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Abstract
Mixture-of-Experts (MoE) has gained increas-
ing popularity as a promising framework for
scaling up large language models (LLMs).
However, training MoE from scratch in a large-
scale setting still suffers from data-hungry and
instability problems. Motivated by this limit,
we investigate building MoE models from ex-
isting dense large language models. Specif-
ically, based on the well-known LLaMA-2
7B model, we obtain an MoE model by: (1)
Expert Construction, which partitions the pa-
rameters of original Feed-Forward Networks
(FFNs) into multiple experts; (2) Continual pre-
training, which further trains the transformed
MoE model and additional gate networks. In
this paper, we comprehensively explore differ-
ent methods for expert construction and vari-
ous data sampling strategies for continual pre-
training. After these stages, our LLaMA-MoE
models could maintain language abilities and
route the input tokens to specific experts with
part of the parameters activated. Empirically,
by training 200B tokens, LLaMA-MoE-3.5B
models significantly outperform dense models
that contain similar activation parameters.

1 Introduction

Large language models (LLMs) (ChatGPT, 2023;
Touvron et al., 2023; Su et al., 2024b,a; Lu et al.,
2024b,a) have presented remarkable understanding
and reasoning capability on a wide range of tasks.
Nowadays, scaling model size has become the de
facto approach to augment performance efficacy
further. However, the immense model size is unsus-
tainable due to the computational costs. Inspired
by this, we focus on sparsely activated Mixture-
of-Expert (MoE) models that decouple model size
from computation costs.

Training MoE from scratch (Lepikhin et al.,
2020; Fedus et al., 2022; Zoph et al., 2022; Xue

*Work was done during an internship at Shanghai AI Lab-
oratory. Code and models are available at https://github.
com/pjlab-sys4nlp/llama-moe

et al., 2024; Dai et al., 2024) leads to a signifi-
cant overall budget. In this work, we reduce the
training costs by investigating building MoE mod-
els from existing dense LLMs. Moreover, starting
from the dense model provides flexible structure
design choices for MoE. In other words, we can
place MoE in any transformer block. In this pa-
per, we are dedicated to building a full MoE model,
where each layer contains an MoE block.

To build strong LLaMA-MoE models, we iden-
tify two important challenges. First, how to ef-
fectively construct experts from the Feed-Forward
Networks (FFNs) in the existing LLMs. There are
works exploring splitting FFN parameters to con-
struct experts (Zhang et al., 2021; Zuo et al., 2022)
on T5 or BERT model. Conversely, Komatsuzaki
et al. (2022) directly copy the FFNs to form experts.
However, there is no existing work exploring it for
decoder-only models. Notably, the FFN structure
of the previous T5 or BERT model is based on
the ReLU function, which shares significantly dif-
ferent characteristics from recent LLMs based on
SwiGLU function. Second, overcoming the perfor-
mance decrease entailed by changing the network
structure from dense to sparse remains challenging.
Due to the reduction in the amount of activated
parameters and the newly introduced gate network
for expert routing, we observe a significant perfor-
mance drop between the LLaMA-MoE models and
the original dense LLaMA models.

To solve the above issues, we comprehensively
explore four different methods for expert construc-
tion. Among them, the non-overlapping randomly
splitting method achieves the best performance.
Subsequently, we continue training the transformed
MoE models and additional gate networks. In
this stage, we also carefully study both dynamic
and static data sampling strategies for obtaining
the fastest convergence and performance improve-
ment. Finally, with a static domain weight propor-
tion corresponding to the activated parameters, the
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Figure 1: The main framework of building LLaMA-MoE models. (a) The original FFNs in the LLaMA are split into
different experts. (b) In the transformed LLaMA-MoE, the hidden states are processed by partially chosen experts
instead of all experts. We continue to train the LLaMA-MoE to improve the performance.

LLaMA-MoE models can quickly converge to a
decent level with 200B tokens.

