Pruning via Merging: Compressing LL.Ms via
Manifold Alignment Based Layer Merging

Deyuan Liu'f, Zhanyue Qin'f, Hairu Wang?, Zhao Yang®, Zecheng Wang',
Fangying Rong®, Qingbin Liu®, Yanchao Hao?, Xi Chen?, Cunhang Fan®,
Zhao Lv°, Zhiying Tu!, Dianhui Chu', Dianbo Sui'*

! Harbin Institute of Technology, ?University of Science and Technology of China,
3 Institute of Automation, Chinese Academy of Sciences, * Tencent Inc. ,
® Shandong Agricultural University, © Anhui University
2022211994 @stu.hit.edu.cn, johnneyqin @ gmail.com, suidianbo@hit.edu.cn

Abstract

While large language models (LLMs) excel
in many domains, their complexity and scale
challenge deployment in resource-limited en-
vironments. Current compression techniques,
such as parameter pruning, often fail to effec-
tively utilize the knowledge from pruned pa-
rameters. To address these challenges, we pro-
pose Manifold-Based Knowledge Alignment
and Layer Merging Compression (MKA), a
novel approach that uses manifold learning and
the Normalized Pairwise Information Bottle-
neck (NPIB) measure to merge similar layers,
reducing model size while preserving essen-
tial performance. We evaluate MKA on mul-
tiple benchmark datasets and various LLMs.
Our findings show that MKA not only pre-
serves model performance but also achieves
substantial compression ratios, outperform-
ing traditional pruning methods. Moreover,
when coupled with quantization, MKA delivers
even greater compression. Specifically, on the
MMLU dataset using the Llama3-8B model,
MKA achieves a compression ratio of 43.75%
with a minimal performance decrease of merely
2.82%. The proposed MKA method offers a
resource-efficient and performance-preserving
model compression technique for LLMs. We
make our code available at https://github.
com/SemprakETY/Pruning-via-Merging

1 Introduction

Large Language Models (LLMs), such as GPT-
4 (OpenAl et al., 2024), Llama-32, Llama-2 (Tou-
vron et al., 2023) and Mistral (Jiang et al., 2024),
have demonstrated remarkable proficiency in lan-
guage understanding and generation. These mod-
els, with billions of parameters trained on trillions
of tokens, can handle complex tasks and exhibit
emergent abilities (Brown et al., 2020; Chowdhery
“Dianbo Sui is the corresponding author.
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et al., 2023). While these models have achieved un-
precedented success, their growing complexity and
scale have brought to the fore significant challenges
in terms of computational resources, memory re-
quirements, and energy consumption (Bender et al.,
2021; Bommasani et al., 2021), raising concerns
about their sustainability.

To mitigate these challenges, researchers have
developed various model compression techniques
in LLM to reduce its parameter size while preserv-
ing performance (Cheng et al., 2017; Deng et al.,
2020; Ganesh et al., 2021; Zhu et al., 2023; Yang
et al., 2024). These techniques can be roughly cat-
egorized into two main mainstreams (Men et al.,
2024): quantization (Gholami et al., 2021; Li et al.,
2024; Dettmers et al., 2022; Gong et al., 2024;
Li et al., 2024) and pruning (LeCun et al., 1989;
Han et al., 2016; Gupta and Agrawal, 2022; Ma
et al., 2023a). Quantization based methods aid
in the reduction of the memory consumption of
weights, activations, and KV caches by using the
low-precision values with fewer bits instead of the
high-precision values. However, the acceleration
benefits of quantization are seriously dependent
on hardware support (Tao et al., 2023) and some-
times require additional fine-tuning to maintain
performance (Dettmers et al., 2023; Men et al.,
2024). Compared to quantization, pruning, espe-
cially structural pruning (Li et al., 2017), eliminates
redundant LLM’s parameters to decrease the over-
all parameter count, and can be applied directly
to a trained LLM without retraining and is gen-
erally more hardware-friendly than quantization
approaches. While effective, pruning usually risks
losing valuable model structures and determining
how to prune the LLM with minimal disruption to
the origin remains an unsolved problem (Ma et al.,
2023b).

