
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 14978–15003
November 12-16, 2024 ©2024 Association for Computational Linguistics

GRASS: Compute Efficient Low-Memory LLM Training with Structured
Sparse Gradients

Aashiq Muhamed1, Oscar Li2, David Woodruff3,
Mona Diab1, Virginia Smith2

{amuhamed, runlianl, dwoodruf, mdiab, smithv}@andrew.cmu.edu
1 Language Technologies Institute, 2 Machine Learning Department

3 Department of Computer Science
Carnegie Mellon University

Abstract

Large language model (LLM) training and fine-
tuning are often bottlenecked by limited GPU
memory. While existing projection-based op-
timization methods address this by projecting
gradients into a lower-dimensional subspace to
reduce optimizer state memory, they typically
rely on dense projection matrices, which can in-
troduce computational and memory overheads.
In this work, we propose GRASS (GRAdient
Stuctured Sparsification), a novel approach
that leverages sparse projections to transform
gradients into structured sparse updates. This
design not only significantly reduces memory
usage for optimizer states but also minimizes
gradient memory footprint, computation, and
communication costs, leading to substantial
throughput improvements. Extensive exper-
iments on pretraining and finetuning tasks
demonstrate that GRASS achieves competitive
performance to full-rank training and existing
projection-based methods. Notably, GRASS
enables half-precision pretraining of a 13B pa-
rameter LLaMA model on a single 40GB A100
GPU—a feat infeasible for previous methods—
and yields up to a 2× throughput improvement
on an 8-GPU system. Code is released here1.

1 Introduction

Pretraining and finetuning large language models
(LLMs) are often memory bottlenecked: storing
model parameters, activations, gradients, and op-
timizer states in GPU memory is prohibitively ex-
pensive. As an example, pretraining a LLaMA-
13B model from scratch under full bfloat16 pre-
cision with a token batch size of 256 requires at
least 102 GB memory (24GB for trainable param-
eters, 49GB for Adam optimizer states, 24GB for
weight gradients, and 2GB for activations), mak-
ing training infeasible even on professional-grade
GPUs such as Nvidia A100 with 80GB memory
(Choquette et al., 2021). Existing memory efficient

1https://github.com/aashiqmuhamed/GRASS

system-level techniques like DeepSpeed optimizer
sharding/offloading (Rajbhandari et al., 2020) and
gradient checkpointing (Chen et al., 2016) trade
off throughput for memory advantages which slow
down pretraining. As models scale, the memory
and compute demands of increasingly large LLMs
continue to outpace hardware advancements, high-
lighting the need for advances in optimization al-
gorithms beyond system-level techniques.

Various optimization techniques have been pro-
posed to enhance the efficiency of LLM train-
ing. One prominent approach is parameter-efficient
finetuning (PEFT), such as Low-Rank Adaptation
(LoRA), which reparameterizes weight matrices
using low-rank adaptors (Hu et al., 2021). This sig-
nificantly reduces the number of trainable param-
eters, yielding smaller optimizer states and gradi-
ents. However, despite its efficiency, LoRA and its
derivatives (Sheng et al., 2023; Zhang et al., 2023;
Xia et al., 2024) often underperform compared to
full-rank finetuning (Biderman et al., 2024). Vari-
ants like ReLoRA (Lialin et al., 2023) extend LoRA
to pretraining by periodically updating the full ma-
trix with new low-rank updates, but it still requires
a costly initial full-rank training warmup which
makes it impractical in memory-constrained sce-
narios.

To allow for full-rank pretraining and finetuning,
another approach for memory-efficient LLM
training involves designing adaptive optimizers
(Shazeer and Stern, 2018). One such class,
memory-efficient subspace optimizers, utilizes
projection matrices to project high-dimensional
gradients into a lower-dimensional space and
performs optimization within the subspace. This
projection significantly reduces the memory foot-
print required to store optimizer states. Existing
methods such as GALORE (Zhao et al., 2024) and
FLORA (Hao et al., 2024) employ dense projection
matrices, which introduce additional memory and
computational overhead. In contrast, we employ

14978

https://github.com/aashiqmuhamed/GRASS

Algorithm 1 Memory-efficient Subspace Optimization

Input: Initial weights W0 ∈ Rm×n with m ≤ n; update
frequency K; total iterations T ; subspace rank r with
r ≪ m; an off-the-shelf optimizer function opt to update
the optimizer state; scale factor α.

Output: Optimized weights W (T)

1: t← 0
2: W (0) ←W0 ▷ Set initial weights W0 ∈ Rm×n

3: S(0) ← opt.init(0r×n) ▷ Adam state ∈ R2×r×n

4: for t← 0 to T do
5: if t ≡ 0 (mod K) then
6: // Compute new projection matrix
7: P ← computeP (∇L(W (t))) ▷ P ∈ Rm×r

8: // [Optional] Update optimizer state
9: S(t) ← update_state(S(t))

10: end if
11: GC ← P⊤∇L(W (t)) ▷ GC ∈ Rr×n

12: S(t+1),∆(t+1) ← opt.update(S(t), GC)

13: W (t+1) ←W (t) + αP∆(t+1) ▷ Apply update
14: end for

Algorithm 2 MeSO Implementations

FLORA
Compute dense P : Sample Pij i.i.d. fromN (0, 1/r).
Update_state: Updates momentum as P(t+1)P

⊤
(t)S

(t).
Compute GC : Computes GC using dense matmul.
Apply update: Updates full W after dense matmul.

GALORE
Compute dense P : Top-r left singular vectors of grad GW .
Update_state: Maintains optimizer state.
Compute GC : Computes GC using dense matmul.
Apply update: Updates full W after a dense matmul.

GRASS (ours)
Compute sparse P : Computes the selection matrix B and
the diagonal scaling matrix ρ based on row norms of GW .
Update_state: Resets S(t) to zero as necessary.
Compute GC : Uses matrix associativity and sparse matmul.
Apply update: Sparse update W after sparse matmul.

structured sparse matrices for P , demonstrating
their advantages in memory, computation, and
communication efficiency across both pretraining
and finetuning. Our main contributions include:

1. We introduce GRASS, a novel method that
enables full parameter training of LLMs with
structured sparse gradients. By leveraging sparse
projection matrices, GRASS significantly reduces
memory consumption and communication over-
head compared to existing projection-based op-
timization techniques. We theoretically motivate
and empirically analyze effective ways to con-
struct the sparse projection matrix for GRASS.

2. We conduct extensive experiments on both
pretraining and finetuning tasks, demonstrating
that GRASS converges faster in wall-clock time
than existing projection-based methods due to its
additional compute efficiency benefits. GRASS

exhibits minimal performance degradation (<0.1
perplexity gap) compared to full-rank training
on the 1B parameter LLaMA model while
achieving a 2.5× reduction in memory footprint.

3. We present an optimized PyTorch imple-
mentation of GRASS for modern hardware,
incorporating implementation tricks to enhance
training throughput, stability, and scalability.
For pretraining a 1B LLaMA model, GRASS

achieves a 25% throughput increase on a single
GPU and up to a 2× throughput improvement
on 8 GPUs over full-rank training and GALORE.
Furthermore, GRASS’s low memory footprint
enables half-precision training of a 13B LLaMA
model on a single 40GB A100 GPU, a feat that
existing projection-based optimization methods

cannot achieve.

2 A Unified View of Memory-efficient
Subspace Optimizers (MeSO)

High memory usage of full-rank training. Stan-
dard full-rank training of the weight matrix W ∈
Rm×n in any linear layer of an LLM involves
1) computing the full-parameter gradient GW :=
∇L(W) and 2) using it to update the model
weights and optimizer states:

S(t+1),∆W (t) ← opt.update(S(t),∇L(W (t)))

W (t+1) ←W (t) +∆W (t) (1)

Here, opt.update denotes the optimizer’s up-
date function, which uses the current optimizer
state S(t) and the gradient to compute the updated
state S(t+1) and a learning-rate-adjusted weight up-
date ∆W (t) (see Appendix A for the pseudocode
for the Adam optimizer). However, storing both the
gradient and optimizer state incurs significant mem-
ory overhead – for example, an additional 3mn
floats for Adam – motivating the need for more
memory-efficient optimization techniques. We dis-
cuss these techniques in the following sections,
while Appendix C covers additional related work.

Memory-efficient optimization in a subspace.
To minimize the memory usage of the opti-
mizer state, memory-efficient subspace optimiz-
ers (MeSO) restrict the optimization to a sub-
space defined by a projection matrix P ∈
Rm×r (r ≪ m) through the following objective:
minA∈Rr×n L(W0 + PA). Applying an off-the-
shelf optimizer like Adam to learn the smaller ma-
trix A reduces the optimizer state size to O(rn),

14979

which can be much smaller than the O(mn) used
in full-rank training. We provide the pseudocode of
this optimization procedure in Algorithm 1, which
unifies both existing methods and our proposed
method2. We highlight the key parts of this algo-
rithmic framework below.

Computing the projection matrix, computeP .
Employing a fixed P throughout training confines
the search to its column space, limiting the learned
model’s expressiveness. To address this, MeSO
methods periodically recompute P every K itera-
tions with different choices (Algorithm 2): FLORA

(Hao et al., 2024) independently samples each en-
try of P from N (0, 1/r), whereas GALORE (Zhao
et al., 2024) sets P to be the top-r left singular vec-
tors of the full-parameter gradient matrix ∇L(W)
obtained through a Singular Vector Decomposition
(SVD). Despite these differences, a commonality
among prior works is the choice of dense matrices
for P . In our work, we explore the use of sparse
matrices as an alternative and propose several prin-
cipled choices for such matrices in Section 3.2.

Optimizer state update, update_state. Updat-
ing P can modify the subspace optimization land-
scape. Different methods have proposed distinct
strategies for updating the existing optimizer state
S(t). We describe our strategy in Section 3.3.

Projection of the full gradient, P⊤∇L(W (t)).
MeSO methods require projecting the m× n full
parameter gradient matrix ∇L(W (t)) into a lower-
dimensional subspace r × n via left multiplication
with P⊤. Existing methods compute this projec-
tion by first materializing the full gradient matrix
∇L(W (t)) in memory before performing the left
projection multiplication. In contrast, GRASS lever-
ages the associative property of matrix multipli-
cation and the sparse structure of P to compute
this projection without materializing the full gra-
dient. This yields considerable computational and
memory savings, detailed in Section 3.1. These
efficiencies also extend to the weight update step,
W (t) + αP∆(t+1), due to the sparsity of P . Here,
the scale factor α (also used in GALORE) adjusts
the effective learning rate of these linear layer
weight matrices relative to other trainable model
parameters.

2This algorithm version never materializes the A matrix,
but is equivalent as we show in Appendix B.

3 GRASS: a more-efficient MeSO optimizer

Unlike prior MeSO methods that employ dense
projection matrices, GRASS (GRAdient Structured
Sparsification) utilizes a sparse projection matrix
P ∈ Rm×r, where each column pj ∈ Rm has at
most one non-zero entry (∥pj∥0 ≤ 1,∀j ∈ [r]).
This structure effectively constrains the subspace
optimization to update only r rows of the full
weight matrix W , inducing structured row-sparsity
in the gradients – hence the name GRASS. By
periodically updating P , GRASS learns different
rows of W in different iterations, resembling a
generalized form of coordinate gradient descent.
We dive into the efficiency benefits of this sparse
projection and various methods for constructing
P in the following subsections.

3.1 Efficiency gains of GRASS

Efficient Storage of P . In GRASS, the sparse
projection operator P⊤ ∈ Rr×m can be expressed
as the product P⊤ = ρB, with a diagonal scal-
ing matrix ρ ∈ Rr×r and a binary selection ma-
trix B ∈ {0, 1}r×m which selects a single j-th
row in GW for its i-th row Bij = 1. Both ρ and
B can be efficiently stored using r instead of mr
floats, making GRASS more memory-efficient in
optimizer-related storage (Optimizer column in
Table 1).

