 | 86.93 80.89  72.30
Telugu-MTG 94.41 9290 86.25 | 94.45 93.07 85.58
Ukrainian-IU 98.08 91.14 89.34 | 97.67 90.10 88.24
Vietnamese-VTB 92.84 7892 7499 | 92.81 77.58 74.16

Table 10: F1pos, UAS, and LAS of each treebank’s POS tagger and dependency parser in UPB v2. Flpgg indicates
the F1 score of the POS tagger.
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Hyperparameter | Value
num_epochs 100
batch_size 32
optimizer SGD
learning_rate 0.1
num_early_stop 20

num_decay_epoch | 5

1r_decay 0.9
min_lr 0.00001
pos_dim 30
pred_ind_dim 30
emb_dropout 0.5
hid_dim 512
num_heads 8

d_k 64

d_v 64
d_ff 2048

Table 11: Basic hyperparameters applied in the experi-
ments.

B Experiments

B.1 Dependency Parsers and POS Taggers

Table 10 shows the POS tagger and dependency
parser evaluation results on each treebank in UPB
v2. For Japanese-GSDLUW, French-Rhapsodie,
and English-EWT treebanks, we train the POS tag-
gers and dependency parsers from scratch using
Stanza (Qi et al., 2020) with a 0.0005 learning rate,
70,000 max steps, and 10,000 max steps before
stopping. We measure the performance of POS
taggers with the F1 score. Meanwhile, we measure
the performance of dependency parsers with the
unlabeled attachment score (UAS) and the labeled
attachment score (LAS).

B.2 Hyperparameter Search

We take the representative models from
transformer-based models (i.e., SAN-RPRs),
GCN-based models (i.e., ARGCNs and SGCNs),
GAT-based models (i.e., GATs), and BiLSTM-
based model (i.e., BILSTMs) to experiment with
the optimizers. We experiment with SGD (Kiefer
and Wolfowitz, 1952), Adam (Kingma and Ba,
2015), and AdamW (Loshchilov and Hutter, 2019)
as the optimizer. We also try different learning
rates for each optimizer, i.e., 0.1, 0.01, and 0.001.
The SGD optimizer with a 0.1 learning rate works
the best in all the representative models. Therefore,
we apply this setting to the rest of our experiments.
Table 11 summarizes the fixed hyperparameters
we use throughout our experiments. Algorithm
1 shows the logic for model training. Below, we
explain each hyperparameter:

1. num_epochs: Number of epochs for model

10.

11.

12.

13.

14.

15.

16.

training.
batch_size: Batch size for model training.

optimizer: Type of optimizer for model
training.

learning_rate:
model training.

Initial learning rate for

num_early_stop: Stop the training if there
is no improvement after a certain number of
consecutive epochs.

. num_decay_epoch: The upper limit of epoch

before we start decaying the learning rate.

. 1Ir_decay: The ratio to decay the learning

rate.

min_1r: Lower limit of the learning rate. We
stop the model training if the learning rate
falls below this threshold.

. pos_dim: Dimension of POSE, o (Equation 1).

If the dimension is 0, we will not concatenate
o in the input layer.

pred_ind_dim: Dimension of PIE, p (Equa-
tion 1). If the dimension is 0, we will not
concatenate p in the input layer.

emb_dropout: Dropout applied in the input
layer (Equation 1).

hid_dim: The dimension of the node repre-
sentation that the encoder accepts.

num_heads: Number of heads applied in the
multi-head self-attention mechanism present
in transformer-based models, GAT-based mod-
els, and ARGCNs.

d_k: The dimension of keys applied in
transformer-based models.

d_v: The dimension of values applied in
transformer-based models.

d_ff: The output dimension of the first linear
transformation in transformer-based model’s
position-wise FFN.

The following sections will explain the hyper-
parameter search and hyperparameter values that
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Algorithm 1 Pseudocode of the model training.

