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Abstract

Contrastive Language-Image Pre-training
(CLIP) has been widely studied and applied
in numerous applications. However, the
emphasis on brief summary texts during
pre-training prevents CLIP from understanding
long descriptions. This issue is particularly
acute regarding videos given that videos often
contain abundant detailed contents. In this
paper, we propose the VideoCLIP-XL (eXtra
Length) model, which aims to unleash the
long-description understanding capability of
video CLIP models. Firstly, we establish an
automatic data collection system and gather
a large-scale VILD pre-training dataset1 with
VIdeo and Long-Description pairs. Then,
we propose Text-similarity-guided Primary
Component Matching (TPCM) to better
learn the distribution of feature space while
expanding the long description capability.
We also introduce two new tasks namely
Detail-aware Description Ranking (DDR)
and Hallucination-aware Description Ranking
(HDR) for further understanding improvement.
Finally, we construct a Long Video Description
Ranking (LVDR) benchmark2 for evaluating
the long-description capability more compre-
hensively. Extensive experimental results on
widely-used text-video retrieval benchmarks
with both short and long descriptions and our
LVDR benchmark can fully demonstrate the
effectiveness of our method.3

1 Introduction

The Contrastive Language-Image Pre-training
(CLIP) model (Radford et al., 2021) represents a
pivotal development in the field of vision-language
pre-training. It integrates text and image encoders

∗Contribution during internship at Alibaba Cloud Com-
puting.

†Co-corresponding authors.
1https://huggingface.co/alibaba-pai/VILD.
2https://huggingface.co/alibaba-pai/LVDR.
3https://huggingface.co/alibaba-pai/VideoCLIP-XL.

to align these two modalities through contrastive
learning. This methodology has been effectively
applied in various applications, such as zero-shot
classification (Sun et al., 2023), text-image re-
trieval (Luo et al., 2023), and text-to-image gen-
eration (Rombach et al., 2022; Frans et al., 2022).
However, one of the notable limitations of CLIP is
its constrained capacity to process extensive textual
descriptions, owing to its text encoder’s reliance on
maximum positional embeddings with length 77.
This limitation greatly restricts the length of input
text, and existing studies (Zhang et al., 2024) have
also revealed a de facto effective token limit of just
around 20.

Furthermore, the vanilla CLIP training proce-
dure’s emphasis on brief summary texts compels
the text/vision encoder to focus predominantly on
the main features of the text/visual input, often over-
looking smaller, yet potentially critical details. This
issue is particularly acute in videos as compared to
images, given that videos encapsulate a wealth of
details across successive frames, along with addi-
tional information such as the sequence and flow of
activities, camera movements, etc. In this context,
existing video CLIP models (Xu et al., 2021; Luo
et al., 2022; Wang et al., 2023c) that employ vanilla
CLIP training methodologies may struggle to accu-
rately capture complex relationships and attributes,
due to their reliance on a simplistic “bag of con-
cepts” approach (Tang et al., 2023b). To overcome
these limitations, enhancing the model’s capability
to comprehend long descriptions is crucial. Longer
texts provide a rich tapestry of attributes and in-
terconnections, offering a pathway to significantly
improve the model’s performance and applicability
in more complex scenarios.

To this end, we propose VideoCLIP-XL (eX-
tra Length), to our knowledge, which is the first
video CLIP model with long-description capabil-
ity. (1) To be specific, recognizing the insuffi-
ciency of public datasets containing (video, long
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description) pairs, we establish an automatic data
collection system, designed to aggregate sufficient
and high-quality pairs from multiple data sources.
We have successfully collected over 2M (VIdeo,
Long Description) pairs, denoted as our VILD pre-
training dataset. (2) We have discovered that ex-
isting CLIP models for long texts (Zhang et al.,
2024) lack the flexibility to dynamically adapt to
the distribution changes within high-dimensional
feature space. To address this issue, we intro-
duce Text-similarity-guided Primary Component
Matching (TPCM), a novel approach that enables
the model to better learn cross-modal and cross-
sample relative distances. (3) We claim that there
are two attributes that CLIP models with the long-
description understanding capability should nat-
urally possess: for a given video and its asso-
ciated descriptions, it should be able to assign
a higher score when the description contains i)
more rich and precise detailed contexts; or ii)
fewer hallucinations with the same level of de-
tail. To this end, we propose two new tasks to
model these two attributes namely Detail-aware
Description Ranking (DDR) and Hallucination-
aware Description Ranking (HDR). They make
the video CLIP model to learn how to correctly
rank multiple descriptions with different levels of
details and hallucinations. (4) In order to better
evaluate video CLIP models, we further release a
Long Video Description Ranking (LVDR) bench-
mark. Given each video and the corresponding
ground-truth long description (after human correc-
tion) sampled from Shot2Story (Han et al., 2023),
we iteratively modify a certain proportion of cor-
rect contents into hallucination in each step. The
model is required to correctly rank these descrip-
tions according to their faithfulness.

To evaluate the performance of VideoCLIP-XL,
we conduct extensive experiments not only on the
video & long-description dataset Shot2Story (Han
et al., 2023), but also on traditional widely-used
MSR-VTT (Xu et al., 2016), LSMDC (Rohrbach
et al., 2015), DiDeMo (Anne Hendricks et al.,
2017), MSVD (Chen and Dolan, 2011) and Ac-
tivityNet (Heilbron et al., 2015) benchmarks, for
the text-video retrieval task. Moreover, we evalu-
ate VideoCLIP-XL and other representative CLIP
models on our proposed LVDR benchmark. Experi-
mental results demonstrate that our method exhibits
superior performance compared with state-of-the-
art competitors.

Our main contributions are as follows:

• We propose the VideoCLIP-XL model to un-
leash the long-description understanding capa-
bility of video CLIP models. We also collect
and release a new pre-training dataset VILD
with over 2M video & long-description pairs
using our automatic data collection system.

• In VideoCLIP-XL, we propose TPCM for dy-
namic feature learning while expanding the
long description capability. We also propose
two new tasks (i.e., DDR and HDR) to fur-
ther model the effective attributes for better
representation learning of long descriptions.

• To better evaluate video CLIP models’ long
description ability, we propose the LVDR
benchmark for long description ranking.

• Extensive experiments show that VideoCLIP-
XL clearly outperforms state-of-the-art mod-
els over various tasks and benchmarks.