Efficient Gradient Projection. GRASS avoids
computing and storing the full gradient matrix
GW ∈ Rm×n for projection (P⊤GW) , unlike
existing MeSO methods (Zhao et al., 2024; Hao
et al., 2024). Leveraging the chain rule, we express
GW = (∇yL)

⊤X , where ∇yL ∈ Rb×m is the gra-
dient of the loss with respect to the layer outputs
and X ∈ Rb×n represents the input activations,
with b being the token batch size. This allows us to
apply the associative rule and compute3 the sparse
gradient projection efficiently as ρ((B∇yL

⊤)X).
This insight yields significant advantages in com-
pute, memory, and communication:
• Compute savings: By exploiting this regrouped

multiplication, GRASS computes the projection
in just rbn+ rn FLOPs. In contrast, dense pro-
jection methods like GALORE and FLORA re-
quire mbn+ rmn FLOPs, making GRASS over
m/r times more computationally efficient. This
significant advantage arises from 1) leveraging
the associative rule, 2) the equivalence of left
3Implementation-wise, we only need to define a custom

backward pass for the PyTorch linear layer.

14980

Method Memory FLOPs Comm

Weights Optimizer Grad Regular step (Lines 11-13) computeP step (Line 7)

Full mn 2mn mn mbn+mn+ Cmn 0 mn
LoRA mn+mr + nr 2mr + 2nr mr + nr mbn+ 2rmn+ C(rm+ rn) + rn+ rm 0 mr + nr
ReLoRA mn+mr + nr 2mr + 2nr mr + nr mbn+ 2rmn+ C(rm+ rn) + rn+ rm mnr +mn mr + nr
FLORA mn mr + 2nr mn mbn+ 2rmn+mn+ Crn mr mn
GaLore mn mr + 2nr mn mbn+ 2rmn+mn+ Crn mnmin(n,m) mn
GRASS (ours) mn 2r + 2nr nr rbn+ 3rn+ Crn mn+m+ r nr

Table 1: Summary of Memory, FLOPs, and Distributed Communication Volume for the different methods. GRASS improves
over existing methods in Memory, FLOPs, and Communication. Weight W ∈ Rm×n. b is token batch size, r is subspace rank,
C cost of optimzer update operations per parameter, G ∈ Rm×n, P ∈ Rm×r . Detailed breakdown in Appendix G.

multiplication by ρ to a simple row-wise scaling
(costing only nr FLOPs), and 3) the cost-free
row selection performed by left multiplication
with B.

• Memory savings: GRASS’s multiplication or-
der eliminates the need to ever materialize the
full gradient matrix, directly yielding the pro-
jected result. This saves memory by avoiding the
storage of mn floats required by other methods
(see the Grad column in Table 1). Importantly,
this memory advantage is independent of and
can be combined with layerwise weight update
techniques (Lv et al., 2023b; Zhao et al., 2024),
which reduce memory by processing gradients
one layer at a time.

• Communication savings: During distributed
training, existing MeSO methods like GALORE

and FLORA communicate the full m × n gra-
dient matrix across workers, leading to a com-
munication cost of O(mn). Since GRASS is
implemented in the backward pass, it can di-
rectly compute and communicate the r × n pro-
jected gradient without materializing the full gra-
dient, reducing communication volume to O(rn)
(Comm column in Table 1).

Efficient Weight Update. The weight update
step, W (t) + P∆(t+1), also benefits from the spar-
sity of P in GRASS. Instead of constructing the
full m× n update matrix P∆(t+1), which is row-
sparse, GRASS directly computes and applies the
updates to the r nonzero rows. This reduces the
computational cost to just 2rn FLOPs, compared
to the rmn+mn FLOPs required by dense update
methods like GALORE and FLORA. The total com-
pute cost of GRASS during a regular step (which
includes this efficient weight update, the aforemen-
tioned efficient gradient projection, and the opti-
mizer computation) compares favorably against
other baselines as shown in the Regular step col-
umn in Table 1.

3.2 Choices of sparse P

We now discuss concrete choices for computeP by
specifying how to construct ρ and B for P⊤ = ρB.
To simplify the notation, we denote the index of the
only non-zero entry in the j-th row of B by σj ∈
[m]. We consider both stochastic and deterministic
approaches to construct {σj}rj=1 and {ρjj}rj=1.

A. Stochastic construction of P . Since σj ∈
[m] is a categorial variable, a natural approach
is the with-replacement sampling of σj

i.i.d.∼
Multinomial(1, q), with the probability of sam-
pling any integer k ∈ [m] given by qk. To ensure
the unbiasedness4 of the reconstructed gradient
E[PP⊤GW] = GW for its optimization conver-
gence benefits, we set ρjj = 1√

r·qσj
after sampling

σj . To set the multinomial distribution parameter
q, we consider two different principles:
• The Variance-reduction principle: Here we want

to minimize the total variance of the gradient
estimate PP⊤GW . The optimal q is given by
the following theorem (proof in Appendix E):

Theorem 3.1. Among all the Multinomial(1, q)
distributions, the one that is proportional to the
row norms of G with qk = ∥Gk∥2∑m

i=1 ∥Gi∥2 minimizes
the total variance of the gradient estimate
PP⊤G.

We call this method Multinomial-Norm.
• The Subspace-preservation principle: When
P is fixed for a large K number of iterations
and the gradient is low-rank (Zhao et al., 2024),
reducing the variance of the gradient estimate
could be less important than preserving the
low-rank subspace of GW upon projection.
To achieve this, we set qk proportional to the
squared row norms of GW (qk ∝ ∥Gk∥2) and
call this method Multinomial-Norm2. This q
distribution gives us approximate leverage score
sampling (Magdon-Ismail, 2010), which ensures

4See the proof of this statement in Appendix D.

14981

high probability preservation of the low-rank sub-
space with little additive error (see Appendix F).

In addition to these two principled unbiased
sampling with replacement methods, we also
experiment with the Uniform Distribution with
qk = 1/m as a baseline. Furthermore, we explore
the non-replacement sampling counterparts (-NR)
for each of the three distributions. Since it is
analytically intractable to guarantee unbiasedness
in this case, we set ρjj = 1 for the NR methods.

B. Deterministic construction of P . We con-
sider minimizing the gradient reconstruction er-
ror in Frobenius norm ∥PP⊤GW −GW ∥2F as the
principle to choose P . One minimizing solution
sets all ρjj = 1 and {σj}rj=1 to be the indices of
rows of GW with largest row-norms. We call this
computeP method Top-r.

Compute cost. Unlike GALORE, GRASS only
requires computing row norms of GW but not an
SVD in the update step. (computeP column in
Table 1). Furthermore, no additional memory is
consumed for SVD as in GALORE.

3.3 Implementation Details

Updating the Optimizer State. Updating the
projection matrix P in GRASS can lead to signif-
icant shifts in the selected rows of the parameter
matrix W between iterations. Since different rows
of W may have distinct gradient moment statis-
tics, we reset the optimizer states to zero during the
update_state step. To further stabilize training
after such updates, we implement a learning rate
warmup phase. This combined approach effectively
mitigates training instabilities, particularly those
observed in smaller models during pretraining.

Distributed Training. Since GRASS updates the
projection matrix during each worker’s backward
pass in distributed training, synchronizing the se-
lected indices across workers is necessary. To
minimize communication overhead, we first com-
pute the gradient GW and then sketch it by sam-
pling r columns based on their norms, resulting
in a sketched matrix Gcomm ∈ Rm×r. An all-
reduce operation is performed on Gcomm, ensur-
ing all workers access a consistent version of the
sketch before sampling indices. Furthermore, we
implement custom modifications to prevent Py-
Torch DDP (Paszke et al., 2019) from allocating
memory for full gradients in our GRASS implemen-
tation (see Appendix H for details).

4 Experiments

4.1 Pretraining Performance

Experimental setup. We compare5 GRASS

against Full-rank (without gradient projection) and
GALORE by pretraining LLaMA-based models
(Touvron et al., 2023) in BF16 on the cleaned
C4 subset of Dolma (Soldaini et al., 2024). We
train without data repetition over a sufficiently
large amount of data, across a diverse range
of model sizes (60M, 350M, 1B). We adopt
a LLaMA-based architecture with RMSNorm
and SwiGLU activations (Touvron et al., 2023;
Shazeer, 2020; Zhang and Sennrich, 2019). For
both GRASS and GALORE, we fix the frequency
K at 200 iterations, α at 0.25, use a consistent rank
r, and project the linear layers within the attention
and feed-forward layers. P is applied to project
the smaller dimension of GW to achieve the best
memory-performance tradeoff (Zhao et al., 2024).
We use the same batch size and tune the learning
rate individually for each method (see Appendix I).

Model size 60M 350M 1B

Full-Rank 36.97 18.71 18.12
GALORE 37.09 19.38 19.23
GRASS (Top-r) 37.24 19.49 19.04

r/dmodel 128 / 512 128 / 1024 256 / 2048
Tokens 1.0B 5.4B 8.8B

Table 2: Train perplexity of LLaMA models on the C4 subset
of Dolma. GRASS (Top-r) is competitive with GALORE, but
with lower memory footprint and higher training throughput.

Figure 1: Pretraining 1B LLaMA on 8.8B tokens of C4 with
GRASS (Top-r), Full-rank and GALORE. (Left) Train perplex-
ity vs seen tokens. (Right) Train perplexity vs wall-clock time.
GRASS outperforms GALORE and shows < 0.01 perplexity
gap with Full-rank loss curve in wall-clock time.

Results. As shown in Table 2, GRASS matches
GALORE and approaches Full-rank’s performance
within a perplexity gap of less than 1 even when
r/dmodel = 8. In Figure 1, for the 1B model we see
that this gap disappears when we look at perplex-
ity vs. training time (as opposed to tokens seen)

5We compare against FLORA in Section 4.2 and 4.3 as it
was primarily intended for finetuning in the original work.

14982

on a single A100 GPU, where due to increased
pretraining throughput GRASS closely follows the
Full-rank loss curve with < 0.1 perplexity gap.

4.2 Finetuning Performance
Experimental setup. We evaluate GRASS,
LoRA, Full-rank, GALORE, and FLORA on the
GLUE NLU benchmark (Wang et al., 2018a) by
finetuning a pretrained RoBERTa-Base model
(Liu et al., 2019) with a sequence length of 128 in
float32 (results on the dev set). For all the optimiza-
tion methods, we restrict them to only optimize the
linear layers in the attention and MLP layers for
three epochs with individually tuned learning rates.
We set rank r = 8 for all the low-rank methods.
For the MeSO methods, we set the update
frequency K = 100 and tune the scale factor α for
each method. (See more details in Appendix I.)

Results. In Table 3, GRASS Top-r performs com-
petitively with LoRA, FLORA, and GALORE even
though GRASS exhibits a reduced memory foot-
print and improved training throughput compared
to these methods as we show in Section 4.4.

4.3 Instruction-finetuning Performance
Experimental setup. We compare GRASS

against Full finetuning, GALORE, FLORA, and
LoRA on instruction finetuning using a LLaMA-
7B model (Touvron et al., 2023) pretrained on 1T
tokens. We finetune on Alpaca (Taori et al., 2023)
(52k samples) and a 100k sample subset of FLAN
v2 (Wei et al., 2021) from Tulu (Wang et al., 2023)
(due to FLAN v2’s scale), using BF16 precision,
batch size 64, and a source and target sequence
length of 512. All methods, except for Full fine-
tuning which updates all parameters, are restricted
to only update the linear layers in the attention
and MLP layers with rank r = 64 . We finetune
for 1000 steps on Alpaca (1.26 epochs) and
1500 steps on Flan v2 (1.08 epochs). Additional
hyperparameters are in Appendix I. Following
prior work (Touvron et al., 2023; Dettmers et al.,
2023), we assess the instruction-tuned models’
average 5-shot test performance on the MMLU
benchmark (Hendrycks et al., 2020) (57 tasks).

Results. As shown in Table 4, GRASS per-
forms competitively with full-parameter finetuning,
FLORA, GALORE, and LoRA during instruction
finetuning on both Alpaca and Flan v2. Further-
more, Section 4.4 demonstrates that, at r = 64,
GRASS not only matches LoRA’s performance but

Figure 2: Normalized pretraining throughput at r = 64 for
GRASS (Top-r), Full-rank, and GALORE relative to Full-rank.
For model size > 60m, GRASS throughput exceeds Full and
GALORE throughput by > 25%.

also boasts a lower memory footprint and an 18%
throughput increase. Because GRASS can perform
higher rank training with multiple projection ma-
trix updates, it is expected to further outperform the
rank-constrained LoRA in more challenging tasks
with larger datasets.