Require: num_early_stop, num_decay_epoch,min_1r,1r_decay, num_epochs, learning_rate

best_f1+ 0
no_improvement < 0
for curr_epoch <+ 1, num_epochs do
curr_f1 < train(learning_rate)
if curr_f1 > best_f1 then
best_f1 < curr_f1
no_improvement < 0
else
no_improvement <— no_improvement + 1
if no_improvement > num_early_stop then
break
end if
if curr_epoch > num_decay_epoch then

learning_rate < 1lr_decay * learning_rate

if learning_rate < min_1r then
break
end if
end if
end if
end for

work best in each model. Table 12, Table 13, Ta-
ble 14, and Table 15 describe the hyperparame-
ter search for BiLSTM-based models, transformer-
based models, GCN-based models, and GAT-based
models, respectively. Due to the number of hyper-
parameters, we divide the hyperparameter search
into groups indicated by the leftmost column, i.e.,
the column with a "No" header. We will search
for the best combination between the hyperparam-
eters in the same group. For example, in Table
13, num_enc_layers and enc_dropout belong to
group 1, which means we experiment with differ-
ent dropouts, i.e., 0.1, 0.2, 0.3, 0.4, and 0.5, for
each number of layers, i.e., 1, 2, 3, and 4. Below,
we explain each hyperparameter involved in the
hyperparameter search.

1. num_enc_layers: Number of layers stacked
together.

2. enc_dropout: Dropout applied in the mod-
els, including dropout applied in the encoder
(Section 3.3).

3. 1stm_num_layers: Number of BiLSTM lay-
ers stacked together.

4. 1stm_dropout_net: Dropout applied in BiL-
STMs, including dropout applied in the en-
coder (Section 3.3).

5. gnn_activation: Activation function used
in GCN-based and GAT-based models, ap-
plied in the encoder (Section 3.3).
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10.

11.

12.

13.

14.

15.

. Istm_hidden_size:

. gnn_activation_at_final_layer:

Whether to apply the activation func-
tion in the last layer, especially if we stack
more than one layer.

. 1stm_activation: Activation function used

in BiLSTMs (Section 3.3).

Hidden size of BiL-
STMs. Since the network is bidirectional, the
dimension of the final hidden representation
is 2 X 1stm_hidden_size.

. deprel_dim: Dimension of DRE, d (Equa-

tion 1). If the dimension is 0, we will not
concatenate d in the input layer.

abs_position_dim: Dimension of APE, a,
and SAPE, s (Equation 1).

use_dep_abs_position: Boolean value that
indicates whether to concatenate SAPE, s, in
the input layer (Equation 1).

use_word_abs_position: Boolean value
that indicates whether to concatenate APE,
a, in the input layer (Equation 1).

att_dim: Dimension of a trainable vector a in
ARGCNSs (Equation 7 in Jiang et al. (2021)).

base_size: Base size, B, in RGCNs (Equa-
tion 3 in Schlichtkrull et al. (2018)).

rel_pos_dim: Dimension of RPR in GCN-
based and GAT-based models. We do not use
this parameter for transformer-based models



because the RPR in transformer-based models
must have the same dimension as dj, and d,,
(Vaswani et al., 2017).

16. num_embed_graph_heads: Number of heads
where we modify M matrix according to dis-
tance matrix, D, in GATEs (Equation 3 in Ah-
mad et al. (2021b)). For the rest of the heads,
we apply a zero matrix to M, connecting all

the nodes in the graph.

17. max_tree_dists: The § parameter that
is applied to each head in GATEs (Equa-
tion 3 in Ahmad et al. (2021b)). The
length of this parameter must equal

num_embed_graph_heads.

18. max_relative_positions: The maximum
absolute value for relative position (k£ in Shaw
et al. (2018)) or structural relative position (r

in Section Wang et al. (2019b)).

19. use_dep_rel_pos: The boolean value that
indicates whether to incorporate SRPR in the

edge representation.

20. use_word_rel_pos: The boolean value that
indicates whether to incorporate RPR in the

edge representation.

21. deprel_edge_dim: Dimension of representa-
tion for dependency relation, d,., when we use

B-DR.

22. deparc_edge_dim: Dimension of representa-
tion for dependency direction, d4, when we

use B-DR.

23. deprel_ext_edge_dim: Dimension of de-
pendency relation representation when we use

A-DR.

There are two ways of generating APE, SAPE,
RPR, and SRPR, i.e., using learned positional em-
bedding (Gehring et al., 2017) and using sine and
cosine functions (Vaswani et al., 2017). We con-
duct preliminary experiments and find that sine and
cosine functions work better than learned positional
embedding. Therefore, we generate the represen-
tation for each type of position in the experiments
using sine and cosine functions.