2 Related Work

Image/Video CLIP models. CLIP (Radford et al.,
2021) is a multimodal model based on contrastive
learning. Its training data comprises a vast collec-
tion of text-image pairs, each image paired with
a corresponding text description. Through con-
trastive learning, the model learns the matching
relationship between text-image pairs. Owing to its
robust zero-shot generalization capabilities, CLIP
has been successfully deployed in numerous sce-
narios including detection (Gu et al., 2021; Li
et al., 2022b), segmentation (Xu et al., 2022; Li
et al., 2022a), image/video understanding (Luo
et al., 2022; Xu et al., 2021; Tang et al., 2023a),
retrieval (Wang et al., 2023a,b) and image gen-
eration (Ramesh et al., 2022; Frans et al., 2022;
Crowson et al., 2022; Vinker et al., 2022). For
video analysis, ViCLIP (Wang et al., 2023c) incor-
porates spatio-temporal attention within its video
encoder and adopts partial random patch mask-
ing during training. Nonetheless, several subse-
quent studies (Kim et al., 2023; Zeng et al., 2021)
have identified CLIP’s inadequacy in extracting
fine-grained information. These works implement
contrastive methods similar to CLIP’s to align com-
plete sentence tokens with regions of the entire im-
age. Furthermore, Long-CLIP (Zhang et al., 2024)
proposes the use of primary component matching
of CLIP features to improve the model’s under-
standing of lengthy descriptions in images.
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Vision-Language Datasets. As the capabilities
of multimodal models advance, the need tran-
scends traditional fixed-category image datasets
such as ImageNet (Deng et al., 2009) and CI-
FAR10 (Krizhevsky et al., 2009). Contemporary
open-world applications require datasets that en-
compass both images/videos and their associated
text descriptions. Common open-world image-
language datasets include Visual Genome (Krishna
et al., 2017), Conceptual-12M (Changpinyo et al.,
2021), SBU (Ordonez et al., 2011), COCO (Lin
et al., 2014), and LAION-5B (Schuhmann et al.,
2022). Typical video-language datasets comprise
MSR-VTT (Xu et al., 2016), MSVD (Chen and
Dolan, 2011), LSMDC (Rohrbach et al., 2015),
WebVid (Bain et al., 2021), InternVid (Wang et al.,
2023c), and Panda-70M (Chen et al., 2024). How-
ever, these datasets generally contain only short
captions. On the other hand, a few datasets focus
on long descriptions. ShareGPT4V (Chen et al.,
2023) is a large-scale dataset with 1.2M long cap-
tions for images. Shot2Story (Han et al., 2023)
includes 20K video clips, each with detailed shot-
level captions and comprehensive video summaries.
MiraData (Ju et al., 2024) deals with uncut video
segments and features structural long captions. It
contains 57.8K video clips across two scenarios:
gaming and city/scenic exploration. The average
description length in these collections is often or-
ders of magnitude longer than those in previous
datasets (Zhang et al., 2024).

3 Methodology

In this section, we introduce our automatic
data collection system and the resulting VIdeo
& Long-Description (VILD) pre-training dataset
(Sect. 3.1), the text-similarity-guided primary com-
ponent matching (TPCM) technique (Sect. 3.2),
two new description ranking tasks (Sect. 3.3), and
the new Long Video Description Ranking (LVDR)
benchmark dataset (Sect. 3.4).

3.1 VIdeo & Long-Description (VILD)
Dataset

Training CLIP models often necessitates a substan-
tial corpus of vision-text pairs. In image processing,
the advent of open-source large multimodal mod-
els (LMMs) and the availability of APIs such as
GPT-4V (Achiam et al., 2023) have spurred efforts
to annotate images with detailed long descriptions.
For example, ShareGPT4V (Chen et al., 2023) is
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Figure 1: The automatic data collection system for our
VILD dataset. Desc. is short for description.

a large dataset, originating from a high-quality cu-
rated set of 100K captions gathered using GPT-4V
and expanded to 1.2M through a caption model.

However, video datasets with extensive long de-
scriptions, especially in the open domain, remain
markedly scarce. For instance, Shot2Story (Han
et al., 2023) offers 20K video clips, each accompa-
nied by shot-level captions and video summaries.
After annotating with LMMs, further manual cor-
rections ensure the reliability of these long descrip-
tions, thereby qualifying it as a trustworthy evalua-
tion set, which is excluded from our training data.
MiraData (Ju et al., 2024) leverages GPT4V to pro-
duce long captions for 57.8K video clips, restricted
to gaming and city/scenic exploration scenarios.
Open-Sora-Dataset (PKU-YuanGroup, 2024) uti-
lizes LMMs to generate descriptive narratives for
40.2K videos, predominantly in natural landscapes.

In light of the scarcity of open-domain video &
long-description pairs, we engineer an automatic
data collection system, as depicted in Fig. 1. Our
approach harnesses multiple sources, chiefly en-
compassing video narrative data, video instruction
tuning data, raw videos, and available video & long-
description pairs.
(a) Video Narrative Data. Video narrative data
often contains human-concerned descriptions pro-
duced by human annotators, which can describe
the whole scene, the main activities, and events in-
volving multiple actors and objects. We adopt the
VidLN (Voigtlaender et al., 2023) dataset, consist-
ing of human-annotated individual-level descrip-
tions of each single main people/animal/objective
in the video along with the background. To make
the dataset serve our purpose, we employ large lan-
guage models (LLMs) to aggregate individual-level
narratives into whole-level descriptions through
prompt engineering (i.e., the Desc. Aggregation
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step). Finally, in consideration of training efficacy
and robustness, we further utilize LLMs to rewrite
the whole-level description (i.e., the Desc. Rewrite
step). This process involves generating varied tex-
tual descriptions of the same meaning, while pre-
serving both main contents and detail attributes un-
changed. The details of utilized LLMs and prompts
used in the two steps are shown in Appendix A.1.
(b) Video Instruction Tuning Data. Alongside
with the emergence of LMMs, extensive video in-
struction tuning datasets have also been publicly
available. For example, VideoInstruct100K (Maaz
et al., 2023) contains question-answer pairs re-
lated to video summarization, description-based
question-answers, and creative/generative question-
answers. VideoChat (Li et al., 2023b) provides a
rich dataset featuring elaborate video descriptions
and dialogues, enhancing data variety by embrac-
ing temporal and causal aspects within video in-
structions. These datasets were originally crafted
to train a genre-independent video understanding
model, rather than to curate video descriptions.
Consequently, our method includes employing
LLMs for Data Filtering to exclude samples extra-
neous to video descriptions. We employ prompt en-
gineering and also provide some demonstration ex-
amples to aid LLMs in achieving better affects. Fi-
nally, the Desc. Rewrite step is also conducted. The
details of utilized LLMs and prompts are shown in
Appendix A.1.
(c) Available Video & Long-Description Data.
As previously mentioned, existing datasets pairing
videos with long text descriptions are often lim-
ited by either the quantity or the domains/genres of
videos. In this regard, we perform the Data Sam-
pling operation over these datasets. Specifically,
57.8K video clips of gaming and city/scenic explo-
ration scenarios in MiraData (Ju et al., 2024) are
all included in VILD. 50K long captions describ-
ing natural landscape are randomly sampled from
Open-Sora-Dataset (PKU-YuanGroup, 2024). The
Desc. Rewrite step is also involved at the end.
(d) Raw Video Data. In order to further expand
the amount of training data, we leverage LMMs
and LLMs to generate long descriptions given raw
videos (some combined with corresponding short
captions). An optional Short Video Desc. Genera-
tion step is required using off-the-shelf models (Li
et al., 2023a; Huang et al., 2023; Zhang et al., 2023;
Yu et al., 2023) if there are no short captions avail-
able. For computation efficiency, we randomly
sample over 2M video clips with high-quality short

