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Abstract

Large language models (LLMs) exhibit en-
hanced reasoning at larger scales, driving ef-
forts to distill these capabilities into smaller
models via teacher-student learning. Previ-
ous works simply fine-tune student models on
teachers’ generated Chain-of-Thoughts (CoTs)
data. Although these methods enhance in-
domain (IND) reasoning performance, they
struggle to generalize to out-of-domain (OOD)
tasks. We believe that the widespread spu-
rious correlations between questions and an-
swers may lead the model to preset a specific
answer which restricts the diversity and gen-
eralizability of its reasoning process. In this
paper, we propose Cascading Decomposed
CoTs Distillation (CasCoD) to address these is-
sues by decomposing the traditional single-step
learning process into two cascaded learning
steps. Specifically, by restructuring the train-
ing objectives—removing the answer from out-
puts and concatenating the question with the ra-
tionale as input—CasCoD’s two-step learning
process ensures that students focus on learning
rationales without interference from the pre-
set answers, thus improving reasoning general-
izability. Extensive experiments demonstrate
the effectiveness of CasCoD on both IND and
OOD benchmark reasoning datasets1.

1 Introduction

Recent developments in LLMs have brought re-
markable improvements in reasoning tasks via CoT
prompting (Wei et al., 2022b). However, these
great reasoning capabilities are often associated
with more parameters (Wei et al., 2022a), which is
not practical to emergent in smaller language mod-
els (SLMs). Existing works (Magister et al., 2023;
Ho et al., 2023; Fu et al., 2023; Zhou and Ai, 2024)
try to make the reasoning capabilities isolated and
distilled to student SLMs by simply fine-tuning

∗Kun Li is the corresponding author.
1Code available at https://github.com/C-W-D/CasCoD

(a) Answer SFT consistently outperform Std-CoT on OOD tasks.

(b) A case of spurious correla on between ques ons and answers.

Question: Why did someone bring a swimsuit to a ski resort?

Options:

(A) To swim in a heated pool.

(B) To wear as an underlayer for warmth.

(C) To use as a fashion statement.

(D) To participate in a polar bear plunge event.

Answer: (A) To swim in a heated pool.

OODIND

Figure 1: (a) Empirical results of standard CoT dis-
tillation (Std-CoT) and directly fine-tuning on answer
labels without CoTs (Answer SFT) on one in-domain
(BBH-test) and the other four out-of-domain benchmark
reasoning datasets. (b) In the given example, the se-
mantic similarity between "swimsuit" in the question
and "swim" in the answer demonstrates a high level
of match, which could allow the model to predict the
answer using simple keyword matching or certain rules.

on teacher LLMs generated CoTs data, known as
standard CoTs distillation (Std-CoT). Although the
method effectively leverages the LLMs’ CoTs to
boost the reasoning performance of student models
on seen tasks, it does not ensure effective reasoning
in OOD settings, leading to weak generalization
on unseen tasks. Our pioneer study demonstrates
that, as shown in Figure 1 (a), when using the same
IND training dataset, student models developed via
the method Std-CoT perform better on IND tasks
but significantly worse on OOD tasks compared
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to models fine-tuned directly with question-answer
pairs. The surprising findings indicate that students’
CoTs do not effectively transfer to new domains
and these SLMs seem to be more adept at learning
to predict answers directly from questions.

We attribute these issues to the spurious correla-
tions between questions and answers that are com-
monly found in implicit reasoning tasks (Gururan-
gan et al., 2018; Zellers et al., 2019; Blodgett et al.,
2020), as illustrated in Figure 1 (b). The Std-CoT
approach requires models to learn both the rationale
and the answer in a single step, where the learned
spurious correlations in training stage can adversely
affect the quality of rationale generation during in-
ference. That is to say, upon reading a question,
student models may fastly, unconsciously, and auto-
matically formulate a "preset answer" (Hagendorff
et al., 2022), which in turn may lead them to im-
plicitly reduce the token generation space when
producing CoT. This results in diminished diversity
and generalizability of their rationales.

In this paper, we propose Cascading decom-
posed CoTs Distillation (CasCoD), a straightfor-
ward yet effective method to address these issues.
Specifically, we decompose the traditional single-
step learning process of Std-CoT into two cascaded
learning steps: a rationale learning step and an an-
swer learning step. In the rationale learning step,
the training objective, with the answer removed, is
defined as 2: q → r. In the answer learning step,
we concatenate the question with the target output
from the rationale learning step and use this com-
bined input for the answer learning step, setting
the training objective as q, r → a. This cascad-
ing two-step learning configuration mitigates the
capture of spurious correlations between questions
and answers during the training phase, ensuring
that students focus on learning rationales without
interference from the preset answers. Furthermore,
the inference phase execution pipeline is aligned
with the training phase; the model first generates
a rationale when given a question, and then, based
on the question-rationale pair, predicts the final an-
swer, further alleviating potential reasoning biases
caused by spurious correlations.

Extensive experiments demonstrate that CasCoD
outperforms the baselines on both IND and OOD
benchmark reasoning datasets (§4.3). Besides, we
validate the generalizability of CasCoD across dif-
ferent models, model sizes, and training data sizes

2q: the question, r: the rationale, a: the answers.

(§4.4). Further analyses validate our hypothesis
(§5.1) and confirm the significant impact of the
two-step cascading learning process (§5.2) and the
robustness of CasCoD (§5.3). The experiments
on reasoning faithfulness (§5.4) and case studies
(§5.5) indicate that models distilled by CasCoD can
reason more consistently and demonstrate better
generalization than baselines, effectively address-
ing interference from question-answer spurious cor-
relations. Our contributions are as follows:

• We find that standard CoT distillation methods
exhibit limited generalizability on OOD tasks,
almost performing worse than methods fine-
tuned directly with question-answer pairs.

• We decompose the traditional single-step
learning process into two cascading learning
steps to alleviate the impact of spurious corre-
lations between questions and answers.

• Extensive experiments confirm the effective-
ness of our method across both IND and OOD
datasets, showing that CasCoD can generate
more generalizable CoTs.

2 Related Works

CoT Capability of Language Models. LLMs
have demonstrated a wide array of capabilities in
numerous natural language processing tasks, under-
scored by various studies (Chowdhery et al., 2023;
Wei et al., 2022a). One notable manifestation of
this is the CoT prompting technique (Wei et al.,
2022b), which facilitates models in articulating a
series of deductive reasoning steps. This method
has substantially enhanced LLMs’ problem-solving
abilities, as evidenced in several works (Kojima
et al., 2022a; Wang et al., 2023b; Huang et al.,
2023). Despite these advancements, the effec-
tiveness of CoT prompting notably diminishes in
smaller models (Wei et al., 2022a). Research by
Chung et al. (2022) indicates that with targeted
training on CoT data via instruction tuning, SLMs
can unlock CoT capabilities. In our study, we show
that SLMs’ CoT performance can be further en-
hanced by decomposing the standard CoT distilla-
tion process into two cascaded learning steps.