In summary, our contributions are as follows:

• We propose a framework to develop mixture-
of-experts from existing decoder-style LLMs
by splitting FFNs and continual pretraining,
which has never been explored before.

• We comprehensively explore different split-
ting methods for expert construction. Mean-
while, we comprehensively investigate both
dynamic and static data sampling strategy for
continual pretraining.

• Our extensive experiments on a variety of
tasks validate the effectiveness of our pro-
posed LLaMA-MoE series models. Notably,
all our model construction processes and train-
ing data are transparent.

2 Method

As illustrated in Figure 1, we construct LLaMA-
MoE from LLaMA-2-7B by first partitioning FFNs
into multiple experts and each token is routed to
top-k experts. Continual pre-training is subse-
quently applied to recover the MoE model’s lan-
guage ability. The following sections describe the
details of our method.

2.1 Expert Construction

Splitting FFN. We start with the feed-forward
network (FFN) in LLaMA which uses SwiGLU
(Shazeer, 2020) as the activation function. Each
FFN layer in LLaMA consists of three parts: an
up projection weight Wup ∈ Rd×dh , a gate pro-
jection weight Wgate ∈ Rd×dh and a down pro-
jection weight Wdown ∈ Rdh×d. Given the uni-
versal set U containing indices of all intermedi-
ate neurons {1, 2, . . . , dh}, based on whether the

indices are shared among different experts, we
implement two groups of construction methods:
Neuron-Independent and Neuron-Sharing. Specif-
ically, we devise four methods to construct ex-
perts: (1) IndependentRandom randomly divides
neurons into non-overlapping groups; (2) Inde-
pendentClustering groups neurons according to clus-
tering results; (3) SharingInner assigns neurons to
experts based on pre-clustered data importance vec-
tors; (4) SharingInter creates shared neurons as in-
dependent blocks while distributing others via im-
portance. More details are presented in Appendix
C. In this paper, we adopt the IndependentRandom
which uniformly splits U into non-overlapping in-
dices sets S1, S2, . . . , Sn and construct n experts
with each size m = dh

n . After this stage, we can
build LLaMA-MoE models with n experts.

Rescaling. After partitioning a dense FFN layer
into multiple small experts, the activated expert pa-
rameters are much smaller than the original dense
models. To preserve the representational capac-
ity of the partitioned model, we introduce a scale
factor and apply rescale operations to guarantee
effective expert output. In particular, considering
activating k out of n experts, we scale the output
of expert by a factor of n

k .

2.2 Continual Pre-training

Since the original LLaMA model structure is re-
organized to MoE, we continue pre-training the
LLaMA-MoE model to recover its language abil-
ity. The training objective is the same as LLaMA-
2 (Touvron et al., 2023).

Data Sampling Strategies. The data sampling
weights are crucial to obtain a global optimum (Xie
et al., 2023). Thus, we investigate both static
and dynamic data sampling strategies including (1)
StaticSheared fixes the sampling weights to Sheared-
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Commonsense & Reading Comprehension
Model SciQ PIQA WinoGrande ARC-e ARC-c (25) HellaSwag (10)

LLaMA-2-7B 93.7 78.1 69.3 76.4 53.0 78.6
OPT-2.7B 78.9 74.8 60.8 54.4 34.0 61.4
Pythia-2.8B 83.2 73.6 59.6 58.8 36.7 60.7
INCITE-Base-3B 85.6 73.9 63.5 61.7 40.3 64.7
Open-LLaMA-3B-v2 88.0 77.9 63.1 63.3 40.1 71.4
Sheared-LLaMA-2.7B 87.5 76.9 65.0 63.3 41.6 71.0
LLaMA-MoE-3.0B (2/16) 84.2 77.5 63.6 60.2 40.9 70.8
LLaMA-MoE-3.5B (4/16) 87.6 77.9 65.5 65.6 44.2 73.3
LLaMA-MoE-3.5B (2/8) 88.4 77.6 66.7 65.3 43.1 73.3

