
Findings of the Association for Computational Linguistics: EMNLP 2024, pages 2124–2141
November 12-16, 2024 ©2024 Association for Computational Linguistics

AGENTBANK: Towards Generalized LLM Agents via Fine-Tuning on
50000+ Interaction Trajectories

Yifan Song1, Weimin Xiong1, Xiutian Zhao2, Dawei Zhu1, Wenhao Wu1,
Ke Wang3, Cheng Li3, Wei Peng3, Sujian Li1*

1National Key Laboratory for Multimedia Information Processing,
School of Computer Science, Peking University

2University of Edinburgh 3Huawei Technologies
{yfsong, lisujian}@pku.edu.cn

https://huggingface.co/datasets/Solaris99/AgentBank

Abstract

Fine-tuning on agent-environment interaction
trajectory data holds significant promise for sur-
facing generalized agent capabilities in open-
source large language models (LLMs). In this
work, we introduce AGENTBANK, by far the
largest trajectory tuning data collection featur-
ing more than 50k diverse high-quality inter-
action trajectories which comprises 16 tasks
covering five distinct agent skill dimensions.
Leveraging a novel annotation pipeline, we are
able to scale the annotated trajectories and gen-
erate a trajectory dataset with minimized dif-
ficulty bias. Furthermore, we fine-tune LLMs
on AGENTBANK to get a series of agent mod-
els, SAMOYED. Our comparative experiments
demonstrate the effectiveness of scaling the in-
teraction trajectory data to acquire generalized
agent capabilities. Additional studies also re-
veal some key observations regarding trajectory
tuning and agent skill generalization.

1 Introduction

An agent is an entity that possesses the capabil-
ity for volition, decision-making, action-taking ,
and, most critically, environment perception (Jen-
nings et al., 1998). In the realm of cognitive sci-
ence, previous literature has suggested that interac-
tion with environment derives an agent’s general-
ized intelligence, and intelligent behavior emerges
from a synergistic blend of simpler behaviors, in-
cluding reasoning, programming, and game play-
ing (Brooks, 1991). The proprietary large language
models (LLMs), such as GPT-3.5 (OpenAI, 2022)
and GPT-4 (OpenAI, 2023), have demonstrated
strong capabilities in instruction following, reason-
ing, and planning, which encourage many attempts
to build autonomous agent systems utilizing LLMs
as core controllers (Richards, 2023; Song et al.,
2023). However, comprehensive evaluations have
shown that the majority of open-sourced LLMs

*Corresponding Authors.

fall short in agent capabilities when compared with
GPTs (Liu et al., 2023; Wang et al., 2023).

Previous research pointed out that learning from
gold interaction trajectories, a process we term Tra-
jectory Tuning, could enhance the capabilities of
weaker agents (Brooks, 1991; Hussein et al., 2017).
Early studies heavily focus on specialized agents
designed for particular tasks. Existing attempts
are exemplified by Chen et al. (2023a) and Yin
et al. (2023), who build agent trajectory data from
teacher agents (e.g., GPT-4) and fine-tune open-
source LLMs to improve specific agent abilities
like reasoning. Taking a step further, Zeng et al.
(2023) adopt a multi-task tuning approach called
AgentTuning. However, trained on a small trajec-
tory dataset comprising six tasks with 1.8k trajec-
tories, Zeng et al. (2023) struggle to enhance the
generalized agent capability, especially in the case
of 7B and 13B models.

To explore the impacts of incorporating interac-
tion trajectory data on agent ability generalization,
we construct AGENTBANK, the largest agent in-
teraction trajectory dataset to date. AGENTBANK

features 16 distinct tasks across five agent skill
dimensions and contains over 50,000 trajectories,
each annotated with high-quality chain-of-thought
(CoT) rationale for every step of action. Leverag-
ing a novel annotation pipeline that fully exploits
the capability of LLMs, the trajectory collection
process is highly scalable and adaptable to diverse
agent environments. In contrast to prior studies that
have relied on successful trajectories of GPTs for
training data (Chen et al., 2023a; Zeng et al., 2023),
AGENTBANK stands out with its exceptional qual-
ity and mitigated susceptibility to the difficulty bias
issue.

We further develop SAMOYED, a suite of models
with enhanced agent capabilities, through the trajec-
tory tuning of Llama-2 (Touvron et al., 2023) using
AGENTBANK. Our evaluations on both held-in and
unseen held-out tasks suggest that by fine-tuning

2124

https://huggingface.co/datasets/Solaris99/AgentBank

AGENTBANK FireAct AgentInstruct Agent-FLAN AgentOhana
(this work) (Chen et al., 2023a) (Zeng et al., 2023) (Chen et al., 2024) (Zhang et al., 2024)

Number of tasks 16 3 6 7 10
Number of trajectories 51287 1344 1866 24703 42600
Average interaction turns 3.9 - 5.2 3.7 3.1
No difficulty bias? ✓ ✗ ✗ ✗ ✗

Open-sourced? ✓ ✓ ✓ ✓ ✗

Reasoning ✓ ✓ ✗ ✗ ✓

Math ✓ ✗ ✗ ✗ ✗

Programming ✓ ✗ ✓ ✓ ✓

Web ✓ ✗ ✓ ✓ ✓

Embodied AI ✓ ✗ ✓ ✓ ✓

Table 1: A comparison of AGENTBANK with other datasets for agent trajectory tuning.

on extensive multi-task trajectories, our models ex-
hibit remarkable agent intelligence in comparison
with untuned ones. Specifically, SAMOYED outper-
forms GPT-3.5-Turbo on average on held-in tasks,
which can be attributed to the in-domain trajectory
tuning. Furthermore, our models also demonstrate
superior performance on held-out tasks, underscor-
ing the efficacy of large-scale trajectory tuning in
acquiring generalized agent capabilities.

To trace the emergence of agent capabilities gen-
eralization, we follow the initial evaluation with
a systematic analysis across various dimensions.
Initially, we delineate the scaling trends of tasks
alongside the quantity of trajectories. Next, we
conduct an ablation study that merges generalist in-
struction data and code data to examine the benefits
of hybrid training. This study uncovers further en-
hancements in the agent capabilities and mitigates
catastrophic forgetting. Furthermore, our findings
underscore the pivotal role of CoT rationale in the
acquisition of generalized agent capability.

Our contributions are summarized as follows:

• The release of AGENTBANK, a dataset of over
50,000 high-quality agent interaction trajectories,
spanning 16 tasks across five skill dimensions.
We also present a novel annotation pipeline, of-
fering scalability and a marked reduction in diffi-
culty bias, surpassing previous methods.

• The development of SAMOYED, the most power-
ful open-source LLM suite at the 7B/13B scale
optimized for agent tasks. Trained through trajec-
tory tuning, SAMOYED demonstrates exceptional
performance, showcasing transferable agent in-
telligence on unseen tasks.

• We conduct comprehensive experiments and in-
depth analysis on agent intelligence acquisition,
including the relations with instruction following

and code capability, scaling law of interaction
trajectories, and the effectiveness of training with
CoT.

2 Related Work

2.1 Instruction Tuning
Instruction tuning is a simple yet powerful
approach to align LLMs with human prefer-
ences (Zhang et al., 2023). Previous studies have
primarily focus on improving general-purpose in-
struction following capabilities of LLMs. FLAN se-
ries (Wei et al., 2021; Chung et al., 2022), T0 (Sanh
et al., 2021), and NaturalInstruction (Wang et al.,
2022b) scale up the instruction datasets to activate
the generalized instruction following capabilities of
LLMs. More recently, utilizing synthetic instruc-
tion following data distilled from GPTs to align
open-source LLMs has also been proposed (Taori
et al., 2023; Chiang et al., 2023). Furthermore,
multiple works have shown the promise of instruc-
tion tuning in enhancing the specialized abilities
of LLMs, such as math (Yu et al., 2023; Yue et al.,
2023), reasoning (Lee et al., 2023), and agent
tasks (Chen et al., 2023a; Zeng et al., 2023).