B.2.1 BiLSTM-Based Models

Table 12 shows the hyperparameter search for
BiLSTM-based models.
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No | Hyperparameter Value
lstm_num_layers 1,2,3,4
1 lstm_dropout_net 0.1,0.2, 0.3,
0.4,0.5
) lstm_activation ReLLU, Leaky
ReLU, ELU
3 lstm_hidden_size 256, 512
deprel_dim 0,30
4 abs_position_dim 0, 30
use_dep_abs_position | T

Table 12: Hyperparameter search in BiILSTM-based
models. The search is divided into groups shown in the
"No" header. We search for the best combination of
hyperparameters in the same group. The bold values
indicate the results of the hyperparameter search.

B.2.2 Transformer-Based Models

Table 13 shows the hyperparameter search for
transformer-based models.

B.2.3 GCN-Based Models

Table 14 shows the hyperparameter search for
GCN-based models.

B.2.4 GAT-Based Models

Table 15 shows the hyperparameter search for GAT-
based models.

B.3 Computational Resource

We use Tesla P100 to train the models. Train-
ing time for GCN-based and GAT-based models
takes around 5 hours. Meanwhile, training time
for BILSTM-based and transformer-based models
takes around 10 hours. Hyperparameter search in
GCN-based models costs around 775 GPU hours.
Hyperparameter search in GAT-based models costs
around 910 GPU hours. Hyperparameter search
in transformer-based models costs around 1,720
GPU hours. Hyperparameter search in BiLSTM-
based models costs around 290 GPU hours. After
searching for the best hyperparameter setting for
each model, we run the training five times for each
model, spending around 1,075 GPU hours. There-
fore, in total, we spend approximately 4,770 hours.

C Supporting Results

C.1 Transformer-Based Models

C.1.1 Comparison

Table 16 shows the detailed comparison of
transformer-based models in each language. We
calculate each model’s superiority score (SC) based
on the model performance in target languages. We



No [ Hyperparameter | Value
General
num_enc_layers 1,2,3,4
enc_dropout 0.1,0.2,0.3,0.4, 0.5
Transformers
[ deprel_dim [0,30
GATEs
num_embed_graph_heads 4

max_tree_dists

<1,1,2,2>,<2,2,4,4>,
<4,4,8,8>,<1,2,4,8>

deprel_dim
abs_position_dim
<use_dep_abs_position,
use_word_abs_position>

0, 30
0,30
<T,F>, <F, T>

SAN-RPRs
max_relative_positions 1,2,4,8,16
deprel_dim 0, 30

SAN-SAPRs

[ deprel_dim [0,30

SAN-SRPRs
max_relative_positions 1,2,4,8,16
deprel_dim 0, 30

Trans-SRPRs
| deprel_dim 0,30
Trans-SRPR-DRs
deprel_dim 0, 30
abs_position_dim 0, 30
use_word_abs_position T
use_dep_rel_pos T,F

<deprel_edge_dim, deparc_edge_dim,
deprel_ext_edge_dim>

<32,32,0>, <48, 16, 0>,
<56, 8, 0>, <60, 4, 0>,
<62,2,0>, <63, 1,0>
<0, 0, 64>

SAPR-RPRs
| deprel_dim [0,30
SAPR-RPR-DRs
deprel_dim 0, 30
abs_position_dim 0,30
use_dep_abs_position T
use_word_rel_pos T,F

<deprel_edge_dim, deparc_edge_dim,
deprel_ext_edge_dim>

<32, 32,0>, <48, 16, 0>,
<56, 8, 0>, <60, 4, 0>,
<62,2,0>, <63, 1, 0>
<0, 0, 64>

Table 13: Hyperparameter search in transformer-based models. The search is divided into groups shown in the "No"
header. We search for the best combination of hyperparameters in the same group. The bold values indicate the
results of the hyperparameter search.