captions generated by a number of teacher mod-
els and a fine-tuned caption selection model from
Panda-70M (Chen et al., 2024). Then, we sample
k (k=3 in our setting) frames from each video clip
at equal intervals as key-frames and use LMMs
to annotate them with long descriptions. We do
not conduct this for each frame, as it would be
extremely time-consuming and laborious. Next,
given short description of the whole video and long
descriptions of its key-frames, we ask LLMs to
integrate them into long description of the whole
video. The assistance of short video description
can alleviate the hallucinations present in frame
descriptions. Our findings have also reached a con-
sensus with existing studies (Wang et al., 2023c,
2024) that directly using video LMMs (Li et al.,
2023b; Maaz et al., 2023) to describe videos for
long captions can lead to sub-optimal results. The
details of utilized LLMs/LMMs and prompts are
shown in Appendix A.1.

Finally, the Post-Processing step is performed.
NSFW examples are filtered out. Next, we
utilize ViCLIP (Wang et al., 2023c) and Long-
CLIP (Zhang et al., 2024) to filter out low-quality
examples with average video-text similarity smaller
than 0.20. We finally collect over 2M video &
long-description data pairs as our VILD dataset
for model pre-training. More detailed compar-
isons of data statistics information are shown in
Appendix A.2.

3.2 Text-similarity-guided Primary
Component Matching (TCPM)

The vanilla pre-training of CLIP models consumes
vision-text pairs (v, t) as inputs. v can be images or
videos. It makes no assumptions on specific single-
modal encoder architectures. Given a vision en-
coder Ev and a text encoder Et, single-modal fea-
tures are first extracted as fv = Ev(v), ft = Et(t).
Then, contrastive learning with the InfoNCE (Oord
et al., 2018) loss typically is employed to learn
the correspondence between vision and text. In
particular, this can be formulated as:

LCL(ft, fv) =
1

2N

∑
N
Lft→fv

InfoNCE + Lfv→ft
InfoNCE, (1)

where N is the batch size and

Lft→fv
InfoNCE = − log

exp(sim(ft, f
+
v )/τ)∑

fv∈{f+
v ,f−

v } exp(sim(ft, fv)/τ)
, (2)

and vise versa. Here, τ is the temperature hyper-
parameter, sim is the cosine similarity calculation,
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Figure 2: The proposed text-similarity-guided primary
component matching (TPCM) technique.

f+
v is the positive vision feature which is paired

with the text feature ft, and f−
v are negative vi-

sion features that are formed by other unpaired
images/videos in the current training batch.

To extend the long-description understanding ca-
pacity of CLIP models, Long-CLIP (Zhang et al.,
2024) is proposed to use primary component match-
ing for image CLIPs. Given the short description,
the long description, and the vision input (st, lt, v),
the loss function is formulated as:

L = LCL(flt, fv) + α1LCL(fst, f
′
v), (3)

where α1 is the ratio hyper-parameter and f ′
v =

PCE(fv, 32). Here, PCE is short for primary com-
ponent extraction that consists of the component-
decomposition function F (which decomposes the
feature into vectors of different attributes and their
importance), the component-filtration function E
(which filters out less important attributes), and the
component reconstruction function F−1 (which re-
constructs the feature). In the implementation of E ,
Long-CLIP selects the most important 32 attributes
as the retained ones.

However, when extending this technique for
video pre-training, we have found that since videos
usually contain richer contents and more details
than images, this fixed strategy cannot dynamically
adapt to the severe distribution changes of high-
dimensional feature spaces of video CLIPs during
learning (shown in Fig. 5). In this regard, we pro-
pose to use the cosine text similarity between lt and
st as a signal to guide the PCE process, as shown
in Fig. 2. Therefore, we re-write f̂v as follows:

f̂v = PCE(fv, G(sim(flt, fst))), (4)

where G represents that we preserve the attributes
in descending order of importance until the sim-
ilarity between f̂v and fv reaches the similarity
between lt and st.

3.3 Two Description Ranking Tasks
We posit that video CLIP models designed to com-
prehend long descriptions should inherently exhibit

Two boys are seen interacting in a setting with a floor, benches, a ceiling, a 
board, a wall, and curtains as the backdrop. One of the boys is wearing a white 
t-shirt and moves to the left before throwing an object towards the other boy, 
who is wearing a blue t-shirt and stands facing him. 

Two girls are seen interacting in a setting with a floor, benches, a ceiling, a 
board, a window, and curtains as the backdrop. One of the girls is wearing a 
blue t-shirt and moves to the left before throwing an object towards the other 
girl, who is wearing a blue jacket and stands facing her. 

Four girls are seen interacting in a setting with a refrigerator, benches, a ceiling, 
a board, a window, and curtains as the backdrop. One of the girls is wearing a 
blue dress and moves to the right before lifting an object towards the other girl, 
who is wearing a red jacket and stands facing her. 

(a)  Gradually Adding Hallucination

Two boys are seen interacting in a setting with a floor, benches, a ceiling, a 
board, a wall, and curtains as the backdrop. One of the boys is wearing a white 
t-shirt and moves to the left before throwing an object towards the other boy, 
who is wearing a blue t-shirt and stands facing him. 