4.4 Efficiency analysis

Pretraining Throughput. Figure 2 compares the
BF16 pretraining throughput (tokens/s) of GRASS

and GALORE relative to Full-rank, across model
sizes, for both regular and projection update6 steps.
We use rank r = 64 on attention and feedforward
layers, sequence length 256, and total batch size
1024 on a single 80GB A100 GPU. See Appendix I
for detailed settings. We did not employ activation
checkpointing, memory offloading, or optimizer
state partitioning in our experiments.

While GRASS exhibits lower throughput than
Full-rank at 60M parameters (due to customized
matrix multiplication overhead), GRASS signifi-
cantly outperforms both at 1B and 7B parameters,
achieving 26% and 33.8% higher throughput than
Full-rank, and 27% and 26.7% higher than GA-
LORE (for the regular step). GRASS’s projection
update overhead is minimal, unlike GALORE’s
costly SVD computations. The throughput
advantage for GRASS is expected to grow with
larger batch sizes, benefiting further from its lower
memory footprint compared to other methods.
Appendix Figure 11 provides further throughput
comparisons across different ranks, showing that
GRASS achieves its highest relative throughput
gains at rank (r = 64), with diminishing returns
as rank increases or model size decreases.

6The regular update iteration doesn’t invoke computeP but
only updates the parameters, while the projection update step
performs both.

14983

Model COLA MNLI MRPC QNLI QQP RTE SST2 STSB WNLI Average

Full-rank 59.62 87.36 91.51 92.60 90.43 79.03 94.49 90.38 56.34 82.42

LoRA 58.36 86.80 90.09 92.49 89.43 75.09 94.49 90.22 56.34 81.48
GALORE 57.64 87.40 88.97 92.86 88.94 76.17 94.49 89.76 56.34 81.40
FLORA 59.65 86.65 89.82 92.09 88.61 76.34 94.27 90.06 56.34 81.53
GRASS (Top-r) 59.16 86.92 89.60 92.42 88.65 76.37 94.15 90.13 56.34 81.53
GRASS (Multi-Norm2-NR) 58.87 86.08 89.94 91.69 83.36 76.17 94.73 90.00 56.34 81.35
GRASS (Multi-Norm-R) 57.81 86.25 87.58 91.80 88.06 68.59 94.27 89.73 56.34 80.05
GRASS (Uni-NR) 49.66 85.70 78.01 90.94 87.56 57.76 93.35 84.86 56.34 76.02

Table 3: Evaluating Full-rank and different memory-efficient optimization methods on the GLUE benchmark using RoBERTa-
Base. GRASS is competitive with LoRA and FLORA but with a lower memory footprint. Values in blue represent the top three
results in each column.

Figure 3: Pretraining memory footprint for GRASS (Top-r), GALORE, and Full across model sizes for a regular (non projection
update step) and r = 128. GRASS has a lower memory footprint across all model sizes and the reduction is greater at larger
model sizes.

Model MMLU Acc (%)

LLaMA-7b Trainable Params Alpaca FLAN v2

Full 6898.3M 38.12 35.85
LoRA 159.90M 38.21 34.98
GALORE 6476.0M 37.93 34.72
FLORA 6476.0M 37.86 35.16
GRASS (Top-r) 6476.0M 38.37 36.88

Table 4: Average 5-shot MMLU accuracy for LLaMA-7B
models finetuned with various methods across Alpaca and
FLAN v2. GRASS, FLORA, GALORE, and LoRA were ap-
plied to attention and MLP layers using rank 64. GRASS
not only competes effectively with full training but also of-
fers advantages in terms of lower memory usage and higher
throughput compared to all baseline methods.

Finetuning Throughput. Figure 4 compares the
BF16 finetuning throughput of GRASS, GALORE,
and LoRA across various LLaMA model sizes,
focusing on the regular step. Unlike the pretraining
throughput benchmark, we finetune only the atten-
tion and MLP layers using r = 64. We maintain a
uniform local batch size, sequence length 256, and
total batch size of 1024 across all methods (detailed
hyperparameters are provided in Appendix I).
For the 7B parameter model, GRASS achieves
throughput improvements of 26% and 18% over
GALORE and LoRA, respectively. Appendix
Figure 12 provides further throughput comparisons
and analysis across ranks 8, 16, 32, and 64,
demonstrating that GRASS consistently maintains

Figure 4: Normalized LLaMA finetuning throughput of
GRASS (Top-r), GALORE, and LoRA relative to LoRA. We
use rank r = 64. GRASS is > 18% faster than LoRA.

its throughput advantage across these ranks.

Pretraining Memory. Figure 3 benchmarks the
BF16 memory footprint of pretraining GRASS

against Full-rank and GALORE across various
model sizes (token batch size 256, rank r=128),
focusing on the regular training step. We bench-
mark memory efficiency with a token batch size of
256, consistent with (Zhao et al., 2024, Fig 1) since
activation memory can be controlled through mi-
crobatching while reducing gradient and optimizer
state memory requires techniques like GRASS.

GRASS consistently exhibits a lower memory
footprint than both Full-rank and GALORE, with
the memory reduction increasing with model size.
This advantage stems from GRASS’s reduced

14984

Figure 5: Communication Efficiency: Weak Scaling
Throughput Comparison for 3B LLaMA pretraining using
GRASS (Top-r), Full-rank, and GALORE. GRASS shows 2×
higher throughput over Full and GALORE at 8 GPUs.

gradient and optimizer memory (due to its sparse
projection matrices). At 13B parameters, GRASS

uses 70% less memory than Full-rank and 45%
less than GALORE.

Beyond the memory advantage in the regular
update iteration, Grass is also more memory effi-
cient in the projection update iteration compared
to its counterpart GALORE: GALORE requires
converting the full gradient to float32 for SVD
computation when computing the projection ma-
trix, making it unable to pretrain the 13B LlaMA
model in BF16 at rank (r = 128) on an 80GB GPU.
In contrast, GRASS is capable of pretraining the
13B model on ranks up to r = 768 on a 40GB
GPU and up to r = 1024 on a 48GB GPU.

Finetuning Memory. Appendix Figure 9 and
Figure 10 compare the memory footprint of GRASS

and LoRA during LLaMA finetuning. GRASS

demonstrates a memory advantage of roughly 1GB
over LoRA when finetuning the 7B parameter
model in BF16 at rank (r=64). However, as the
batch size increases, activations dominate the mem-
ory footprint, and the memory usage of GRASS and
LoRA becomes comparable.

Communication. Figure 5 benchmarks the
(weak scaling (Gustafson, 1988)) throughput (to-
kens/sec) of training a 3B parameter LLaMA model
on a multi-GPU L40 compute node with a peak all-
reduce bandwidth of 8.64 GB/s as we scale the
number of participating GPUs. We use a token
batch size of 4096 per worker (local batch size 16,
sequence length 256). GRASS, by communicating
only the projected gradients, achieves significantly
higher throughput (2× on 8 GPUs) compared to
both Full-rank and GALORE.

4.5 Ablations
Effect of Rank. Figure 6 presents ablations on
the impact of the subspace rank r for GRASS during
pretraining of a 350M parameter LLaMA model
on the C4 subset of Dolma. Increasing the rank
generally leads to better training losses for the same
number of updates, but with diminishing returns.
Additionally, since GRASS enables full-parameter
training, we observe that training at rank r = 128
for 80k steps is more effective than training at rank
r = 512 for 40k steps. GRASS can therefore be
used to trade-off memory and computational cost
where in a memory-constrained setting one could
select a lower rank and train longer.

Figure 6: GRASS (Top-r) rank ablations for 350M LLaMA
training. We report perplexity on Dolma C4 across various
ranks and training steps. Loss is averaged over a window of
50 steps.

Effect of Update Frequency. Figure 7 analyzes
the impact of update frequency on the convergence
of GRASS during pretraining of a 60M-parameter
LLaMA model on the Realnews subset of C4 (Raf-
fel et al., 2020) at various steps during training.
Both overly frequent and infrequent updates to the
projection matrix hinder convergence. Optimal con-
vergence is achieved within an update frequency
range of 200 to 500 iterations.

computeP Methods. Table 5 evaluates our pro-
posed methods to compute the sparse projection

Figure 7: GRASS(Top-r) Update Frequency vs. Training
Perplexity for 60M LLaMA pretraining on Realnews subset
of C4 evaluated at various points during training. A frequency
of 200 is near optimal.

14985

Sampling Method Eval perp

Frozen Top-r 34.78
Uniform-R 32.46
Uniform-NR 31.06
Multinomial-Norm-R 31.32
Multinomial-Norm-NR 30.93
Multinomial-Norm2-R 31.85
Multinomial-Norm2-NR 30.91
Top-r 30.88

GALORE 30.67
Full-rank 30.27

Table 5: Comparison of GRASS Sampling Methods on Evalu-
ation Perplexity during 60M LLaMA Pretraining on the Real-
News Subset of C4. Best sampling strategy is bolded.

P matrix (in Section 3.2) for GRASS during pre-
training of a 60M LLaMA model on 500M tokens
from the RealNews subset of C4. We addition-
ally consider the Frozen Top-r method as a base-
line by computing top indices once only at iter-
ation 0. We notice that stochastic strategies em-
ploying non-replacement biased (NR) sampling
generally surpass their with replacement unbiased
(R) counterparts. Within the unbiased strategies
(R), the variance reduction approach (Multinomial-
Norm-R) outperforms the subspace preservation
method (Multinomial-Norm2-R), while their bi-
ased (NR) counterparts exhibit comparable perfor-
mance. Both Multinomial-Norm2-NR and Top-
r are competitive with GALORE, while Uniform
sampling underperforms. Similar trends in per-
formance across sampling methods are observed
during finetuning (Table 3). We find that uniform
sampling is more effective for pretraining than fine-
tuning, likely because the norm distribution is more
uniform at the onset of pretraining.

5 Conclusion And Future Work

In this work, we introduce GRASS, a novel
memory-efficient subspace optimization method
for LLM pretraining and fine-tuning by leveraging
sparse gradient projections. GRASS significantly
reduces the memory footprint of optimizer states
and gradients and eliminates the need to materialize
the full gradients during the projection step, lead-
ing to substantial computational efficiency gains.
Our experimental results demonstrate that GRASS

achieves comparable performance to full-rank
training and existing projection-based methods
while offering a substantial memory reduction and
throughput increase across various model sizes and
tasks. Future work will explore extending GRASS

to utilize diverse structured sparsity patterns and in-

vestigating strategies for dynamically adjusting the
projection rank based on hardware and model size.

Acknowledgements

This work was supported in part by the Na-
tional Science Foundation grants IIS2145670 and
CCF2107024, and funding from Amazon, Apple,
Google, Intel, Meta, and the CyLab Security and
Privacy Institute. D. Woodruff would like to ac-
knowledge support from a Simons Investigator
Award, NSF CCF-2335412, and Office of Naval
Research (ONR) award number N000142112647.
Any opinions, findings and conclusions or recom-
mendations expressed in this material are those
of the author(s) and do not necessarily reflect the
views of any of these funding agencies.

Limitations

While GRASS offers compelling advantages in
memory efficiency and training throughput, there
are several aspects that warrant further investiga-
tion and potential improvements.

Implementation Complexity. Unlike drop-in op-
timizer replacements, GRASS requires integrating
custom linear layers into the Transformer archi-
tecture, as the sparse projection operations occur
during the backward pass. While this involves min-
imal code modifications, it introduces a slight com-
plexity barrier for adoption compared to simply
switching optimizers. Nonetheless, the significant
gains in performance and memory efficiency out-
weigh this minor overhead.

Scalability to Larger Models. Our empirical
evaluation primarily focused on model scales up
to 13B parameters. The effectiveness of GRASS

for significantly larger LLMs, exceeding hundreds
of billions of parameters, requires further examina-
tion. Similarly, as batch sizes increase, the memory
savings from sparse projection might become less
prominent compared to the activation memory foot-
print. Exploring strategies to mitigate this potential
issue, such as combining GRASS with activation
checkpointing techniques, would be beneficial.

Hyperparameter Sensitivity. GRASS’s perfor-
mance depends on hyperparameters like rank (r)
and update frequency (K). While our experiments
provide insights into suitable ranges for these hy-
perparameters, a more comprehensive analysis of
their impact on training dynamics, particularly

14986

as model scales increase, is crucial for maximiz-
ing performance and generalizability. Developing
methods to automatically and adaptively tune these
hyperparameters could further enhance GRASS’s
applicability.