To tackle this issue head-on, we delve into the
realm of model merging (Wortsman et al., 2022),
a powerful technique that seamlessly weaves to-
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Figure 1: Manifold-Based Knowledge Alignment and Layer Merging (MKA) framework consists of two main
components: (1) The left side illustrates manifold learning for LLM knowledge extraction, where layer activations
are transformed into low-dimensional manifolds using the Diffusion Kernel algorithm. (2) The right side depicts the
similarity-based layer merging process, employing the NPIB metric to identify layers with aligned knowledge.

gether the strengths and knowledge of multiple
models, creating a robust and efficient aggregation.
This technique, through averaging the weights of
multiple models with the same architecture, can
retain essential features without significant addi-
tional resources (Liu et al., 2024; Wan et al., 2024).
Furthermore, by offsetting the biases and errors
of individual models, model merging often leads
to greatly improved performance (Li et al., 2023).
Additional, the number of models in the merging
process can be gradually and naturally reduced.
However, such a useful technology are limited to
merging between models currently, and few studies
pay attention on merging the same internal struc-
tures within a model.

This raises the question of whether model com-
pression could be achieved by reducing the total
number of layers through the progressive aggre-
gation of knowledge between layers. To answer
this question, we introduce Manifold-Based Knowl-
edge Alignment and Layer Merging Compression
(MKA) in this paper. MKA combines manifold
learning and layer merging to preserve essential
information while significantly reducing LLLM pa-
rameter size. As illustrated in Figure 1, our method
mainly comprises two primary components:

Manifold Learning for LLM Knowledge: We
employ manifold learning techniques to align
knowledge across layers by extracting layer ac-
tivations from a LLM and applying the Diffusion
Kernel algorithm (Tenenbaum et al., 2000) to learn

low-dimensional manifold representations. This
approach captures the nonlinear structure in the
activation and achieves dimensionality reduction
while preserving important activation features, en-
abling more effective comparison of knowledge
patterns across different layers.

Similarity Alignment Layer Merging: Follow-
ing manifold learning, we use the Normalized
Pairwise Information Bottleneck (NPIB) measure
(Tishby et al., 2000) to construct a similarity ma-
trix that quantifies the similarity between layers by
maximizing their mutual information while con-
sidering the entropy of each layer. Based on this
similarity matrix, we select the most similar layer
pairs for merging.

To rigorously validate the effectiveness of MKA,
we conduct extensive empirical evaluations on a di-
verse array of benchmark datasets, like MMLU and
PIQA, and a wide range of state-of-the-art large
language models, including Llama-3 series with
8B and 70B parameters, Llama-2 series with 7B
and 13B parameters, and Mixtral-7B. Our exper-
imental results indicate that MKA can maintain
good performance while achieving a significant
compression ratio, outperforming existing pruning
methods and achieving even greater compression
when combined with quantization. For example,
on the MMLU dataset with Llama3-8B, MKA can
achieve a compression ratio of 43.75% with only a
2.82% performance drop.

In summary, the main contributions of this paper
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are as follows:

¢ We introduce MKA, an innovative model com-
pression technique that leverages manifold learn-
ing to align and integrate knowledge across lay-
ers, achieving significant reductions in model
size while preserving performance.

* We develop a manifold-based knowledge align-
ment approach, utilizing the Diffusion Kernel
and Normalized Pairwise Information Bottle-
neck (NPIB) to effectively capture and align sim-
ilarities between layers in the parameter space.

* We validate the efficacy of MKA through com-
prehensive experiments on multiple benchmark
datasets and a variety of large language models,
demonstrating its capability to achieve substan-
tial compression without compromising model
performance.

2 Manifold-Based Knowledge Alignment
and Layer Merging

Our MKA method relies on the redundancy present
in the latter layers of post-training LLMs (Gromov
et al., 2024). By merging layers with high input-
output similarity from back to front, we maintain
the model’s performance while reducing its size.
In this section, we first describe the extraction and
dimensionality reduction processes for the inter-
mediate states, as high-dimensional intermediate
states are challenging to analyze. Then, we pro-
pose our layer merging method based on similarity
alignment, which aims to maintain performance
by aligning intermediate states through merging
techniques.