2.2 LLM-based Agent
Modern LLMs have demonstrated various emer-
gent abilities that encourage researchers to build
agent systems based on LLMs. ReAct (Yao
et al., 2022b) combines CoT reasoning with agent
actions to accomplish tasks such as QA. Auto-
GPT (Richards, 2023) harnesses LLMs as the core
controllers to constitute powerful agent frameworks
capable of solving real-world complex problems.
While advanced proprietary models exampled by
GPT-3.5/4 have shown strong performances on
agent tasks, their open-source counterparts still lag
far behind (Liu et al., 2023; Wang et al., 2023). In

2125

Instruction Data

Code Data

Llama

Strong LLM

Weak Agent

Sᴀᴍᴏʏᴇᴅ
Strong LLM Agent

Generalize on unseen tasks

Task

Trajectory

AɢᴇɴᴛBᴀɴᴋ

Reasoning Math

Web Browsing

Programming Embodied AI

···

+

Task: I need some whitening toothpaste,
and price lower than 40$.
Thought: I should search for "whitening
toothpaste" first
Action: search[whitening toothpaste]
Observation: <searching results>

Thought: this product seems suitable
Action: click[buy now]

(after n turns)···

Figure 1: Overview of the construction process of AGENTBANK and the training procedure of SAMOYED

response, recent studies including FireAct (Chen
et al., 2023a), AgentTuning (Zeng et al., 2023) and
AgentOhana (Zhang et al., 2024) collect agent tra-
jectory data from teacher agents (e.g., GPT-4) and
fine-tune open-source LLMs (e.g., Llama series)
with the data. However, limited by the number of
tasks and expert trajectories, existing research has
not yet exhaustively explored whether open-source
LLMs can acquire generalized agent abilities, a gap
that this study aims to bridge.

3 Preliminary

3.1 Agent Task Formulation

Given an agent task described by the instruction
u, an LLM agent generates an action a1 based on
its policy. Next, an environment receives the ac-
tion, transfers to a new latent state, and provides
an observation oi in natural language format. Sub-
sequently, the agent generates another action for
the next step, ai+1, and repeats this circle of inter-
action with the task environment until either the
task is completed or the maximum number of steps
is reached. This “conversation” between the agent
with the environment is denoted as the interaction
trajectory (u, a1, o1, ..., an). Finally, a final reward
r ∈ [0, 1] is returned depending on the task com-
pletion status.

Chain-of-Thought (CoT) (Wei et al., 2022; Ko-
jima et al., 2022) is an effective approach to en-
hance the inferential capabilities of LLMs by a
step-by-step reasoning process. We employ Re-
Act (Yao et al., 2022b) as the agent tasking frame-
work, which outputs rationale before the action.

3.2 Challenges in Trajectory Collection
Previous works (Chen et al., 2023a; Zeng et al.,
2023) have employed GPT-4 as teacher agents to
interact with the environment and collect success-
ful interaction trajectories. To ensure the quality
of generated data, a failure filtering mechanism is
used to remove the cases where GPT failed. How-
ever, this GPT-exploration pipeline automates the
trajectory construction at some significant cost.

Hard to Scale-Up The quality of data is essential
for agent training, and training with failure trajec-
tories will lead to performance degradation (Zeng
et al., 2023). Therefore, scaling up this process to
a larger trajectory amount is challenging due to the
low success rate of GPT-4. For instance, AgentIn-
struct (Zeng et al., 2023) discards more than 90%
generated trajectories due to GPT failures.

Difficulty Bias Even worse, GPT-exploration
pipelines will inevitably introduce difficulty bias
to the final training data. Essentially, a trajectory
filtering strategy can be regarded as grouping the
instances based on whether GPT is capable of solv-
ing them. Discarding failed trajectories leads to a
skewed distribution of “difficulty”, resulting in a
training set with much easier instances than those in
the test set. This violation of the i.i.d. assumption
may hurt the generalization ability of the trained
agents. In Appendix B, we conduct an experiment
to show this bias.

4 AGENTBANK

In response to the challenges of previous trajectory
collection pipeline, we propose a new trajectory
annotation pipeline and construct AGENTBANK

trajectory dataset.

2126

Skill Dim. Task Action Space Tool #Inst. Avg. Turns Action Annotation

Reasoning
HotpotQA (Yang et al., 2018) Continuous Search 4273 3.1 Explore
StrategyQA (Geva et al., 2021) Continuous Search 1267 3.6 Explore
TriviaQA (Joshi et al., 2017) Continuous Search 4134 2.5 Explore

Math
GSM8K (Cobbe et al., 2021) Continuous Calculator 7471 4.5 Reformat
MathQA (Amini et al., 2019) Continuous Python 4000 2.0 Explore
MATH (Hendrycks et al., 2021) Continuous Python, Wiki 2312 2.5 Explore

Programming

IC-SQL (Yang et al., 2023) Continuous MySQL 4540 4.8 Explore+Answer Force
APPS (Hendrycks et al., 2021) Continuous Python 4408 1.0 Reformat
HumanEval (Chen et al., 2021) Continuous Python 134 2.7 Explore+Answer Force
MBPP (Austin et al., 2021) Continuous Python 608 2.2 Explore+Answer Force

Web
Mind2Web (Deng et al., 2023) Discrete - 7770 1.0 Reformat
WebArena (Zhou et al., 2023) Discrete - 657 1.0 Reformat
WebShop (Yao et al., 2022a) Discrete - 5315 3.4 Explore & Reformat

Embodied
ALFWorld (Shridhar et al., 2020b) Discrete - 3554 10.1 Reformat
RoomR (Weihs et al., 2021) Discrete - 300 30.2 Search+Reformat
IQA (Gordon et al., 2018) Discrete - 1627 28.4 Search+Reformat

Total (AGENTBANK) - - 51287 3.9 -

Table 2: Overview of AGENTBANK dataset. It compiles 16 agent tasks covering 5 skill dimensions, formulating the
largest interaction trajectory dataset. “Inst.” and “Traj.” refer to instruction and interaction trajectory.

4.1 Task and Instruction Collection

A generalized agent needs to possess a wide range
of capabilities across various dimensions. To this
end, as shown in Table 2, we curate 16 publicly
available agent datasets to lay the foundation of
AGENTBANK and categorize specific tasks into five
skill dimensions: reasoning, math, programming,
web navigation, and embodied tasks. Additionally,
some tasks aggregated in AGENTBANK involve
the usage of external tools, such as search engine,
calculator, and code interpreter, as the ability to
effectively operate tools is also a crucial aspect for
generalized agents. From the perspective of action
space, tasks in AGENTBANK can be classified into
two types: those with a continuous action space (in-
cluding natural language and code) and those with
a predefined discrete action space. Our dataset also
covers a broad range of interaction turns, ranging
from 1 to 30. Note that some tasks are originally
evaluated in a single-turn QA style, such as Hot-
potQA (Yang et al., 2018) and MATH (Hendrycks
et al., 2021). Following Wang et al. (2023), we
modify these datasets to accommodate multi-turn
interaction environments with tool usage.

Since most of the original benchmarks have a
training set, we use them to construct our dataset.
To balance data sources, we down-sample some
tasks which have a huge training set. See Appendix
A for detailed descriptions of each dataset.

4.2 Action Annotation

To tackle the challenges in trajectory collection,
unlike previous methods that generate action and
CoT simultaneously, we separate the annotation
of gold actions and their corresponding rationales,
fully leveraging of the capability of LLMs.

Specifically tailored to the specific nature of dif-
ferent tasks, our approach involves several tech-
niques to obtain high-quality action sequences ac-
cordingly.

Answer Forcing For tasks characterized by a
continuous natural language or code action space,
such as IC-SQL, we introduce an answer forcing
action annotation strategy as an extension to GPT-
exploration pipeline. This strategy aims to mitigate
the bias introduced by failure filtering. Initially,
we use GPT-4 to interact with the environment
and gather interaction trajectories. For failed tra-
jectories, rather than directly discarding them, we
prompt GPT with the failed trajectory and the gold
final answer to generate a new interaction trajectory.
Then we validate the correctness of new trajectories
by executing the actions within real agent environ-
ments. This answer forcing process is used in an
iterative manner to re-annotate failure trajectories
and generate a substantial number of gold action
sequences. See Appendix H for the re-annotation
prompt.

Heuristic Action Search For tasks with a dis-
crete action space, exemplified by embodied AI

2127

tasks (Weihs et al., 2021; Gordon et al., 2018), we
are able to access both the environment’s source
code and its complete execution state. Leverag-
ing this access, we employ the heuristic depth-first
search algorithm to efficiently get the optimal ac-
tion sequences.