Distilling Knowledge from LLMs. Numerous
studies (Taori et al., 2023; Chiang et al., 2023;
Peng et al., 2023) have explored the knowledge
distillation from advanced LLMs like ChatGPT
(OpenAI, 2023). These efforts typically focus on
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Figure 2: Overview of our proposed method Cascading Decomposed CoTs Distillation (CasCoD). Different from
the standard CoTs distillation, we decompose the single CoT learning step into two comprehensive learning steps
including the rationale learning step and the answer learning step, and then learn them in a cascaded way.

distilling a broad range of abilities via instruction
tuning on extensive and varied datasets (Xu et al.,
2023; Wu et al., 2023; Jiang et al., 2023b; Li et al.,
2024). However, our work is aimed at distilling
the CoT reasoning capabilities from LLMs, in line
with Magister et al. (2023); Ho et al. (2023), who
propose standard CoTs distillation by directly fine-
tuning SLMs on teacher LLMs’ CoTs. Fu et al.
(2023) expands on this by using various reason-
ing data formats for specializing domain-specific
SLMs. Wang et al. (2023c) distill SLMs via learn-
ing from self-reflection and feedback in an inter-
active, multi-round paradigm with teacher LLMs.
Hsieh et al. (2023) propose to learn the rationale
and answers as separate goals for optimizing. Li
et al. (2022) propose learning the entire CoTs and
the single answers to enhance the reasoning of stu-
dents. Based on these, Liu et al. (2023) introduce
an additional distillation objective, self-evaluation,
aiming for SLMs to assess the accuracy of their
CoTs akin to LLMs’ evaluative processes. And
Chen et al. (2024) maximize the mutual informa-
tion between objectives. Ranaldi and Freitas (2024)
use in-family and out-family teachers to gener-
ate more CoTs for fine-tuning students. However,
these methods are affected by the spurious correla-
tions due to their isolated optimization objectives.
In contrast, we reorganize the training objectives
to effectively mitigate this issue.

3 Methodology

In this section, we introduce our new distillation
method that decomposes the single-step leanring
process of standard CoTs distillation into two cas-
caded learning steps, as illustrated in Figure 2.
Formally, the standard CoTs distillation objective
q → CoT is split into two learning processes, ra-
tionale step learning with the objective q → r and
answer step learning with the objective q, r → a.
Below we first describe how to extract CoTs from
teacher LLMs in §3.1. Then we describe the stan-
dard CoTs distillation method and discuss its lim-
itations in §3.2. Finally, we provide a detailed
presentation of our method in §3.3.

3.1 Extract CoTs From Teacher LLMs

The initial phase of the distillation is to extract
CoTs from teacher LLMs for each question-answer
pair {q, a} in a raw dataset. This involves em-
ploying the CoT prompting technique (Wei et al.,
2022b), which guides the teacher LLMs to generate
CoTs that follow a prescribed format with multiple
reasoning steps. The prompt template is shown in
Appendix C.1. Note that CoTs produced by LLMs
may not always be correct. To maintain CoTs qual-
ity, following the previous work (Magister et al.,
2023; Hsieh et al., 2023), we retain only those that
match the ground truth answer in the dataset, build-
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ing a CoT dataset D = {q, CoT} for training the
student model. Additionally, to facilitate the intro-
duction of CasCoD, we explicitly split the extracted
CoTs into two parts based on predefined rules in
CoT prompting, formalizing this as CoT = r ⊕ a.
For instance, we use the phrase "Therefore, the
answer is" to divide the CoT, categorizing the text
before this delimiter as the rationale r and the text
after it as the answer a.

3.2 Preliminaries for CoTs Distillation
Previous standard CoTs distillation (Magister et al.,
2023; Ho et al., 2023), referred to as single-step
learning, is to teach SLMs to generate the CoT in
one time as follows:

LStd-CoT = Eq,CoT∼D [ℓ (q, CoT )] (1)

where ℓ signifies the negative log-likelihood loss
function, expressed as:

ℓ (x, y) = −
∑

yt∈y
logP (yt | x, y<t) (2)

However, this method requires the model to si-
multaneously learn both rationales and answers
in a single step, readily leading to the cap-
ture of question-answer spurious correlations in
widespread implicit reasoning datasets (Blodgett
et al., 2020). These correlations degrade the quality
of CoT generation during inference, resulting in
weak reasoning generalization. In other words, this
implicit learning of correlations might lead student
models to preset answers after reading the ques-
tions, potentially causing a state reduction in the
token generation space when producing CoTs.

3.3 Cascading Decomposed CoTs Distillation
Different from the training strategy in standard
CoTs distillation, our method decomposes its
single-step learning process into two cascaded
learning steps, one for the rationale learning step
and the other for the answer learning step.

For the rationale learning step, each question
is combined with a rationale learning delimiter
"Rationale:" as the input q, with the rationale r
produced by the teacher serving as the label for
distilling the rationale. With the answer objective
removed, this training strategy allows models to
engage in learning rationales without the interfer-
ence of spurious correlations. The loss function of
rationale step learning is as follows:

Lrationale = Eq,r,a∼D [ℓ (q, r)] (3)

For the answer learning step, we concatenate
both the input and output of the rationale learning
step with an answer learning delimiter "Therefore,
the answer is" as the input, and the answer a serves
as the label for distilling the answer. This strategy
helps students learn to reason consistently from the
question-rationale pair rather than merely preset-
ting spurious answers based solely on the question.
The loss function of answer learning step is thus:

Lanswer = Eq,r,a∼D [ℓ (q ⊕ r, a)] (4)

Due to the inherent tight connection between
rationale learning and answer learning, for each
instance in the dataset, we optimize both learning
objectives simultaneously for the CoTs distillation:

LCasCoD = (1− α)Lrationale + αLanswer (5)

where α is a hyperparameter used to weight the
loss in the two learning steps.

During inference, student models follow the
same pipeline as in training: first, generate a ra-
tionale based on the question, and then predict the
final answer using the question-rationale pair. The
cascading training objectives reduce the probabil-
ity of student models capturing spurious correla-
tions between questions and answers in the train-
ing phase, thereby alleviating potential reasoning
biases caused by spurious correlations in the infer-
ence stage, thus enhancing CoTs generalizability.

4 Experiments

In this section, we conduct extensive experiments
and analysis to evaluate the effectiveness of our
method across both IND and OOD datasets.

4.1 Datasets
In-domain Dataset: BIG-Bench Hard (BBH)
(Suzgun et al., 2023) comprises 27 challenging
tasks covering arithmetic, symbolic reasoning et
al. from BIG-Bench (BB) (Guo et al., 2023). The
majority of the data involve multiple-choice ques-
tions, with a few being open-ended. To underscore
the superiority of our approach, we chose to per-
form distillation on this most challenging dataset.
We randomly divide the BBH dataset into a train-
ing set (BBH-train) for distillation and a test set
(BBH-test) for IND evaluation, in a 4:1 ratio.

Out-of-domain Datasets: (1) BIG-Bench Sub
(BB-sub). BB is a popular benchmark consisting of
203 tasks covering a wide range of topics, including
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mathematics, common-sense reasoning, and vari-
ous other domains. For ease of evaluation, we filter
the subtasks within BB based on subtask keywords,
focusing on tasks related to "multiple-choice" and
"reasoning", and ensure that tasks from BBH were
excluded, resulting in 61 subtasks. Then we ran-
domly sample up to 100 instances for each subtask,
resulting in BB-sub. (2) AGIEval (Zhong et al.,
2023) is a renowned human-centric benchmark
used to assess LMs’ reasoning abilities, whose
tasks span various domains, including college en-
trance exams (English / Math / Law), logic tests et
al. We evaluate our method on the subtasks that are
related to multiple-choice questions in the English
language. (3) AI2 Reasoning Challenge (ARC)
(Clark et al., 2018) consists of ARC-Easy (ARC-E)
and ARC-Challenge (ARC-C). The distinction lies
in ARC-E consisting of relatively simpler questions
from middle and high school science exams, while
ARC-C comprises more complex and challenging
questions. We utilize the testing set of the ARC
dataset for evaluation. The statistics of all above
datasets can be found in Appendix B.1.