38



No [ Hyperparameter | Value
SGCNs

1 num_enc_layers 1,2,3,4
enc_dropout 0.1,0.2,0.3,04, 0.5

2 gnn_activation ReLU, Leaky ReLLU, ELU
gnn_activation_at_final_layer | T,F
deprel_dim 0, 30

3 abs_position_dim 0, 30
<use_dep_abs_position, <T,F>, <F, T>
use_word_abs_position>

RGCNs

1 num_enc_layers 1,2,3,4
enc_dropout 0.1,0.2,0.3,0.4, 0.5

2 gnn_activation ReLLU, Leaky ReLLU, ELU
gnn_activation_at_final_layer | T,F

3 base_size 1,2,4,8, 16,32, 80
deprel_dim 0, 30

4 abs_position_dim 0, 30
<use_dep_abs_position, <T,F>, <F, T>
use_word_abs_position>

ARGCNs

1 num_enc_layers 1,2,3,4
enc_dropout 0.1,0.2,0.3,04, 0.5

) gnn_activation ReLU, Leaky ReL.U, ELU
gnn_activation_at_final_layer | T,F
deprel_ext_edge_dim 1,2,4,8, 16

3 att_dim 1,2,4,8,16
rel_pos_dim 64, 128
use_word_rel_pos T
deprel_dim 0, 30

4 abs_position_dim 0, 30
use_dep_abs_position T

Table 14: Hyperparameter search in GCN-based models. The search is divided into groups shown in the "No"
header. We search for the best combination of hyperparameters in the same group. The bold values indicate the

results of the hyperparameter search.

allocate 2 points if the model achieves the high-
est F1 score or 1 point if the model achieves the
second-highest F1 score for a specific language.

C.1.2 Ablation Study of SAN-RPRs

We experiment with removing either DRE, d,
POSE, o, or PIE, p, from the node representation
in SAN-RPRs. Table 17 shows the results of the
ablation study. Removing either DRE or PIE from
the node representation reduces the performance of
SAN-RPRs. However, SAN-RPRs without POSE
perform better in most languages.

C.2 Best Models
C.2.1 Comparison with SAN-RPRs w/o POSE

In Table 5, according to the superiority score, we
can see that SAPR-RPRs perform best in more lan-
guages than SAN-RPRs, even though the average
F1 score of SAN-RPRs is better than SAPR-RPRs.
However, as discussed before, SAN-RPRs without
POSE perform better in most languages than SAN-
RPRs with POSE, which we use for comparison
in Table 5. Therefore, in Table 18, we re-compare
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SAN-RPRs without POSE with the other best mod-
els. After removing POSE from SAN-RPRs, we
find that the model performs best in more languages
than SAPR-RPRs with 18 and 16 superiority scores,
respectively.

C.2.2 Fine-Tuned Models

We fine-tune the multilingual BERT (mBERT) in
SAN-RPRs and SAPR-RPRs. Table 19 compares
the average F1 scores of models with frozen and
fine-tuned mBERT. Overall, fine-tuning increases
the performance of both models. However, in the
fine-tuned models, the variability of the average F1
score in each run increases, indicated by the higher
standard deviation in fine-tuned mBERT. This is
expected as when we fine-tune the mBERT, many
parameters from mBERT are involved in the train-
ing process, increasing the randomness variable
in model training. The behavior of the models is
similar before and after the fine-tuning. The fine-
tuned SAN-RPRs perform better than SAPR-RPRs
with 54.01% and 53.82% average F1 scores, re-
spectively.



