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Abstract

In the realm of multi-intent spoken language
understanding, recent advancements have lever-
aged the potential of prompt learning frame-
works. However, critical gaps exist in these
frameworks: the lack of explicit modeling of
dual-task dependencies and the oversight of
task-specific semantic differences among ut-
terances. To address these shortcomings, we
propose DC-Instruct, a novel generative frame-
work based on Dual-task Inter-dependent In-
structions (DII) and Supervised Contrastive In-
structions (SCI). Specifically, DII guides large
language models (LLMs) to generate labels
for one task based on the other task’s labels,
thereby explicitly capturing dual-task inter-
dependencies. Moreover, SCI leverages utter-
ance semantics differences by guiding LLMs to
determine whether a pair of utterances share the
same or similar labels. This can improve LLMs
on extracting and discriminating task-specific
semantics, thus enhancing their SLU reason-
ing abilities. Extensive experiments on pub-
lic benchmark datasets show that DC-Instruct
markedly outperforms current generative mod-
els and state-of-the-art methods, demonstrat-
ing its effectiveness in enhancing dialogue lan-
guage understanding and reasoning.

1 Introduction

In dialogue systems, spoken language understand-
ing (SLU) (Young et al., 2013) is a fundamen-
tal component for comprehensively understanding
users’ queries. In recent developments, multi-intent
SLU (Kim et al., 2017) has garnered significant at-
tention for its various and practical application sce-
narios. It typically includes two subtasks: multiple
intent detection and slot filling. Multiple Intent de-
tection aims to identify the intents expressed in the
utterance, while slot filling extracts specific pieces
of semantics information from the utterance. Some
examples are shown in Fig. 1.
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Figure 1: Some samples from MixATIS dataset. Intent
labels are in blue, and slot labels are in green.

Since there exist inherent inter-dependencies be-
tween intents and slots, recent models widely adopt
the multi-task framework based on a shared se-
mantics encoder and model the dual-task interac-
tions through some specialized components (Gan-
gadharaiah and Narayanaswamy, 2019; Goo et al.,
2018; Liu et al., 2019; Qin et al., 2020, 2021; Xing
and Tsang, 2022b,a). Among them, Co-guiding
Net Xing and Tsang (2022a) achieves the mu-
tual guidance between the two tasks via hetero-
geneous graph attention networks. These models
show potential, but their specialized components
limit their generalization ability. To this end, the
prompt learning paradigm is integrated, and Wu
et al. (2022) propose a unified generative frame-
work (UGEN), which includes five kinds of tem-
plates in the question-answer formulation.

Nonetheless, we discover that up-to-date multi-
intent SLU methods still suffer from two issues.
Firstly, current prompt instructions fail to effec-
tively model the inter-dependencies between multi-
ple intent detection and slot filling. The five instruc-
tions (I1-I5) in UGEN tackle the two tasks sepa-
rately: I1 targets multiple intent detection, while
I2-I5 focus on slot filling. We propose that ex-
plicitly modeling the dual-task inter-dependencies
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I1: Multiple Intent Detection I2: Slot Values Extraction

I3: Slot Names Extraction I4: Slot Name-Value Matching  

I5: Slot Filling  (Value-Name Pair Extraction)

I1: Multiple Intent Detection

I2: Slot Values Extraction

I3: Slot Names Extraction

I4: Slot Name-Value Matching

I5: Slot Filling 
(Value-Name Pair Extraction)

Multiple Intent 
Detection Task

Slot Filling Task

I6: Slot Guided Multiple 
Intent Detection

I8: Same Intent Labels 
Determination

I9: Same/Similar  Slot 
Types Determination

I7:Intent Guided Slot Filling

Slot to 
Intent
Guidance

Intent 
to Slot 
Guidance

(a) Framework of UGEN

(a) Our frameworkFigure 2: Overall illustration of our DC-Instruct. I1-I5
are basic instructions. I6 and I7 are dual-task inter-
dependent instructions. I8 and I9 are supervised con-
trastive instructions.

within the prompt learning framework could sig-
nificantly enhance the reasoning ability of large
language models (LLMs). Secondly, there is an
oversight of the semantic variations among utter-
ances. In Fig. 1, there exist specific semantics
differences among the three utterances, which can
be reflected by their labels. Utterance A and B
have the same intent labels, while Utterance C has
different intent labels with them. Utterance B and
C have similar slot labels, while Utterance A has
quite different slot labels with them. We argue that
these task-specific contrastive relations can bene-
fit LLMs on understanding task-specific semantics
while existing methods ignore them.