4.2 Models & Baselines & Setup

Models. We employ the popular open-source
language model LLaMA2-7B (Touvron et al.,
2023) as the student SLM in the main experi-
ment and also explore different student models
in §4.4. Considering the pricing and capabili-
ties, we utilize OpenAI’s powerful black-box LLM,
gpt-3.5-turbo-0613, as teacher LLMs to extract
CoTs with the same manual prompt used in the
previous work (Suzgun et al., 2023).
Baselines. We compare our method with the fol-
lowing baselines: (1) Teacher & Vanilla Student
under various settings, e.g., Zero-shot (+CoT) or
Few-shot (+CoT), for showing the impact of dis-
tilling reasoning ability from LLMs. (2) Std-CoT
(Magister et al., 2023; Ho et al., 2023), which is
the standard CoTs distillation method that directly
fine-tune student models on the CoTs data for sup-
porting our core contributions by contrasting with
our method. (3) Step-by-step (Hsieh et al., 2023)
is a multi-task CoTs distillation method that distills
rationales and answers separately. (4) MT-CoT
(Li et al., 2022) is also a multi-task CoTs distilla-
tion method, but unlike Step-by-step, it simultane-
ously optimizes the objectives of answer prediction
and entire CoTs learning. These methods, which
also modify training strategies, are compared to

illustrate the superiority of our approach in decom-
posing CoTs and cascading learning. (5) SCOTT
(Wang et al., 2023a) that enhances the reasoning
consistency of the student model by introducing ad-
ditional counterfactual data. This method is chosen
to assess whether additional negative examples can
enhance reasoning performance and to compare
student reasoning faithfulness in subsection 5.4.
Setup. We employ LoRA (Hu et al., 2022) for
parameter-efficient fine-tuning of the student SLMs.
In §5.3, our empirical results indicate that the op-
timal weight is set α at 0.3. However, to mitigate
the effects of unbalanced weighting, we include an
additional method setup for comparison against the
baselines in Table 1, labeled CasCoD (α = 0.5). All
experiments are conducted using a mixed-precision
training strategy on 4 × A100 GPUs. For the infer-
ence stage, vLLM3(Kwon et al., 2023) is utilized to
accelerate inference, employing a greedy decoding
strategy to generate text on one single A100 GPU.
More details on training and hyperparameters can
be found in Appendix B.2.

4.3 Main Results

Table 1 presents the automatic evaluation results of
our proposed CasCoD and baselines.

CoTs distillation enhances the reasoning perfor-
mance of students. Comparing with the Zero-shot-
CoT and Few-shot-CoT settings of student models,
the performance of those with distillation is sig-
nificantly improved by learning CoTs. Except for
BB-sub, the student model has 3-4 times improve-
ment compared to vanilla ones across all datasets.

CasCoD overcomes limitations of distillation
baselines in OOD performance. From the Ta-
ble 1, we can find that Answer-SFT on the OOD
datasets outperforms all the distillation baselines by
an average of 5%, which indicates that it seems stu-
dent models’ performance decreases when learning
the CoTs. This pattern is also noticeable in mod-
els without distillation, as evidenced by the com-
parison between Zero-shot and Zero-shot-CoT (or
Few-shot and Few-shot-CoT) settings. We attribute
this to spurious correlations between questions and
answers as introduced in Figure 1 (b), which stu-
dents can easily learn. The distillation baselines
that require students to consider predicting answers
while generating the rationale, inadvertently make
the simpler task of answer prediction interfere with

3https://github.com/vllm-project/vllm
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Method Distill? Gen CoT? BBH-test BB-sub AGIEval ARC-E ARC-C AVG
In-domain? ✓ ✕ ✕ ✕ ✕

Teacher: ChatGPT (gpt-3.5-turbo)

Zero-shot-CoT ✕ ✓ 42.7 44.1 49.5 91.9 81.1 61.9
Few-shot-CoT ✕ ✓ 73.1 - - - - -

Student: LLaMA2-7B

Zero-shot ✕ ✕ 14.8 15.5 6.9 18.2 13.9 13.9
Zero-shot-CoT ✕ ✓ 10.6 7.7 7.1 18.4 14.8 11.7
Few-shot ✕ ✕ 15.1 28.5 25.5 25.5 25.4 24.0
Few-shot-CoT ✕ ✓ 16.3 25.3 9.9 17.2 17.2 17.2
Answer-SFT ✕ ✕ 51.5 33.2 31.2 71.6 53.7 48.2

Std-CoT (Magister et al., 2023) ✓ ✓ 54.2 28.7 21.6 59.6 45.1 41.8
SCOTT (Wang et al., 2023a) ✓ ✓ 42.4 18.8 13.0 45.7 34.1 30.8
MT-CoT (Li et al., 2022) ✓ ✓ 56.8 30.3 22.0 49.4 38.2 39.3
Step-by-step (Hsieh et al., 2023) ✓ ✓ 42.4 27.7 28.8 68.5 48.6 43.2
CasCoD (ours, α = 0.5) ✓ ✓ 52.5 36.4 28.1 71.8 54.7 48.7
CasCoD* (ours, α = 0.3) ✓ ✓ 59.4 37.0 28.3 70.6 52.7 49.6

Table 1: Accuracy (%) on in-domain and out-of-domain datasets with different methods. We employ "Let’s think
step by step" (Kojima et al., 2022b) for Zero-shot-CoT settings and the manually curated prompt (Suzgun et al.,
2023) for Few-shot-CoT settings. The best performance among distilled student models is marked in bold, and the
second-best performance is indicated by an underline.
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Figure 3: Ablation study on model size for four OOD datasets. The dotted line indicates the performance of the
teacher LLM under the Zero-shot-CoT setting. The results in IND dataset can be found in Appendix A.2.1.

the rationale learning, thus reducing the general-
ization of CoTs. In contrast, CasCoD* not only
surpasses Answer-SFT by 7.9% in IND datasets
but also achieves comparable results in OOD sce-
narios. This underscores the effectiveness of our
cascade two step learning strategy, which restruc-
tures training objectives to mitigate the impact of
spurious correlations, in enhancing reasoning capa-
bilities across diverse datasets.

CasCoD significantly outperforms the distilla-
tion baselines across IND and OOD datasets.
From Table 1, it can be observed that CasCoD sig-
nificantly outperforms baselines on both IND and
OOD datasets in most cases, regardless of whether
the loss is weighted. Specifically, CasCoD* secures
an average in-domain improvement of 5.2% and

an out-of-domain enhancement of 8.4% over the
Std-CoT, along with an overall 6.4% improvement
compared to the multi-task learning (Step-by-step)
approach. Impressively, CasCoD* achieves 80.1%
of the teacher LLM’s performance in Zero-shot-
CoT settings. These results underscore the efficacy
of CasCoD, significantly boosting the generative
capabilities of CoTs on unseen tasks.