2.1 Manifold Learning for LLM Knowledge

To effectively align knowledge across LLM’s lay-
ers, MKA employs manifold learning techniques
that can capture the intricate nonlinear dependen-
cies within the LLM’s internal structure. This ap-
proach allows us to compare and align layer acti-
vations in a meaningful way, preserving essential
information while reducing model complexity.
The process begins with the extraction of layer
activations H' from a LLM on the dataset w . These
activations represent the outputs of each layer given
a set of input samples, encapsulating the knowledge
learned at different stages. To transform these high-
dimensional activations into a lower-dimensional
space that preserves their essential features and
geometric structure, we apply the Diffusion Kernel
algorithm (Coifman and Lafon, 2006). Here are

the key steps involved in this process:

Extracting Layer Activations: For each layer
I, we extract the activations H' given input sam-
ples. These activations H'! are computed using the
following equation:

H' = LayerNorm (Hl_l + MultiHead (Hl_l))
+ FeedForward (Hl&) (D)

Constructing the Pairwise Distance Matrix:
Next, we calculate the pairwise Euclidean distance
matrix D for the activations H'. This matrix cap-
tures the distances between all pairs of activations,
serving as the basis for the manifold learning pro-
cess.

Applying the Diffusion Kernel: We apply the
Diffusion Kernel to transform the distance matrix
D into low-dimensional manifold representations
®,, capturing the intrinsic geometric structure of
the data. The kernel function smooths the data,
emphasizing the intrinsic geometric structure:

i ,(uHi—HJ'\F)O‘F’
E = EigVectors; | Diag Z e 7K
j=1

where o is the kernel bandwidth parameter,
and EigVectors, refers to the eigenvectors corre-
sponding to the d smallest eigenvalues of the Lapla-
cian matrix L. This transformation captures the
essential features and relationships within the ac-
tivations, enabling effective comparisons across
different layers.

2.2 Similarity-based Layer Merging

Building upon the manifold learning representa-
tions, MKA employs a similarity-based layer merg-
ing approach to identify and fuse layers with highly
aligned knowledge. By quantifying the similarity
between layers using the Normalized Pairwise In-
formation Bottleneck (NPIB) (Tishby et al., 2000)
metric, we can determine which layers are most
suitable for merging. This process allows us to
reduce model size, improve inference speed, and
decrease GPU memory consumption.

The layer merging process involves several key
steps. First, we construct a similarity matrix using
the NPIB metric to compare the knowledge pat-
terns across layers. Next, we introduce an adaptive
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Algorithm 1 Manifold-Based Knowledge Alignment and Layer Merging Compression (MKA)

Input: LLM M with Layers L, Lo, ..
H <+ ExtractActivations(M, w)

E <« DiffusionKernel(D, o)

S + ComputeNPIB(E)

) < SortLayersBySimilarity(S)

while || > 1 do
(L;, Lj) < SelectTopLayerPair(£2)
Am ¢ ComputeMergingRatio(S, L;, L;)
Qm%)\m'gi—i-(l—)\mf@j
L, < MergeLayer(L;, L;, 0,,)
M < ReplaceLayer(M, L;, L;, L)
Q2 < UpdateLayerList(2, L;, L;, Ly,)

: end while

: return M

S A G S i v

—_— = = = = e
AN A S S ol =

., L, Layer Parameters © = 61, 0,, ..
Output: Compressed Model M* with Aligned Knowledge

., 0N, Dataset w

> Extract activations for each layer on dataset w

D + ComputePairwiseDistances(#) > Compute pairwise Euclidean distance matrix of activations

> Apply diffusion kernel for manifold learning
> Compute NPIB similarity matrix
> Sort layers by similarity for merging

> Select top-ranked layer pair based on similarity
> Compute adaptive merging ratio
> Merge layer parameters

> Create merged layer using the merged parameters

> Update model with the merged layer
> Update layer list with the new merged layer

weight allocation function to determine the optimal
merging ratio for each pair of layers, ensuring that
the merged layer retains the most critical features.
Finally, we fuse the parameters of the selected lay-
ers using the weighted sum and update the model
architecture accordingly.