Reformat Some tasks have already provided
official solving trajectories. For instance,
GSM8K (Cobbe et al., 2021) offers ground-truth
intermediate reasoning steps. For these tasks, fol-
lowing (Yin et al., 2023), we exploit GPT as a style
transfer tool to transform reasoning process into
agent interaction action sequences.

4.3 Rationale Annotation

Give the instructions and gold action sequences, we
directly prompt GPT to generate the corresponding
CoT rationale of each action step. Since providing
explanation for gold actions is relatively easy task,
we employ GPT-3.5-Turbo as the primary LLM in
the rationale annotation process. The rationale gen-
eration prompt is shown in Appendix H. We also
compare rationales generated by different LLMs in
Appendix C.

For tasks with a huge number of instructions
and GPT-4 have a high success rate, such as Strat-
egyQA (Geva et al., 2021) and WebShop (Yao
et al., 2022a), we directly use the GPT-exploration
pipeline as Zeng et al. (2023).

The overview of AGENTBANK is shown in Ta-
ble 2. See the Appendix A for more details about
the annotation process of each task. A human eval-
uation assessing the quality of our dataset can be
found in Appendix D.

5 Train SAMOYED with AGENTBANK

To initialize the training of SAMOYED, we
formulate agent interaction trajectories in
AGENTBANK into a chatbot-style schema
(u, a1, o1..., ai, oi, ..., an), where u is the task
instruction, oi and ai denote the observation from
the task environment and the corresponding action
with rationale generated by the agent in the i-th
round. During the training process, we feed the
entire interaction trajectory into a decoder-only
LLM, where only the auto-regressive loss on
tokens of ground-truth responses Y = {a1, ..., an}
is counted. We mask all tokens belonging to the
instruction and observations from the environment
to prevent them from loss computation. Concretely,

Task Skill Dim. #Inst. Metric

Held-in Tasks

HotpotQA (Yang et al., 2018) Reasoning 100 Exact Match
StrategyQA (Geva et al., 2021) Reasoning 100 Exact Match
GSM8K (Cobbe et al., 2021) Math 100 Exact Match
MATH (Hendrycks et al., 2021) Math 100 Exact Match
IC-SQL (Yang et al., 2023) Programming 100 Avg. Reward
MBPP (Austin et al., 2021) Programming 100 Success Rate
Mind2Web (Deng et al., 2023) Web 1173 Step SR
WebShop (Yao et al., 2022a) Web 200 Avg. Reward
ALFWorld (Shridhar et al., 2020b) Embodied 134 Success Rate

Held-out Tasks

Bamboogle (Press et al., 2022) Reasoning 126 Exact Match
TheoremQA (Chen et al., 2023b) Math 100 Exact Match
IC-Bash (Yang et al., 2023) Programming 200 Avg. Reward
MiniWoB++ (Kim et al., 2023) Web 460 Success Rate
ScienceWorld (Wang et al., 2022a) Embodied 270 Avg. Reward

Table 3: The held-in and held-out tasks used to evaluate
the agent capabilities of different LLMs.

the loss function is defined as:

L = −
∑

j

log pθ(tj |t<j)× 1(tj ∈ Y), (1)

where tj denotes the j-th input token and 1 is the
indicator function.

Recent studies (Yang et al., 2024; Zeng et al.,
2023) suggest that hybrid training with generalist
instruction data and code data may improve the gen-
eralized ability of LLM agents. Following them,
we adopt a mixture of AGENTBANK Dagent, the
general domain instruction dataset Dgeneral, and
the code dataset Dcode for fine-tuning. We perform
detailed ablation experiments to explore the effec-
tiveness of generalist and code data in Section 7.2.

6 Experiments

6.1 Experimental Setup
Base LLMs and Baselines We use several
LLMs to conduct experiments, including Llama-2-
Chat (Touvron et al., 2023), CodeLlama (Roziere
et al., 2023), Mistral (Jiang et al., 2023), and Llama-
3-Instruct (Meta, 2024). However, since most base-
lines, including AgentLM (Zeng et al., 2023) and
Agent-FLAN (Chen et al., 2024) are tuned from
Llama-2-Chat, we mainly use Llama-2-Chat as
our base model for a fair comparison. Due to
our limited resources, we use 7B and 13B mod-
els for our experiments, leaving the comparison at
a larger scale (e.g., Lemur-70B (Xu et al., 2023b)
and xLAM-8×7B (Zhang et al., 2024)) for the fu-
ture work. We also select GPT-3.5-Turbo (OpenAI,
2022) and GPT-4 (OpenAI, 2023) as strong base-
lines. For all LLMs, the decoding temperature is
set to 0 for the most deterministic generation.

2128

Model Held-in Tasks Held-out Tasks

Reason Math Program Web Embodied Avg. Reason Math Program Web Embodied Avg.

Closed-Source Model

GPT-4 61.6 73.0 54.9 40.6 77.8 59.8 41.6 51.0 69.4 69.4 36.4 53.6
GPT-3.5-Turbo 41.0 41.5 51.2 42.0 10.5 40.2 32.0 32.0 54.8 66.7 21.2 41.3

7B Open-Source Model

Llama-2-7B-Chat 4.0 7.5 2.5 13.9 0.0 6.2 4.0 8.0 7.0 0.4 7.8 5.5
Vicuna-7B 29.0 2.0 19.0 24.2 6.0 17.1 8.8 14.0 19.0 18.2 12.8 14.6
CodeLlama-7B 3.5 3.5 1.5 24.8 0.0 7.4 1.0 13.0 21.8 41.3 5.5 16.5
AgentLM-7B 29.5 10.0 12.0 37.2 63.4 26.7 19.2 13.0 50.5 13.5 13.3 21.9
Agent-FLAN-7B 31.0 10.5 13.1 35.4 65.3 27.3 22.2 11.0 53.1 17.9 14.1 23.7

SAMOYED-7B 48.0 30.5 41.6 36.4 61.2 41.6 32.0 18.0 59.2 24.2 14.2 29.5

13B Open-Source Model

Llama-2-13B-Chat 12.5 10.5 8.2 11.2 0.0 9.4 9.6 11.0 33.0 17.6 7.3 15.7
Vicuna-13B 25.5 6.5 30.4 34.2 2.2 21.7 24.8 17.0 37.0 34.2 14.8 25.6
CodeLlama-13B 13.5 18.5 5.1 15.3 0.0 11.7 6.4 16.0 11.1 46.5 5.5 17.1
AgentLM-13B 38.0 13.5 22.8 38.1 52.2 30.8 20.8 13.0 46.6 21.6 14.6 23.3

SAMOYED-13B 54.5 38.5 55.4 40.9 72.4 50.1 35.0 23.0 62.4 38.9 18.4 35.5

Table 4: Performance comparison of SAMOYED and baseline LLMs on held-in and held-out tasks. Due to the space
constraint, we group the held-in tasks according to the skill dimensions and report the average scores. The top-2
best of each model group are highlighted in bold and underlined respectively. See Appendix F for complete results.

Training Setup We use AdamW optimizer with
a learning rate of 5e-5 and a cosine scheduler. The
models are trained for 3 epochs with 3% warm-up
steps. The batch size is set to 128 and the sequence
length is 2048. We choose ShareGPT1 as the gen-
eralist instruction data, and Evol-CodeAlpaca (Luo
et al., 2023) as the code data. The mixture ra-
tio of Dagent, Dgeneral, and Dcode is 80%, 10%,
10%. A corresponding data contamination analysis
can be found in Appendix E. All experiments are
conducted on 8 NVIDIA A100 80G GPUs. We
use FastChat (Zheng et al., 2023a) and PyTorch
FSDP (Paszke et al., 2019) for efficient training.

Held-in/out Tasks In an effort to balance the re-
liability and efficiency of the evaluation, we select
nine tasks from AGENTBANK to form the held-in
test set. For tasks with a huge test set, following
Wang et al. (2023), we randomly sample a subset
from the original test set. To evaluate the general-
ized agent intelligence of SAMOYED, we addition-
ally compile five unseen held-out tasks that do not
exist in AGENTBANK but still fall into the five skill
dimensions of a foundation agent. The held-in and
held-out evaluation tasks used in the experiments
are listed in Table 3. For all evaluated tasks, 1-shot
in-context example is provided in prompts. We
use average scores on held-in/out tasks to measure
the overall capability of different agents. We also

1https://sharegpt.com/

report the results on AgentBench (Liu et al., 2023),
another agent benchmark, in Appendix G.