4.4 Ablation Study on Model & Data Sizes

CasCoD is universally applicable to models of
varying sizes. We perform model distillation on
TinyLLaMA-1.1B4 (Zhang et al., 2024), LLaMA2-
7B, and LLaMA2-13B, respectively and compare

4https://huggingface.co/TinyLlama/TinyLlama-1.
1B-intermediate-step-1431k-3T
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Models & Methods BBH-test BB-sub AGIEval ARC-E ARC-C AVG

In-domain? ✓ ✕ ✕ ✕ ✕

CodeLLaMA-7B + Std-CoT 56.2 29.7 19.2 42.0 32.2 35.9
CodeLLaMA-7B + Step-by-step 40.7 29.0 23.9 41.5 32.8 33.6
CodeLLaMA-7B + CasCoD 54.8 35.4 25.8 42.9 31.7 38.1

LLaMA3-8B + Std-CoT 66.9 33.9 32.7 69.8 60.2 52.7
LLaMA3-8B + Step-by-step 44.2 35.5 38.8 83.7 70.7 54.5
LLaMA3-8B + CasCoD 65.2 42.9 40.1 87.2 74.0 61.9

Mistral-7B-v0.2 + Std-CoT 72.2 37.6 32.0 68.8 57.9 53.7
Mistral-7B-v0.2 + Step-by-step 56.4 38.9 20.1 76.4 62.3 50.8
Mistral-7B-v0.2 + CasCoD 71.7 42.5 40.1 83.9 74.2 62.5

Table 2: Accuracy (%) on IND and OOD datasets with different student models distilled by different methods.
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Figure 4: Ablation study on training data size for four OOD datasets. The dotted line indicates the performance of
fine-tuning the student models by standard CoTs distillation using the full set (100% of) BBH-train dataset. The
results in IND dataset can be found in Appendix A.2.2.

with standard CoTs distillation (Std-CoT) and
multi-task distillation (MT-CoT & Step-by-step).
In Figure 3 and 7, we can find that CasCoD consis-
tently outperforms the baselines on both IND and
OOD datasets across various sizes of student mod-
els. Notably, the performance improvement of our
method is the most obvious in the BB-sub, where
the performance of the 13B student model reaches
92.7% of the teacher LLM’s performance. Further-
more, as model sizes increase, the performance
gap between CasCoD and the baselines widens on
OOD datasets, highlighting CasCoD’s superior ef-
ficiency in distilling CoTs for larger models.

CasCoD is universally applicable to models of
different architectures. We perform model distil-
lation on CodeLLaMA-7B (Touvron et al., 2023),
LLaMA3-8B (AI@Meta, 2024) and Mistral-7B-
v0.2 (Jiang et al., 2023a), respectively, and com-
pare with Std-CoT and Step-by-step. From the
Table 2, we can see that regardless of whether it’s
CodeLLaMA, LLaMA3, or Mistral, CasCoD sig-

nificantly outperforms the baselines on OOD tasks,
demonstrating its high effectiveness and scalability.
Particularly, on the powerful base model Mistral,
the superiority of our method is further amplified.

CasCoD significantly outperforms standard
CoTs distillation on OOD with much less train-
ing data. In Figure 4, CasCoD achieves a 6.3%
improvement over Std-CoT on the BB-sub dataset,
using only 25% of the full BBH-train data. In
the case of other OOD datasets, CasCoD requires
merely 12.5% of the full training data to surpass
the Std-CoT trained with the full dataset by 5% to
7% in performance. These results demonstrate the
efficiency of CasCoD, capable of enhancing CoTs
generalization with a smaller amount of CoTs data.

5 Analysis

5.1 Hypothesis Validation

In this subsection, we aim to validate our hypothe-
sis that student learning of spurious correlations
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Method & Metric BB-sub AGIEval ARC-E ARC-C

Std-CoT (A) ↓ 79.7 82.2 63.7 50.8
Std-CoT (B) ↑ 47.5 30.6 58.1 69.7
Std-CoT (C) ↓ 32.2 51.6 5.6 -18.9
CasCoD (A) ↓ 73.3 77.9 61.8 50.9
CasCoD (B) ↑ 57.4 36.7 71.4 83.9
CasCoD (C) ↓ 15.9 41.2 -9.6 -33.0

Table 3: Hypothesis validation results (%) on four OOD
tasks. The hypothesis is better supported when ’A’ is
lower, ’B’ is higher, and ’C’ is lower.

affects the quality of their generated rationales.
Due to the nature of causal language models—
autoregression, we incorporate "The answer is"
into input prompts to directly prompt models to
provide the answer immediately (which we treat as
the "preset answer" referred to §1) after reading the
question, rather than generating rationales before
providing an answer. We define the following met-
rics to assist the validation: (1) A: The proportion
of incorrect CoT reasoning when the preset answer
is wrong. A higher ratio indicates a greater negative
impact of the preset answer on CoT reasoning; (2)
B: The proportion of correct CoT reasoning when
the preset answer is correct. A higher ratio indi-
cates a greater positive impact of the preset answer;
(3) C = A−B (combine A and B). We com-
pare CasCoD with Std-CoT using these metrics on
four OOD tasks. The results are shown in Table 3.
We observe that Std-CoT significantly outperforms
CasCoD in metrics ’A’ and ’C’, while significantly
underperforms CasCoD in metric ’B’ on all four
OOD tasks. This indicates that our method can
selectively utilize spurious correlations to some ex-
tent, suppressing the negative effects of incorrect
preset answers on reasoning and reinforcing the
positive effects of correct preset answers on reason-
ing, thereby enhancing performance on OOD tasks,
which experimentally validate our hypothesis.

5.2 Two-Step vs. Single-Step Implementation

In this subsection, we explore whether CasCoD’s
two-step training objectives can be achieved in a
single-step computation. Upon analysis of the two
cascaded learning steps, we find that under teacher-
forcing (Goodfellow et al., 2016), CasCoD closely
mirrors Std-CoT, with key distinctions including
adjustable token-level weights and the omission
of delimiters in loss calculations. Each sample in
CasCoD’s original framework undergoes two for-
ward calculation, raising the question of whether a
similar outcome is possible with only one. To inves-

tigate this, we introduce a variant, CasCoD-single,
which is designed to fulfill the two-step training
objectives through a single forward computation.
Figure 5 indicates that the two-step CasCoD con-
sistently surpasses the single-step variant across all
datasets. This underscores that a single forward cal-
culation does not suffice to meet CasCoD’s training
objectives, emphasizing the critical importance of
the cascading two-step learning process.

5.3 Impact of Weights

In this subsection, we explore how variations in
weights affect the performance of models with
different parameter sizes on both IND and OOD
datasets, as shown in Figure 6.

Students’ performance is not sensitive to weights
on OOD datasets. From the figure, we observe
that regardless of weight changes, CasCoD consis-
tently outperforms Std-CoT in OOD by average,
even at α = 0.9 (meaning the model allocated only
10% of its attention to rationales generation). This
demonstrates that CasCoD exhibits robust general-
ization in OOD and also underscores the effective-
ness of decomposing CoTs for distillation.

CasCoD is more robust for smaller student mod-
els. We observe that the 1.1B model shows less
variation in performance compared to the 7B and
13B models in IND. Notably, the performance of
the 13B model drops sharply as α changes from 0.5
to 0.9, indicating that larger models are more sus-
ceptible to weight adjustments in the IND dataset.

Prioritizing the rationale over the answer yields
better results. It is evident that across different
model sizes, the optimal weights on both IND and
OOD datasets range approximately from 0.01 to
0.3, indicating that focusing on the rationale help
improve the generalizability of CoTs.

BBH-test BB-sub AGIEval ARC-E ARC-C0
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Figure 5: Comparison between two-step and single-step
training implementations of CasCoD.
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Figure 6: Ablation study on task weights α. The results are reported by IND-AVG and OOD-AVG that respectively
denote averge accuracy on IND and OOD datasets. The best performance among weights are marked with "✩".

5.4 Faithfulness of Students
To ensure that the rationale provided by students
supports their predicted answers, another metric
for evaluating CoTs distillation is the faithfulness
of students. Following the previous work (Wang
et al., 2023a), we use the LAS metric (Hase et al.,
2020), whose core idea is to measure the extent
that the rationales r′ aid a simulator in predicting
the answers a′, defined as:

LAS = Acc
(
q, r′ → a′

)
−Acc

(
q → a′

)
(6)

where we employ ChatGPT and GPT4 as the simu-
lator, respectively. The results are shown in Table 4.
CasCoD is observed to generate rationales that are
more consistent with answers than baselines. This
suggests that despite CasCoD’s multi-step learn-
ing process, the introduction of cascading learning
ensures that students can faithfully reason.