Boys are seen interacting in a setting. One of the boys is wearing a t-shirt and 
moves to the left before throwing an object towards the other boy, who stands 
facing him. 

Boys are seen interacting in a setting. One of the boys is wearing a t-shirt and 
moves before throwing an object towards the other boy.

(b)  Gradually Removing Detail

. . . . . .

. . . . . .

Figure 3: Examples of text samples generated for (a)
hallucination-aware and (b) detail-aware description
ranking tasks. Blue and green words refer to replaced
hallucination content and detailed content to be deleted,
respectively. Best viewed in color.

two characteristics: given a video and its associ-
ated descriptions, the model should assign a higher
score to descriptions (1) with richer and more pre-
cise contexts and (2) that are more accurate and less
prone to hallucinations, given an equivalent level
of detail. To realize these principles, we introduce
two novel tasks: Detail-aware Description Rank-
ing (DDR) and Hallucination-aware Description
Ranking (HDR) to address the respective attributes.
Our preparatory steps involve employing syntactic
analysis tools, such as NLTK (Bird et al., 2009)
and spaCy (Honnibal et al., 2020), to execute part-
of-speech tagging and parse syntactic structures
within the long-description ground truths.

Subsequently, we synthesize multiple descrip-
tion candidates for each video to facilitate DDR
and HDR training. As illustrated in Fig. 3(a), in
each step, we selectively replace specific words
(nouns, numerals, colors, or terms related to direc-
tion, verbs) with their semantically disparate coun-
terparts within the same syntactic category (e.g.,
boys to girls, white to blue, throwing to lifting),
and perform this replacement m − 1 times. This
method yields a series of progressively hallucinated
descriptions, denoted as tH = {tH1 , tH2 , . . . , tHm}.
Analogously, as depicted in Fig. 3(b), each step in-
volves randomly excising sub-sentences, adjectives,
numerals, or dependency parse sub-trees from the
current description. This process recursively gener-

16065



[A]: In the video, two women are standing at a wooden table in a kitchen filled with various cooking tools and food materials. The woman in dark green is speaking to the camera 
while the woman in gray laughs and cracks an egg into a black bowl, placing the eggshell in a green bowl. The kitchen is well-equipped with a refrigerator and an oven, and there 
is a beautiful wreath hanging on the cupboard door. As the scene continues, the woman in gray lowers her head and stirs something in a [5]bowl while talking, with the oven 
nearby. In the next part of the video, a person is seen stirring egg liquid in a purple bowl with an egg beater. Another person pours [6]white paste from a red container into the 
[3]egg liquid and then adds white powder from a [1]red bowl. The woman stirring the mixture puts down the egg beater and opens the lid of a white bottle on the table. The table 
also has six eggs on a blue [4]egg rack, along with other cooking tools and food materials. Throughout the video, a female voice narrates the steps, which include whisking up 
eggs, adding fresh ricotta, and incorporating some Parmesan [2]cheese. The entire video takes place in a cozy kitchen setting, with the participants engaging in a cooking activity.
[B]: [1]red→cyan, [2]cheese→tomato
[C]: [1]red→cyan, [2]cheese→tomato, [3]egg→potato, [4]egg→bread 
[D]: [1]red→cyan, [2]cheese→tomato, [3]egg→potato, [4]egg→bread, [5]bowl→plate, [6]white→gold

VideoCLIP-XL: A>B>C>D    Long-CLIP: D>C>B>A
ViCLIP: A=B=C=D             CLIP: A=B=C=D

(a)

[A]: The video begins with a woman, dressed in a [4]white suspender, [1]shorts, and boots, sitting alone on an expansive sandy field. Her knees bear the marks of a recent fall, as 
indicated by her scraped knees and her own admission of having fallen. An unseen individual extends a hand to help her up, offering assistance after her tumble. The scene then 
transitions to the same [2]woman, still in her [5]white [6]boots, now skateboarding across the sandy terrain. The skateboard is unique, featuring a single wheel in the center with 
the [7]woman's feet positioned on either side of it. She skillfully maneuvers the [8]board across the sandy field, a stark contrast to her previous fall. The final scene introduces a 
new character, a man wearing goggles and an eye mask. He [9]stands on the same sandy field, with the woman now rollerblading in the background, her [3]white clothing 
billowing in the wind. A sandstorm begins to form in the distance behind them, adding an element of drama to the scene. Despite the impending storm, the pair continue their 
activities, seemingly unfazed by the harsh conditions.
[B]: [1]shorts→jackets, [2]woman→elder, [3]white→brown
[C]: [1]shorts→jackets, [2]woman→elder, [3]white→brown, [4]white→grey, [5]white→peach, [6]boots→sneakers
[D]: [1]shorts→jackets, [2]woman→elder, [3]white→brown, [4]white→grey, [5]white→peach, [6]boots→sneakers,
        [7]woman→man,   [8]board→clock,   [9]stands→pushes

VideoCLIP-XL: A>B>C>D    Long-CLIP: A>B>D>C
ViCLIP: D>A=B>C             CLIP: A=B>D>C

(b)

Figure 4: Qualitative examples on our LVDR benchmark. We calculate the cosine similarities between different
long descriptions and the same video using video CLIP models. Descriptions are sorted based on these similarities
in descending order after retaining 8 decimal places.

ates m−1 sequentially less detailed descriptions for
each video, expressed as tD = {tD1 , tD2 , . . . , tDm}.

For tH or tD, given the same corresponding
video, we hope that the model can generate a higher
similarity score for the description appearing ear-
lier in the sequence. For example, for the DDR
task, we formulate the loss function as follows:

LDDR =
1

m(m−1)
2

m−1∑

i=1

m∑

j=i+1

ReLU(−(∆D
i,j − αD)),

(5)

where αD is the similarity difference gap and

∆D
i,j = sim(ftDi

, fv)− sim(ftDj
, fv). (6)

The intuition behind this learning objective comes
from the requirement for the model to be able to
differentiate between various descriptions with the
minimum distinction degree αD. Similarly, for
HDR, we have the loss function:

LHDR =
1

m(m−1)
2

m−1∑

i=1

m∑

j=i+1

ReLU(−(∆H
i,j − αH)).

(7)

The total loss of our pre-training process is:

L =LCL(flt, fv) + α1LCL(fst, f
′
v)+

α2LDDR + α3LHDR, (8)

where α2 and α3 are balancing hyper-parameters.