6.2 Main Results

Table 4 shows the results of different models on
held-in and held-out tasks. Due to the space con-
straint, we grouped the held-in tasks according to
skill dimensions and report the average scores. In
Figure 2, we show the results of trajectory tuning
on different base LLMs.

Massive trajectory tuning enables general-
ization to unseen tasks The performance of
SAMOYED has a remarkable improvement on held-
out unseen tasks, which demonstrates a substan-
tial boost in agent capabilities through large-scale
trajectory tuning. Surprisingly, SAMOYED-7B
exhibits an even greater enhancement compared
to SAMOYED-13B. Our models also outperform
AgentLM and Agent-FLAN which are tuned on
less trajectories, demonstrating the effectiveness of
scaling up the tuning trajectories.

Comparison among baselines The experiment
yields several noteworthy model-wise observations.
We find that CodeLlama, benefiting from code pre-
training, excels in web browsing tasks. Vicuna
exhibits strong abilities through fine-tuning on gen-
eralist instruction data, demonstrating impressive
performance on both held-in/out tasks. Remark-
ably, the performance of Vicuna-13B even sur-

2129

https://sharegpt.com/

Llama-2-7B CodeLlama-7B Mistral-7B Llama-3-8B
0

10

20

30

40

50

60
Av

g.
 S

co
re +35.4 +34.7 +22.7 +20.1

(a) Held-in tasks

Base +AgentBank

Llama-2-7B CodeLlama-7B Mistral-7B Llama-3-8B
0

10

20

30

40

50

Av
g.

 S
co

re

+24.0
+17.6

+7.7
+8.3

(b) Held-out tasks

Base +AgentBank

Figure 2: The results of different base models. “Base”
denotes untrained LLMs. “+SuperAgent” denotes mod-
els after training on AGENTBANK.

passes AgentLM-13B. It is important to highlight
that AgentLM’s training set comprises 80% gener-
alist instruction data, suggesting that the held-out
task performance of AgentLM largely comes from
the enhanced capability of instruction following.

Effectiveness of trajectory tuning on different
base models As illustrated in Figure 2, after
large-scale trajectory tuning, all LLMs yield sig-
nificant performance improvements on held-in and
held-out tasks. We also notice some interesting
outcomes. CodeLlama’s superior performance in-
dicates that code training can enhance agent ca-
pabilities. As for Mistral and Llama-3, although
fine-tuning on AGENTBANK also yields improve-
ments, the performance gain is relatively modest
compared with the substantial improvement seen
on Llama-2. This finding indicates that weaker
LLMs may benefit more from massive trajectory
tuning than their stronger counterparts.

7 Further Analysis

7.1 Scaling Trends of Generalization

We investigate the generalization performance of
trajectory tuning with respect to two scaling fac-
tors: the number of training tasks and the number
of training trajectories. Figure 3 illustrates the per-
formance changes on held-out tasks when scaling
each of these factors.

5 10 15
Number of Tasks

20

25

30

35

Av
g.

 S
co

re

(a)

Llama-2-7B
Llama-2-13B

1k5k 10k 20k 30k 40k 50k
Number of Trajectories

10

20

30

40

(b)

Llama-2-7B
Llama-2-13B

Figure 3: Scaling trends of the number of tasks and
interaction trajectories.

To explore the impact of task scaling, we mod-
ify the number of tasks in each skill dimension
while ensuring that the skill coverage of the sub-
sets remains consistent. We observe that increasing
the number of tasks used for training results in
improved performance on held-out tasks. This find-
ing suggests that by scaling the number of distinct
tasks for trajectory tuning, the model can enhance
its generalized agent capabilities.

As shown in Figure 3b, a comparison between
the performance using 1k trajectories and that with
50k+ cases reveals a marked decrease in the gen-
eralized ability of the agent, highlighting the im-
portance of scaling the amount of interaction data
for better performance. However, the trajectory
of performance improvement is gradually plateau-
ing, particularly noticeable with the 13B model,
suggesting the necessity for more advanced agent
training techniques beyond SFT.

7.2 The Effect of Data Mixture

Mixture Training leads to better generalization.
When training SAMOYED, we mix 10% general-
ist instruction data and 10% code data. Here we
conduct ablation study to investigate the effect of
mixture training. Specifically, we vary the mixture
ratio of ShareGPT and code data and train Llama-
2-7B-Chat for 1000 steps. As shown in Figure 4a,
a relatively low proportion of generalist data leads
to improved agent performance on unseen tasks.
Nevertheless, as the amount of generalist data con-
tinues to increase, the performance on held-out
tasks dramatically degrades. Moreover, disagreed
with Zeng et al. (2023) who find that training with
only interaction trajectory data will lead to perfor-
mance degradation on held-out tasks, SAMOYED

trained on solely AGENTBANK shows performance
improvement on held-out tasks instead.

The ablation on code data also shows a lower
ratio of code data will benefit the generalization

2130

0.0 0.2 0.4 0.6 0.8 1.0
Mix Rate

0

10

20

30

40
Av

g.
 S

co
re

Llama-2-7B-Chat Held-out: 5.5
Llama-2-7B-Chat Held-in: 6.2

(a) ShareGPT Ablation

Held-in
Held-out

0.0 0.2 0.4 0.6 0.8 1.0
Mix Rate

0

10

20

30

40

Llama-2-7B-Chat Held-out: 5.5
Llama-2-7B-Chat Held-in: 6.2

(b) Code Ablation

Held-in
Held-out

Figure 4: Ablation study on data mixture.

Model Reason Math Program Web Embodied

Llama-2-7B-Chat 4.0 8.0 7.0 0.4 7.8
+AGENTBANK 32.0 18.0 59.2 24.2 14.2

CodeLlama-7B 1.0 13.0 21.8 41.3 5.5
+AGENTBANK 29.6 16.0 67.7 42.2 14.8

Table 5: The held-out task performance of Llama-2 and
CodeLlama.

ability of the agents. Code data, comprising stan-
dard syntax and logical abstraction, has the poten-
tial to enhance the planning and decision-making
capabilities of LLM agents (Yang et al., 2024).

Code pretraining benefits web tasks. As a
medium between humans and computers, code
translates high-level goals into executable steps,
featuring standard syntax, logical consistency, and
abstraction. To further analyse the effect of code
training, in Table 5, we compare the distinctions
between agents based on Llama-2-Chat and CodeL-
lama. Unsurprisingly, due to its extensive code
training, CodeLlama demonstrates excellent per-
formance in programming tasks. Training with ex-
tensive interaction trajectories can further elevate
its coding proficiency. Additionally, CodeLlama
shows exceptional competence in web navigation
tasks, likely attributed to the abundance of web
pages present in its pretraining datasets.

Mixture training alleviates catastrophic forget-
ting. Supervised fine-tuning LLMs on down-
stream tasks will lead to catastrophic forgetting on
general capabilities. Here, we select three widely
used benchmarks, MMLU (Hendrycks et al., 2020),
MT-Bench (Zheng et al., 2023a), AlpacaEval 2 (Li
et al., 2023), to evaluate the general capabilities of
the trained agents. As shown in Table 6, since the
agent trajectory often presented in specific ReAct
formats, the models are easily to get overfitting on
this style when training solely on agent data. Sim-
ply incorporating generalist instruction data during
training proves to be an effective strategy in miti-

Model MMLU MT-Bench AlpacaEval 2

Llama-2-7B-Chat 48.3 6.2 5.4

SAMOYED-7B 47.7 6.1 5.0
w/o ShareGPT 23.1 2.6 1.9
w/o Code 48.1 5.9 5.1

Table 6: Performance on general tasks.

Base Model w/ CoT? Held-In Held-Out

Llama-2-7B-Chat
✓ 41.6 29.5
✗ 41.2 22.8

Mistral-7B
✓ 45.2 30.0
✗ 45.5 27.5

Llama-3-8B-Instruct
✓ 45.4 36.1
✗ 43.6 31.8

Table 7: Ablation study on CoT rationale.

gating catastrophic forgetting.

7.3 The Effect of CoT Rationale

Chain-of-Thought (CoT) plays an vital role in LLM
reasoning and planning (Wei et al., 2022; Kojima
et al., 2022). In our experiments, agents are trained
with GPT-generated rationales for each action step
and are deployed under ReAct framework (Yao
et al., 2022b). In this section, we conduct an abla-
tion study to examine the effectiveness of CoT.