Method ChatGPT GPT4 AVG

Teacher 41.1 36.3 38.7

Std-CoT 40.8 29.8 35.3
SCOTT 36.2 29.4 32.8
MT-CoT 36.2 25.8 31

Step-by-step 6.6 -0.1 3.25
CasCoD (ours) 40.8 31.6 36.2

Table 4: Faithfulness (LAS, %) of the compared meth-
ods with different LLM evaluators on the IND dataset.
The prompt templates can be found in Appendix C.2

.

5.5 Case Study
In this subsection, we provide a systematic case
study to illustrate our hypothesis and the improve-
ment in CoT generalizability. Here we show 4
cases in Table 17, 18, 19 and 20 to compare the

CoT generated by CasCoD with the teacher LLM
and the standard CoTs distillation method (Std-
CoT). We utilize ✓ and ✗ to denote whether the
CoT is correct or incorrect, respectively.

Table 17 and 18 show that while Std-CoT cor-
rectly predicts the final answer on in-domain tasks,
it generates incorrect intermediate reasoning steps,
indicating that Std-CoT causes student models to
capture spurious correlations between questions
and answers, without learning to reason with diver-
sity. This is evidenced by the fact that its gener-
ated rationales are almost identical to the teacher’s
CoTs. In contrast, CasCoD produces more dis-
tinct CoTs, differing from the teacher’s reasoning
format, which indicates an enhancement in the stu-
dent’s reasoning generalizability. Tables 19 and 20
illustrate that on out-of-domain tasks, Std-CoT fails
to reason correctly, including logical and factual
mistakes, whereas CasCoD can clearly understand
the question and provides concise, logically rich
reasoning. Besides, we also provide an analysis of
failure cases in Appendix A.4.

6 Conclusion

We propose a simple yet effective CoTs distillation
method CasCoD to address the issue of question-
answer spurious correlations that previous CoTs
distillation methods suffer from. Specifically, we
decompose the traditional single-step learning pro-
cess into two cascaded learning steps and restruc-
ture their training objectives. Extensive experi-
ments show that CasCoD significantly outperforms
the baselines across both IND and OOD datasets.
Further analysis reveals that CasCoD is robust to
model size, training data size, different models, and
weights and can lead to faithful student models.
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Limitations

In our study, we explore distilling CoTs into two
cascading steps, which is an initial step toward un-
derstanding finer decompositions. Research (Scha-
effer et al., 2023a) suggests that the emergent abili-
ties of LLMs result from managing multiple sub-
tasks simultaneously, hinting at the potential for
more intricate cascading steps in CoTs. Our current
work does not yet define the precise rules for such
more steps decomposition, nor the optimal timing
and methods for focusing learning on specific steps.
We hope our work can inspire the community and
leave these aspects for future exploration, intended
to refine and extend the CoT reasoning capabilities
of SLMs as suggested by our findings.

Ethics Statement

Our work utilizes CoT data extracted from Chat-
GPT for distillation, which may result in inheriting
the social biases (Schaeffer et al., 2023b) and hal-
lucination (Zhang et al., 2023) present in LLMs.
However, we are optimistic that future advance-
ments in resolving these issues in LLMs will nat-
urally lead to the development of student models
with reduced toxicity.
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A Additional Experimental Results

A.1 Detailed Results on Mathematical
Reasoning Tasks

Given the community’s focus on mathematical rea-
soning, we present detailed experimental results for
math-related subtasks from our evaluation datasets
in Table 5. It should be noted that the subtasks
in the datasets we utilized involve mathematical
reasoning tasks. We list as follows:

1. BB-sub: includes subtasks like ’elemen-
tary_math_qa’ and ’identify_math_theorems’,
as detailed in Table 11.

2. BBH: includes subtasks such as ’DateUnder-
standing’ and ’Multi-StepArithmetic’, as de-
tailed in Table 10.

3. AGIEval: includes subtasks like ’AQuA-RAT’
and ’SAT-Math’, as detailed in Table 8.

While ARC does not specifically feature tasks for
mathematical computation, we identify a number
of scientific questions within this dataset that in-
volve mathematical calculations. From the Table 5,
We can observe that CasCoD has achieved perfor-
mance improvements on mathematical reasoning
tasks as well.

A.2 Ablation Study on In-domain Dataset

A.2.1 W.R.T. Model Size
The results of the model size ablation study on
IND datasets are presented in Figure 7. We observe
that CasCoD outperforms the baselines on both the
7B and 13B model and significantly surpasses the
teacher LLMs in the Zero-shot CoT setting.

A.2.2 W.R.T. Training Data Size
The results of the training data ablation study on
IND datasets, as shown in Figure 8, indicate that
CasCoD outperforms standard CoTs distillation
across various sizes of training data. This demon-
strates the efficiency of our proposed method.
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Models & Tasks elementary_math_qa identify_math_theorems DateUnderstanding Multi-StepArithmetic AVG

Std-CoT 11.0 20.7 82.0 8.0 30.4
SCOTT 12.0 34.0 58.0 4.0 27.0
MT-CoT 10.0 9.4 74.0 6.0 24.9
Step-by-step 17.0 32.1 68.0 0.0 29.3
CasCoD 22.0 36.2 86.0 8.0 38.1

Table 5: Accuracy (%) on mathematical reasoning tasks with different distillation methods.

Rationale Delimiter Answer Delimiter BBH-test BB-sub AGIEval ARC-E ARC-C AVG

abc: xyz: 55.3 33.8 26.4 69.5 52.0 47.4
cat: dog: 50.4 35.3 25.6 66.3 50.8 45.7
Reason: Draw a conclusion: 56.3 35.7 25.4 70.4 51.7 47.9
Rationale: Answer: 59.4 37.0 28.3 70.6 52.7 49.6

Table 6: Performance comparison of different delimiters across several benchmarks.
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Figure 7: Ablation study on model size in the IND
(BBH-test). The dotted line indicates the performance
of the teacher LLM under the Zero-shot-CoT setting.

A.3 Impact of Delimiters
In NLP models, delimiters serve as cues to guide
the model’s reasoning and answer generation pro-
cesses. Initially, we designed our system to use
specific, semantically clear delimiters such as
Rationale: to signal the reasoning phase and
Therefore, the answer is: to indicate the final
conclusion. This design aimed to maintain a natu-
ral flow and avoid semantic confusion. However, it
remained important to evaluate whether the choice
of delimiters might unintentionally influence the
model’s performance or introduce bias. Therefore,
we conduct experiments using a range of different
delimiters, categorized into three types:

• Random, non-semantic sequences of letters:
We use arbitrary sequences such as "abc:"
and "xyz:" to test if non-semantic strings im-
pact model performance.
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Figure 8: Ablation study on training data size in the
IND (BBH-test). The dotted line indicates the perfor-
mance of fine-tuning the student models by standard
CoT distillation using the full set (100% of) BBH-train
dataset.

• Random words: Common, unrelated words
like "cat:" for rationale and "dog:" for an-
swer are used to see if semantically irrelevant
words influence performance.

• Phrases with similar semantics: For this
category, we select phrases like "Reason:"
for the reasoning step and "Draw a
conclusion:" for the answer, as these
phrases align more closely with the logical
structure of the tasks.