Continued LM World Knowledge
Model LogiQA BoolQ (32) LAMBADA NQ (32) MMLU (5) Average

LLaMA-2-7B 30.7 82.1 73.9 28.0 46.6 64.6
OPT-2.7B 25.8 63.3 63.6 10.7 25.8 50.3
Pythia-2.8B 28.1 65.9 64.6 8.7 26.8 51.5
INCITE-Base-3B 27.5 65.8 65.4 15.2 27.2 53.7
Open-LLaMA-3B-v2 28.1 69.2 67.4 16.0 26.8 55.6
Sheared-LLaMA-2.7B 28.3 73.6 68.3 17.6 27.3 56.4
LLaMA-MoE-3.0B (2/16) 30.6 71.9 66.6 17.0 26.8 55.5
LLaMA-MoE-3.5B (4/16) 29.7 75.0 69.5 20.3 26.8 57.7
LLaMA-MoE-3.5B (2/8) 29.6 73.9 69.4 19.8 27.0 57.6

Table 1: Main results on downstream tasks. LLaMA-MoE-3.0B (2/16) means the activated parameters are 3.0B and
2 out of 16 experts are activated. The shot number used is noted in parentheses, with 0-shot if not specified.
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Figure 2: Model performances on ARC-c and HellaSwag dataset and the training loss for LLaMA-MoE-3.0B and
LLaMA-MoE-3.5B. The two models are trained with 200B tokens.

LLaMA (Xia et al., 2023) throughout the training
process; (2) StaticLLaMA utilizes the static sam-
pling weights of LLaMA (Touvron et al., 2023);
(3) DynamicSheared follows (Xia et al., 2023) to
initialize all the sampling weights to the same
ones and updates every 5B tokens with compar-
ing the loss differences between LLaMA-MoE and
LLaMA-2-7B; (4) DynamicLLaMA is similar to Dy-
namicSheared but initialized with the LLaMA sam-
pling weights. In this paper, we use StaticSheared as
the data sampling strategy.

3 Experiments

3.1 Datasets and Baselines
The continual pretraining dataset for LLaMA-MoE
is SlimPajama (Soboleva et al., 2023), which con-

tains 627B tokens from seven domains. More
implementation details are in Appendix D. For
comprehensive ability assessment, we follow Xia
et al. (2023). The detailed evaluation dataset can
be found in Appendix E. We compare LLaMA-
MoE with strong pre-trained language models con-
taining similar activation parameters, including
OpenLLaMA-3B-v2 (Geng and Liu, 2023), OPT-
2.7B (Zhang et al., 2022), Pythia-2.8B (Biderman
et al., 2023), INCITE-Base-3B (TogetherAI, 2023),
and Sheared LLaMA (Xia et al., 2023).

3.2 Main Results

As shown in Table 1, LLaMA-MoE-3.5B (2/8) and
LLaMA-MoE-3.5B (4/16) achieve similar average
results and the latter is slightly better. However,
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Open LLM Leaderboard Alignment
Model MMLU ARC-c HellaSwag TruthfulQA Avg. MT-Bench

Sheared-LLaMA-2.7B-ShareGPT 28.41 41.04 71.21 47.65 47.08 3.79
Sheared-LLaMA-2.7B (Our Dataset) 25.24 43.69 71.70 49.00 47.41 4.06
LLaMA-MoE-v1-3.0B (2/16) 23.61 43.43 72.28 44.24 45.89 4.15
LLaMA-MoE-v1-3.5B (4/16) 26.49 48.29 75.10 45.91 48.95 4.60
LLaMA-MoE-v1-3.5B (2/8) 25.53 45.99 74.95 44.39 47.71 4.72

Table 2: Supervised fine-tuned model performances on Open LLM Leaderboard tasks and open-ended questions.
Sheared LLaMA-2.7B-ShareGPT is a chat model created by Xia et al. (2023). We reimplement the chat model by
instruction tuning on our dataset and provide fair comparisons.
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Figure 3: Four ablation studies exploring the most important components in our LLaMA-MoE framework. Limited
by the training budget, in all figures, we stop training the specific model variants when an obvious trend emerges.