To resolve the above challenges, in this work,
we introduce a novel generative model termed DC-
Instruct. We propose Dual-task Inter-dependent
Instructions (DII) and Supervised Contrastive In-
structions (SCI) to adeptly model dual-task inter-
dependencies and exploit task-specific semantic
differences within the prompt learning framework.
DII introduces two auxiliary tasks: slot-guided mul-
tiple intent detection and intent-guided slot filling,
integrating inter-dependent instructions by embed-
ding one task’s golden labels into the instructional
context of the other. This enables LLMs to con-
ditionally generate task-specific labels, effectively
capturing dual-task dependencies and alignments.
To address the challenge of exploiting utterance
contrastive relations, SCI introduces an auxiliary
task for determining whether a pair of utterances
share the same intents or similar slot types. SCI
guides LLMs to discern True/False outcomes re-
garding the task-specific semantics of both the an-

chor utterance and its corresponding positive/nega-
tive examples. In this way, SCI can enhance LLMs’
ability to distinguish and align task-specific seman-
tics for improving SLU reasoning.

Taking the public benchmark datasets as test
beds, we conduct extensive experiments based on
various LLMs scaling from 220M to 13B. The
experimental results show that our models can
achieve consistent and significant improvements
over state-of-the-art models. The ablation study
and experiments in different low-resource settings
further verify our method’s advantages.

Our major contributions are three-fold:
(1) We propose DC-Instruct, a novel generative
model based on dual-task inter-dependent instruc-
tions and supervised contrastive instructions.
(2) We make the first attempt to explicitly capture
dual-task dependencies and exploit utterance con-
trastive relations in the prompt learning paradigm.
(3) Experimental results demonstrate the superior-
ity of our method, which can achieve new state-of-
the-art performances.

2 Related Works

Multi-intent SLU A group of models (Zhang
and Wang, 2016; Goo et al., 2018; Li et al., 2018; E
et al., 2019; Liu et al., 2019; Qin et al., 2019; Chen
et al., 2019; Zhang et al., 2019; Wu et al., 2020)
have been proposed to jointly tackle the two tasks
in SLU and model their interactions. However,
these models can only handle single-task scenarios,
while there are usually multi-intent utterances in
real-world scenarios. To this end, (Kim et al., 2017)
propose a multi-intent SLU model, and (Gangad-
haraiah and Narayanaswamy, 2019) jointly model
the tasks of multiple intent detection and slot filling
via a slot-gate mechanism. To effectively model the
dual-task interactions, graph neural networks have
been widely utilized (Qin et al., 2020, 2021; Xing
and Tsang, 2022a,b; Song et al., 2022). Co-guiding
Net (Xing and Tsang, 2022a) makes the first at-
tempt to model the mutual guidances between mul-
tiple intent detection and slot filling in the hetero-
geneous semantics-label graphs. Rela-Net (Xing
and Tsang, 2022b) and LCLR (Zhu et al., 2023)
propose to leverage the dual-task correlations in the
decoding process. More recently, prompt learning
has been investigated for multi-intent SLU. UGEN
(Wu et al., 2022) performs multi-intent SLU in a
unified generative framework using five kinds of
question-answer-formed instructions.
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Different from the above works, we propose
a novel generative method that includes various
instructions to explicitly model the dual-task de-
pendencies and effectively leverage the contrastive
relations among utterances.