Table 6 presents the performance of each de-
limiter type. We report the average performance
across all tasks. From the results, we observe
that the semantic delimiters "Rationale:" and
"Answer:" achieved the best average performance
(49.6%), showing that clear and intuitive cues im-
prove model outcomes. The non-semantic de-
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limiters "abc:" and "xyz:" resulted in moderate
performance, indicating that the model can func-
tion reasonably well with arbitrary signals, though
less effectively. Interestingly, random words like
"xyz:" and "dog:" yielded the lowest performance
(45.7%), suggesting the model might unintention-
ally ascribe meaning to these words, affecting rea-
soning. Phrases such as "Reason:" and "Draw a
conclusion:", which align with the model’s learn-
ing structure, performed nearly as well as the de-
fault semantic delimiters. While delimiters don’t
drastically affect performance, semantically mean-
ingful ones yield better results. Non-semantic or
random words can still function but tend to reduce
reasoning clarity, especially in more complex tasks.

A.4 Analysis of Failure Cases

We conducted a detailed error analysis, particularly
focusing on the performance of our model CasCoD
on OOD tasks. The evaluation involved precision,
recall, and F1 scores to better understand CasCoD’s
failure cases and its comparison to baselines. Be-
low we present both quantitative and qualitative
analysis of these failure cases.

A.4.1 Quantitative Analysis
We compared CasCoD with baselines on three chal-
lenging OOD subtasks: identify_math_theorems
(4-class), social_iqa (3-class), and LSAT-LR (5-
class) from the BB-sub and AGIEval datasets. The
results are summarized in Table 7. These met-
rics provide a more nuanced view than accuracy
alone and help identify where CasCoD struggles
the most. The quantitative results in Table 7 sug-
gest that CasCoD struggles to achieve competi-
tive precision and recall compared to other mod-
els across these tasks. For instance, in the iden-
tify_math_theorems task, CasCoD demonstrates
moderate accuracy (36.2%) but falls behind in both
precision (26.4%) and recall (24.2%), indicating
difficulty in making precise distinctions between
classes. In the social_iqa task, CasCoD’s perfor-
mance is significantly weaker, with an F1 score of
only 7.6%. For the LSAT-LR task, CasCoD also
underperforms across all metrics, indicating that
improvements are needed in reasoning about com-
plex arguments.

A.4.2 Qualitative Analysis
We analyzed the false examples from three un-
derperforming tasks: identify_math_theorems,
social_iqa, and LSAT-LR.We show the details of

each task in Table 19, Table 22 and Table 23, in-
cluding task description, an example question and
CasCoD’s CoTs, along with our analysis.

Task: identify_math_theorems This task in-
volves verifying mathematical theorems and cor-
recting them if necessary. CasCoD incorrectly se-
lected option (D) instead of the correct answer (B),
suggesting that the model struggles with distin-
guishing nuanced differences in mathematical no-
tation and formulations. This confusion is partic-
ularly apparent in complex mathematical expres-
sions, where slight changes in notation can lead to
drastically different conclusions.

Task: social_iqa This task requires the model
to understand the outcomes of social interactions.
In this example, CasCoD chose (C) instead of the
correct answer (A), indicating its difficulty in dis-
cerning the source of an emotional response and
its direct manifestations. This suggests that the
model may need more training data that focuses
on distinguishing subtle emotional cues in social
contexts.

Task: LSAT-LR This task involves analyzing as-
sumptions in logical arguments. In this case, Cas-
CoD selects option (C), but the correct answer is
(D). The error suggests that the model has difficulty
identifying the correct logical principles underly-
ing complex arguments, indicating that its logical
reasoning capabilities require further refinement
and more targeted training on complex argument
structures.

B Details of Experiment

B.1 Dataset Statistics

Table 8, Table 9, Table 10 and Table 11 show
the data statistics of AGIEval, ARC, BIG-Bench
Hard (BBH) and BIG-Bench Sub (BB-sub)5, re-
spectively.

B.2 Hyperparameters Settings

In our study, we ensure consistency in the hyperpa-
rameter settings across all baselines, including our
proposed CasCoD approach, to maintain the fair-
ness of our comparative analysis. Here, we detail
the hyperparameter configurations employed in our
experiments.

5For detailed descriptions of the subtasks in BIG-Bench,
please refer to https://github.com/google/BIG-bench/
blob/main/bigbench/benchmark_tasks/README.md.
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Task Method Precision Recall F1 Score Accuracy

identify_math_theorems

Std-CoT 37.9 39.6 31.7 40.4
SCOTT 25.0 25.0 20.6 31.9
MT-CoT 23.6 16.1 17.9 25.5
Step-by-step 36.1 33.7 31.9 14.9
CasCoD 26.4 24.2 25.1 36.2

social_iqa

Std-CoT 45.8 46.2 45.3 35.0
SCOTT 26.0 23.3 22.9 20.0
MT-CoT 48.5 52.4 47.7 30.0
Step-by-step 42.4 43.3 42.5 41.0
CasCoD 8.0 7.4 7.6 19.0

LSAT-LR

Std-CoT 27.0 26.2 26.1 20.0
SCOTT 26.6 26.9 26.3 15.3
MT-CoT 33.6 34.5 33.9 24.7
Step-by-step 39.9 34.9 32.6 30.3
CasCoD 23.7 23.2 23.2 22.2

Table 7: Performance comparison of CasCoD and baselines on three OOD subtasks using Precision, Recall, F1
Score, and Accuracy metrics.

No. Task Size # Choices

1 AQuA-RAT 254 5
2 LogiQA-EN 651 4
3 LSAT-AR 230 5
4 LSAT-LR 510 5
5 LSAT-RC 269 5
6 SAT-Math 220 4
7 SAT-EN 206 4
8 SAT-EN (w/o Psg.) 206 4

Sum 2546 -

Table 8: Statistics of AGIEval dataset.

Task Size # Choices

ARC-E 2376 4-5
ARC-C 1172 4-5

Table 9: Statistics of ARC test dataset.

Training Steps and Batch Size. The number of
training steps is determined based on the size of
the training dataset, the batch size, and the number
of gradient accumulation steps required. We main-
tain a consistent batch size across all baselines to
eliminate any performance discrepancies that could
arise from varying batch sizes.

Learning Rate. Our exploratory experiments
initially focus on the standard CoTs distillation
method using the LLaMA-2 model, revealing that
while the batch size had minimal impact on perfor-
mance, the learning rate was a critical factor. We
test learning rates of 1e-4, 2e-4, and 3e-4 and ob-
serve optimal performance at 2e-4 across Std-CoT
and other distillation baselines as well as our Cas-
CoD. Therefore, we set the learning rate to 2e-4 for

No. Task Size # Choices

1 Boolean Expressions 250 2
2 Causal Judgement 187 2
3 Date Understanding 250 6
4 Disambiguation QA 250 4
5 Dyck Languages 250 -
6 Formal Fallacies Syllogisms Negation 250 2
7 Geometric Shapes 250 11
8 Hyperbaton (Adjective Ordering) 250 2
9 Logical Deduction (3 objects) 250 3
10 Logical Deduction (5 objects) 250 5
11 Logical Deduction (7 objects) 250 7
12 Movie Recommendation 250 5
13 Multi-Step Arithmetic 250 -
14 Navigate 250 2
15 Object Counting 250 -
16 Penguins in a Table 146 5
17 Reasoning about Colored Objects 250 18
18 Ruin Names 250 11
19 Salient Translation Error Detection 250 6
20 Snarks 178 2
21 Sports Understanding 250 2
22 Temporal Sequences 250 4
23 Tracking Shuffled Objects (3 objects) 250 3
24 Tracking Shuffled Objects (5 objects) 250 5
25 Tracking Shuffled Objects (7 objects) 250 7
26 Web of Lies 250 2
27 Word Sorting 250 -

Sum 6511 -

Table 10: Statistics of BIG-Bench Hard dataset.

all methods involved in our study.