Constructing the Similarity Matrix: To iden-
tify layers suitable for merging, we first construct
a similarity matrix S using the Normalized Pair-
wise Information Bottleneck (NPIB) metric. NPIB
quantifies the shared information between layers
while normalizing their individual entropies, pro-
viding an ideal measure for comparing knowledge
patterns across layers:

Si; = NPIB(E;, E;)

p(z,y)
2 2 P og e
i j

T TS @) logp(@) - X, p(y) logp(v)

zcE; yeE;
3)

where p(x,y) denotes the joint probability distri-
bution of E; and E;, and p(x) and p(y) represent
the marginal probability distributions of E; and E;,
respectively. This similarity matrix helps us deter-
mine which layers have the most aligned knowl-
edge representations.

Calculate Weight ratio: To determine the merg-
ing ratio A, for each pair of layers, we introduce
the adaptive weight allocation function ¥. This
function dynamically adjusts the merging ratio
based on the similarity differences between lay-
ers, ensuring that the merged layer retains the most

critical features from each original layer:

S

A = W0 5) = sy oS

“)
The adaptive weight allocation function ¥ adjusts
the merging weights based on the similarity dif-
ference between layers. When the similarity dif-
ference between two layers is large, U assigns a
higher weight to the layer with higher similarity,
reducing the weight of the layer with lower sim-
ilarity. This mechanism ensures that the merged
layer better preserves the knowledge from the more
similar layer.

Merging Layer Parameters: Once the merging
ratio \,, is determined, we fuse the parameters 6;
and ¢; of the selected layers using a weighted sum:

O = Ambi + (1 — A0 (5)

The merged layer Ly, is obtained through the func-
tion FuseLayer(L;, L;,0,,), which constructs a
new layer based on the fused parameters gm This
new layer integrates the aligned knowledge from
the original layers, preserving essential information
while reducing redundancy.

Finally, we update the model M by replac-
ing the original layers L; and L; with the
newly merged layer L,,, utilizing the function
ReplaceLayer(M, L;, L;, L,,). This step ensures
that the model’s architecture is updated to reflect
the compression process, maintaining performance
while significantly reducing model size.
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Figure 2: Comparison of Accuracy (ACC) during merging and pruning on the MMLU dataset. MKA achieves
higher compression ratios (approximately 43.5% for Llama3-8B, 45% for Llama3-70B, 40% for Mistral-7B, 31.25%
for Llama2-7B, and 57.5% for Llama2-13B) while preserving 90% performance. Please see the appendix A for

details.

3 Experiments

We conduct a comprehensive set of experiments to
evaluate the effectiveness and generalizability of
our MKA method across various domains. More-
over, we aim to compare our approach with prun-
ing techniques to assess whether it offers improve-
ments and to investigate if it can be combined with
quantization methods to achieve even higher com-
pression ratios.

3.1 Experimental Setup

3.1.1 Datasets

We conduct evaluations using the MKA methods
across various benchmark datasets, each specif-
ically designed to test various facets of lan-
guage comprehension and generation. In detail,
MMLU (Hendrycks et al., 2020) evaluates broad
language understanding across a wide range of do-
mains. PIQA (Bisk et al., 2020) is designed to test
models on commonsense reasoning in the physical
world, aiming to assess NLP models’ grasp of ev-
eryday physical interactions. HellaSwag (Zellers
etal.,2019) is a challenge dataset for commonsense
natural language inference, consisting of event
descriptions with multiple possible continuations,
where the task is to select the most plausible one.
RACE-H (Lai et al., 2017) is a large-scale reading
comprehension dataset collected from English ex-
ams for Chinese high school students, featuring a
high proportion of questions that require reasoning.
BoolQ (Clark et al., 2019) is a reading comprehen-
sion dataset focusing on naturally occurring yes/no
questions that often query for complex, non-factoid
information and require difficult entailment-like
inference to answer correctly.

3.1.2 LLMs

In our experiments, we employ the Llama-2 (Tou-
vron et al., 2023), Llama-3, and Mistral-7B (Jiang
et al., 2023) models, each distinct in their capabili-

ties and configurations: Llama-2: Encompassing
models from 7 billion to 70 billion parameters, ex-
hibits superior performance and safety on diverse
benchmarks. Llama-3: Featuring models with 8
billion and 70 billion parameters, Llama3 offers
state-of-the-art performance and advanced reason-
ing capabilities. Mistral-7B: a 7-billion-parameter
model that surpasses Llama-2 and Llama-1 in per-
formance and efficiency, leveraging grouped-query
and sliding window attention mechanisms for opti-
mal inference across lengthy sequences.