As shown in Table 7, when it comes to held-
in tasks, training without rationales has a mini-
mal impact on performance. Mistral-based agent
without CoT even slightly surpasses the one with
CoT. Nonetheless, for unseen held-out tasks, train-
ing without rationale results in a significant per-
formance decline. Explanation traces provide a
detailed step-by-step thought processes, enabling
agents to learn from the underlying and planning
process (Mukherjee et al., 2023). Moreover, with-
out rationale, the agents tend to mimic the style and
get overfitting on held-in tasks.

7.4 Skill-Level Transfer

To explore the potential transferability across dif-
ferent agent skills, we fine-tune Llama-2-Chat on
held-in tasks corresponding to a specific agent skill
and evaluate on held-out tasks. The compared base-
line is fine-tuning Llama-2-Chat using a mixture
of generalist instruction and code data. All models
are trained for 300 steps to ensure a fair study.

As depicted in Figure 5, most skills, with the
exception of embodied skill, exhibit the ability to
transfer across different skill dimensions. This can

2131

Reason
Math

Program
Web Embodied

Eval Skill

Reason

Math

Program

Web

Embodied

Tr
ai

n
Sk

ill
10.4 2.0 3.1 -6.8 -1.3

2.4 11.0 2.0 -5.2 -0.8

4.8 5.0 20.5 3.1 -1.1

3.2 1.0 7.9 11.8 -1.1

-2.6 -1.0 -4.0 -6.4 3.8
10

0

10

20

Figure 5: Heatmap of skill-level capability transfer. We
plot the relative improvements over training on general-
ist instruction and code data.

be attributed to the unified agent interaction format
in AGENTBANK. The transferability of program-
ming and web tasks further confirms the findings
from Section 7.2. Notably, embodied AI skill is
particularly challenging, for it receives negative
impact from all other skills.

8 Conclusion

In this work, we explore the acquisition of gener-
alized agent capabilities through fine-tuning open-
source LLMs on massive interaction trajectories.
We introduce by far the largest interaction trajec-
tory dataset AGENTBANK, comprising over 50k
trajectories that encompass 16 tasks across five
distinct agent skill dimensions. Building upon
AGENTBANK, we fine-tune Llama-2 to develop
SAMOYED, an open-source LLM series specialized
for agent tasks. Evaluations on both held-in and
held-out tasks show that SAMOYED significantly
outperforms strong baselines in terms of general-
ized agent capabilities. Comprehensive analysis
also reveals the effectiveness of data mixture and
plots the scaling law of trajectories. We hope this
work to serve as a catalyst for further exploration
in the development of more powerful agents.

Limitations

We conclude the limitations of this work as follows:

• Due to the resource constraints, we only con-
duct experiments and analysis on 7B and 13B
models. The extent to which larger models can
benefit from large-scale trajectory tuning remains
unknown.

• We have not fully explored the potential of equip-
ping our SAMOYED with more sophisticated

agent mechanisms, such as Reflexion (Shinn
et al., 2023) and ReWOO (Xu et al., 2023a). Fur-
ther investigation into these mechanisms could
yield valuable insights.

• This study primarily focuses on improving
the agent’s performance via supervised fine-
tuning on expert trajectories. How to exploit
exploration-based methods (Song et al., 2024;
Xiong et al., 2024) to further optimize the agents
is left for future investigation.

• This work is centered around building strong
ReAct-style single-agent models. However,
multi-agent collaboration framework has demon-
strated impressive performance in handling realis-
tic tasks. The development of strong generalized
multi-agent systems based on open-source LLMs
is still an under-explored area.

Ethics Statement

This work fully complies with the ACL Ethics Pol-
icy. We declare that there are no ethical issues in
this paper, to the best of our knowledge.

Acknowledgement

We thank the anonymous reviewers for their helpful
comments on this paper. This work was partially
supported by National Natural Science Foundation
of China (No. 62476010).

References
Aida Amini, Saadia Gabriel, Peter Lin, Rik Koncel-

Kedziorski, Yejin Choi, and Hannaneh Hajishirzi.
2019. Mathqa: Towards interpretable math word
problem solving with operation-based formalisms.
arXiv preprint arXiv:1905.13319.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732.

Rodney A Brooks. 1991. Intelligence without represen-
tation. Artificial intelligence, 47(1-3):139–159.

Baian Chen, Chang Shu, Ehsan Shareghi, Nigel Col-
lier, Karthik Narasimhan, and Shunyu Yao. 2023a.
Fireact: Toward language agent fine-tuning. arXiv
preprint arXiv:2310.05915.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large

2132

language models trained on code. arXiv preprint
arXiv:2107.03374.

Wenhu Chen, Ming Yin, Max Ku, Pan Lu, Yixin Wan,
Xueguang Ma, Jianyu Xu, Xinyi Wang, and Tony
Xia. 2023b. Theoremqa: A theorem-driven ques-
tion answering dataset. In The 2023 Conference on
Empirical Methods in Natural Language Processing.

Zehui Chen, Kuikun Liu, Qiuchen Wang, Wenwei
Zhang, Jiangning Liu, Dahua Lin, Kai Chen, and
Feng Zhao. 2024. Agent-flan: Designing data and
methods of effective agent tuning for large language
models. arXiv preprint arXiv:2403.12881.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2022. Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen,
Samuel Stevens, Boshi Wang, Huan Sun, and Yu Su.
2023. Mind2web: Towards a generalist agent for the
web. arXiv preprint arXiv:2306.06070.

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot,
Dan Roth, and Jonathan Berant. 2021. Did aristotle
use a laptop? a question answering benchmark with
implicit reasoning strategies. Transactions of the
Association for Computational Linguistics, 9:346–
361.

Daniel Gordon, Aniruddha Kembhavi, Mohammad
Rastegari, Joseph Redmon, Dieter Fox, and Ali
Farhadi. 2018. Iqa: Visual question answering in
interactive environments. In Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion, pages 4089–4098.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2020. Measuring massive multitask language under-
standing. arXiv preprint arXiv:2009.03300.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-
cob Steinhardt. 2021. Measuring mathematical prob-
lem solving with the math dataset. arXiv preprint
arXiv:2103.03874.

Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan,
and Chrisina Jayne. 2017. Imitation learning: A sur-
vey of learning methods. ACM Computing Surveys
(CSUR), 50(2):1–35.

Nicholas R Jennings, Katia Sycara, and Michael
Wooldridge. 1998. A roadmap of agent research and
development. Autonomous agents and multi-agent
systems, 1:7–38.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke
Zettlemoyer. 2017. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. arXiv preprint arXiv:1705.03551.

Geunwoo Kim, Pierre Baldi, and Stephen McAleer.
2023. Language models can solve computer tasks.
arXiv preprint arXiv:2303.17491.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. Advances in
neural information processing systems, 35:22199–
22213.

Ariel N Lee, Cole J Hunter, and Nataniel Ruiz. 2023.
Platypus: Quick, cheap, and powerful refinement of
llms. arXiv preprint arXiv:2308.07317.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori,
Ishaan Gulrajani, Carlos Guestrin, Percy Liang, and
Tatsunori B. Hashimoto. 2023. Alpacaeval: An au-
tomatic evaluator of instruction-following models.
https://github.com/tatsu-lab/alpaca_eval.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris
Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Ku-
mar, et al. 2022. Holistic evaluation of language
models. arXiv preprint arXiv:2211.09110.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu
Lei, Hanyu Lai, Yu Gu, Hangliang Ding, Kaiwen
Men, Kejuan Yang, et al. 2023. Agentbench: Evaluat-
ing llms as agents. arXiv preprint arXiv:2308.03688.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,
Qingwei Lin, and Daxin Jiang. 2023. Wizardcoder:
Empowering code large language models with evol-
instruct.

Meta. 2024. Introducing meta llama 3: The most capa-
ble openly available llm to date.

Subhabrata Mukherjee, Arindam Mitra, Ganesh Jawa-
har, Sahaj Agarwal, Hamid Palangi, and Ahmed
Awadallah. 2023. Orca: Progressive learning from
complex explanation traces of gpt-4. arXiv preprint
arXiv:2306.02707.

2133

https://github.com/tatsu-lab/alpaca_eval
https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/

OpenAI. 2022. Introducing chatgpt.