3.4 The New LVDR Benchmark
Hallucination is ubiquitous in contemporary LLMs
and LMMs (Liu et al., 2024a). Given a video, the
video CLIP model with the ability to understand
long texts should naturally possess the discern-
ment to distinguish between correct and erroneous
texts in long descriptions. To better evaluate such
ability, we propose the Long Video Description
Ranking (LVDR) benchmark. We first randomly
sample 2K video & long-description pairs from
Shot2Story (Han et al., 2023). Then, we perform
a synthesis process similar to Fig. 3(a), iterating
p− 1 times and altering q words during each iter-
ation, and resulting in totally p descriptions with
gradually increasing degrees of hallucination. We
denote such a subset as p × q and construct five
subsets as {4 × 1, 4 × 2, 4 × 3, 4 × 4, 4 × 5}.
Each distinct subset is manually reviewed to avoid
inappropriate replacement. Representative exam-
ples are provided in Fig. 4. Based on our analysis,
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Method MSR-VTT LSMDC DiDeMo MSVD ActivityNet Avg.

T2V V2T T2V V2T T2V V2T T2V V2T T2V V2T T2V V2T

CLIP (Radford et al., 2021) 30.4 24.2 13.9 11.9 12.7 18.7 40.5 57.2 9.1 13.2 21.3 25.0
VideoCLIP (Xu et al., 2021) 10.4 - - - 16.6 - - - - - - -
CLIP4Clip (Luo et al., 2022) 32.0 - 15.1 - - - 38.5 - - - - -
ViCLIP (Wang et al., 2023c) 42.4 41.3 20.1 16.9 38.7 39.1 49.1 75.1 32.1 31.4 36.5 40.8

VideoCLIP-XL (Ours) 50.1 49.9 22.8 24.6 47.7 47.9 51.9 76.7 46.4‡ 48.1‡ 43.8 49.5

Table 1: R@1 scores of zero-shot text-video retrieval on MSR-VTT (Xu et al., 2016), LSMDC (Rohrbach et al.,
2015), DiDeMo (Anne Hendricks et al., 2017), MSVD (Chen and Dolan, 2011), and ActivityNet (Heilbron et al.,
2015). T2V and V2T are short for text-to-video and video-to-text, hereinafter the same. ‡Due to the high overlap
between the videos in ActivityNet and VideoInstruct100K (Maaz et al., 2023), the latter is excluded from the
pre-training data of our model tested on the former.

Method MSR-VTT LSMDC DiDeMo MSVD ActivityNet Avg.

T2V V2T T2V V2T T2V V2T T2V V2T T2V V2T T2V V2T

CLIP (Radford et al., 2021) 38.2 38.7 22.5 22.6 32.2 33.9 52.3 69.9 26.1 26.9 34.3 38.4
VideoCLIP (Xu et al., 2021) 30.9 - - - - - - - - - - -
CLIP4Clip (Luo et al., 2022) 45.6 45.9 24.3 23.8 43.0 43.6 45.2 48.4 40.3 41.6 39.7 40.7
ViCLIP (Wang et al., 2023c) 52.5 51.8 33.0 32.5 49.4 50.2 53.1 79.0 49.8 48.1 47.6 52.3

VideoCLIP-XL (Ours) 57.0 56.6 34.2 32.6 62.3 62.7 55.6 81.4 58.4‡ 59.2‡ 53.5 58.5

Table 2: R@1 scores of fine-tuned text-video retrieval on MSR-VTT, LSMDC, DiDeMo, MSVD, and ActivityNet.
‡Due to the high overlap between the videos in ActivityNet and VideoInstruct100K (Maaz et al., 2023), the latter is
excluded from the pre-training data of our model tested on the former.

a better model needs to be able to correctly rank
these descriptions in descending order of similarity
given the video. Thus, we also design the evalua-
tion criterion named ranking score (RS) which can
be formulated as:

RS =
100

m(m−1)
2

m−1∑

i=1

m∑

j=i+1

1(sim(fti , fv) > sim(ftj , fv)).

(9)

Here, 1 is the indicator function.

4 Experiments

4.1 Implementation Detail
We adopt the model structure of CLIP (Radford
et al., 2021) with ViT-L/14 and leverage spatio-
temporal attention in the video encoder with the
weight initialization from ViCLIP (Wang et al.,
2023c). We further pre-train VideoCLIP-XL on
our VILD dataset for 2 epochs. All experiments
are implemented in PyTorch and run on NVIDIA
Tesla A100-80G GPUs. More experimental details
are given in Appendix A.3.

4.2 Performance Comparison
We compare VideoCLIP-XL with strong competi-
tors in three different downstream tasks: text-video

retrieval on traditional benchmarks, text-video re-
trieval on long-description benchmarks, and de-
scription ranking on our LVDR benchmark.

Results on traditional benchmarks for text-video
retrieval are shown in Tab. 1 and 2. We can find
that, VideoCLIP-XL exhibits superior performance
on all benchmarks compared with other video CLIP
models under both zero-shot and fine-tuning set-
tings. For example, VideoCLIP-XL outperforms
the previous state-of-the-art ViCLIP, with an im-
provement of +7.7/+8.6 T2V/V2T zero-shot R@1
scores and +4.5/+4.8 T2V/V2T fine-tuning R@1
scores on MSR-VTT. It is worth noting that, al-
though our method mainly focuses on learning
fine-grained features in videos and texts, its effec-
tive training strategy can also result in significant
improvements on all benchmarks, regardless of
whether the texts are detailed or not.

As in Tab. 4, VideoCLIP-XL also surpasses other
competitors significantly on Shot2Story under the
long description setting. In Shot2Story, each video
clip consists of multiple video shots which switch
between different scenes to express the same main
event. This requires the model to have the ability
to fully understand mainline activity from multiple
complex scenarios. Performances demonstrate that
our method exhibits significant advantages whether
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Method
LVDR Benchmark

4× 1 4× 2 4× 3 4× 4 4× 5

CLIP (Radford et al., 2021) 30.12/27.83/18.76 47.97/38.46/31.61 57.00/43.61/39.31 65.31/50.53/48.78 69.58/53.17/53.31
ViCLIP (Wang et al., 2023c) 18.95/24.93/18.40 33.63/41.57/32.43 44.47/52.06/43.10 52.43/58.81/50.46 58.61/62.10/55.55
Long-CLIP (Zhang et al., 2024) 70.07/49.67/51.11 81.66/65.45/68.78 86.49/73.91/77.54 89.84/79.90/83.32 91.70/83.60/86.50

VideoCLIP-XL (Ours) 80.32/70.93/72.06 90.72/83.70/86.11 94.41/89.87/91.92 95.87/91.93/93.49 96.99/94.17/95.47

Table 3: Ranking score (RS)/Kendall’s tau (KT)/Spearman rank-order correlation coefficient (SC) of long video
description ranking on the proposed LVDR benchmark.