3.1.3 Baselines

In this study, we assess the effectiveness of our
proposed method, MKA, through two distinct com-
parative analyses. Firstly, we evaluate MKA di-
rectly against several well-established pruning tech-
niques to gauge its standalone efficacy in reducing
model size while maintaining performance. Sec-
ondly, we extend the comparison to include sce-
narios where both the traditional pruning methods
and MKA are further enhanced through quantiza-
tion. The baseline methods included in our analy-
sis are: SparseGPT (Frantar and Alistarh, 2023):
An efficient one-shot pruning method that can in-
duce high sparsity levels in large language models
with billions of parameters while preserving ac-
curacy, by reducing the pruning problem to a set
of large-scale sparse regression instances solved
by a novel approximate solver. ShortGPT (Men
etal.,2024): A pruning method that removes redun-
dant layers from large language models based on a
Block Influence metric, which assesses the signifi-
cance of each layer. Reverse Pruning: A heuristic
approach where the importance of layers is con-
sidered inversely proportional to their order in the
model, prioritizing the retention of earlier layers.
SmoothQuant (Xiao et al., 2023): SmoothQuant is
a training-free post-training quantization solution
that enables efficient 8-bit weight and activation
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quantization for large language models, offering
up to 1.56x speedup and 2x memory reduction
with minimal accuracy loss. GPTQ (Frantar et al.,
2022): A one-shot weight quantization method
that uses approximate second-order information
to maintain high accuracy even with severe weight
reduction. AWQ (Lin et al., 2023): A novel quan-
tization approach that protects salient weights by
adjusting per-channel scaling based on activation
observations rather than weight Magnitudes.

3.2 In what ways does MKA surpass
conventional pruning techniques?

We compare the performance of MKA with base-
line compression methods on the MMLU dataset
using the Llama3-8B, Llama3-70B, Mistral-7B,
Llama2-7B, and Llama2-13B models. The eval-
uation metric is Accuracy (ACC) during merging
and pruning. The results are presented in Figure 2.

We compare the performance of MKA with base-
line compression methods on the MMLU dataset
using the Llama3-8B, Llama3-70B, Mistral-7B,
Llama2-7B, and Llama2-13B models. The eval-
uation metrics include Accuracy (ACC) during
merging and pruning. The results are presented
in Figure 2. We can observe that, across all models,
our method improves the compression ratio while
maintaining performance. Specifically, the com-
pression ratio® for Llama3-8B reach 43.5%, for
Mistral-7B it reaches 40%, and for Llama2-13B it
reaches an impressive 57.5%. Additionally, we ob-
serve several phenomena: both methods experience
a collapse in model performance, but the model
merging method can delay the layer collapse to
some extent and stabilize the model’s performance
very well. Since our strategy is based on Reverse
Prune, the scores for the Llama3-8B, Llama2-7B,
and Llama2-13B models are very close to the Re-
verse Prune. Our hypothesis is that the pruning
or merging of these models is similar, but model
merging can adjust the merging ratio to surpass the
effects of pruning. Moreover, for the Llama3-70B
and Mistral-7B models, we noticed that the results
do not closely match the Reverse Prune.

3Note that, the compression ratio is calculated as:
(Ltotal - (%)) /Liowal, where Lyota is the total num-

ber of layers before compression, Lyetqineq 1 the number of
retained layers, and @ is the quantization factor.