OpenAI. 2023. Gpt-4 technical report. arXiv, pages
2303–08774.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances in
neural information processing systems, 32.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt,
Noah A Smith, and Mike Lewis. 2022. Measuring
and narrowing the compositionality gap in language
models. arXiv preprint arXiv:2210.03350.

Toran Bruce Richards. 2023. Auto-gpt: An autonomous
gpt-4 experiment.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Teven Le Scao, Arun
Raja, et al. 2021. Multitask prompted training en-
ables zero-shot task generalization. arXiv preprint
arXiv:2110.08207.

Noah Shinn, Beck Labash, and Ashwin Gopinath.
2023. Reflexion: an autonomous agent with dy-
namic memory and self-reflection. arXiv preprint
arXiv:2303.11366.

Mohit Shridhar, Jesse Thomason, Daniel Gordon,
Yonatan Bisk, Winson Han, Roozbeh Mottaghi, Luke
Zettlemoyer, and Dieter Fox. 2020a. Alfred: A
benchmark for interpreting grounded instructions for
everyday tasks. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition,
pages 10740–10749.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté,
Yonatan Bisk, Adam Trischler, and Matthew
Hausknecht. 2020b. Alfworld: Aligning text and em-
bodied environments for interactive learning. arXiv
preprint arXiv:2010.03768.

Yifan Song, Weimin Xiong, Dawei Zhu, Cheng Li,
Ke Wang, Ye Tian, and Sujian Li. 2023. Rest-
gpt: Connecting large language models with real-
world applications via restful apis. arXiv preprint
arXiv:2306.06624.

Yifan Song, Da Yin, Xiang Yue, Jie Huang, Sujian
Li, and Bill Yuchen Lin. 2024. Trial and error:
Exploration-based trajectory optimization for llm
agents. arXiv preprint arXiv:2403.02502.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:

An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Ruoyao Wang, Peter Jansen, Marc-Alexandre Côté, and
Prithviraj Ammanabrolu. 2022a. Scienceworld: Is
your agent smarter than a 5th grader? arXiv preprint
arXiv:2203.07540.

Xingyao Wang, Zihan Wang, Jiateng Liu, Yangyi
Chen, Lifan Yuan, Hao Peng, and Heng Ji. 2023.
Mint: Evaluating llms in multi-turn interaction
with tools and language feedback. arXiv preprint
arXiv:2309.10691.

Yizhong Wang, Swaroop Mishra, Pegah Alipoor-
molabashi, Yeganeh Kordi, Amirreza Mirzaei,
Anjana Arunkumar, Arjun Ashok, Arut Selvan
Dhanasekaran, Atharva Naik, David Stap, et al.
2022b. Super-naturalinstructions: Generalization via
declarative instructions on 1600+ nlp tasks. arXiv
preprint arXiv:2204.07705.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. 2021. Finetuned lan-
guage models are zero-shot learners. arXiv preprint
arXiv:2109.01652.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural
Information Processing Systems, 35:24824–24837.

Luca Weihs, Matt Deitke, Aniruddha Kembhavi, and
Roozbeh Mottaghi. 2021. Visual room rearrange-
ment. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR).

Weimin Xiong, Yifan Song, Xiutian Zhao, Wenhao Wu,
Xun Wang, Ke Wang, Cheng Li, Wei Peng, and Su-
jian Li. 2024. Watch every step! llm agent learning
via iterative step-level process refinement. arXiv
preprint arXiv:2406.11176.

Binfeng Xu, Zhiyuan Peng, Bowen Lei, Subhabrata
Mukherjee, Yuchen Liu, and Dongkuan Xu. 2023a.
Rewoo: Decoupling reasoning from observations for
efficient augmented language models. arXiv preprint
arXiv:2305.18323.

Yiheng Xu, Hongjin Su, Chen Xing, Boyu Mi, Qian
Liu, Weijia Shi, Binyuan Hui, Fan Zhou, Yitao Liu,
Tianbao Xie, et al. 2023b. Lemur: Harmonizing
natural language and code for language agents. arXiv
preprint arXiv:2310.06830.

2134

https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

John Yang, Akshara Prabhakar, Karthik Narasimhan,
and Shunyu Yao. 2023. Intercode: Standardizing
and benchmarking interactive coding with execution
feedback. arXiv preprint arXiv:2306.14898.

Ke Yang, Jiateng Liu, John Wu, Chaoqi Yang, Yi R
Fung, Sha Li, Zixuan Huang, Xu Cao, Xingyao
Wang, Yiquan Wang, et al. 2024. If llm is the wizard,
then code is the wand: A survey on how code em-
powers large language models to serve as intelligent
agents. arXiv preprint arXiv:2401.00812.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben-
gio, William W Cohen, Ruslan Salakhutdinov, and
Christopher D Manning. 2018. Hotpotqa: A dataset
for diverse, explainable multi-hop question answer-
ing. arXiv preprint arXiv:1809.09600.

Shunyu Yao, Howard Chen, John Yang, and Karthik
Narasimhan. 2022a. Webshop: Towards scalable
real-world web interaction with grounded language
agents. Advances in Neural Information Processing
Systems, 35:20744–20757.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2022b.
React: Synergizing reasoning and acting in language
models. arXiv preprint arXiv:2210.03629.

Da Yin, Faeze Brahman, Abhilasha Ravichander, Khy-
athi Chandu, Kai-Wei Chang, Yejin Choi, and
Bill Yuchen Lin. 2023. Lumos: Learning agents
with unified data, modular design, and open-source
llms. arXiv preprint arXiv:2311.05657.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu,
Zhengying Liu, Yu Zhang, James T Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. 2023.
Metamath: Bootstrap your own mathematical ques-
tions for large language models. arXiv preprint
arXiv:2309.12284.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wen-
hao Huang, Huan Sun, Yu Su, and Wenhu Chen.
2023. Mammoth: Building math generalist models
through hybrid instruction tuning. arXiv preprint
arXiv:2309.05653.

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao
Liu, Yuxiao Dong, and Jie Tang. 2023. Agenttuning:
Enabling generalized agent abilities for llms. arXiv
preprint arXiv:2310.12823.

Jianguo Zhang, Tian Lan, Rithesh Murthy, Zhiwei Liu,
Weiran Yao, Juntao Tan, Thai Hoang, Liangwei Yang,
Yihao Feng, Zuxin Liu, et al. 2024. Agentohana:
Design unified data and training pipeline for effective
agent learning. arXiv preprint arXiv:2402.15506.

Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang,
Xiaofei Sun, Shuhe Wang, Jiwei Li, Runyi Hu, Tian-
wei Zhang, Fei Wu, et al. 2023. Instruction tuning
for large language models: A survey. arXiv preprint
arXiv:2308.10792.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023a. Judging
llm-as-a-judge with mt-bench and chatbot arena.

Zilong Zheng, Mengmeng Wang, Zixia Jia, and Baichen
Tong. 2023b. Langsuite: Controlling, planning, and
interacting with large language models in embodied
text environments.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou,
Robert Lo, Abishek Sridhar, Xianyi Cheng, Yonatan
Bisk, Daniel Fried, Uri Alon, et al. 2023. Webarena:
A realistic web environment for building autonomous
agents. arXiv preprint arXiv:2307.13854.

2135

http://arxiv.org/abs/2306.05685
http://arxiv.org/abs/2306.05685

A Details of Tasks in AGENTBANK

Reasoning Tasks HotpotQA (Yang et al., 2018)
is a question answering dataset featuring multi-hop
reasoning. StrategyQA (Geva et al., 2021) is an-
other question answering task where the required
reasoning steps are implicit in the question and
should be inferred using a strategy. TriviaQA (Joshi
et al., 2017) is a dataset consisting of complex com-
positional questions that require multi-evidence
reasoning. In our work, we repurpose these three
datasets to interaction environments by incorpo-
rating a search engine tool. We employ the GPT-
exploration pipeline and filter out failed cases to
build the gold trajectories.

For our held-out evaluation, we use Bam-
boogle (Press et al., 2022), which is made up of
questions that need compositional reasoning and
are unable to be directly answered by Google.

Math Tasks GSM8K (Cobbe et al., 2021) is a
dataset of diverse grade school math problems cre-
ated by humans. Each problem in GSM8K comes
with an official solution path. In our work, we lever-
age the power of GPT-3.5-Turbo to transform these
solution paths into interaction trajectories.