Ethical Considerations

We acknowledge the potential ethical implications
associated with large language models. These in-
clude:

Misuse Potential. LLMs, being powerful text
generation tools, can be misused to create harmful
or misleading content, including disinformation,
hate speech, and spam. While our work focuses
on improving training efficiency, we strongly ad-
vocate for responsible use of LLMs and encourage
further research on safeguards against malicious
applications.

Bias Amplification. LLMs are trained on mas-
sive text corpora, which can inherently contain bi-
ases and stereotypes. These biases can be amplified
during training, leading to potentially discrimina-
tory or unfair outputs. While GRASS is unlikely
to exacerbate this bias, we recognize the impor-
tance of addressing this issue through careful data
curation, bias mitigation techniques, and ongoing
monitoring of LLM behavior.

Environmental Impact. Training large LLMs re-
quires significant computational resources, which
can have a substantial environmental footprint. Our
work aims to reduce the computational cost and en-
ergy consumption of LLM training, contributing to
more sustainable and environmentally responsible
practices in NLP research.

Data and Licensing Considerations. We have
carefully considered the ethical implications of the
datasets used in this work which are publicly re-
leased and have followed accepted privacy prac-
tices at creation time.
• MMLU and GLUE are released under the per-

missive MIT license, allowing for broad research
use.

• Alpaca is also distributed under the MIT license.
• FLAN uses the Apache license, which permits

both academic and commercial applications.
• Dolma utilizes the ODC Attribution License, pro-

moting open data sharing and reuse.
We strictly adhere to the license terms and in-

tended use of these datasets, ensuring responsible

handling of data and compliance with ethical guide-
lines. We acknowledge the ongoing need for crit-
ical assessment and transparency regarding data
sources, potential biases, and licensing implica-
tions in LLM research.

References
Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka,

and Milan Vojnovic. 2017. Qsgd: Communication-
efficient sgd via gradient quantization and encoding.
In Advances in Neural Information Processing Sys-
tems, volume 30. Curran Associates, Inc.

Rohan Anil, Vineet Gupta, Tomer Koren, and Yoram
Singer. 2019. Memory efficient adaptive optimiza-
tion. In Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc.

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Aziz-
zadenesheli, and Animashree Anandkumar. 2018.
signSGD: Compressed optimisation for non-convex
problems. In Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Pro-
ceedings of Machine Learning Research, pages 560–
569. PMLR.

Dan Biderman, Jose Gonzalez Ortiz, Jacob Portes,
Mansheej Paul, Philip Greengard, Connor Jennings,
Daniel King, Sam Havens, Vitaliy Chiley, Jonathan
Frankle, Cody Blakeney, and John P. Cunningham.
2024. Lora learns less and forgets less. arXiv
preprint arXiv: 2405.09673.

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-
Gazpio, and Lucia Specia. 2017. SemEval-2017
task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. In Proceedings
of the 11th International Workshop on Semantic
Evaluation (SemEval-2017), pages 1–14, Vancouver,
Canada. Association for Computational Linguistics.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos
Guestrin. 2016. Training deep nets with sublinear
memory cost. arXiv preprint arXiv: 1604.06174.

Jack Choquette, Wishwesh Gandhi, Olivier Giroux,
Nick Stam, and Ronny Krashinsky. 2021. Nvidia
a100 tensor core gpu: Performance and innovation.
IEEE Micro, 41(2):29–35.

Tim Dettmers, M. Lewis, Sam Shleifer, and Luke Zettle-
moyer. 2021. 8-bit optimizers via block-wise quanti-
zation. International Conference on Learning Repre-
sentations.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning
of quantized llms. NEURIPS.

Bill Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Third International Workshop on Paraphrasing
(IWP2005). Asia Federation of Natural Language
Processing.

14987

https://proceedings.neurips.cc/paper_files/paper/2017/file/6c340f25839e6acdc73414517203f5f0-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/6c340f25839e6acdc73414517203f5f0-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/8f1fa0193ca2b5d2fa0695827d8270e9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/8f1fa0193ca2b5d2fa0695827d8270e9-Paper.pdf
https://proceedings.mlr.press/v80/bernstein18a.html
https://proceedings.mlr.press/v80/bernstein18a.html
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.1109/MM.2021.3061394
https://doi.org/10.1109/MM.2021.3061394
https://www.microsoft.com/en-us/research/publication/automatically-constructing-a-corpus-of-sentential-paraphrases/
https://www.microsoft.com/en-us/research/publication/automatically-constructing-a-corpus-of-sentential-paraphrases/

John L. Gustafson. 1988. Reevaluating amdahl’s law.
Commun. ACM, 31(5):532–533.

Yongchang Hao, Yanshuai Cao, and Lili Mou. 2024.
Flora: Low-rank adapters are secretly gradient com-
pressors. arXiv preprint arXiv:2402.03293.

Dan Hendrycks, Collin Burns, Steven Basart, Andy
Zou, Mantas Mazeika, D. Song, and J. Steinhardt.
2020. Measuring massive multitask language un-
derstanding. International Conference on Learning
Representations.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Hector Levesque, Ernest Davis, and Leora Morgenstern.
2012. The winograd schema challenge. In Thir-
teenth international conference on the principles of
knowledge representation and reasoning.

Bingrui Li, Jianfei Chen, and Jun Zhu. 2023. Memory
efficient optimizers with 4-bit states. In Advances in
Neural Information Processing Systems, volume 36,
pages 15136–15171. Curran Associates, Inc.

Pengxiang Li, Lu Yin, Xiaowei Gao, and Shiwei Liu.
2024. Owlore: Outlier-weighed layerwise sampled
low-rank projection for memory-efficient llm fine-
tuning. arXiv preprint arXiv:2405.18380.

Vladislav Lialin, Sherin Muckatira, Namrata Shiva-
gunde, and Anna Rumshisky. 2023. ReloRA: High-
rank training through low-rank updates. In Workshop
on Advancing Neural Network Training: Computa-
tional Efficiency, Scalability, and Resource Optimiza-
tion (WANT@NeurIPS 2023).

Yujun Lin, Song Han, Huizi Mao, Yu Wang, and Bill
Dally. 2018. Deep gradient compression: Reducing
the communication bandwidth for distributed train-
ing. In 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada,
April 30 - May 3, 2018, Conference Track Proceed-
ings. OpenReview.net.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv: 1907.11692.

Qijun Luo, Hengxu Yu, and Xiao Li. 2024. Badam:
A memory efficient full parameter training method
for large language models. arXiv preprint
arXiv:2404.02827.

Kai Lv, Hang Yan, Qipeng Guo, Haijun Lv, and Xipeng
Qiu. 2023a. Adalomo: Low-memory optimization
with adaptive learning rate. arXiv preprint arXiv:
2310.10195.

Kai Lv, Yuqing Yang, Tengxiao Liu, Qinghui Gao,
Qipeng Guo, and Xipeng Qiu. 2023b. Full parameter
fine-tuning for large language models with limited
resources. arXiv preprint arXiv: 2306.09782.

Malik Magdon-Ismail. 2010. Row sampling for matrix
algorithms via a non-commutative bernstein bound.
arXiv preprint arXiv: 1008.0587.

Rui Pan, Xiang Liu, Shizhe Diao, Renjie Pi, Jipeng
Zhang, Chi Han, and Tong Zhang. 2024. Lisa: Lay-
erwise importance sampling for memory-efficient
large language model fine-tuning. arXiv preprint
arXiv:2403.17919.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, N. Gimelshein, L. Antiga, Al-
ban Desmaison, Andreas Köpf, E. Yang, Zach De-
Vito, Martin Raison, A. Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. Pytorch: An imperative style, high-
performance deep learning library. Neural Informa-
tion Processing Systems.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1–140:67.

Colin Raffel, Noam M. Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2019. Exploring the
limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res., 21:140:1–140:67.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase,
and Yuxiong He. 2020. Zero: Memory optimizations
toward training trillion parameter models. In SC20:
International Conference for High Performance Com-
puting, Networking, Storage and Analysis, pages 1–
16.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text. Conference on Em-
pirical Methods in Natural Language Processing.

Cedric Renggli, Saleh Ashkboos, Mehdi Aghagolzadeh,
Dan Alistarh, and Torsten Hoefler. 2019. Sparcml:
high-performance sparse communication for machine
learning. In Proceedings of the International Confer-
ence for High Performance Computing, Networking,
Storage and Analysis, SC ’19, New York, NY, USA.
Association for Computing Machinery.

Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong
Yu. 2014. 1-bit stochastic gradient descent and appli-
cation to data-parallel distributed training of speech
dnns. In Interspeech 2014.

14988

https://doi.org/10.1145/42411.42415
https://proceedings.neurips.cc/paper_files/paper/2023/file/3122aaa22b2fe83f9cead1a696f65ceb-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/3122aaa22b2fe83f9cead1a696f65ceb-Paper-Conference.pdf
https://openreview.net/forum?id=iifVZTrqDb
https://openreview.net/forum?id=iifVZTrqDb
https://openreview.net/forum?id=SkhQHMW0W
https://openreview.net/forum?id=SkhQHMW0W
https://openreview.net/forum?id=SkhQHMW0W
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://api.semanticscholar.org/CorpusID:204838007
https://api.semanticscholar.org/CorpusID:204838007
https://api.semanticscholar.org/CorpusID:204838007
https://doi.org/10.1109/SC41405.2020.00024
https://doi.org/10.1109/SC41405.2020.00024
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.1145/3295500.3356222
https://doi.org/10.1145/3295500.3356222
https://doi.org/10.1145/3295500.3356222
https://www.microsoft.com/en-us/research/publication/1-bit-stochastic-gradient-descent-and-application-to-data-parallel-distributed-training-of-speech-dnns/
https://www.microsoft.com/en-us/research/publication/1-bit-stochastic-gradient-descent-and-application-to-data-parallel-distributed-training-of-speech-dnns/
https://www.microsoft.com/en-us/research/publication/1-bit-stochastic-gradient-descent-and-application-to-data-parallel-distributed-training-of-speech-dnns/

Noam Shazeer. 2020. Glu variants improve transformer.
arXiv preprint arXiv: 2002.05202.

Noam Shazeer and Mitchell Stern. 2018. Adafactor:
Adaptive learning rates with sublinear memory cost.
In International Conference on Machine Learning,
pages 4596–4604. PMLR.

Ying Sheng, Shiyi Cao, Dacheng Li, Coleman
Hooper, Nicholas Lee, Shuo Yang, Christopher
Chou, Banghua Zhu, Lianmin Zheng, Kurt Keutzer,
Joseph E. Gonzalez, and Ion Stoica. 2023. S-lora:
Serving thousands of concurrent lora adapters. arXiv
preprint arXiv: 2311.03285.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1631–1642, Seattle, Washington, USA. Association
for Computational Linguistics.

Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin
Schwenk, David Atkinson, Russell Authur, Ben Bo-
gin, Khyathi Chandu, Jennifer Dumas, Yanai Elazar,
Valentin Hofmann, Ananya Harsh Jha, Sachin Kumar,
Li Lucy, Xinxi Lyu, Nathan Lambert, Ian Magnusson,
Jacob Morrison, Niklas Muennighoff, Aakanksha
Naik, Crystal Nam, Matthew E. Peters, Abhilasha
Ravichander, Kyle Richardson, Zejiang Shen, Emma
Strubell, Nishant Subramani, Oyvind Tafjord, Pete
Walsh, Luke Zettlemoyer, Noah A. Smith, Hannaneh
Hajishirzi, Iz Beltagy, Dirk Groeneveld, Jesse Dodge,
and Kyle Lo. 2024. Dolma: an open corpus of
three trillion tokens for language model pretraining
research. arXiv preprint arXiv: 2402.00159.

Ryan Spring, Anastasios Kyrillidis, Vijai Mohan, and
Anshumali Shrivastava. 2019. Compressing gradient
optimizers via count-sketches. International Confer-
ence on Machine Learning.

Sebastian U Stich, Jean-Baptiste Cordonnier, and Mar-
tin Jaggi. 2018. Sparsified sgd with memory. In
Advances in Neural Information Processing Systems,
volume 31. Curran Associates, Inc.