LLaMA-MoE-3.5B significantly surpasses open-
source models with similar activation parameters.
Specifically, LLaMA-MoE-3.5B (4/16) exceeds the
competitive model Sheared LLaMA by 1.3 aver-
age points. Meanwhile, LLaMA-MoE-3.0B per-
forms comparably with Open-LLaMA-3B-v2. We
also find LLaMA-MoE-3.5B (4/16) could achieve
89.2% of the average performance compared with
the original LLaMA-2-7B, validating the effective-
ness.

To demonstrate the training progress and model
capability changes, in Figure 2 (a) and (b), we
present the model performances on both ARC-c
and HellaSwag and find the results grow gradually
as the training process goes on. For the training
loss, as shown in Figure 2 (c), LLaMA-MoE-3.0B
and LLaMA-MoE-3.5B converge to about 1.95 and
1.90, respectively. The final loss is higher than
LLaMA-2 7B as these two models activate fewer
parameters. Moreover, LLaMA-MoE converges
much faster than training from scratch.

3.3 Ablation Study

In this section, we investigate four important com-
ponents in our framework. As shown in Figure 3,
(a) By training 5B tokens for model variants, we
found that equipping with scale factor provides sig-
nificantly better initial performance for MoE mod-
els. (b) Among four expert construction methods,
after training 30B tokens, randomly splitting neu-

rons into non-overlapping groups obtains the best
performance. (c) Comparing different data sam-
pling strategies, using the static sampling weights
of Sheared-LLaMA achieves the best results. Al-
though dynamic sampling shows performance im-
provements in Sheared-LLaMA, we find it hard to
work for our models. (d) Our model significantly
surpasses variants training from scratch, demon-
strating the effectiveness of our framework for re-
ducing the training budget.

3.4 Instruction Tuning
To evaluate the instructed MoE models’ perfor-
mances, we fine-tune LLaMA-MoE with curated
6k ShareGPT instruction data (Liu et al., 2023)
for 2 epochs. As shown in Table 2, the instructed
LLaMA-MoE-3.5B (4/16) outperforms the dense
model on ARC-c (48.29 vs. 43.69) and HellaSwag
(75.10 vs. 71.70) tasks. The overall performance
on Open LLM Leaderboard 1 tasks surpasses the
dense model (48.95 vs. 47.41). Besides, there is
a large gap in alignment abilities, where LLaMA-
MoE-3.5B (2/8) significantly outperforms Sheared
LLaMA-2.7B by 0.66 scores on MT-Bench.

4 Conclusion

In this paper, we build MoE from a dense model
by partitioning the FFN layers into experts, and

1https://huggingface.co/spaces/HuggingFaceH4/
open_llm_leaderboard
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continual pre-training. We comprehensively in-
vestigate different methods for expert construction
and data sampling. Empirically, LLaMA-MoE-
3.5B significantly outperforms open-source mod-
els with similar activation parameters. Meanwhile,
LLaMA-MoE-3.0B achieves similar performance
with Open-LLaMA-3B with less activated param-
eters. The instructed LLaMA-MoE models also
present stronger abilities than their counterparts.

Limitations

Limited by the training budget, we construct MoE
models on LLaMA2-7B model and continually pre-
train them for 200B tokens. Although we have
tested the method with three model settings (4/16E,
2/8E, and 2/16E), it is worth trying to investigate
the scaling property with more experiments on the
expert sizes, numbers, and training tokens. More-
over, due to the launch time of this project, we do
not experiment on the latest open-source models,
such as LLaMA3. In the future, we will apply our
framework to more models.
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A Related Work

Mixture-of-Experts (MoE). Sparse models at-
tempt to activate a subset of parameters for each in-
put to save computation. In modern deep learning,
the MoE architecture was first proven effective in
LSTM (Shazeer et al., 2017), and later introduced
to the transformer architecture as a substitute for
the FFN layers (Lepikhin et al., 2020; Fedus et al.,
2022). Subsequent studies explored the routing
policies (Lewis et al., 2021; Roller et al., 2021;
Zhou et al., 2022) and network architectures (Xue
et al., 2023; AI, 2023) of MoE. Our work follows
Shazeer et al. (2017) and implement the token-level
noisy top-k gating with load balancing loss.