MathQA (Amini et al., 2019) is a large-scale
multiple-choice math problem dataset covering
multiple math domains. MATH (Press et al., 2022)
contains challenging mathematics problems from
high school math competitions. To adapt these
two datasets into interaction environments, we em-
ploy a Python interpreter and employ the GPT-
exploration pipeline to construct the trajectories.

For the held-out task, we use TheoremQA (Chen
et al., 2023b), a theorem-driven question answer-
ing dataset composing of high-quality questions
from math, physics, EE&CS, and finance. We im-
plement Python interpreter and Wikipedia tools
to construct the corresponding interactive environ-
ment.

Programming Tasks InterCode (Yang et al.,
2023) is a benchmark for evaluating language mod-
els on interactive programming tasks. In this task,
agents are required to respond to natural language
requests by interacting with a software system,
such as a database or terminal. Our work focuses
on evaluating the programming ability of agents
using two environments: IC-Bash and IC-SQL. IC-
Bash is specifically used for the held-out evaluation
of agents.

APPS (Hendrycks et al., 2021) is a benchmark

focused on Python code generation, encompassing
a range of difficulty levels from introductory to
competition level. We utilize GPT-3.5-Turbo to
reformat the instances in this dataset and construct
the trajectories.

HumanEval (Chen et al., 2021) is a dataset de-
signed to measure functional correctness for synthe-
sizing programs from docstrings. MBPP (Austin
et al., 2021) consists of around 1,000 crowd-
sourced Python programming problems. For both
of these datasets, we employ the GPT-exploration
pipeline to annotate the interaction trajectories.
Subsequently, we employ the answer forcing
method to re-annotate the cases where GPT failed.

Web Tasks Mind2Web (Deng et al., 2023) is a
dataset for developing and evaluating generalist
agents for the web that can follow language instruc-
tions to complete complex tasks on any website.
WebArena (Zhou et al., 2023) builds realistic web
environments for agents to execute tasks. Even
GPT-4 struggles with these tasks, so we utilize a
teacher forcing and break down the complete inter-
action trajectory into multiple single steps. Then
GPT-3.5-Turbo is employed to annotate the ratio-
nales.

WebShop (Yao et al., 2022a) is a simulated e-
commerce website environment with real-world
products and crowd-sourced text instructions. For
1571 official human annotated trajectories, we em-
ploy GPT-3.5-Turbo to reformat them and anno-
tate rationales. Additionally, we incorporate trajec-
tories generated through GPT-exploration, which
have final rewards exceeding 0.3.

For our held-out task, we utilize Mini-
WoB++ (Kim et al., 2023), a diverse collection
of over 100 web interaction environments, to for-
mulate our benchmark.

Embodied AI Tasks ALFWorld (Shridhar et al.,
2020b) contains interactive TextWorld environ-
ments that parallel embodied worlds in the AL-
FRED dataset (Shridhar et al., 2020a). This dataset
provides human-annotated gold trajectories for im-
itation learning. RoomR (Weihs et al., 2021) is an
embodied AI dataset which requires agents to re-
store the initial configurations of all objects within
a room. IQA (Gordon et al., 2018) is a question
answering task that requires an agent to interact
with a dynamic visual environment. In our work,
we utilize the text versions of RoomR and IQA
developed by Zheng et al. (2023b). We employ a
depth-first-search algorithm to build the gold action

2136

Dataset Model Rtrain Rpseudo Rtest ∆1 ∆2

AgentInstruct (Zeng et al., 2023)
Llama-2-7B-Chat 17.8 17.5 15.8 -0.3 -2.0
+Dtrain 72.5 72.6 62.4 +0.1 -10.1

AGENTBANK (Ours)
Llama-2-7B-Chat 16.2 16.5 16.0 +0.3 -0.2
+Dtrain 73.3 62.3 62.8 -11.0 -10.5

Table 8: The average reward of WebShop on different instruction sets. We compare the reward Rtrain, Rpseudo,
Rtest on the training set Dtrain, a pseudo test set held-out from the original training set Dpseudo, and original test
set Dtest respectively. We also reports two key metrics: ∆1 = Rpseudo −Rtrain and ∆2 = Rtest −Rtrain, as the
indicators of the difficulty differences between datasets.

sequences for RoomR and IQA. We then leverage
GPT-3.5-Turbo to annotate the corresponding ratio-
nales.

For the held-out evaluation, we utilize Science-
World (Wang et al., 2022a), a text-based virtual en-
vironment which encompasses various elementary
science experiment tasks, including thermodynam-
ics and electrical circuits.

B Difficulty Bias in Trajectory Collection

In this section, we conduct a experiment to verify
the existence of difficulty bias introduced by the
trajectory annotation pipeline widely used in re-
cent studies (Chen et al., 2023a; Zeng et al., 2023).
Specifically, we choose WebShop trajectories in
AGENTBANK and AgentInstruct (Zeng et al., 2023)
to conduct the experiment. For AgentInstruct and
AGENTBANK, we select 300 instances as the train-
ing set Dtrain, 50 instances as the pseudo test set
Dpseudo. We also include the original WebShop
test set Dtest.

For a dataset conforming to the i.i.d. assumption,
the instances in Dtrain, Dpseudo, Dtest are sampled
from the same distribution. Therefore, the expected
behavior is that the evaluation results on Dpseudo

and Dtest should be consistent. Furthermore, an
agent trained on Dtrain should ideally perform bet-
ter on Dtrain compared to Dpseudo and Dtest.

Table 8 illustrates the performance of untrained
Llama-2-7B-Chat and the trained agent on different
sets. For AgentInstruct, both models exhibit worse
performance on Dtest compared to Dpseudo, indi-
cating that instances in AgentInstruct are consider-
ably easier than those in the original test set. Con-
versely, for AGENTBANK, the agents have close
performance on Dpseudo and Dtest, aligning with
our expectations. The agent trained on our dataset
also outperforms the agent trained on AgentInstruct
when evaluated on Dtest. These experiments high-
light that the GPT-exploration trajectory annotation

Rationale IC-SQL WebShop

GPT-4 58.5 63.4
GPT-3.5-Turbo 58.8 63.2

Table 9: Comparison of rationales generated by different
LLMs.

pipeline can introduce difficulty bias in the training
set, potentially compromising the generalizability
of trained agents.

C CoT Rationales Generated by Different
LLMs

Since providing explanation for gold actions is rel-
atively easy task, we employ GPT-3.5-Turbo as
the primary LLM in the rationale annotation pro-
cess for AGENTBANK. Here we compare the dif-
ference of rationale generated by different LLMs.
Specifically, we select IC-SQL and WebShop to
conduct the experiments. As shown in Table 9,
agents training with rationale generated by GPT-4
and GPT-3.5-Turbo have little performance gap.

D Quality Control of AGENTBANK

In Section 4.2, we incorporate heuristic and GPT-
based methods to construct AGENTBANK, which
can mitigate the difficulty bias problem in the previ-
ous annotation pipeline. In this section, we propose
to perform a human evaluation to assess the quality
of AGENTBANK. To achieve this, we employ 5
human annotators who are instructed to choose the
better trajectory from two anonymous candidate
options. Here, we select two representative tasks:
IC-SQL to assess the quality of answer forcing
annotation, and WebShop to evaluate the quality
of trajectory reformatting. For IC-SQL, we com-
pare 100 trajectories generated by answer forcing
with those generated through GPT exploration. For
WebShop, we select 80 trajectories from AGENT-

2137

Dataset Win Lose Tie Total

IC-SQL 11 16 73 100
WebShop 12 10 58 80

Table 10: Human evaluation of the data quality for
AGENTBANK. For IC-SQL, we compare trajectories
generated through answer forcing with those generated
through exploration. For WebShop, we compare our
constructed trajectories with the trajectories constructed
by Zeng et al. (2023).

BANK and Zeng et al. (2023) which correspond to
the same task instance.

As shown in Table 10, for most cases, trajecto-
ries generated by answer forcing or reformatting
have the same quality as GPT exploration. There-
fore, we can conclude that our trajectory annotation
process can achieve comparable quality with previ-
ous methods (Chen et al., 2023a; Zeng et al., 2023)
while mitigating the difficulty bias.

E Data Contamination

When training SAMOYED, we construct a data mix-
ture consisting of trajectory data (AGENTBANK),
generalist instruction data (ShareGPT), and code
data (Evol-CodeAlpaca). However, it is important
to address the concern of potential data contami-
nation, which could result in an overestimation of
performance. Therefore, we perform a contamina-
tion analysis by comparing our evaluation set with
AGENTBANK, ShareGPT, and Evol-CodeAlpaca.