Hanlin Tang, Shaoduo Gan, Ammar Ahmad Awan,
Samyam Rajbhandari, Conglong Li, Xiangru Lian,
Ji Liu, Ce Zhang, and Yuxiong He. 2021. 1-bit adam:
Communication efficient large-scale training with
adam’s convergence speed. In Proceedings of the
38th International Conference on Machine Learning,
volume 139 of Proceedings of Machine Learning
Research, pages 10118–10129. PMLR.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay

Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schel-
ten, Ruan Silva, Eric Michael Smith, Ranjan Sub-
ramanian, Xiaoqing Ellen Tan, Binh Tang, Ross
Taylor, Adina Williams, Jian Xiang Kuan, Puxin
Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, An-
gela Fan, Melanie Kambadur, Sharan Narang, Aure-
lien Rodriguez, Robert Stojnic, Sergey Edunov, and
Thomas Scialom. 2023. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:
2307.09288.

Thijs Vogels, Sai Praneeth Karimireddy, and Martin
Jaggi. 2019. Powersgd: Practical low-rank gradi-
ent compression for distributed optimization. In Ad-
vances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2018a.
Glue: A multi-task benchmark and analysis plat-
form for natural language understanding. BLACK-
BOXNLP@EMNLP.

Hongyi Wang, Scott Sievert, Shengchao Liu, Zachary
Charles, Dimitris Papailiopoulos, and Stephen
Wright. 2018b. Atomo: Communication-efficient
learning via atomic sparsification. Advances in neu-
ral information processing systems, 31.

Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack
Hessel, Tushar Khot, Khyathi Raghavi Chandu,
David Wadden, Kelsey MacMillan, Noah A. Smith,
Iz Beltagy, and Hannaneh Hajishirzi. 2023. How
far can camels go? exploring the state of instruc-
tion tuning on open resources. Neural Information
Processing Systems.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bow-
man. 2018. Neural network acceptability judgments.
Transactions of the Association for Computational
Linguistics.

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M. Dai, and Quoc V. Le. 2021. Finetuned lan-
guage models are zero-shot learners. arXiv preprint
arXiv: 2109.01652.

Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yan-
dan Wang, Yiran Chen, and Hai Li. 2017. Terngrad:
Ternary gradients to reduce communication in dis-
tributed deep learning. In Advances in Neural In-
formation Processing Systems, volume 30. Curran
Associates, Inc.

14989

https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://proceedings.neurips.cc/paper_files/paper/2018/file/b440509a0106086a67bc2ea9df0a1dab-Paper.pdf
https://proceedings.mlr.press/v139/tang21a.html
https://proceedings.mlr.press/v139/tang21a.html
https://proceedings.mlr.press/v139/tang21a.html
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://proceedings.neurips.cc/paper_files/paper/2019/file/d9fbed9da256e344c1fa46bb46c34c5f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/d9fbed9da256e344c1fa46bb46c34c5f-Paper.pdf
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.48550/arXiv.2306.04751
https://doi.org/10.48550/arXiv.2306.04751
https://doi.org/10.48550/arXiv.2306.04751
https://doi.org/10.1162/tacl_a_00290
https://proceedings.neurips.cc/paper_files/paper/2017/file/89fcd07f20b6785b92134bd6c1d0fa42-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/89fcd07f20b6785b92134bd6c1d0fa42-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/89fcd07f20b6785b92134bd6c1d0fa42-Paper.pdf

Adina Williams, Nikita Nangia, and Samuel R. Bow-
man. 2017. A broad-coverage challenge corpus for
sentence understanding through inference. arXiv
preprint arXiv: 1704.05426.

David P. Woodruff. 2014. Sketching as a tool for nu-
merical linear algebra. Foundations and Trends® in
Theoretical Computer Science.

Wenhan Xia, Chengwei Qin, and Elad Hazan. 2024.
Chain of lora: Efficient fine-tuning of language
models via residual learning. arXiv preprint arXiv:
2401.04151.

Biao Zhang and Rico Sennrich. 2019. Root mean square
layer normalization. In Advances in Neural Informa-
tion Processing Systems, volume 32. Curran Asso-
ciates, Inc.

Longteng Zhang, Lin Zhang, Shaohuai Shi, Xiaowen
Chu, and Bo Li. 2023. Lora-fa: Memory-efficient
low-rank adaptation for large language models fine-
tuning. arXiv preprint arXiv: 2308.03303.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang
Wang, Anima Anandkumar, and Yuandong Tian.
2024. Galore: Memory-efficient llm training
by gradient low-rank projection. arXiv preprint
arXiv:2403.03507.

14990

https://doi.org/10.1561/0400000060
https://doi.org/10.1561/0400000060
https://proceedings.neurips.cc/paper_files/paper/2019/file/1e8a19426224ca89e83cef47f1e7f53b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/1e8a19426224ca89e83cef47f1e7f53b-Paper.pdf

A Optimizer Functions

In Equation (1) and Algorithm 1, we use functions
opt.init and opt.update to abstractly represent
any stateful optimizer’s initialization and update
function. Here we provide concrete implementa-
tions of these functions for Adam (Kingma and
Ba, 2014) in Algorithm 3 and 4.7 We assume the
parameter matrix Z and its gradient ∇ZL is of
generic shape Rc×d.

Algorithm 3 Initialization of the Adam optimizer, adam.init

Input: Z ∈ Rc×d (technically, Adam only requires knowing
the shape of the parameter)

Output: S ∈ R2×c×d

1: M ← 0c×d ▷ First gradient moment statistics
2: V ← 0c×d ▷ Second gradient moment statistics
3: S ← (M,V)

Algorithm 4 Update of the Adam optimizer, adam.update.
β1, β2 ∈ [0, 1) are the exponential decay rates for the first and
second gradient moment estimates. t is the current iteration.
η > 0 is the current iteration’s learning rate. ϵ is a small
constant used for numerical stability in division.

Input: S ∈ R2×c×d the most recent optimizer state
∇L(Z) ∈ Rc×d the current gradient of Z

Output: Snew ∈ R2×c×d the updated optimizer state
U ∈ Rc×d the additive update matrix

1: M,V ← S ▷ Unpack the states M,V ∈ Rc×d

2: Mnew ← β1 ·M + (1− β1) · ∇L(Z)
3: Vnew ← β2 · V + (1− β2) · ∇L(Z)◦2

4: Snew ← (Mnew, Vnew)
5: M⋆ ←Mnew/(1− βt

1)
6: V⋆ ← Vnew/(1− βt

2)

7: U ← −η ·M⋆ ⊘ (V
◦ 1

2
⋆ + ϵ · 1c×d)

B Derivation of the Unified Algorithm of
Memory-efficient Subspace Optimizers

As we have described in Section 2, MeSO optimiz-
ers solve the subspace optimization problem under
the projection matrix P ∈ Rm×r:

min
A∈Rr×n

L(W0 + PA) (2)

by applying an off-the-shelf optimizer opt. Since
we want to start at the initial weight matrix W0, A
is initialized to be the zero matrix:

A(0) ← 0r×n (3)

S(0) ← opt.update(A(0)) (4)

and updated through

7For any matrix Z ∈ Rc×d, we have Z◦2 and Z◦ 1
2 to

respectively denote the matrix which is the elementwise square
and elementwise square root of Z.

S(t+1),∆(t+1) ← opt.update(S(t),
d

dA
L(W0 + PA(t)))

(5)

A(t+1) ← A(t) +∆(t+1) (6)

By chain rule, we have d
dAL(W0 + PA(t)) =

P⊤∇L(W0 + PA(t)).
When MeSO updates the projection matrix to be

Pnew, we can treat the new subspace optimization
as having its W new

0 = W old
0 + PoldA

(t) and re-
initializing A(t) at 0r×n in addition to an optimizer
state update using update_state. The pseudocode
of this algorithm where we maintain the value of
the A matrix is given in Algorithm 5.

Algorithm 5 Memory-efficient subspace optimization (MeSO)
with an instantiated A matrix

Input: Initial weights W0 ∈ Rm×n with m ≤ n; update
frequency K; total iterations T ; subspace rank r with
r ≪ m, an off-the-shelf optimizer opt; function to up-
date the optimizer state, scale factor α.

Output: Optimized weights W (T)

1: t← 0
2: A(0) ← 0r×n

3: S(0) ← opt.init(A(0)) ▷ Adam state ∈ Rr×n

4: while t ≤ T do
5: if t ≡ 0 (mod K) then
6: W0 ←W0 + PA(t) ▷ record progress
7: A(t) ← 0r×n ▷ reinitialize A
8: // Compute new projection matrix
9: P ← computeP (∇L(W0)) ▷ P ∈ Rm×r

10: // [Optional] Update optimizer state
11: S(t) ← update_state(S(t))
12: end if
13: GC ← P⊤∇L(W0 + PA(t)) ▷ GC ∈ Rr×n

14: S(t+1),∆(t+1) ← opt.update(S(t), GC)

15: A(t+1) ← A(t) + α∆(t+1) ▷ Apply Update
16: t← t+ 1
17: end while

By defining W (t) := W0+PA(t), we can easily
see that Algorithm 5 is equivalent to Algorithm 1
presented in the main paper.

C Additional Related Work

Memory-Efficient Optimization. Several works
aim to reduce the memory footprint of adaptive
optimizer states. Techniques include factorizing
second-order moment statistics (Shazeer and Stern,
2018), layerwise sampling (Li et al., 2024; Pan
et al., 2024; Luo et al., 2024), quantizing optimizer
states (Dettmers et al., 2021; Anil et al., 2019;
Dettmers et al., 2023; Li et al., 2023), and fusing
backward operations with optimizer updates to min-
imize gradient storage (Lv et al., 2023a). GRASS

is orthogonal to these approaches and proposes a

14991

gradient projection-based adaptive optimizer that
significantly reduces memory costs by relying on
projected gradient statistics.

Gradient Compression. In distributed and fed-
erated training, several gradient compression meth-
ods have been introduced to reduce the volume of
transmitted gradient data. Common approaches
include:

1. Quantization: Quantization aims to reduce the
bit precision of gradient elements. Examples
include 1-bit SGD (Seide et al., 2014), SignSGD
(Bernstein et al., 2018), 1-bit Adam (Tang et al.,
2021), TernGrad (Wen et al., 2017), and QSGD
(Alistarh et al., 2017).

2. Sparsification: This involves transmitting only
a small subset of significant gradient elements.
Random-k and Top-k element select k random
or largest-magnitude elements, respectively
to transmit. Top-k generally exhibits better
convergence (Stich et al., 2018), and requires
communicating both values and indices (Lin
et al., 2018; Renggli et al., 2019).

3. Low-Rank Decomposition: This involves
factorizing a gradient matrix M ∈ Rn×m as
M ≈ PQ⊤ for transmission, where P ∈ Rn×r

and Q ∈ Rm×r with r ≪ min(n,m). ATOMO
(Wang et al., 2018b) employs SVD for de-
composition, while Power-SGD (Vogels et al.,
2019) utilizes power iteration for more efficient
low-rank factorization.

Unlike existing methods, GRASS introduces a
novel approach by employing sparse projection
of gradients to enhance memory efficiency in both
local and distributed training contexts.

D Ensuring Unbiased Gradient
Reconstruction

In this section, we formally state the theorem that
gives the form of the sampling distribution for σj
and ρjj that ensures the reconstructed gradient
PP⊤GW is unbiased which we describe in Sec-
tion 3.2.

Theorem D.1. Let B ∈ {0, 1}r×m be the sparse bi-
nary matrix with the unique non-zero index of j-th
row being σj ∈ [m]. Let σj

i.i.d.∼ Multinomial(1, q))
(q ∈ Rm with the probability of sampling inte-
ger k ∈ [m] being qk). If we correspondingly let
the diagonal value of the diagonal matrix ρ to be
ρjj :=

1√
rqσj

, then for the random projection ma-

trix P = (ρB)⊤, we have E[PP⊤G] = G for any

(gradient) matrix G ∈ Rm×n.

Proof. Here we first write down the form of the
random matrix product PP⊤. Let ej ∈ Rm be
the unit column vector with j-th coordinate being
1 and all other coordinates being zero. Then by
definition, the j-th row vector of B is e⊤σj

.

PP⊤ (7)

=B⊤ρ⊤ρB (8)

=
[
eσ1 . . . eσr

]
m×r

× diag(
1

r · qσ1

, . . . ,
1

r · qσr

)

×



−e⊤σ1

−
...