Retained layers

Model Method (Compression Ratio) Ace
Vanilla Model 32 (0.00%) 66.29
ShortGPT+Smooth 18(85.94%) 26.54
ShortGPT+GPTQ 18(85.94%) 25.98
Llama3-8B | ShortGPT+AWQ 18(85.94%) 26.22
MKA (Ours) + Smooth 18(85.94%) 64.20 (+37.66)
MKA (Ours) + GPTQ 18(85.94%) 62.98 (+37.00)
MKA (Ours) + AWQ 18(85.94%) 61.66 (+35.44)
Vanilla Model 32(0.00%) 63.87
ShortGPT+Smooth 20(84.38%) 24.32
ShortGPT+GPTQ 20(84.38%) 23.16
Mistral-7B | ShortGPT+AWQ 20(84.38%) 23.96
MKA (Ours) + Smooth 20(84.38%) 56.92 (+32.60)
MKA (Ours) + GPTQ 20(84.38%) 56.12 (+32.96)
MKA (Ours) + AWQ 20(84.38%) 55.34 (+31.38)
Vanilla Model 32(0.00%) 46.67
ShortGPT+Smooth 16(87.50%) 25.67
ShortGPT+GPTQ 16(87.50%) 25.82
Llama2-7B | ShortGPT+AWQ 16(87.50%) 26.01
MKA (Ours) + Smooth 16(87.50%) 35.66 (+9.99)
MKA (Ours) + GPTQ 16(87.50%) 35.91 (+10.09)
MKA (Ours) + AWQ 16(87.50%) 36.23 (+10.22)
Vanilla Model 40 (0.00%) 55.62
ShortGPT+Smooth 20 (87.50%) 25.89
ShortGPT+GPTQ 20 (87.50%) 25.35
Llama2-13B | ShortGPT+AWQ 20 (87.50%) 23.83
MKA (Ours) + Smooth 20 (87.50%) 46.82 (+20.93)
MKA (Ours) + GPTQ 20 (87.50%) 45.44 (+20.09)
MKA (Ours) + AWQ 20 (87.50%) 45.86 (+22.03)
Table 1: Performance comparison of MKA and

ShortGPT pruning with quantization (SmoothQuant,
GPTQ, AWQ) on MMLU using Llama3-8B, Mistral-
7B, Llama2-7B, and Llama2-13B. MKA outperforms
ShortGPT in accuracy across all models and quantiza-
tion methods at similar compression ratios with int4.
The calculation of the compression ratio only considers
the number of hidden layers in the model without con-
sidering the embedding layer.

3.3 How Does MKA Combined with
Quantization Perform Compared to
Pruning Combined with Quantization?

We compare the performance of MKA with the
baseline pruning method, ShortGPT (Men et al.,
2024), on the MMLU dataset using the Llama3-8B,
Llama3-70B, Mistral-7B, Llama2-7B, and Llama2-
13B models. The results are shown in Table 1.

We can see that the pruned models are able to be
further quantized and maintain performance with
a higher compression ratio. Notably, at a high
compression ratio of around 87.50%, MKA signif-
icantly outperforms ShortGPT. Additionally, we
achieve excellent results using various quantization
methods. For example, on Llama3-8B, at a com-
pression ratio of 85.94%, MKA with SmoothQuant
achieves 64.20%, far exceeding ShortGPT with
SmoothQuant at 37.66%. Similarly, with the GPTQ
quantization method, we achieve 62.98%, sur-
passing ShortGPT’s 37.00%, and with AWQ, we
achieve 61.66%, exceeding ShortGPT’s 35.44%.
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‘ Compression Ratio = 34.375% ‘ Compression Ratio = 37.5%

Method | MMLU | PIQA | HellaSwag | RACE-H | BoolQ | MMLU | PIQA | HellaSwag | RACE-H | BoolQ
Vanilla Model | 6629 | 81.12 |  74.54 66.07 | 6679 | 6629 | 81.12 | 7454 66.07 | 66.79
SparseGPT | 4445 | 5877 | 3214 3506 | 4829 | 4195 | 5623 | 2863 37.84 | 5240
ShortGPT | 4295 | 60.99 |  33.00 4168 | 5196 | 44.80 | 61.70 |  38.69 40.05 | 57.09
MKA (Ours) ~ 64.87 | 67.79 | 51.32 5520 | 6336 | 62.05 66.26 | 50.16 4949 6346
‘ Compression Ratio = 40.625% ‘ Compression Ratio = 43.75%
Method | MMLU | PIQA | HellaSwag | RACE-H | BoolQ | MMLU | PIQA | HellaSwag | RACE-H | BoolQ
Vanilla Model | 6629 | 81.12 |  74.54 66.07 | 6679 | 6629 | 81.12 | 7454 66.07 | 66.79
SparseGPT | 3730 | 5936 | 32.16 2206 | 60.63 | 33.11 | 57.12 | 29.63 23.14 | 5941
ShortGPT | 39.26 | 5822 | 34.16 2170 | 61.77 | 2609 | 59.03 | 3375 2158 | 61.53
MKA (Ours) 6342 | 65.61 | 48.83 5526 | 63.58 | 6442 6551 | 4510 4591 6214

Table 2: Comparison of different methods across MMLU, PIQA, HellaSwag, RACE-H, and BoolQ datasets at
different compression ratios.