Prompt Learning Recently, prompt learning
has been attracting increasing attention since it
achieves promising performance in various NLP
tasks (Liu et al., 2023a,b; Wu et al., 2022; Chan
et al., 2023; Shen et al., 2023). This paradigm
can unify the pre-training and fine-tuning stages
into the text-to-text generation tasks. For exam-
ple, Shen et al. (2023) propose a a dual-slot multi-
prompt template to unify entity locating and entity
typing. Chan et al. (2023) propose a path prediction
method based on prompt learning to incorporate
the hierarchy structure.

In this work, we investigate prompt learning for
multi-intent SLU and propose a novel model distin-
guished by dual-task inter-dependent instructions
and supervised contrastive instructions.

3 Preliminary

Multi-intent SLU aims to predict all the intents
expressed in the utterance and the slot label cor-
responding to each word. Traditional framework
regards multiple intent detection as a multi-label
sentence classification task and regards slot filling
as a sequence labeling task. UGEN (Wu et al.,
2022) makes the first attempt to explore genera-
tive multi-intent SLU based on the prompt learn-
ing paradigm. In generative multi-intent SLU, the
output of the multiple intent detection task is a se-
quence of intents expressed in the utterance. The
output of the slot filling task is a sequence of slot
value-name pairs. A slot value is a word or phrase
expressing specific semantics and the slot name
is the slot type or label corresponding to the slot
value. Considering the first example in Fig. 1,
there are two slot value-name pairs: [cheapest,
cost relative] and [general mitchell
international, airport name].

4 Method

In this section, we introduce our proposed DC-
Instruct framework, as shown in Fig. 3. Following
(Wu et al., 2022), we formulate our instructions
in the question-answer (QA) form. There are to-
tal five types of instructions in UGEN to tackle
the two tasks separately, while they cannot cap-

ture the dual-task dependencies nor contrastive re-
lations. Our framework also includes these five
instructions, and they are referred to as basic in-
structions. We first briefly introduce the basic in-
structions (I1, ..., I5) and then depict our proposed
dual-task inter-dependent instructions (I6, I7) and
supervised contrastive instructions (I8, I9).

4.1 Basic Instructions

The first basic instruction (I1) is to guide the model
to predict the intents expressed in the utterance.
The other four basic instructions (I2 I5) are for slot
filling. I2 aims to guide LLMs to extract the slot
values in the utterance. I3 guides LLMs to assign
slot names to the provided slot values. I4 is a slot
value-name matching task associating the correct
slot name with the specific slot value. I5 is the slot
value-name pair extraction task, which guides the
model to generate the sequence of all slot value-
name pairs. In the inference process, only I1 and I5
are used to generate multi-intent SLU predictions.

4.2 Dual-task Inter-dependent Instructions

To explicitly model the dual-task dependencies in
the prompt learning paradigm, we propose the dual-
task inter-dependent instructions, whose formu-
lation is shown in Fig. 4. In the training stage,
dual-task dependencies are captured by achieving
three kinds of alignments. First, since the instruc-
tion guides the LLM to predict task A’s labels, the
semantics-label alignment between the utterance
context and task A’s labels can be achieved. Sec-
ond, the dual-task label alignment between task
B’s labels in the prompt template and task A’s la-
bels in the generation side is modeled. Third, in
the prompt template, both the utterance semantics
and task B’s labels are provided, thus the dual-task
semantics-label alignment between them and task
A’s labels is achieved.

4.2.1 Slot-guided Multiple Intent Detection

In this instruction (I6), all slot types included in the
utterance are provided in the instruction to guide
the multiple intent detection task. Considering the
first example in Fig. 1, its instruction of slot-guided
multiple intent detection is:

Utterance: show me the cheapest fare ... then
where is general mithchell international located. This
utterance includes these slot types:
cost relative , airport name. What are the intents
of the utterance according to options?
Options: {Intent Label Set}.
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Utterance

I1: Multiple Intent Detection I2: Slot Values Extraction

I4: Slot Name-Value Matching

I3: Slot Names Extraction

What are the intents of the 
sentence according to options?