No [ Hyperparameter [ Value
General
1 gnn_activation ReLU, Leaky ReLU, ELU
gnn_activation_at_final_layer T,F
GATs
1 num_enc_layers 1,2,3,4
enc_dropout 0.1,0.2,0.3,0.4, 0.5
deprel_dim 0, 30
2 abs_position_dim 0, 30
<use_dep_abs_position, <T,F>, <F, T>
use_word_abs_position>
SHGNs
| num_enc_layers 1,2,3,4
enc_dropout 0.1,0.2,0.3,0.4, 0.5
deprel_ext_edge_dim 16, 32, 64, 128
2 rel_pos_dim 16, 32, 64, 128
use_word_rel_pos T
deprel_dim 0, 30
3 abs_position_dim 0, 30
use_word_rel_pos T, F
use_dep_abs_position T
4 <deprel_edge_dim, deparc_edge_dim, | <8,8,0>, <12,4,0>,
deprel_ext_edge_dim> <14,2,0>, <15, 1, 0>, <0, 0, 16>
TAGATSs
1 num_enc_layers 1,2,3,4
enc_dropout 0.1,0.2,0.3,04, 0.5
deprel_ext_edge_dim 16, 32, 64, 128
2 rel_pos_dim 16, 32, 64, 128
use_word_rel_pos T
deprel_dim 0, 30
3 abs_position_dim 0, 30
use_word_rel_pos T,F
use_dep_abs_position T
4 <deprel_edge_dim, deparc_edge_dim, | <8, 8,0>, <12,4, 0>,
deprel_ext_edge_dim> <14,2,0>, <15, 1, 0>, <0, 0, 16>
KBGATSs
1 num_enc_layers 1,2,3,4
enc_dropout 0.1,0.2,0.3,0.4, 0.5
deprel_ext_edge_dim 16, 32, 64, 128
2 rel_pos_dim 16, 32, 64, 128
use_word_rel_pos T
deprel_dim 0,30
3 abs_position_dim 0, 30
use_word_rel_pos T,F
use_dep_abs_position T
<deprel_edge_dim, deparc_edge_dim, | <16, 16,0>, <24, 8, 0>,
4 deprel_ext_edge_dim> <28,4, 0>, <30, 2, 0>,
<31, 1,0>, <0, 0,32>

Table 15: Hyperparameter search in GAT-based models. The search is divided into groups shown in the "No" header.
We search for the best combination of hyperparameters in the same group. The bold values indicate the results of
the hyperparameter search.
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GATEs Transformers SAN- SAN- SAN- Trans- SAPR- Trans- SAPR-
RPRs SAPRs SRPRs SRPRs RPRs SRPR- RPR-
DRs DRs

EN 78.96+0.31 76.16+0.51 78264040  75.93+047  78.27+0.50  79.034+032  78.11+042  79.85+0.21 79.8340.19
AVG 52.57+0.23 52.07+0.21 52734040  51.984+0.10  51.514+027 52214030  52.644+0.38  50.60+0.14  50.6940.21
TA 36.72+£0.89  35.32+1.56 37.96+1.75 38.07+147  3593+2.16 35744147  39.57+1.18  32.23+1.14  32.91+1.22
HI 48.56+0.37  47.40+0.18 47514062  45.07+052  45.70+0.63  47.804+0.57  45.04+035  48.041+045  47.5740.65
ZH 48.094+0.64  48.86+0.31 50.37+1.17  50.064+0.15  46.96+0.54  46.514+0.53  50.96+0.88  43.63+1.09  43.12+0.87
JA 37454086  38.38+0.37 37.69+£0.99 37914088  36.29+1.60 36.46+120  34.78+1.29  33.8640.61 33.56+£1.47
VI 28.01£0.91 28.25+0.57 28.69+0.79  29.70+0.50  27.70+0.61 27.34+059  29.104+045 25724022  25.3740.23
KO 43.444090  43.13£2.26 42.61+1.84  46.09+1.02  43.38+0.84  43.624+057  45.24+1.23 39.34+1.19  40.7610.51
D 57.88+047  55.3640.42 58.78+1.09 57954056  59.79+0.27 58414035  59.97+0.53  53.4140.69  52.89+0.25
HU 50.69+0.25  50.1340.85 49.764+035  49.68+0.56  49.284+020  50.60+049  49.084+0.34  49.51+047  49.3140.72
RO 53.86+£0.57  52.9040.39 54.23+0.67  52.114+023  52.44+0.33 53.75+£055  54.46+0.52  52.50+0.31 52.50+0.49
FR 61.674+030  60.23+0.39 62.1940.41 60.524+0.27  60.34+037  61.30+0.50  62.114+047  60.82+020  60.914+0.28
MR 37494174  42.85+42.67 41.064+2.89  41.2241.65  37.37+127  36.58+1.68  40.364+220  36.7541.67 37.40+1.56
UK 58.89+0.53 58.83+0.20 58.92+026  58.874+0.48  58.23+0.69  58.934+0.72  59.36+0.72  57.944+042  58.23+0.39
PT 65.49+024  64.0510.26 66.05+0.21 64.76+0.48  65.16+0.41 65.34+£0.15  66.49+033  64.61+024  64.8440.17
1T 57.52+£038  57.424043 58.114+0.33  56.35+045  56.0940.33 57424032  57.804+0.39  56.60+0.31 56.7240.42
ES 63.36+0.24  62.04+0.42 63.71+0.33  61.53+031 62.704+£0.20  63.47+0.27  63.62+025  61.78+0.14  61.68+0.22
CS 57.69+0.39  56.1940.48 56.87+0.27  55.274+057  56.58+0.27  57.614+0.34  55.80+0.51 56.444+0.26  56.354+0.49
EL 60.37+£0.59  59.03+0.34 60.59+0.23  57.30+0.69  58.98+0.82  59.31+030  60.234+0.40  57.89+033  58.33+0.33
FI 55.00£0.34  54.724+0.33 55.584+042  54.74+047 53914037  54.8640.31 55.29+0.54  54.114+0.17  54.15+0.25
RU 59.364+0.24  59.31+047 60.18+044  60.33+0.37  59.094+030  59.29+040  61.13+0.50  58.60+0.39  58.56+0.25
NL 63.73+0.53  62.4840.76 62.84+037  61.754+026  61.731+0.41 63.07+£049  62.2240.58  62.23+020  62.4340.39
TE 46.32+0.98  44.94+138 44.66+2.00  41.64+1.81 41.88+1.17  46.10+£1.10  43.88+1.57 42.48+1.28  43.09+1.26
DE 58.88+040  58.29+0.70 56.86+0.32 58394034  58.14+030  58.8440.30  56.98+1.13 58214026  58.30+0.34
PL 58.73+0.64  57.58+0.25 57.67+£036  56.254+035  57.144+040  58.60+0.29  57.284+0.46  57.184+0.62  56.85+0.64
SC 15 4 13 8 1 7 20 1 0