Llama3-8B

~ Llama3-70B

Mixtril_—7B b

Layer

ayer

—
Q
[0)
= -

Figure 3: Similarity matrices for Llama-3-8B, Llama-3-70B, Mistral-7B, Llama-2-7B, and Llama-2-13B before and
after MKA. Later layers show high similarity, supporting layer merging.

3.4 MKA vs. Other Pruning Methods on

varies benchmarks

We compared the performance of MKA and several
other pruning methods on the LLama3-8B model
using multiple benchmark datasets at compression
ratios of 34.375%, 37.5%, 40.625% and 43.75%.
The results are shown in Table 2. From the re-
sults, merging can retain performance better com-
pared to pruning. Relative to SparseGPT and Short-
GPT, our method can achieve better performance
retention, with significant improvements across all
datasets. For example, at a compression ratio of
34.375% on the MMLU dataset, our method can
outperform ShortGPT by 21.92% and SparseGPT
by 20.42%. Similarly, on the HellaSwag dataset,
our proposed method can surpass ShortGPT by
18.32% and SparseGPT by 18.32%.

3.5 Are Inter-Layer Knowledge Alignment
Similarity Matrices Consistent Across
Different Large Models?

We generate layer similarity heatmaps for dif-
ferent models before and after applying MKA.
These heatmaps visualize the knowledge align-
ment and layer merging effects of MKA on var-

ious models. Figure 3 presents the similarity
heatmaps for Llama-3-8B, Llama-3-70B, Mistral-
7B, Llama-2-7B, and Llama-2-13B. We observe
that the heatmaps for the later layers of each model
exhibit high similarity values, indicating that inter-
layer similarity is consistently high in the later lay-
ers across different models. This observation sup-
ports our layer merging approach. Additionally,
when merging the earlier layers, we notice a col-
lapse of the matrix in the final figure, suggesting
that earlier layers have a significant influence on
later layers. Thus, simple merging operations on
the earlier layers of the model are not feasible.

4 Discussion

4.1 Extension to Multimodal and Specialized
Models

In addition to its application to large language mod-
els, the MKA method shows promising potential
for broader adoption across a variety of deep learn-
ing architectures. This includes Mixture-of-Experts
(MoE) (Jiang et al., 2024), and Mamba (Gu and
Dao, 2023; Lieber et al., 2024) models, which
can exhibit similar redundancies in their process-
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Figure 4: The similarity matrices of Mixtral-8x7B and
the Jamba model.

ing layers.The results show in Figure 4. Initial
experiments conducted on these diverse architec-
tures have reinforced the viability of our approach.
For instance, the similarity matrices generated on
jamba (Lieber et al., 2024) and Mixtral-8x7B (Jiang
et al., 2024) applying MKA have shown that Our
method can also be generalized to other similar
models, but the similarity distributions of jamba
and Mixtral-8x7B are slightly different from LLM,
and we do not yet know the reason. These ex-
periments further validate the effectiveness of our
method across different model types.

4.2 Analysis of Similarity Measures

In our evaluation of the Llama3-8B model, we ex-
plored several similarity measures: Cosine Simi-
larity, Mahalanobis Distance, Euclidean Distance,
t-SNE Similarity, and Autoencoder Similarity. The
similarity matrices are shown in Figure 5. From the
results, we observe that Cosine Similarity, Maha-
lanobis Distance, and Euclidean Distance display
similar distribution patterns with vertical stripes
and varied heat values. However, Mahalanobis
Distance shows irregular heat values within these
stripes, indicating a misalignment with the fused
layer data structure. t-SNE Similarity appears ran-
dom and lacks consistent patterns. For Autoen-
coder Similarity, the high heat values do not corre-
spond to suitable merging areas or expected high-
similarity regions.