Which words are the slot 
values in the sentence?

List those slot values’ related slot names 
in the sentence: SV1, SV2, .., SVn

The related slot name for SV (pos) is SN (pos)?

The related slot name for SV (neg) is SN (neg)?

I5: Slot Filling  (Value-Name Pair Extraction)

Which words in the sentence are slot values? 
List them with their slot names.

I6: Slot-guided Multiple 
Intent Detection

I8: Same Intent Labels 
Determination

I9: Same/Similar Slot 
Types Determination

I7:Intent-guided Slot 
Filling

Utterance: <Utterance>. This utterance includes 
these slot types: <Golden Slot Labels>. What are the 
intents of the utterance according to options? 
Options: {Intent Label Set}.

Utterance: <Utterance>. This utterance expresses 
these intents: <Golden Intent Labels>. Which words 
are the slot values in the utterance ? List them with 
their slot names. Slot name options: {Slot Label Set}.

U1: <Utterance>. U2: <Positive Utterance (Intent)>. 
Utterance U1 and U2 express the same intents? True 
or False

U1: <Utterance>. U2: <Negative Utterance (Intent)>. 
Utterances U1 and U2 express the same intents? 
True or False

U1: <Utterance>. U2: <Positive Utterance (slot)>. 
Utterances U1 and U2 include the same or similar 
slot types? True or False

U1: <Utterance>. U2: <Negative Utterance (Slot)>. 
Utterances U1 and U2 include the same or similar 
slot types? True or False

Intent Positive 
Sampling

Intent negative 
Sampling

Slot Positive 
Sampling

Slot Negative 
Sampling

LLM

Outputs of 
I1, I2, …, I5

Golden Intent labels

Golden Slot 
value-Name Pairs

True

False

False

True

Figure 3: Illustration of our framework. Due to space limitation, we omit the details of I1-I5. We show some
examples of detailed instructions in Appendix (Table 5 and Table 6).

utterance context + task B’s labels  + question guiding LLMs to generate task A’s labels task A’s labelsLLM

Semantics-label alignment of task A

Dual-task semantic-label alignment

Dual-task label alignment

Figure 4: Illustration of our proposed dual-task inter-dependent instructions. The left side of the LLM is the input
instruction, and the right side of the LLM is the generated sequence of label(s). Task A denotes the current task and
task B denotes the other task.

where the utterance context is in blue and the slot
types are in green.

The golden output is: cheapest, city.

4.2.2 Intent-guided Slot Filling
In this instruction (I7), the golden intent labels are
provided in the instruction to guide the slot filling
task. Considering the first example in Fig. 1, its
instruction of intent-guided slot filling is:
Utterance: show me the cheapest fare ... then
where is general mithchell international located. This
utterance expresses these intents: cheap-
est , city. Which words are the slot values
in the utterance? List them with
their slot names. Slot name options:
{Slot Label Set}.

where the utterance context is in blue and the intent
labels are in pink.

And the golden generation is: cheapest is

a cost relative ; general mitchell international is

a airport name . The underlined words at the left
side of ‘is a’ are the slot values, and the ones on
the right side are the corresponding slot names.

4.3 Supervised Contrastive Instructions

Previous works ignore the semantics differences
among the samples, which are reflected in the dif-
ferent labels. This kind of contrastive relations
can be leveraged to perform supervised contrastive
learning (SCL), enhancing the semantics under-
standing ability and further improving reasoning.
As shown in Fig. 5 (a), traditional SCL leverages
the supervision signal from the contrastive labels
to pull together the representations corresponding
to the same label while pushing apart the repre-
sentations corresponding to different labels. How-
ever, our generative model is based on the prompt
learning paradigm, which cannot operate on the
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LLM

A and P have the same/similar labels?

A and N have the same/similar labels?