−e⊤σr
−



r×m

(9)

=
1

r

r∑

i=1

1

qσi

eσie
⊤
σi

(10)

In Equation 10, we have decomposed the matrix
PP⊤ into the average of r random rank-1 matrices
each of which depends on on the randomness of a
unique σi. By linearity of expectation and the i.i.d.
property of {σi}ri=1, we have

E[PP⊤] =
1

r

r∑

i=1

E[
1

qσi

eσie
⊤
σi
] (11)

=E[
1

qσ1

eσ1e
⊤
σ1
] (12)

Since σ1 have a probability of qk to take the value
of integer k ∈ [m], we have

E[
1

qσ1

eσ1e
⊤
σ1
] (13)

=
m∑

k=1

qk ·
1

qk
eke

⊤
k (14)

=Im×m (15)

Thus we have proved that E[PP⊤] = Im×m. By
linearity of expectation, for any matrix G ∈ Rm×n,
we thus have E[PP⊤G] = G and the proof is
complete.

E Proof of Theorem 3.1

Here we restate the complete version of Theo-
rem 3.1 and then present its proof.

14992

Theorem (Complete statement of Theorem 3.1).
Let B ∈ {0, 1}r×m be the sparse binary ma-
trix with the unique non-zero index of j-th row
being σj ∈ [m]. Let σj

i.i.d.∼ Multinomial(1, q)
(q ∈ Rm with the probability of sampling inte-
ger k ∈ [m] being qk). Given σj , we correspond-
ingly set the diagonal value of the diagonal matrix
ρ to be ρjj := 1√

rqσj
and define P = (ρB)⊤.

This induces an unbiased gradient estimator of
G ∈ Rm×n: PP TG. Among all these gradient es-
timators induced by different parameter value q of
the multinomial distribution, the one that is propor-
tional to the row norms of G with qk = ∥Gk∥2∑m

i=1 ∥Gi∥2
minimizes the total variance of the gradient esti-
mate PP⊤G.

Proof. We first write down the total variance of the
estimator PP⊤G:

E tr[(PP⊤G)⊤(PP⊤G)]

− tr[E[(PP⊤G)]E[(PP⊤G)]⊤] (16)

=tr[G⊤E[PP⊤PP⊤]G]− tr[GG⊤] (17)

Since only the first term in Equation 17 is a
function of P and thus depends on the value of q,
we first focus on analytically deriving the form of
E[PP⊤PP⊤].

By the expression in Equation 10, we have:

PP⊤PP⊤ (18)

=
1

r2

r∑

i=1

r∑

j=1

1

qσi

1

qσj

eσie
⊤
σi
eσje

⊤
σj

(19)

=
1

r2

r∑

i=1

1

q2σi

eσie
⊤
σi
eσie

⊤
σi

+
1

r2

r∑

i=1,j=1,i ̸=j

[
1

qσi

eσie
⊤
σi
][

1

qσj

eσje
⊤
σj
]

(20)

=
1

r2

r∑

i=1

1

q2σi

eσie
⊤
σi

+
1

r2

r∑

i=1,j=1,i ̸=j

[
1

qσi

eσie
⊤
σi
][

1

qσj

eσje
⊤
σj
]

(21)

In the last step, we use the fact that for any i,
e⊤σi

eσi = 1. Now we take the expectation of Equa-
tion 21. By applying linearity of expectation and

the i.i.d. property of {σj}, we have

E[PP⊤PP⊤] (22)

=
1

r
diag(

1

q1
, . . . ,

1

qm
) +

r − 1

r
· Im×m (23)

As a result, we can express the first term in Equa-
tion 17 as

tr[G⊤E[PP⊤PP⊤]G] (24)

=
1

r
tr[G⊤diag(

1

q1
, . . . ,

1

qm
)G] +

r − 1

r
tr[GG⊤]

(25)

If we represent the rows of G as column vectors
{Gk}mk=1, then the only term in Equation 25 that
depends on q can be expressed as

tr[G⊤diag(
1

q1
, . . . ,

1

qm
)G] (26)

=tr[
m∑

k=1

1

qk
GkG

⊤
k] (27)

=

m∑

k=1

1

qk
tr[GkG

⊤
k] (28)

=

m∑

k=1

∥Gk∥22
qk

(29)

Based on these derivations, to minimize the total
variance is therefore equivalent to minimize Equa-
tion 29. From now on, we denote λi := ∥Gi∥2 as
the 2-norm of the i-th row of matrix G.

Solving the variance-minimization problem:
As we have shown, minimizing the total variance
of PP⊤G leads to the following optimization prob-
lem:

min
p

m∑

i=1

λ2
i

qi
(30)

subject to
n∑

i=1

qi =1, qi ≥ 0 for all i.

Here we first ignore the inequality constraint
qi ≥ 0 and solve the relaxed problem:

min
p

m∑

i=1

λ2
i

qi
(31)

subject to
n∑

i=1

qi = 1

14993

The Lagrangian L for this relaxed constrained opti-
mization is:

L(q, µ) =

m∑

i=1

λ2
i

qi
+ µ

(
m∑

i=1

qi − 1

)

where µ is the Lagrange multiplier for the equality
constraint. The stationary condition for the La-
grangian gives us

∂L

∂qi
= −λ2

i

q2i
+ µ = 0, ∀i ∈ [m] (32)

m∑

i=1

qi = 1 (33)

Assuming not all λi are zero, this gives us

q∗i =
λi∑m
j=1 λj

Since this optimal solution to Equation 31 also
lies in the constraint space of Equation 30, this is
also the optimal solution of the optimization we
care about.

Thus we have shown that the distribution pa-
rameter q that minimizes the total variance of the
gradient estimate is proportional to the row 2-norm
of G.

F Row Norms and Subspace Embedding
Property

The following proof is from Magdon-Ismail (2010)
which can be roughly stated as sampling with
squared row-norms preserves subspaces up to addi-
tive error with high probability.

Theorem F.1 (Subspace Preservation). Let A ∈
Rm×d1 with rows at. Define a sampling matrix
Q ∈ Rm×m using row-sampling probabilities:

pt ≥
∥at∥2
∥A∥2F

.

If r ≥ 4pA ln
2d1
δ

β2 , then with probability at least 1−δ,
it follows that:

∥A⊤A− Ã⊤Ã∥ ≤ ϵ∥A∥2.

Proof. Considering the singular value decomposi-
tions (SVDs) of A and B, we have:

∥A⊤B−A⊤Q⊤QB∥ = ∥VASAU
⊤
AUBSBV

⊤
B

−VASAU
⊤
AQ

⊤QUBSBV
⊤
B∥.

We may now directly apply Lemma F.2, with re-
spect to the appropriate sampling probabilities.
One can verify that the sampling probabilities are
proportional to the sum of the rescaled squared
norms of the rows of A and B.

Lemma F.2 (Sampling in Orthogonal Spaces). Let
W ∈ Rm×d1 and V ∈ Rm×d2 be orthogonal ma-
trices, and let S1 and S2 be positive diagonal matri-
ces in Rd1×d1 and Rd2×d2 , respectively. Consider
row sampling probabilities:

pt ≥
1

∥S1∥2F
W⊤S2

1Wt +
1

∥S2∥2F
V⊤S2

2Vt.

If r ≥
(
8(p1 + p2)/β

2
)
ln 2(d1+d2)

δ , then with
probability at least 1− δ, it holds that:

∥S1W
⊤VS2−S1W

⊤Q⊤QVS2∥ ≤ ϵ∥S1∥∥S2∥.

G Detailed Breakdown of Compute,
Memory, and Communication Volume

In this section we provide detailed breakdown of
the compute, memory, and communication volume
for different optimization methods. We focus our
discussion to a single weight matrix W ∈ Rm×n

(we assume m ≤ n) and its gradient G ∈ Rm×n.
We describe the relevant notation and parameter
shape below:
• By chain rule, we have G = (∇yL)

⊤X , where
∇yL is a b×m matrix denoting the gradient of
the loss with respect to the layer’s output acti-
vations y, and X is an b × n matrix denoting
the input activations. b is the token batch size,
which in practice is usually much larger than
both m and n. Here we assume X is computed
and stored during the forward pass through this
layer and ∇yL is computed during the backprop
pass from the previous layer. We are interested
in the memory, floating-point operations, and
communication volume to construct the gradi-
ents G, update the optimizer state, and update
the parameter weights.

• P is an m× r projection matrix with r ≪ m.
• C is the number of optimizer operations per gra-

dient element.
• For GRASS, we can decompose P⊤ = ρB where
ρ is a r×r diagonal scaling matrix, B ∈ 0, 1r×m

is a sparse binary row selection matrix. Both
left multiplication by ρ and B can be computed
efficiently.

14994

Method Regular Step Component Cost Projection Update Cost

Full compute GW = (∇yL)
⊤X mbn N/A

optimizer opt.update Cmn

weight update W (t+1) ←W (t) +∆W (t) mn

LoRA compute GW = (∇yL)
⊤X mbn N/A

(W = W0 +BA) compute gradient∇BL and∇BL 2rmn
optimizer opt.update C(rm+ rn)

weight update B(t+1) ← B(t) +∆B(t) rn+ rm

A(t+1) ← A(t) +∆A(t)

ReLoRA Compute GW = (∇yL)
⊤X mbn merge weights

(W = W0 +BA) compute gradient for LoRA weights 2rmn W0 ←W0 +B(t)A(t)

optimizer opt.update C(rm+ rn) mnr +mn

weight update B(t+1) ← B(t) +∆B(t) rn+ rm

A(t+1) ← A(t) +∆A(t)

GALORE compute G = (∇yL)
⊤X mbn SVD of GW

compute P⊤G rmn mnmin(n,m)
optimizer opt.update Crn

compute αP∆(t+1) rmn

weight update W (t+1) ←W (t) + αP∆(t+1) mn

FLORA compute G = (∇yL)
⊤X mbn sample the Gaussian matrix

compute P⊤G rmn Pij
i.i.d.∼ N (0, 1/r)

optimizer opt.update Crn mr

compute αP∆(t+1) rmn

weight update W (t+1) ←W (t) + αP∆(t+1) mn

Efficient GALORE compute P⊤(∇yL)
⊤ rmb SVD of GW

compute (P⊤(∇yL)
⊤)X rbn mnmin(n,m))

optimizer opt.update Crn

compute αP∆(t+1) rmn

weight update W (t+1) ←W (t) + αP∆(t+1) mn

GRASS (ours) compute B(∇yL)
⊤ 0 compute row norms

compute (B(∇yL)
⊤)X rbn and perform

compute ρ((B(∇yL)
⊤)X) rn multinomial sampling∗

optimizer opt.update Crn mn+m+ r†

compute αP∆(t+1) rn
(only need to compute the non-zero rows)
parameter update W (t+1) ←W (t) + αP∆(t+1) rn
(only need to compute the non-zero rows)

Table 6: Detailed FLOPs Analysis for Various Methods. †This is the complexity of Alias Method for multinomial sampling. For
the deterministic method Top-r, the total complexity would be mn+m log r using a heap.

We compare various optimization strategies: Full,
GALORE, LoRA, ReLoRA, FLORA, and our
proposed method GRASS. All numbers for each
method are computed based on the implementa-
tion original papers. We additionally consider Ef-
ficient GALORE, which combines GALORE with
our proposed efficient regrouped matrix multipli-
cation implementation for reduced FLOPs and a
custom hook for reduced communication. As we
shall see, even compared to this more efficient im-
plementation of GALORE, our method GRASS still
enjoys competitive advantages.

Compute Requirements

Table 6 details the FLOPs (per worker) calculation
for the baselines and GRASS. We provide a break-
down of the computation cost of each step in the
Regular optimization step as well as the compu-
tation cost of computing the new projection ma-
trix. As we can see, GRASS is considerably more
compute-efficient than all other methods – most
importantly, its compute cost does not contain the
most expensive term mbn unlike all the other pub-
lished methods. Although Efficient GALORE also
avoids full parameter gradient computation mbn
by using our proposed multiplication rule, it still
pays a much higher cost when it computes and per-

14995

Method Weights Optimizer State Gradient Memory

Full mn 2mn mn
LoRA mn+mr + nr 2mr + 2nr mr + nr
ReLoRA mn+mr + nr 2mr + 2nr mr + nr
GALORE mn mr + 2nr mn
FLORA mn mr + 2nr mn
Efficient GALORE mn mr + 2nr nr
GRASS (ours) mn 2r + 2nr nr

Table 7: Memory Requirements for Various Methods. Note that memory cost for the projection update step is intermittent and
not included.