4.3 Variations in Accuracy Across Different
MMLU Subjects During Layer Merging

We examine the impact of model merging on per-
formance across various academic subjects in the
MMLU benchmark. Figure 6 shows the accuracy
changes across subjects such as College Medicine,
College Biology, High School Psychology, and
College Physics during different stages of merg-
ing model layers. From our results, we observe

that High School Psychology maintained a stable
accuracy with only minor fluctuations, suggesting
a consistent performance and low sensitivity to
the merging process. In contrast, College Biology
experiences a significant drop in accuracy at the
12.5% merging ratio, followed by a recovery. Col-
lege Physics exhibits frequent fluctuations in accu-
racy, pointing to a high sensitivity to layer merging.
Conversely, College Medicine experiences a steady
increase in performance with only minor variations.

5 Conclusion

In this paper, we have proposed Manifold-Based
Knowledge Alignment and Layer Merging Com-
pression (MKA), a novel model compression tech-
nique specifically designed to efficiently reduce the
size of large language models (LLMs) while main-
taining their performance. MKA leverage mani-
fold learning techniques to align knowledge across
layers and utilizes the Normalized Pairwise Infor-
mation Bottleneck (NPIB) measure to identify the
most similar layers for merging. By capturing the
intricate nonlinear dependencies within LLMs and
integrating knowledge from similar layers, MKA
achieves remarkable compression ratios without
sacrificing model accuracy. We have conducted
extensive experiments on a diverse set of bench-
mark datasets and various state-of-the-art LLMs to
rigorously evaluate the effectiveness of MKA in
preserving model performance while significantly
reducing model size. Our empirical results demon-
strate that MKA consistently outperforms existing
pruning methods and can achieve even higher com-
pression ratios when combined with quantization
techniques.
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Figure 6: ACC changes across different MMLU dataset
subjects during merging.

Limitations

The quality of the manifold learning process in
MKA heavily depends on the diversity and repre-
sentativeness of the layer activations extracted from
the input dataset. In our experiments, we used o
value of 8 and selected the first question from the
57-question MMLU dataset to extract activations.
We observed that the number of questions sampled
can significantly impact the manifold learning re-
sults. Ensuring keeping the Condition Number be-
low 2000 is crucial for maintaining the integrity of
the learned manifold representations. If the dataset
used for extracting activations does not adequately
cover the model’s operational range, the learned
manifold representations might fail to capture the
true geometric structure of the data.

The current implementation of MKA has been
primarily tested on transformer-based architectures.
Although we believe that deep neural networks in-
herently contain redundancies, the applicability and
effectiveness of MKA on other neural network ar-
chitectures, such as convolutional neural networks
(CNNs) or recurrent neural networks (RNNs), have
not been thoroughly explored. Future research can
investigate these architectures to confirm whether
MKA can achieve similar compression benefits
across different types of neural networks.
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Model ‘Methods ‘ 0 0.03125 0.0625 0.09375 0.125 0.15625 0.1875 0.21875 0.25 0.28125 03125 0.34375 0.375 0.40625 04375 046875 0.5

Llama3_8b ACC (Reverse) | 66.29  66.12 66.33 66.15 6621 6531 64.96 6291 6428  65.00 63.99 6471  62.04 63.52 64.51 3031 29.07
- ACC (Ours) 66.29  65.96 66.26 66.15 58.08 6294 64.96 6292 6428 6501 63.99 6487 6205 6342 64.42 3029 29.05
Liama2 7b ACC (Reverse) | 46.67 4437  46.71 46.09 46.89 4651 46.79 4333 4590 45.22 3533 4058 4233 3734 39.26 39.53  35.65
- ACC (Ours) 46.67 4445 46.74  46.07 4693 4652  46.84 4341 4585  45.09 3525 40.67 4240 3738 39.41 3945 3571

Table 3: ACC during the compression process of Ours and Reverse Prune on Llama3-8b and Llama2-7b models.

Methods ‘ 0 0.025 005 0.075 0.1 0125 015 0175 02 0225 025 0275 03 0325 035 0375 04 0425 045 0475 05
ACC (Reverse) | 55.62 55.24 5521 55.12 5444 5402 5563 5527 53.87 53.66 53.17 5189 51.56 51.56 5148 50.75 5028 48.37 45.18 4859 46.78
ACC (Ours) ‘ 55.62 5524 5521 55.12 5444 5402 5563 5527 53.87 53.66 53.17 5189 51.56 51.56 5149 50.75 5028 4837 45.18 4859 46.78

Table 4: ACC during the compression process of Ours and Reverse Prune on Llama2-13b model.
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