PR 12.2M 12.2M 12.2M 12.2M 12.1IM 12.2M 12.2M 12.2M 12.2M

Table 16: F1 scores (%) of transformer-based models evaluated on UPB v2 test set with predicted parsers. The bold
score and underlined score indicate the highest and second-highest scores. AVG indicates the average F1 scores of a
specific model evaluated in target languages. PR and SC are the number of parameters and the superiority score of
each model.

base w/o DRE  w/o POSE w/o PIE

EN 78.26+040  77.56x041  78.32+0.32 77.66+0.38
AVG | 52.73+040 51.65+028 52.73+0.32 51.54+036
TA 37.96+175  37.59+195 36.53+132 32.03+1.68
HI 47.51+062 42224085 47.69+110  43.89+031
ZH 50.37+117  50.42+038  50.81+o0.51 49.83+0.54
JA 37.69+099 33.25+201  36.07+1.20 30.67+2.90
VI 28.69+079 29.18+105  28.30+092  29.34+0.96
KO 42.61+184 42.73+152  42.06+150  40.13+0.65
ID 58.78+1.09 58.41+080 57.77+083 57.06+0.78
HU 49.76+035 48.25+062  50.02+042  49.27+0s6
RO 54.23+067 54.11+037 54.94+050  54.19+0.76
FR 62.19+041  61.74+032  62.36+0.59 61.85+0.60
MR 41.06+289 39.45+176 41.83+350 41.15+262
UK 58.92+026  58.75+094  58.84+0.59 59.64+0.15
PT 66.05+021  66.67+053 66.65+044  65.46+044
1T 58.11+033  57.43+024  58.65+0.49 58.34+0.32
ES 63.71+033  63.18+033  64.07+0.51 63.63+0.34
CS 56.87+027 54.94+040 57.20+0.14 56.40=+0.28
EL 60.59+023  59.40+023 60.86+056  59.87+1.11
FI 55.58+042 54.78+025 55.40+0.16 55.18+0.24
RU 60.18+044 60.05+067 60.12+036  60.00+0.28
NL 62.84+037 60.97+084 63.21+0.38 60.76=+0.68
TE 44.66+200 42.41+263 43.464202 44401332
DE 56.86+032 55.34+144  57.70+0.43 54.36+0.52
PL 57.67+036 56.68+063 58.16+0.35 58.01+031