Method Comm Volume

Full mn
LoRA mr + nr
ReLoRA mr + nr
GALORE mn∗

FLORA mn∗

Efficient GALORE nr
GRASS (ours) nr

Table 8: Gradient Communication Volume for Various Op-
timizers. ∗ Note that GALORE and FLORA communication
volume can be reduced to nr using a communication hook.

forms the weight update (rmn+mn) compared to
GRASS (2rn).

Memory Requirements

Table 7 summarizes the memory requirements for
the various baselines and GRASS when we use
Adam as the (internal) optimizer for each method.

• In terms of storing the weight parameters, ev-
ery method needs to store the full parame-
ter matrix of shape m× n, while LoRA and
ReLoRA also requires storing the low-rank
updateable parameters (the B and A matrix)

• In terms of the optimizer state, LoRA and
ReLoRA needs to store both the first and sec-
ond moment estimates for its B and A matrix.
For all the MeSO methods, the optimizer state
of the implicit A matrix needs to be stored.
Besides, these methods also need to store the
projection matrix P . Here, unlike the other
MeSO methods which employ dense P ma-
trices, GRASS can store its sparse projection
matrix P using 2r numbers instead of mr
numbers.

• In terms of the gradient memory, with our pro-
posed regrouped matrix multiplication imple-
mentation, GRASS never materializes the full
parameter’s gradient matrix, thus reducing the
gradient memory size to only the projection
result of shape r × n.

Communication Volume

Table 8 summarizes the communication volume of
gradients (per device) for various methods when we
use distributed data parallel (DDP) training. Here
all the existing methods perform all-reduce on the
full-parameter gradient. In contrast, GRASS never
materializes the full paramater gradient and per-
forms all-reduce directly on the projected matrix,
saving the communication volume from mn to nr.

H Distributed Data Parallel
Implementation

To optimize memory usage in PyTorch’s Dis-
tributed Data Parallel (DDP) framework (Paszke
et al., 2019), we implement strategic modifica-
tions to our model architecture aimed at enhancing
distributed training efficiency (see Algorithm 6).
Specifically, we designate the weights in the linear
layers as non-trainable to circumvent the default
memory allocation for full-sized gradient matri-
ces. Instead, we introduce virtual, trainable pa-
rameters— occupying merely 1 byte each—linked
to each weight matrix. These virtual parameters
hold the compressed gradient of the corresponding
weight matrix in the wgrad attribute. This method
capitalizes on DDP’s asynchronous all-reduce ca-
pabilities while preventing unnecessary memory
allocation.

I Experiment Hyperparameters

I.1 Pretraining

We introduce details of the LLaMA architecture
and hyperparameters used for pretraining. Table 9
shows the dimensions of LLaMA models across
model sizes. We pretrain models on the C4 subset
of Dolma 8. C4 is a colossal, clean version of Com-
mon Crawl designed to pretrain language models

8https://huggingface.co/datasets/allenai/dolma

14996

https://huggingface.co/datasets/allenai/dolma

Algorithm 6 Distributed GRASS Training with PyTorch DDP illustrated for a single layer

Input: Initial weights W0 ∈ Rm×n, total iterations T , subspace rank r, world size p, learning rate scale α, update frequency K

Output: Optimized weights W (T)

1: Initialize distributed environment (e.g., NCCL)
2: W ←W0 ▷ Set weights as non-trainable
3: Introduce virtual trainable parameter vparams ∈ R1×1, linked to each weight matrix
4: vparams.wgrad← ∅ ▷ Initialize storage for compressed gradients
5: Initialize a DDP model with custom gradient hooks
6: for t = 0 to T − 1 do
7: Compute local loss L for the current mini-batch
8: output← Forward pass using W
9: if t ≡ 0 (mod K) then

10: Compute backward pass to obtain full gradient GW

11: // Sketch gradient using column norms and select top-r
12: Gsketch ← ToprColumns(GW , r)
13: // All-reduce and update the sketched matrix
14: Gsketch ← AllReduceMean(Gsketch)
15: Update projection matrix P using Gsketch, compute and store compressed gradient GC in vparams.grad. Release

memory for full gradient GW .
16: else
17: Compute backward pass, capturing compressed gradients GC in vparams.grad
18: Perform all-reduce on vparams.grad across all workers
19: end if
20: Update W using vparams.grad
21: end for
22: return W
23:

24: function TOPRCOLUMNS(grad, r)
25: indices← argsort(|colnorms(grad)|)[−r :] ▷ Identify indices of top-r column norms
26: return grad[:, indices]
27: end function

and word representations in English (Raffel et al.,
2019).

For pretraining all models we use a max se-
quence length of 256 for all models, with a batch
size of 262144 tokens. For all baseline experiments,
we adopt learning rate warmup for the first 1000
steps, and use cosine annealing for the learning rate
schedule, decaying to 10% of the initial learning
rate. GRASS, GALORE and FLORA use a projec-
tion matrix update frequency of 200. GRASS uses
an additional warmup at each update for 200 steps
and resets optimizer states for the 60M and 350M
training runs, while the 1B run does not require
resetting optimizer states. Both 60M and 350M
GRASS pretraining jobs uses Top-r selectionwhile
the 1B job uses Multinomial sampling without re-
placement.

For all methods on each size of models, we tune
learning rate from a set of {0.01, 0.005, 0.001,
0.0005, 0.0001}, and the best learning rate is cho-
sen based on the validation perplexity (or train
perplexity when a validation does not exist as in
Dolma). All MeSO models use a scale factor
α = 0.25. We find that GALORE is sensitive
to hyperparameters and exhibits loss spikes and
divergence at the prescribed learning rates in the

paper (0.01) particularly at the 1B scale, and as a
result we have to train using reduced learning rates
where we no longer observe such spikes. The learn-
ing rates of GRASS and GALORE are higher than
the full model which would display instability at
values greater than 0.001. Unless otherwise speci-
fied, we average losses using a window of 15 steps.
We use Adam with the default hyperparameters
(β1 = 0.9, β2 = 0.999, ϵ = 10−8).

All models were trained on four 80GB A100
GPUs. The training times were as follows: 100
GPU hours for the 60M model, 200 GPU hours for
the 250M model, and 650 GPU hours for the 1B
model.

I.2 Finetuning
We finetune the pretrained RoBERTa-Base9 model
(Liu et al., 2019) on the GLUE benchmark10 (Wang
et al., 2018a) using the pretrained model on Hug-
ging Face. GLUE is a natural language understand-
ing benchmark and includes a variety of tasks, in-
cluding single sentence tasks like CoLA (Warstadt
et al., 2018), SST-2 (Socher et al., 2013); similar-
ity and paraphrase tasks like MRPC (Dolan and

9https://huggingface.co/FacebookAI/
roberta-base

10https://huggingface.co/datasets/nyu-mll/glue

14997

https://huggingface.co/FacebookAI/roberta-base
https://huggingface.co/FacebookAI/roberta-base
https://huggingface.co/datasets/nyu-mll/glue

Params Hidden Intermediate Heads Layers Steps Data amount

60M 512 1376 8 8 3.8K 1.0B
350M 1024 2736 16 24 20.6K 5.4B
1B 2048 5461 24 32 33.6K 8.8B
7B 4096 11008 32 32 - -
13B 5120 13824 40 40 - -

Table 9: Model dimensions for the various LLaMA models. We report the training steps and data amount in tokens for the 60M,
350M, and 1B models.

MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B

Batch Size 32 32 32 32 32 32 32 32
Epochs 3 3 3 3 3 3 3 3
Learning Rate 2E-05 2E-05 3E-05 2E-05 2E-05 2E-05 2E-05 2E-05
Rank Config. r = 8 r = 8 r = 8 r = 8 r = 8 r = 8 r = 8 r = 8
α 2 2 2 2 2 2 2 2
Max Seq. Len. 128 128 128 128 128 128 128 128

Table 10: Hyperparameters of finetuning RoBERTa base for GRASS.

Brockett, 2005), QQP, STS-B (Cer et al., 2017);
and inference tasks such as MNLI (Williams et al.,
2017), QNLI (Rajpurkar et al., 2016), RTE and
WNLI (Levesque et al., 2012).

We report accuracy for SST-2, MNLI, QNLI and
RTE. For CoLA and STS-B, we use Matthew’s
Correlation and Pearson-Spearman Correlation as
the metrics, respectively. For MRPC and QQP, we
report the average of F1 score and accuracy. We
report the best performance out of three seeds due
to the instability of the method. We train all mod-
els for 3 epochs using a max sequence length of
128, and a batch size of 32. We report the best
performance at the end of an epoch. We use a
projection update frequency of 100 for all meth-
ods. We tuned the learning rate and scale factor
α for GALORE, FLORA, LoRA and GRASS from
{1e− 5, 2e− 5, 3e− 5, 4e− 5, 5e− 5} and scale
factors {1, 2, 4, 8, 16}. We apply the projection ma-
trices or LoRA to target modules “query”, “value”,
“key”, “intermediate.dense” and “output.dense” and
use a rank r = 8. We use Adam with the default hy-
perparameters (β1 = 0.9, β2 = 0.999, ϵ = 10−8).
All experiments were run on a single A100 GPU in
under 24 hours.

Table 10 shows the hyperparameters used for
finetuning RoBERTa-Base for GRASS.

I.3 Instruction Tuning

We finetune the pretrained LLaMA 7B 11 model
from HuggingFace on the 52k samples from

11https://huggingface.co/huggyLLaMA/LLaMA-7b

Method Alpaca Flan
LoRA 1× 10−4 1× 10−4

GRASS 1× 10−6 5× 10−6

Full 1× 10−5 1× 10−5

GALORE 1× 10−6 1× 10−6

FLORA 1× 10−6 1× 10−6

Table 11: Learning rates for the different methods for instruc-
tion finetuning on Alpaca and Flan-v2.

Alpaca 12, and the 100k samples from Flan-v2 in
Tulu 13. We evaluate the finetuned model on the
MMLU 14 benchmark (Hendrycks et al., 2020),
which covers 57 tasks including elementary math-
ematics, US history, computer science, and law.

We use a constant learning rate that we tune in
{1e − 5, 2e − 5, 3e − 5, 4e − 5, 5e − 5} for each
method and use a constant scale factor α = 16.
(see Table 11). We use Adam with the default hy-
perparameters (β1 = 0.9, β2 = 0.999, ϵ = 10−8).
Additionally, we use a source and target sequence
length of 512.

All experiments use 4 A100 80GB GPUs and
take about 48 GPU hours overall.

Alpaca Prompt Format The Alpaca prompt for-
mat is designed to generate context-dependent text
completions. Here, the prompt consists of a task de-
scription followed by specific input providing fur-
ther context. An example of the structured prompt

12https://huggingface.co/datasets/tatsu-lab/
alpaca

13https://huggingface.co/datasets/arazd/tulu_
flan/

14https://huggingface.co/datasets/cais/mmlu

14998

https://huggingface.co/huggyLLaMA/LLaMA-7b
https://huggingface.co/datasets/tatsu-lab/alpaca
https://huggingface.co/datasets/tatsu-lab/alpaca
https://huggingface.co/datasets/arazd/tulu_flan/
https://huggingface.co/datasets/arazd/tulu_flan/
https://huggingface.co/datasets/cais/mmlu

in Alpaca is provided below:

ALPACA_PROMPT_DICT = {
"prompt_input": (

"Below is an instruction that describes a
task, paired with an input that provides
further context. Write a response that
appropriately completes the request.
\n\n### Instruction:\n{instruction}\n\n
Input:\n{input}\n\n### Response: "

),
"prompt_no_input": (

"Below is an instruction that describes a
task. Write a response that appropriately
completes the request.\n\n###
Instruction:\n{instruction}
\n\n### Response: "

),
}

Flan Prompt Format The FLAN-v2 dataset in
the JSON Lines format contains detailed conversa-
tional exchanges between a user and an assistant.
Each line in the raw file represents a single con-
versational instance, encapsulated as a JSON ob-
ject with multiple messages. Our processing script
reads these lines and formats them:

• iterates over each line in the file, parsing the
JSON to extract the conversation.

• collects and concatenates all user messages to
form the input text for each instance.

• extracts the assistant’s response to form the
corresponding output text.

• outputs a simplified JSON structure with ‘in-
put‘ and ‘output‘ fields for each conversa-
tional instance.