Method Shot2Story-W Shot2Story-S

T2V V2T T2V V2T

CLIP (Radford et al., 2021) 65.80 66.00 45.40 45.35
ViCLIP (Wang et al., 2023c) 37.53 37.71 48.44 46.17
Long-CLIP (Zhang et al., 2024) 74.74 80.59 47.70 43.14

VideoCLIP-XL (Ours) 95.28 94.73 70.30 67.79

Table 4: R@1 of text-video retrieval on Shot2Story (Han
et al., 2023) with long video descriptions.

using the whole video clip (Shot2Story-W) or each
shot (Shot2Story-S) as an individual for the text-
video retrieval task.

The results on our LVDR benchmark are shown
in Tab. 3. VideoCLIP-XL has a stronger identifica-
tion ability compared with competitors to perceive
inaccurate content in long video descriptions and
assign them lower similarity scores. For example,
under the 4× 1 setting where only 1 original word
is randomly replaced with a wrong one between
adjacent generated descriptions, our model can sur-
pass Long-CLIP (which focuses on long text un-
derstanding for images) with +10.25 ranking score.
We can also observe that as the level of single-step
hallucination increases from shallow to deep (4× 1
to 4 × 5), the video CLIP models can naturally
distinguish different long video descriptions better.

4.3 Ablation Study
In this subsection, we aim to explore the effective-
ness of each component in our method.

As shown in Fig. 1, our VILD pre-training
dataset is formed by the aggregation of four parts
from different data sources. For parts (a)(b)(c),
the data resource often utilizes the powerful GPT-
4V (Achiam et al., 2023) or human efforts to gen-
erate the text information before our LLM-based
steps. While for part (d), we use open-source LLMs
for generating long descriptions from raw videos.
The results in Tab. 5(a) show the data effectiveness.
Although the effect of using open-source LLMs
for automated data synthesis can naturally lag be-

# Pre-Training Data MLDMA
(R@1)

S2S
(R@1)

LVDR
(RS)

1 Part (a)(b)(c) of VILD 45.52 80.37 90.97
2 Part (d) of VILD 44.54 78.77 89.23
3 Full VILD 46.61 82.03 91.67

(a)

# TPCM DDR HDR MLDMA
(R@1)

S2S
(R@1)

LVDR
(RS)

1 Baseline
(Zhang et al., 2024) 45.62 81.47 84.87

2 ✓ 46.06 82.03 84.87
3 ✓ ✓ 46.58 82.03 86.07
4 ✓ ✓ 46.07 82.03 91.42
5 ✓ ✓ ✓ 46.61 82.03 91.67

(b)

Table 5: Ablation study for components of our method.
MLDMA indicates the averaged zero-shot text-video
retrieval R@1 score of benchmarks in Tab. 1. S2S is
short for Shot2Story.

hind GPT-4V/human efforts by a margin, it can
still achieve state-of-the-art performance compared
with existing competitors. In addition, adding (d)
on top of (a)(b)(c) can further result in obvious
improvements. This also demonstrates the effec-
tiveness of our data synthesis pipeline.

As shown in Tab. 5(b) #2 v.s. #1, TPCM
can achieve +0.44 R@1 gain on traditional text-
video retrieval datasets and +0.56 R@1 gain on
Shot2Story. In addition, it can dynamically modify
the feature space distribution during pre-training,
which is reflected in the increase of PCA dimen-
sion, as shown in Fig. 5.

The effectiveness of DDR and HDR can also be
found in Tab. 5(b). Compared #3 with #2, DDR
achieves a +0.52 R@1 gain on traditional bench-
marks and +1.20 RS gain on LVDR. As for HDR,
compared #4 with #2, it obtains +6.55 RS gain
on LVDR. Furthermore, conducting both tasks to-
gether is more effective than using either one alone
on MLDMA and LVDR, as shown in #5 v.s. #2.
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Figure 5: TPCM can dynamically adjust the dimension
of the attribute vectors that need to be retained during
pre-training. Dim. is short for dimension.

5 Conclusion

In this paper, we propose VideoCLIP-XL, a video
CLIP model with long-description capability. We
establish an automatic data collection system to
gather our VILD dataset, and propose TPCM to
better learn the distribution of feature space during
pre-training while expanding the long-description
capability. We also introduce two new tasks namely
DDR and HDR for further understanding improve-
ment. Our LVDR benchmark is helpful for eval-
uating the long-description capability more com-
prehensively. Extensive experimental results have
demonstrated the effectiveness of our method.

For future research, we plan to refine the pre-
training methodology and increase the amount of
data and model size for further improvement. We
will also attempt to integrate the architecture of
cross-encoders and LLMs into our method.

Limitations

Although VideoCLIP-XL is trained to enable long-
description understanding capacity, limited by the
amount of pre-training data and the feature extrac-
tion capability of single-modal encoders, there is
still room for improvement. The scale, quality,
and variety of data can be further extended, and
the model structure and model size of feature ex-
tractors can also be scaled up. The application
of our method in the structures of cross-encoders
and LLMs is also worth exploring. These improve-
ments are left to our subsequent work.

Ethical Considerations

The techniques for training the VideoCLIP-XL
model presented in this work are fully method-
ological, thereby there are no direct negative social
impacts of our method. Additionally, we have fil-
tered out NSFW examples from our pre-training

data to ensure that the seen contents are suitable
for public distribution.
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A Appendix

A.1 Details of VILD Data Generation
During the data generation for VILD, we lever-
age Qwen1.5-72B-Chat (Bai et al., 2023) in LLM-
based steps and LLaVA-v1.6-34B (Liu et al.,
2024b) in LMM-based steps. All prompts we used
are listed as follows:

[Desc. Aggregation]
“The following are descriptions of the subjects

or background in a video. Please organize them
together into a single description of the entire video.
Do not omit any content, nor add any new content
that is not included or uncertain.