Expert Construction. There are two lines of
works constructing MoE from dense checkpoints.
The first category splits the parameters of the FFNs
and ensures that the total model parameters remain
unchanged (Zuo et al., 2022; Zhang et al., 2021).
Another type of work expands the total model pa-
rameters while keeping the activation parameters
as the original dense models (Komatsuzaki et al.,

2022). Our work follows the first research line
and decomposes the original FFNs into multiple
small experts. Different from previous works, we
focus on a SwiGLU-based decoder-style models
and continues training the MoE models.

B Preliminary

A standard Mixture of Experts (MoE) layer com-
prises N expert networks {E1, E2, . . . , EN} and a
gating network G which activates the top-k experts
and distributes input tokens to corresponding ex-
perts. Formally, given an input embedding x, the
MoE layer’s output is the sum of outputs from k
selected experts:

y =
∑

i∈K
G(x)i · Ei(x), (1)

where the indices set K are determined by G(x),
and Ei(x) denotes the output of the i-th expert.

C Expert Construction

Based on whether the intermediate neurons within
the FFN are shared among different experts, we
implement two groups of construction methods:
Neuron-Independent and Neuron-Sharing.

Neuron-Independent. We formulate expert
construction as a task of partitioning into equal-
sized sets. Given a universal set U containing in-
dices of all intermediate neurons {1, 2, . . . , dh},
we uniformly split U into n equal-sized indices
set S1, S2, . . . , Sn and construct experts with size
m = dh

n , where we have:

n⋃

i=1

Si = U and
n⋂

i=1

Si = ∅. (2)

Specifically, we describe two kinds of partition
methods:

• IndependentRandom: We randomly partition
U into n equal-sized subsets.

• IndependentClustering: Following (Zhang
et al., 2021), we perform a balanced k-means
clustering (Malinen and Fränti, 2014) with
n centroids on the row vectors of Wup and
partition U according to the clustering result.

Neuron-Sharing. According to (Zuo et al.,
2022), the representation ability of a model can
be partially retained through a structured partition.
Therefore, we treat the expert construction as a
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structured pruning problem, by measuring the first-
order Taylor expansion on loss change ∆L for each
intermediate neuron when it gets pruned. For each
FFN layer, we maintain a vector v ∈ Rdh initial-
ized as zeros to record the importance of its in-
termediate neurons. Given batched data D, the
importance vector v is updated as follows:

v := v +
∑

(x,y)∈D

∣∣h⊙∇hL(x, y)
∣∣. (3)

The indices sets S1, S2, . . . , Sn are then generated
using certain algorithm for the experts with sizes
m = dh

n . Given the universal indices set U =
{1, 2, . . . , dh}, we have:

n⋃

i=1

Si ∈ U. (4)

• SharingInner: We obtain n importance vectors
v1, v2, . . . , vn through pre-clustered n groups
of data. For each expert i, the corresponding
Si consists the indices of neurons with the
largest m values in vi.

• SharingInter: Referencing the implementation
in (Rajbhandari et al., 2022), we set aside
the neurons shared by most experts as inde-
pendent residual blocks, while others are as-
signed according to the importance vectors
v1, v2, . . . , vn.