I.4 Throughput Benchmarking

We benchmark pretraining throughput on a single
80GB A100 GPU and AMD EPYC 7763 64-Core
Processor using a total batch size of 1024, rank
64, and a sequence length of 256 across models.
We use the following per device batch sizes: 60M
(256), 350M (64), 1B (16), 7B (16), 13B (1). The
7B model runs into OOM when training with Full
rank so the estimated throughput is only for the
forward and backward pass without an optimizer
update (overestimate). GALORE and Full unlike
GRASS cannot train 13B model on the 80GB GPU
so we skip this data point. The throughput estimate
is based on 200 iterations on the C4 dataset.

We benchmark finetuning throughput on a single
80GB A100 GPU using a total batch size of 1024,
rank 64, and a sequence length 256 across mod-
els. We use the following per device batch sizes:
60M (256), 350M (64), 1B (16), 7B (16), 13B (1).
GRASS, GALORE, and LoRA are only applied to

the attention and MLP linear layers while the other
weights are set as non-trainable. The throughput
estimate is based on 200 iterations.

I.5 Communication Benchmarking
For the weak scaling throughput experiments we
use a local batch size of 16, a total batch size of
16 × num_workers and a projection rank of 256
across all methods and model sizes.

I.6 Ablations
For the ablation experiments Effect of Update Fre-
quency and computeP Methods, we pretrain using
500M tokens from the RealNews subset of C4 (Raf-
fel et al., 2020). The RealNews subset15 contains
1.81M lines in the train set and 13.9K lines in the
validation set.

J Experiments: Pretraining Memory

For estimating memory for pretraining we use a
token batch size of 256 and a rank r = 128 across
models. We do not use the layerwise trick in Zhao
et al. (2024) since this is currently inefficient during
distributed training. As the GPU memory usage for
a specific component is hard to measure directly,
we estimate the memory usage of the weight pa-
rameters and optimizer states for each method on
different model sizes. The estimation is based on
the number of original parameters, the model di-
mensions, and the number of low-rank parameters,
all trained in BF16 format.

As an example, to estimate the memory require-
ments for the 13B model, we compute memory
consumption across different components: activa-
tions, parameters, gradients, and optimizer states.

Parameter Definitions Let the following vari-
ables define our 13B model’s configuration:

• L: sequence length (256)
• B: batch size (1)
• D: model hidden size (5120)
• N : number of layers (40)
• H: number of attention heads (40)
• V : vocabulary size (32000)
• r: rank (128)

J.1 Activation Memory Calculation
The activation memory calculation is conducted by
accounting for each significant computation within
the model layers, including attention mechanisms
and feed-forward networks. Each term in Figure 8

15https://huggingface.co/datasets/allenai/c4

14999

https://huggingface.co/datasets/allenai/c4

Layer Normalization = B · L ·D · 2
Embedding Elements = B · L ·D

QKV = Embedding Elements · 2
QKT = 2 · Embedding Elements · 2

Softmax = B ·H · L2 · 2

PV =
Softmax

2
+ Embedding Elements · 2

Out Projection = Embedding Elements · 2
Attention Block Activation = Layer Normalization + QKV + QKT + Softmax + PV + Out Projection

FF1 = Embedding Elements · 2
GELU = Embedding Elements · 4 · 2

FF2 = Embedding Elements · 4 · 2
Feed-Forward Activation = Layer Normalization + FF1 + GELU + FF2

Final Layer Activation = Embedding Elements · 2
Model Activations = Layer Normalization + (N · (Attention Block Activation + Feed-Forward Activation))

+ Final Layer Activation
Cross-Entropy Loss = B · L · V · 2 +B · L · V · 4
Total Cross-Entropy = Cross-Entropy Loss

Total Activation Memory = Model Activations + Total Cross-Entropy

Figure 8: Activation memory estimation for the different baselines.

considers the BF16 precision used for storing the
activations.

J.2 Memory Calculation for Parameters and
Gradients

Memory for parameters and gradients is estimated
as follows:

• Total number of parameters across all layers:
Computed by summing up all parameter ten-
sors within the model.

• Parameter memory in bytes: Total number of
parameters multiplied by 2 (assuming BF16
precision).

• Gradient memory: For Full-rank and GA-
LORE this equals the parameter memory if
all parameters are trainable and gradients are
stored in BF16. For GRASS this equals the
projected gradient memory corresponding to
the trainable parameters.

J.3 Optimizer State Memory Calculation

• The Adam optimizer in pure BF16 precision
stores the first and second moment estimates
for each parameter, requiring 2mn floats for
a weight matrix with dimensions m× n.

• MeSO methods, including GRASS, reduce op-
timizer state memory by projecting gradients
into a lower-dimensional subspace. GRASS,
using sparse projections, needs 2r+2nr floats

to store the first and second moment estimates
of the compressed gradient (GC ∈ Rr×n) and
the sparse projection matrix (P ∈ Rm×r).
GALORE and FLORA, which use dense pro-
jection matrices, require mr + 2nr floats for
the optimizer states.

J.4 Total Memory Estimation

The total memory required for the model during
training is calculated by summing the memory for
parameters, gradients, activations, and optimizer
states, along with any additional memory overhead
as per the adaptation method used.

For GRASS applied to the 13B model, the mem-
ory costs are detailed as follows:

• Total Parameters: Approximately 13 Billion
• Activation Memory: 1936.25 MB
• Parameter Memory: 24825.79 MB
• Gradient Memory: 1230.79 MB
• Optimizer State Memory: 2461.72 MB
• Extra Memory (for largest parameter tensor):

312.50 MB
• Total Memory: 30767.05 MB

K Experiment: Finetuning Memory

In Figure 9 and Figure 10, we compare the fine-
tuning memory footprint of GRASS and LoRA
when finetuning a LLaMA model at various scales
(350M, 1B, 7B) using token batch sizes of 256 and

15000

Figure 9: LLaMA finetuning memory footprint of GRASS (Top-r) and LoRA for rank r = 64, sequence length 256, batch size
1.

Figure 10: LLaMA finetuning memory footprint of GRASS (Top-r) and LoRA for rank r = 64, sequence length 512, batch size
4.

2048 (4×512), respectively. Both methods are ap-
plied to all linear layers with a fixed rank of 64.
Our analysis reveals that at larger batch sizes, ac-
tivations predominantly contribute to the memory
footprint, resulting in comparable memory usage
between GRASS and LoRA.

We estimate memory requirements for finetun-
ing using the same aproach from Section J but only
accounting for the gradients and optimizer states
corresponding to the trainable (instead of all the)
parameters. Furthermore, LoRA requires storing
in addition to X (the input to the layer), the activa-
tions corresponding to the low-rank input XA to
compute the gradient of B, where A and B are the
low-rank adapters (Zhang et al., 2023). This results
in an additional memory requirement for LoRA of
2BLr bytes per linear layer.

L Experiments: Throughput

Figure 11 compares the normalized pretraining
throughput (using the Full model) of GRASS and
GALORE across 60M, 350M, and 1B model sizes.
We find that the throughput advantage of GRASS

over GALORE and Full is > 25% for the 1B model

Figure 11: Rank vs. Pretraining Throughput for GRASS (Top-
r), LoRA and GALORE across 60M, 350M, 1B, and 7B model
sizes.

at rank 64. The throughput approaches that of the
full model, as model size decreases or projection
rank increases.

Figure 12 compares the finetuning throughput
across ranks 8, 16,32, and 64 for the GRASS, GA-
LORE, and LoRA baselines. For the ranks com-
monly used for finetuning (8-64) the throughput
advantage of GRASS remains about the same.

We note that for the same rank, GRASS updates
fewer parameters per iteration than LoRA, as it

15001

Figure 12: Rank vs LoRA Normalized Finetuning Through-
put for GRASS (Top-r) and GALORE across 60M, 350M, and
1B model sizes.

only updates nr parameters while LoRA updates
nr + mr parameters (see Table 1). The higher
throughput of GRASS is attributed to a combination
of reduced FLOPs, fewer memory transfers, better
kernel utilization, and a balanced compute-memory
workload. LoRA incurs additional overhead from
two extra matrix multiplications per layer during
the forward pass, as well as the need to construct
the full gradient in the backward pass, which in-
creases data movement and computational cost.
GRASS avoids these overheads by not requiring
the full gradient during regular steps.

M Experiments: Additional Ablations

Comparison with other baselines In Table 12,
we report the validation perplexity of various other
baselines on a LLaMA 1B pretraining task on the
RealNews subset of C4. The attention and feedfor-
ward layers in all models are projected to a rank of
256, or use low rank adapters of this rank. We find
that the training perplexities are lower while the
validation perplexities are higher than in Table 5 for
the 60M model due to overfitting on the RealNews
dataset. All models use an update frequency of 200,
and we tune the learning rate and scale factor α per
model.

In addition to GRASS and GALORE, we
also include the ReLoRA baseline (Lialin et al.,
2023) without any full-rank training warmup, the
FLORA baseline where P has entries drawn from
N (0, 1/r), and the CountSketch baseline where
P⊤ is a CountSketch matrix with r rows with one
nonzero entry from {±1} per column. The CountS-
ketch projection has been previously applied to em-
bedding layer gradients which are sparse in prior
work (Spring et al., 2019), but shows larger vari-
ance and poorer convergence rates for dense gradi-

Train Perp Eval Perp

Full-Rank 33.48 31.41
GRASS (Top-r) 33.52 32.17
GALORE 33.68 32.10
ReLoRA 34.30 34.19
FLORA 35.91 35.62
CountSketch 36.97 36.93

Table 12: Comparison of various baselines using 1B LLaMA
model validation perplexity. All models are pretrained on
500M tokens of the RealNews subset of C4. r/dmodel is
256/2048. Best baseline is bolded.

Figure 13: Pretraining LLaMA 1B on Realnews C4 subset
with Adafactor. We compare GRASS (Top-r) and Full-rank.

ents.
We see that GRASS is competitive with GA-

LORE, while ReLoRA, FLORA, and CountSketch
fall short. One way to interpret this is in terms of
variance of the gradient sketches— GRASS being
data dependent and based on row norms can better
approximate the gradient low rank subspace than a
data agnostic sketch like FLORA or CountSketch
(Woodruff, 2014).

GRASS with Adafactor We pretrain the LLaMA
1B model with GRASS and Full-rank in BF16 on
the Realnews subset of C4 using the Adafactor opti-
mizer (Shazeer and Stern, 2018) as an alternative to
Adam for opt. Adafactor achieves sub-linear mem-
ory cost by factorizing the second-order statistics
using a row-column outer product.

For GRASS we use learning rate 0.005, α =
0.25, r = 256, K = 200, batch size 512, opti-
mizer restart with a restart warmup of 100 steps
and no initial warmup. For Full-rank training, we
use learning rate 0.0005, batch size 512, and 1000
initial linear learning rate warmup steps.

In Figure 13 we report the train perplexity and
see that GRASS is within 1 perplexity point of Full-
rank, demonstrating its ability to work with other

15002

Figure 14: Per layer indices coverage (Distinct/Total) for the
sampling strategies across 100 pretraining iterations.

inner off-the-shelf optimizers beyond Adam.

Coverage of indices. In Figure 14, we plot the
coverage defined as the union of indices selected
over n update projection steps divided by the to-
tal indices per layer. We plot the coverage for the
60M LLaMA model pretrained on the C4 Real-
News subset, for n = 15 updates with K = 200
steps between updates. Here, with the rank 128 and
the the number of rows m = 512, a uniform sam-
pling with replacement over 15 iterations should

on average cover 1−
((

1− 1
512

)128)15 ≈ 97.66%

of all the 512 indices in each layer. Empirically, all
sampling methods exhibit good coverage with the
Multinomial-Norm2-NR being close to uniform.
Top-r and Multinomial-Norm2-R oversample in-
dices in certain layers, suggesting potential areas
for further investigation into their utility in pruning
strategies.

In Figure 15 and Figure 16 we plot the aggre-
gated sampled indices over 15 iterations of 60M
LLaMA pretraining on the RealNews subset of C4.
We see that while Multinomial-Norm2-NR and Top-
r attain similar performance in terms of perplexity,
the sampled indices can be quite different, with
Top-r tending to oversample indices in particular
layers.

Figure 15: Multinomial-Norm2 Sampling without Replace-
ment: Heatmap of indices sampled for the different layers
across 15 iterations of LLaMA 60M C4 pretraining.

Figure 16: Top-r Selection: Heatmap of indices sampled for
the different layers across 15 iterations of LLaMA 60M C4
pretraining.

15003