{examples}
Descriptions: {individual-level descriptions}
Output:”
[Desc. Rewrite]
“The following is a video description. Please

output a rewritten version. Do not omit any content,
nor add any new content that is not included or
uncertain.

{examples}
Description: {input description}
Output:”

[Data Filtering]
“Determine if the following conversation is talk-

ing about the overall/comprehensive-level descrip-
tion/content of a video. If yes, output Yes; other-
wise, output No.

{examples}
Conversation: {input conversation}
Output:”
[Long Frame Desc. Generation]
“Precisely describe this image.”
[Long Video Desc. Generation]
“We will provide a description of a video and

some frame descriptions of it. Directly output an
enriched video description according to them. Re-
move repetitive contents. Do not describe any con-
tent that is uncertain or not included. Do not de-
scribe individual frames. Do not describe specific
subjects, use generic words instead.

{examples}
Video Description: {short video description}
Frame Descriptions: {long frame descriptions}
Output:”

A.2 Details of Data Statistics
More detailed comparisons of data statistics infor-
mation are shown in Tab. 6.

A.3 Details of Experimental Settings
We sample 8 frames for each video during pre-
training. Stretching of the vanilla absolute posi-
tional embedding from 77 to 248 is also applied
following (Zhang et al., 2024). During pre-training,
we set the batch size 1664, warm-up steps 200,
weight decay 0.02, and max learning rate 4e-6. The
learning rate decreases in a cosine schedule after
warm-up. α1, α2, α3, αD, and αH are empirically
set as 0.1, 1.0, 10.0, 0.0, and 0.0 respectively. m in
the DDR and HDR tasks is set as 5.

During pre-training, as shown in Eq. 8, we use
both long descriptions to enable VideoCLIP-XL to
learn the semantics of long texts, and short descrip-
tions to maintain the original short text ability. For
videos in our VILD dataset that do not have paired
short descriptions from the origin resource, we use
Qwen1.5-72B-Chat to generate them based on long
descriptions. The prompt we used is:

“The following is a detailed video description.
Please extract its core content and summarize it
into a really short sentence. Do not exceed 10
words.

{examples}
Description: {long video description}
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Dataset Year Caption Source Domain Video Num. Avg. Video Len. Avg. Text Len.

HowTo100M (Miech et al., 2019) 2019 ASR Open 136M 3.6s 4.0 words
HD-VILA-100M (Xue et al., 2022) 2022 ASR Open 103M 13.4s 32.5 words
MSVD (Chen and Dolan, 2011) 2011 Manual Open 1970 9.7s 8.7 words
LSMDC (Rohrbach et al., 2015) 2015 Manual Movie 118K 4.8s 7.0 words
MSR-VTT (Xu et al., 2016) 2016 Manual Open 10K 15.0s 9.3 words
DiDeMo (Anne Hendricks et al., 2017) 2017 Manual Flickr 27K 6.9s 8.0 words
ActivityNet (Heilbron et al., 2015) 2017 Manual Action 100K 36.0s 13.5 words
YouCook2 (Zhou et al., 2018) 2018 Manual Cooking 14K 19.6s 8.8 words
VATEX (Wang et al., 2019) 2019 Manual Open 41K 10.0s 15.2 words
Panda-70M (Chen et al., 2024) 2024 Automatic Open 70.8M 8.5s 13.2 words

VILD (Ours) 2024 Automatic Open 2.1M 15.4s 74.2 words
LVDR (Ours) 2024 Automatic+Manual Open 2K 17.5s 230.7 words

Table 6: Comparison of data statistics information.

A woman in a red shirt, with wavy blonde hair, is standing in a 
garden, pointing at a pink-flowered plant. She appears engaged in 
explaining or demonstrating gardening techniques, surrounded by 
greenery and trees, creating an atmosphere of nature and learning.

A white wreath adorned with pine cones hangs against a wooden 
wall, showcasing a blend of dried plant materials like glossy 
green pine branches. The semi-circular arrangement features 
neatly organized branches and varied-sized pine cones, exhibiting 
natural shades of green and brown. The rustic wooden wall with 
horizontal plank design adds a complementary backdrop, evoking 
a seasonal or cozy atmosphere.

Figure 6: Examples of synthetic long video captions in
our VILD dataset.

Output:”

For fine-tuned setting of text-video retrieval on
traditional benchmarks, we tune our pre-trained
VideoCLIP-XL with the vanilla text-video con-
trastive learning loss on each training set of the
evaluated benchmarks. During both training and
testing, we sample 12 frames. Detailed hyper-
parameters are the same as ViCLIP (Wang et al.,
2023c). While in the zero-shot setting, along with
the evaluations for Shot2Story and LVDR, we sam-
ple only 8 frames.

For the image CLIP models such as Long-CLIP,
we calculate the similarity between the averaged
image feature of frames and the text feature.

A.4 Performance Comparison with More
Models

As shown in Tab. 7, we involve more recent pow-
erful and large cross-encoder models (Li et al.,
2023c; Wang et al., 2024) for comprehensive com-
parisons. Cross-encoder models, especially large
multi-modal models (LMMs), typically add addi-
tional Transformer layers to model the deep in-
teraction between vision and text representations.
The model can generally boost the retrieval per-
formance, while resulting in an unbearably slow
retrieval speed when applied to the entire im-
age/video collection since the cross-modal costs
are required for each image/video sample when-
ever a new text query is given. In contrast, our
VideoCLIP-XL which has the dual-encoder struc-
ture has obviously fewer parameters and retrieval
time cost. Dual-encoder encodes the visual and
textual inputs in a wholly decoupled manner. The
vision representation is allowed to be pre-computed
and re-used independent of the text queries. Such
approaches can utilize fast approximate nearest
neighbor (ANN) search (Muja and Lowe, 2009;
Jegou et al., 2010; Johnson et al., 2019) at runtime
to ensure high efficiency. For example, VideoCLIP-
XL generally surpasses UMT-L (Li et al., 2023c)
on zero-shot text-video retrieval and has ∼4.14×
faster retrieval speed on MSR-VTT without any
bells and whistles, which can also indicate the effec-
tiveness of our pre-training stage. It is also ∼8.69×
faster than InternVideo2s2-1B. For fine-tuning,
large cross-encoder models naturally surpass dual-
encoder models owing to the cross-modal feature
interaction. Yet, these models still suffer from the
low inference speed issue, and hence can hardly be
deployed in real-time applications.
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Method MSR-VTT LSMDC DiDeMo MSVD ActivityNet Avg.