Epochs and Evaluation Strategy. Throughout
our training process, we monitor the training loss
curve and note that it generally plateaued by
the 15th epoch, suggesting that the models have
achieved convergence. Accordingly, we set the
number of epochs to 15 for 7B models. The pro-
cess of determining the number of epochs for other
model sizes follows a similar pattern. To mitigate
the potential risk of overfitting and to ensure that
our evaluation reflects the most effective model
configuration, we systematically select the check-
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No. Task Size # Choices

1 abstract_narrative_understanding 100 5
2 anachronisms 100 2
3 analogical_similarity 100 7
4 analytic_entailment 70 2
5 cause_and_effect 100 2
6 checkmate_in_one 100 26
7 cifar10_classification 100 10
8 code_line_description 60 4
9 conceptual_combinations 100 4
10 crass_ai 44 4
11 elementary_math_qa 100 5
12 emoji_movie 100 5
13 empirical_judgments 99 3
14 english_russian_proverbs 80 4
15 entailed_polarity 100 2
16 entailed_polarity_hindi 100 2
17 epistemic_reasoning 100 2
18 evaluating_information_essentiality 68 5
19 fantasy_reasoning 100 2
20 figure_of_speech_detection 59 10
21 goal_step_wikihow 100 4
22 gre_reading_comprehension 31 5
23 human_organs_senses 42 4
24 identify_math_theorems 53 4
25 identify_odd_metaphor 47 5
26 implicatures 100 2
27 implicit_relations 82 25
28 indic_cause_and_effect 100 2
29 intersect_geometry 100 26
30 kanji_ascii 100 5
31 kannada 100 4
32 key_value_maps 100 2
33 logic_grid_puzzle 100 3
34 logical_args 32 5
35 logical_fallacy_detection 100 2
36 metaphor_boolean 100 2
37 metaphor_understanding 100 4
38 minute_mysteries_qa 100 4
39 mnist_ascii 100 10
40 moral_permissibility 100 2
41 movie_dialog_same_or_different 100 2
42 nonsense_words_grammar 50 4
43 odd_one_out 86 5
44 parsinlu_qa 100 4
45 physical_intuition 81 4
46 play_dialog_same_or_different 100 2
47 presuppositions_as_nli 100 3
48 riddle_sense 49 5
49 similarities_abstraction 76 4
50 simple_ethical_questions 100 4
51 social_iqa 100 3
52 strange_stories 100 2
53 strategyqa 100 2
54 swahili_english_proverbs 100 4
55 swedish_to_german_proverbs 72 4
56 symbol_interpretation 100 5
57 timedial 100 3
58 undo_permutation 100 5
59 unit_interpretation 100 5
60 vitaminc_fact_verification 100 3
61 winowhy 100 2

Sum 5384 -

Table 11: Statistics of BIG-Bench sub dataset. We filter
the original dataset by retrieving tasks with keywords
"multiple choice" and randomly sample up to 100 exam-
ples per task. Note, the task in BBH will not be involved
in BB-sub.

points from the epoch that demonstrate the best
performance on the IND task. These checkpoints
are then used to evaluate performance on OOD
tasks.

Finally, the detailed hyperparameters in training
and inference can be found in Table 12 and Table

13, respectively.

Hyperparameter TinyLLaMA-1.1B LLaMA2-7B LLaMA2-13B

gradient accumulation steps 4 4 8
per device batch size 16 16 8
learning rate 2e-4 2e-4 2e-4
epoches 20 15 10
max length 1024 1024 1024
β of AdamW (0.9,0.999) (0.9,0.999) (0.9,0.999)
ϵ of AdamW 1e-8 1e-8 1e-8
γ of Scheduler 0.95 0.95 0.95
weight decay 0 0 0
warmup ratio 0 0 0
rank of LoRA 64 64 64
α of LoRA 32 32 32
target modules q_proj, v_proj q_proj, v_proj q_proj, v_proj
drop out of LoRA 0.05 0.05 0.05

Table 12: Training hyperparameters.

Arguments Student Teacher

do sample False True
temperature - 0.2
top-p 1.0 1.0
top-k - -
max new tokens 1024 2048
# return sequences 1 1

Table 13: Generation configs of students and teachers.

C Prompts

C.1 Prompts of Generating CoTs for
ChatGPT

We use the prompt template shown in Table 14 to
call the ChatGPT API to generate the CoTs for the
BBH-train datasets.

C.2 Prompts of Simulators
We use the prompt templates shown in Table 15
and Table 16 to call the ChatGPT and GPT4 API
to predict the answers given a question or with an
additional rationale, respectively.
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{Task Description}. Your response should conclude with the format "Therefore, the answer is".

Q: {Task Example Question No.1}
A: Let’s think step by step. {Human-Curated-CoTs No.1}.

Q: {Task Example Question No.2}
A: Let’s think step by step. {Human-Curated-CoTs No.2}.

Q: {Task Example Question No.3}
A: Let’s think step by step. {Human-Curated-CoTs No.3}.

Q: {QUESTION}
A: Let’s think step by step.

Table 14: Prompt template of gpt-3.5-turbo for generating the CoTs data with 3 shots.

system content You are a helpful and precise assistant for following the given instruction.

user content

[Instruction] {Please read the question and then give your answer based on the
question without any explanations.}

Task Description: {TASK_DESCRIPTION}

Question: {QUESTION}

Your Answer:

Table 15: Prompt template of simulators for predicting the answers when given the question.

system content You are a helpful and precise assistant for following the given instruction.

user content

[Instruction] {Please read the question and the rationale, and then give your answer
based on the question and the rationale without any explanations.}

Task Description: {TASK_DESCRIPTION}

Question: {QUESTION}

Rationale: {RATIONALE}

Your Answer:

Table 16: Prompt template of simulators for predicting the answers when given the question and rationale.

15639



Question: Evaluate the result of a random Boolean expression: not False and False or True or False.

Teacher

Rmember that (i) expressions inside brackets are always evaluated first and that (ii) the order of operations from highest priority to
lowest priority is "not", "and", "or", respectively.

We first simplify this expression "Z" as follows: "Z = not False and False or True or False = A and B or C or D" where
"A = not False", "B = False", "C = True", and "D = False".

Let’s evaluate A: A = not False = not (False) = True.

Plugging in A, B, C, and D, we get: Z = A and B or C or D = True and False or True or False = False or True or False =
True.

Therefore, the answer is True. ✓

Std-CoT

Rmember that (i) expressions inside brackets are always evaluated first and that (ii) the order of operations from highest priority to
lowest priority is "not", "and", "or", respectively.

We first simplify this expression "Z" as follows: "Z = not False and False or True or False = A and B or C or D" where
"A = not False", "B = False", "C = True", and "D = False".

Let’s evaluate A: A = not False = not (False) = True.

Plugging in A, B, C, and D, we get: Z = A and B or C or D = True and False or True or False = False or False or False
= False.

Therefore, the answer is True. ✗

CasCoD

Removing the brackets first: (not False and False) or (True or False) or False.

Let’s evaluate these expressions one by one:

- (not False and False): The boolean expression "not False and False" evaluates to True.

- (True or False): The boolean expression "True or False" evaluates to True.

- False: The boolean expression False evaluates to False.

When we evaluate these expressions, we get True.

Therefore, the answer is True. ✓

Table 17: A boolean-expression case from BIG-Bench Hard.

Question:

Answer extremely simple questions about the colors of objects on a surface. Q:On the table, you see several objects arranged in a row:
a burgundy paperclip, a purple cup, a mauve pencil, a yellow keychain, and a silver teddy bear. What is the color of the object furthest
from the teddy bear?
Options: (A) red (B) orange (C) yellow (D) green (E) blue (F) brown (G) magenta (H) fuchsia (I) mauve (J) teal (K) turquoise (L)
burgundy (M) silver (N) gold (O) black (P) grey (Q) purple (R) pink

Teacher

According to this question, the objects are arranged in a row, from left to right, as follows: (1) a burgundy paperclip, (2) a purple cup,
(3) a mauve pencil, (4) a yellow keychain, (5) a silver teddy bear.