Table 17: F1 scores (%) of SAN-RPRs with certain embedding removed from the node representation evaluated on
UPB v2 test set with predicted parsers. The bold score and underlined score indicate the highest and second-highest
scores. AVG indicates the average F1 scores of a specific model evaluated in target languages.
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SAN- SAPR- SGCNs GATs TAGATs BiLSTMs

RPRs RPRs

(w/o POSE)
EN 78.32+032 78114042 | 79.944027 | 79.81+019  79.07+0.19 | 76.86+034
AVG | 52.73+032 52.64+038 | 52.52+038 | 52.66+0.14 52.78+014 | 51.85+0.09
TA 36.53+1.32 39.57+118 | 34.32+1.12 | 35.08+058 35.68+128 | 34.19+1.22
HI 47.69+1.10 45.04+035 | 48.24+061 | 48.25+033 47.65+033 | 46.63+038
ZH 50.81+0.51 50.96+0.88 | 45.77+067 | 46.124+039 46.80+064 | 47.56+0.89
JA 36.07+1.20 34.78+129 | 37.43+028 | 37.99+052 39.30+0.73 | 37.40+0.61
VI 28.30+0.92 29.10+045 | 27.95+056 | 28.06+059 28.31+055 | 28.18+0.38
KO 42.06+1.50 45244123 | 42.92+064 | 43.22+056 44.57+024 | 41.77+161
1D 57.77+0383 59.97+0.53 | 58.54+082 | 58.33+069 59.11+087 | 56.11+0384
HU 50.02+0.42 49.08+034 | 50.76+041 | 51.10+051  50.90+037 | 50.64+039
RO 54.94 +0.50 54.46+052 | 53.57+047 | 54.12+049 53.60+045 | 53.26+034
FR 62.36+0.59 62.114+047 | 60.93+038 | 61.64+044 61.13+022 | 61.22+027
MR 41.83+3.50 40.364+220 | 40.97+340 | 38.06+0.13 39.26+120 | 37.18+228
UK 58.84+0.59 59.36+072 | 59.66+076 | 59.49+056 59.72+031 | 58.96+007
PT 66.65+0.44 66.49+033 | 65.62+043 | 65.99+032 65.61+0.15 | 64.40+033
IT 58.65+0.49 57.80+039 | 57.43+042 | 58.00+042 57.34+034 | 58.02+027
ES 64.07+0.51 63.62+025 | 63.87+061 | 64.29+036 63.91+027 | 62.48+029
CS 57.20+0.14 55.80+051 | 57.95+052 | 58.02+021 57.62+028 | 56.59+036
EL 60.86+0.56 60.23+040 | 60.56+069 | 60.74+048 60.86+034 | 59.76+045
FI 55.40+0.16 55.29+054 | 54.87+040 | 54.62+032 54.88+020 | 54.62+0.20
RU 60.12+0.36 61.13+050 | 59.98+034 | 60.14+016 60.30+022 | 59.73+0.25
NL 63.21+038 62.224058 | 62.94+021 | 63.53+064 62.97+037 | 62.47+036
TE 43.46+2.02 43.88+157 | 46.08+1.07 | 46.96+1.49 46.96+182 | 45.95+051
DE 57.70+043 56.98+1.13 | 58.61+030 | 58.52+026 58.52+018 | 57.72+023
PL 58.16+0.35 57.28+046 | 59.08+031 | 59.00+044 58.92+052 | 57.73+023
SC 18 16 - - - -

Table 18: F1 scores (%) of best models evaluated on UPB v2 test set with predicted parsers. The bold score and
underlined score indicate the highest and second-highest scores. AVG indicates the average F1 scores of a specific
model evaluated in target languages. SC indicates the superiority score of each model.

Frozen mBERT Fine-Tuned mBERT

SAN-RPRs SAPR-RPRs | SAN-RPRs SAPR-RPRs
EN 78.26+0.40 78.11+042 79.37+0.60 79.04+0.57
AVG | 52.73+040 52.64+038 54.01+0.95 53.82+1.17

Table 19: F1 scores (%) of SAN-RPRs and SAPR-RPRs with frozen mBERT and fine-tuned mBERT. AVG indicates
the average F1 scores of a specific model evaluated in target languages.
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