D Implementation Details

All models are trained on 112 A100 (80G) GPUs
with a global batch size of 15M tokens for 13.6K
steps (total 200B tokens). The context length is
4096. The maximum learning rate is 2e-4 with 100
warmup steps and the final learning rate decays to
2e-5 with cosine scheduling. We construct three
MoE models, 3B (2/16), 3.5B (4/16), and 3.5B
(2/8) from LLaMA-2-7B. Here, 3B and 3.5B are
the number of activated parameters, and “(2/16)”
means 2 out of 16 experts are activated. Simi-
lar notations are applied to “(4/16)” and “(2/8)”.
Our implementation is based on transformers (Wolf
et al., 2020), ZeRO-1 (Rajbhandari et al., 2022),
and FlashAttention v2 (Dao, 2023).

E Evaluation datasets

We follow Xia et al. (2023) and use the lm-
evaluation-harness (Gao et al., 2023) to evaluate
the following downstream tasks: 0-shot normal-
ized accuracy (acc_norm) of ARC Easy (Clark

et al., 2018), LAMBADA (Paperno et al., 2016),
LogiQA (Liu et al., 2020), PIQA (Bisk et al., 2020),
SciQ (Welbl et al., 2017), and WinoGrande Stan-
dard (Sakaguchi et al., 2021), 10-shot HellaSwag
(Zellers et al., 2019), 25-shot ARC Challenge
(Clark et al., 2018), and 5-shot MMLU (Hendrycks
et al., 2020). If there is no normalized accuracy, we
use accuracy instead. Furthermore, we use Open-
Compass (Contributors, 2023) to evaluate 32-shot
NQ (Kwiatkowski et al., 2019).

F Expert Specialization

In this section, we present the expert specializa-
tion phenomenon we found in LLaMA-MoE. As
Figure 4 shows, deep layers have more routing pref-
erences than shallow layers. This may indicate that
the shallow layers may capture more common fea-
tures, while deep layers focus more on task-specific
features. Based on this finding, expert partition on
the latter layers’ FFNs may bring further improve-
ments. We leave it for future exploration. In deeper
layers, each expert has different domain prefer-
ences and some experts are shared across different
domains. These shared experts may represent data
similarities among different domains. We also find
the imbalance problem at the first two layers, where
some experts are seldom selected. These experts
may be pruned for future MoE model compression.

To investigate the latent correlations among do-
mains, we normalize the number of routed tokens
and calculate the L2 distances to represent the ex-
pert selection differences. As illustrated in Fig-
ure 5a, CommonCrwal and C4 datasets have sim-
ilar expert preferences, while GitHub has similar
expert preferences with arXiv and StackExchange.
As to the Dev-to-Train differences in Figure 5b, we
find HellaSwag and ARC-c share the most simi-
lar expert preferences with CommonCrawl and C4,
and GSM-8K is similar to arXiv. This may provide
some insights for continual pre-training to further
improve downstream performances. For example,
the model may consume more tokens from arXiv
to improve GSM-8K results. However, expert se-
lections on ARC-c and GSM-8K have greater dis-
tances with current pre-training data, which may
involve new domains to deal with such tasks.

G Inference Efficiency

Table 3 demonstrates the inference computational
cost of each model. We find the LLaMA-MoE-
3.5B models consume only 57.7% FLOPs com-
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pared with LLaMA-2-7B, while the LLaMA-MoE-
3.0B model only takes 50.7% FLOPs of LLaMA-
2-7B, showing the inference efficiency.

Model Inference TFLOPs

LLaMA-2-7B 62.9
LLaMA-MoE-3.0B (2/16) 31.9
LLaMA-MoE-3.5B (4/16) 36.3
LLaMA-MoE-3.5B (2/8) 36.3

Table 3: Comparisons of model structure and inference
efficiency. FLOPs are estimated with a sequence length
of 4,096 and a batch size of 1.
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Figure 4: Expert routing statistics on the 1st, 8th, 28th, and 32nd layers for LLaMA-MoE-3.5B (4/16). Each cell
represents the number of routed tokens to an expert. Our model has a total of 16 experts. We sample 65.5K tokens
from each domain for this visualization.
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Figure 5: Expert routing differences at the 32nd layer. Smaller numbers and lighter colors represent more similar
expert routing preferences. 8.4M tokens per domain are sampled for this experiment.
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