The teddy bear is the last item on the list, namely (5). The object furthest from the teddy bear corresponds to (1), which
is a burgundy paperclip.

The color of the paperclip is burgundy. Therefore, the answer is (L).. ✓

Std-CoT

According to this question, the objects are arranged in a row, from left to right, as follows: (1) a burgundy paperclip, (2) a purple cup,
(3) a mauve pencil, (4) a yellow keychain, (5) a silver teddy bear. The object furthest from the teddy bear is the mauve pencil, which is
the third item on the list.

The color of the mauve pencil is mauve. Therefore, the answer is (L). ✗

CasCoD

Rationale: According to this question, the objects are arranged in a row, from left to right, as follows: (1) a burgundy paperclip, (2) a
purple cup, (3) a mauve pencil, (4) a yellow keychain, (5) a silver teddy bear.

The object furthest from the teddy bear corresponds to (1), which is a burgundy paperclip.

The color of the paperclip is burgundy.

Therefore, the answer is (L). ✓

Table 18: A reasoning about colored objects case from BIG-Bench Hard.
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Question:
h = 3a+ 28.6 A pediatrician uses the model above to estimate the height h of a boy, in inches, in terms of the boy’s age a, in years,
between the ages of 2 and 5. Based on the model, what is the estimated increase, in inches, of a boy’s height each year?
Options: (A)3 (B)5.7 (C)9.5 (D)14.3

Teacher

Step 1: We are given the model h = 3a + 28.6 which represents the estimated height h of a boy in terms of his age a.

Step 2: We need to find the estimated increase in height each year. This means we need to find the change in height for a
change in age of 1 year.

Step 3: To find the change in height, we can subtract the height at age a + 1 from the height at age a. So, the change in
height is (3(a + 1) + 28.6) − (3a + 28.6).

Step 4: Simplifying the expression, we get 3a + 3 + 28.6 − 3a − 28.6.

Step 5: The terms 3a and −3a cancel out, leaving us with 3 + 3.

Step 6: The change in height is 6 inches.

Therefore, the answer is (A) 3. ✗

Std-CoT
This question focuses on the increase in height each year. According to the model, the height of a boy between the ages of 2 and 5 is

approximately 36 inches. Therefore, the estimated increase in height each year is 3 inches. Therefore, the answer is (A). ✗

CasCoD

Rationale: This question asks about the estimated increase, in inches, of a boy’s height each year. According to the model, the height
of a boy increases by 3 inches each year between the ages of 2 and 5.

Therefore, the answer is (A) 3 inches. ✓

Table 19: A sat-math case from AGIEval.

Question: Which gas is the most abundant in Earth’s atmosphere?
Options: (A) oxygen (B) nitrogen (C) water vapor (D) carbon dioxide

Teacher

First, we know that Earth’s atmosphere is primarily composed of gases.

Second, we need to determine which gas is the most abundant.

Third, we can eliminate options (A) oxygen and (C) water vapor because they are present in smaller quantities compared
to the other gases.

Finally, we are left with options (B) nitrogen and (D) carbon dioxide.

Considering that nitrogen makes up about 78% of Earth’s atmosphere, while carbon dioxide only makes up about 0.04%,
it is clear that nitrogen is the most abundant gas in Earth’s atmosphere.

Therefore, the answer is (B) nitrogen. ✓

Std-CoT

The percentage of each gas in the atmosphere is given by the following table:

Gas Percentage

oxygen 20.95

nitrogen 78.09

water vapor 0.4

carbon dioxide 0.04

According to this table, oxygen is the most abundant gas in Earth’s atmosphere. Therefore, the answer is (A). ✗

CasCoD

Rationale: According to the World Bank, the composition of Earth’s atmosphere is approximately 78% nitrogen, 21% oxygen, 0.93%
argon, and small amounts of other gases. Nitrogen is the most abundant gas in Earth’s atmosphere.

Therefore, the answer is (B). ✓

Table 20: A case from AI2 Reasoning Challenge.
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Description The task involves verifying mathematical theorems and correcting them if false.

Example Question

What follows is a purported mathematical theorem. Some will be true, while other
will be false. If the theorem is correct, write the theorem exactly as it is
given. Otherwise, write a corrected version of the theorem. Write all answeres in
compilable LaTeX.

Theorem: Let G be a locally compact abelian group and let Ĝ := Hom(G,R)
be its Pontryagin dual. There is a canonnical isomorphism between G and

̂̂
G.

Options:
(A) Let G be a locally compact abelian group and let Ĝ := Hom(G,R) be its

Pontryagin dual. There is a canonnical isomorphism between G and Ĝ.
(B) Let G be a locally compact abelian group and let Ĝ := Hom(G,T) be its

Pontryagin dual. There is a canonnical isomorphism between G and
̂̂
G.

(C) Let G be a locally compact abelian group and let Ĝ := Hom(G,C) be its

Pontryagin dual. There is a canonnical isomorphism between G and
̂̂
G.

(D) Let G be a locally compact abelian group and let Ĝ := Hom(G,R) be its

Pontryagin dual. There is a canonnical isomorphism between G and
̂̂
G.

Corrected Theorem:

CasCoD’s CoT

Here is the correct version of the theorem: Let G be a locally compact abelian group
and let Ĝ := Hom(G,R) be its Pontryagin dual. There is a canonical isomorphism

between G and
̂̂
G.

Therefore, the answer is (D).

Table 21: A failure case on identify_math_theorems task.

Description This task asks about probable outcomes in social interactions.

Example Question

Sasha gave the team a sense of inspiration when they gave a pep talk. How would
Others feel as a result?
Options:
(A) Full of spirit
(B) Like they are ready to do their best
(C) Very motivating

CasCoD’s CoT

Here in this question, we are told that Sasha gave the team a sense of inspiration
when they gave a pep talk. This suggests that Sasha’s presence and words had a
positive impact on the team and helped to motivate and inspire them. As a result,
Others would likely feel like they are ready to do their best and feel motivated
and inspired by Sasha’s presence.
Therefore, the answer is (C).

Table 22: A failure case on social_iqa task.
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Description This task asks about probable outcomes in social interactions.

Example Question

Passage: Chairperson: The board of directors of our corporation should not allow
the incentives being offered by two foreign governments to entice us to expand our
operations into their countries without further consideration of the issue. Although
there is an opportunity to increase our profits by expanding our operations there,
neither of these countries is politically stable.
Question: The chairperson’s reasoning most closely conforms to which one of the
following principles?
Options:
(A)A corporation should never expand operations into countries that are politically
unstable.
(B)Corporations should expand operations into countries when there is a chance of
increasing profits.
(C)Political stability is the most important consideration in deciding whether to
expand operations into a country.
(D)Corporations should always be cautious about expanding operations into politically
unstable countries.
(E)Boards of directors should always disregard governmental incentives when
considering where to expand corporate operations.

CasCoD’s CoT

Here in this question, the chairperson expresses concern about the political
stability of the two foreign countries and suggests that the incentives being
offered by the governments should be further considered before making a decision.
The principle that aligns most closely with this reasoning is (D), which states that
corporations should always be cautious about expanding operations into politically
unstable countries. This principle acknowledges the potential risks and challenges
associated with operating in countries with political instability and recommends
caution and careful consideration before making a decision.
Therefore, the answer is (C).

Table 23: A failure case on LSAT-LR task
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