Following Liang et al. (2022), we heuristically
match 9-grams and 13-grams from the instances
in the test set with the training set data. Table 11
displays the proportion of instances which exhibit
an overlap with the training data.

First, we observe a high contamination rate for
held-in tasks with AGENTBANK. After manually
examining these instances, we have some findings.
In the case of StrategyQA, we discovered that all
instances followed a question format that could be
answered with a simple "yes" or "no," potentially
resulting in a high n-gram overlap. For WebShop
and ALFWorld, we found that the contamination
may be attributed to the template-based data con-
struction process. For instance, in WebShop, in-
structions consistently followed specific formats
like “I would like <product> that is <size> and is
the color <color>, and price lower than <price>
dollars”. Additionally, we observed that MBPP
suffers from data contamination issues across all
three training sets. After manual inspection, we
determined that most of the overlap occurs in im-
porting Python packages and commonly used code
snippets, such as loops.

In summary, it can be concluded that the data
contamination has a minimal impact on the experi-
mental results. While some overlap exists between
the held-in tasks and the training set, this is pri-
marily a result of their data construction process.
Moreover, by adhering to the original train-test split
of the datasets, the extent of performance overesti-

Dataset #Inst AGENTBANK ShareGPT Evol-CodeAlpaca

9-Gram Rate 13-Gram Rate 9-Gram Rate 13-Gram Rate 9-Gram Rate 13-Gram Rate

Held-in Tasks

HotpotQA 100 1% 0% 0% 0% 0% 0%
StrategyQA 100 20% 12% 0% 0% 0% 0%
GSM8K 100 3% 0% 0% 0% 0% 0%
MATH 100 15% 4% 0% 0% 2% 0%
IC-SQL 100 7% 0% 0% 0% 1% 0%
MBPP 100 12% 1% 7% 3% 18% 4%
Mind2Web 1173 8% 3% 0% 0% 0% 0%
WebShop 200 41% 14% 0% 0% 0% 0%
ALFWorld 134 14% 8% 0% 0% 0% 0%

Held-out Tasks

Bamboogle 126 0% 0% 0% 0% 0% 0%
ThreomQA 100 0% 0% 0% 0% 0% 0%
IC-Bash 200 0% 0% 0% 0% 0% 0%
MiniWoB++ 460 0% 0% 0% 0% 2% 0%
SciWorld 270 0% 0% 0% 0% 0% 0%

Table 11: Data contamination analysis.

2138

Model Held-in Tasks

HotpotQA StrategyQA GSM8K MATH IC-SQL MBPP Mind2Web WebShop ALFWorld Avg.

Closed-Source Model

GPT-4 52.1 71.0 87.0 59.0 37.8 72.0 22.6 58.6 77.8 59.8
GPT-3.5-Turbo 24.0 58.0 65.0 18.0 38.5 64.0 21.7 62.4 10.5 40.2

7B Open-Source Model

Llama-2-7B-Chat 3.0 5.0 15.0 0.0 4.0 1.0 11.9 15.8 0.0 6.2
Vicuna-7B 11.0 47.0 1.0 3.0 17.3 21.0 14.8 33.5 6.0 17.2
CodeLlama-7B 2.0 5.0 7.0 0.0 3.0 0.0 17.0 32.5 0.0 7.4
AgentLM-7B 10.0 49.0 14.0 6.0 13.9 10.0 10.6 63.7 63.4 26.7

SAMOYED-7B 30.0 66.0 43.0 18.0 59.2 24.0 12.2 60.5 61.2 41.6

13B Open-Source Model

Llama-2-13B-Chat 6.0 19.0 18.0 3.0 3.0 13.4 17.2 5.3 0.0 9.4
Vicuna-13B 15.0 36.0 9.0 4.0 37.0 23.7 15.2 53.3 2.2 21.7
CodeLlama-13B 7.0 20.0 29.0 8.1 3.0 7.2 7.6 23.0 0.0 11.7
AgentLM-13B 24.0 52.0 21.0 6.1 25.7 20.0 11.1 65.0 52.2 30.8

SAMOYED-13B 41.0 68.0 53.0 24.0 67.7 43.0 18.6 63.1 72.4 50.1

Table 12: Performance of SAMOYED and baseline LLMs on held-in tasks.

Model Code-grounded Game-grounded Web-grounded Overall
OS† DB† KG† DCG LTP HH‡ WS‡ WB‡

GPT-4 42.4 32.0 58.8 74.5 16.6 78.0 61.1 29.0 4.01
GPT-3.5-Turbo 32.6 36.7 25.9 33.7 10.5 16.0 64.1 20.0 2.32

Llama-2-7B-Chat 4.2 8.0 2.1 6.9 0.0 0.0 11.6 7.0 0.34
Vicuna-7B 9.7 8.7 2.5 0.3 6.4 0.0 2.2 9.0 0.56
CodeLlama-7B 4.9 12.7 8.2 0.0 0.0 2.0 25.2 12.0 0.50

SAMOYED-7B 11.8 9.7 2.7 1.9 8.2 68.0 60.5 12.2 1.60

Table 13: Performance of SAMOYED and baseline LLMs on AgentBench (Liu et al., 2023). † means the test set may
suffer data contamination with AGENTBANK. ‡ means the task is already covered by AGENTBANK.

mation is reduced. Most importantly, the held-out
tasks, which are used to assess the agents’ gener-
alized capabilities, do not suffer from the issue of
data contamination. This ensures the trustworthi-
ness and robustness of our evaluation.

F Complete Experimental Results

Table 12 shows the complete results on held-in
tasks.

G Evaluation on AgentBench

AgentBench (Liu et al., 2023) is another evalua-
tion benchmark for LLM agents, encompassing
8 agent tasks. However, it is worth noting that
some tasks in AgentBench are already covered by
AGENTBANK, and some tasks may pose a risk of
data contamination with our dataset. Nevertheless,
to provide a comprehensive perspective, we have
included the results of SAMOYED on AgentBench
as a point of reference in Table 13.

2139

H Prompts for Trajectory Annotation

We provide the prompts for AGENTBANK annotation, including answer forcing, trajectory reformat, and
rationale generation.

Prompt for answer forcing

You are a helpful assistant. You should interact with the environment step-by-step and solve the
task. I will give you some useful information to help you solve the task: a failed trajectory, and the
gold answer of the task. Please solve the task again and avoid to make the same error.

Task description:
{task_desc}

Failed Trajectory:
{orig_traj}

The correct answer of the task:
{gold_ans}

You have to think and solve the problem step-by-step with interleaving Thought, Action,
Observation steps. At each turn, you should first provide your step-by-step thinking for solving the
task. Then give your action for current step. When you think the problem has been solved, you
should give the final answer, like "Thought: your thought. Final Answer: the final answer"

Prompt for trajectory reformat

Please help me do some reformatting work. I will give you the math question and the answer with
the thinking process. Please reformat it to "Think, Act, Observation" style.

Here is an example:

Question: Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning
and bakes muffins for her friends every day with four. She sells the remainder at the farmers’
market daily for $2 per fresh duck egg. How much in dollars does she make every day at the
farmers’ market?

Original format:
Thought process: Janet sells 16 - 3 - 4 = 9 duck eggs a day. She makes 9 * 2 = 18 every day at the
farmer’s market.
Answer: 18

After reformatting:
Thought: First, I should calculate the number of duck eggs Janet sells a day
Action: 16 - 3 - 4
Observation: 9
Thought: Now, I should calculate the amount of money Janet makes every day at the farmer2̆019s
market
Action: 9 * 2
Observation: 18
Final Answer: 18

2140

Now it’s your turn. Please reformat the following question and answer.

Question: {question}

Original format:
Thought process: {thought}
Answer: {answer}

After reformatting:

Prompt for rationale generation

You are a helpful assistant. Please help me add thought process to the given trajectory.

Task description:
{task_desc}

Original Trajectory:
{orig_traj}

You should generate the corresponding thought process which following the format:
Thought 1: xxx
Action 1: xxx

Thought 2: xxx
Action 2: xxx

Don’t be lazy! DO NOT skip any actions, even if the action is repeated! Generate the
corresponding thought process for each action.

The corresponding thought process:

2141