T2V V2T T2V V2T T2V V2T T2V V2T T2V V2T T2V V2T

Dual-Encoder

CLIP (Radford et al., 2021) 30.4 24.2 13.9 11.9 12.7 18.7 40.5 57.2 9.1 13.2 21.3 25.0
VideoCLIP (Xu et al., 2021) 10.4 - - - 16.6 - - - - - - -
CLIP4Clip (Luo et al., 2022) 32.0 - 15.1 - - - 38.5 - - - - -
ViCLIP (Wang et al., 2023c) 42.4 41.3 20.1 16.9 38.7 39.1 49.1 75.1 32.1 31.4 36.5 40.8

VideoCLIP-XL (Ours)
[V:304M/T:124M/C:0M/47.53s] 50.1 49.9 22.8 24.6 47.7 47.9 51.9 76.7 46.4‡ 48.1‡ 43.8 49.5

Cross-Encoder

UMT-L (Li et al., 2023c)
[V:304M/T:271M/C:84M/196.68s] 40.7 37.1 24.9 21.9 48.6 49.9 49.0 74.5 41.9 39.4 41.0 44.6

InternVideo2s2-1B (Wang et al., 2024)
[V:1049M/T:271M/C:88M/413.09s] 51.9 50.9 32.0 27.3 57.0 54.3 58.1 83.3 60.4 54.8 51.9 54.1

InternVideo2s2-6B (Wang et al., 2024)
[NOT publicly available] 55.9 53.7 33.8 30.1 57.9 57.1 59.3 83.1 63.2 56.5 54.0 56.1

(a)

Method MSR-VTT LSMDC DiDeMo MSVD ActivityNet Avg.

T2V V2T T2V V2T T2V V2T T2V V2T T2V V2T T2V V2T

Dual-Encoder

CLIP (Radford et al., 2021) 38.2 38.7 22.5 22.6 32.2 33.9 52.3 69.9 26.1 26.9 34.3 38.4
VideoCLIP (Xu et al., 2021) 30.9 - - - - - - - - - - -
CLIP4Clip (Luo et al., 2022) 45.6 45.9 24.3 23.8 43.0 43.6 45.2 48.4 40.3 41.6 39.7 40.7
ViCLIP (Wang et al., 2023c) 52.5 51.8 33.0 32.5 49.4 50.2 53.1 79.0 49.8 48.1 47.6 52.3

VideoCLIP-XL (Ours) 57.0 56.6 34.2 32.6 62.3 62.7 55.6 81.4 58.4‡ 59.2‡ 53.5 58.5

Cross-Encoder

UMT-L (Li et al., 2023c) 58.8 58.6 43.0 41.4 70.4 65.7 58.2 82.4 66.8 64.4 59.4 62.5
InternVideo2s2-6B (Wang et al., 2024) 62.8 60.2 46.4 46.7 74.2 71.9 61.4 85.2 74.1 69.7 63.8 66.7

(b)

Table 7: R@1 scores of (a) zero-shot and (b) fine-tuned text-video retrieval on MSR-VTT (Xu et al., 2016),
LSMDC (Rohrbach et al., 2015), DiDeMo (Anne Hendricks et al., 2017), MSVD (Chen and Dolan, 2011), and
ActivityNet (Heilbron et al., 2015). ‡Due to the high overlap between the videos in ActivityNet and VideoIn-
struct100K (Maaz et al., 2023), the latter is excluded from the pre-training data of our model tested on the former.
[V:304M/T:124M/C:0M/47.53s] indicates that the vision encoder has 304M parameters, the text encoder has 124M
parameters, the cross-encoder has 0M parameters, and this model needs 47.53s for text-video retrieval on MSR-VTT
test set (1000 text-video pairs, tested on a single A100-80G GPU). The same goes for others.

A.5 More Qualitative Results
We give some examples of our synthetic long video
descriptions acquired by Fig. 1(d) in Fig. 6. And
qualitative examples of text-to-video retrieval re-
sults on the Shot2Story benchmark are shown in
Fig. 7. We can find that compared to competitors,
our VideoCLIP-XL can achieve more accurate and
matching video retrieval results.
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The video begins with a lively scene of a group of men engrossed in a basketball game in a gym. Among them, a man stands out, wearing a 
black and white jersey with the number 6 on it. He is seen looking and smiling into the distance, perhaps at a teammate or a spectator, while the 
ball is being passed around between the players, indicating the ongoing game. The scene then transitions to a larger arena where the basketball 
game continues. The atmosphere is electric with a full crowd watching the game, cheering and clapping for the players. The players, dressed in 
sports uniforms, are seen pitching the ball in the air, trying to score points for their team. The intensity of the game and the enthusiasm of the 
crowd create a captivating spectacle. The video concludes with a shift from the action-packed basketball game to a more formal setting. A group 
of men, all dressed in suits, are seen sitting around a table with microphones in front of them. One of the men is speaking into the microphone, 
possibly discussing the game or sharing his insights, while the others listen attentively. This could be a post-game analysis or a press conference, 
providing a thoughtful end to the video.

Text Query:

VideoCLIP-XL:

Long-CLIP:

ViCLIP:

CLIP:

(a)

The video begins with a close-up shot of a white car parked on the ground, setting the stage for the automotive theme of the video. The scene 
then transitions to a man standing next to a striking yellow and black car with its hood open. Dressed in a black shirt and blue jeans, he appears 
to be addressing the camera, possibly sharing insights or information about the car. The backdrop of this scene is filled with other parked cars, 
suggesting that this might be a car show or a garage. The focus then shifts to a close-up view of the same yellow and black car, emphasizing its 
unique color scheme and design. The video continues to highlight the car's features, with the word 'Miata' prominently displayed on the car, 
indicating its model or brand. The video then provides a closer look at the car's interior, showcasing its two-seater configuration and the steering 
wheel. This could be to highlight the car's sporty and compact design. Finally, the video concludes with another close-up shot of the car, once 
again focusing on the 'Miata' branding on the car. This repetition might be to reinforce the car's identity or to emphasize its significance in the 
video. Throughout the video, the audio captions complement the visual content, providing additional context and information.

Text Query:

VideoCLIP-XL:

Long-CLIP:

ViCLIP:

CLIP:

(b)

Figure 7: Qualitative examples of text-to-video retrieval on the Shot2Story benchmark.
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