(a)

(b)

: pull together
RA

RN

RP

: push apart

True

False

Figure 5: Comparsion of traditional SCL based on rep-
resentation learning and our proposed SCI based on
prompt learning. A, P and N denote the anchor, positive
sample and negative sample, respectively. RA, RP and
RN denote the representation of A, P and N.

representations. To this end, we propose a set of
simple while effective instructions to achieve SCL
in the prompt learning paradigm, as shown in Fig.
5 (b). We first sample a negative utterance N and a
positive utterance P regarding the anchor utterance
A. Then we construct the instructions using natural
language to ask the LLM whether A and P or A
and N have the same/similar intent/slot labels. The
corresponding golden output is “True” or “False”.
By this means, we can leverage the contrastive rela-
tions to improve generative LLMs on task-specific
semantics understanding and reasoning.

4.3.1 Same Intent Labels Determination
To integrate intent SCL, we design a set of instruc-
tions (I8) performing same intent labels determina-
tion. They teach the LLM to align the intent seman-
tics of utterances expressing the same intent labels
and discriminate the intent semantics of utterances
expressing different intent labels. For an anchor
utterance, the intent positive samples are the ones
having the same intent labels as the anchor, and the
other ones are the intent negative samples. Consid-
ering the first utterance in Fig. 1 as the anchor, the
second utterance is its intent positive sample, and
the third utterance is its negative sample. In this
case, I8 can be constructed as:

U1: show me the cheapest fare ... then where is general
mithchell international located . U2: show me the cheap-
est fare ... from boston to dallas earlier than 1017 in the
morning . Utterance U1 and U2 express the
same intents? True or False

U1: show me the cheapest fare ... then where
is general mithchell international located. U2: re-
peating leaving denver to san francisco before 10
am ... flight number from toronto to st. pe-
tersburg. Utterance U1 and U2 express the
same intents? True or False

where the anchor utterance is in blue, the intent pos-
itive sample is in green and the negative sample is
in red. The word ‘intents’ can guide the LLM
to extract the high-level intent semantics of the sam-
ples for determination. The corresponding golden
outputs are “True” and “False”, respectively.

4.3.2 Same/Similar Slot Types Determination
Similarly, we design same/similar slot types de-
termination for slot SCL. This set of instructions
(I9) aims to teach the LLM to align the slot se-
mantics of utterances that include the same/sim-
ilar slot labels and discriminate the slot seman-
tics of utterances that include different slot la-
bels. The positive or negative slot samples are de-
fined based on the slot type set similarities, which

are calculated by: S(a, b) =
len(overlap(Ls

a,L
s
b))

max(len(Ls
a),len(Ls

b))
.

Ls
a is the set of all slot types included in the an-

chor and overlap(Ls
a, L

s
b) denotes the set of over-

lap slot types of the anchor and sample b. If
S(a, b) ≥ 1−µ, sample b is regarded as a slot pos-
itive sample; if S(a, b) ≤ µ, sample b is regarded
as a slot negative sample. µ is the threshold1.

In Fig. 1, considering the second utterance as
the anchor, the first utterance is its slot negative
sample, and the third utterance is its slot positive
sample. In this case, we can construct I9 as:

U1: show me the cheapest fare ... from boston to dallas
earlier than 1017 in the morning. U2: show me the
cheapest fare ... then where is general mithchell interna-
tional located. Utterance U1 and U2 express
the same or similar slot types? True
or False

U1: show me the cheapest fare ... from boston to
dallas earlier than 1017 in the morning . U2: repeating
leaving denver to san francisco before 10 am ... flight
number from toronto to st. petersburg. Utterance
U1 and U2 express the same or similar
slot types? True or False

where the anchor utterance is in blue, the slot posi-
tive sample is in green and the slot negative sample
is in red. The phrase ‘slot types’ can guide
the LLM to extract the high-level slot semantics of
the samples for determination. The golden outputs
are “True” and “False”, respectively.

4.4 Training and Inference

Training We first construct all instructions of
I1 ∼ I9. Then we randomly select α ratio of
the instructions of I6, I7, I8 and I9 and merge
them with all instructions of I1 ∼ I5, forming

1In this work we use µ = 1/3. We also try 1/4 and 1/5,
while no significant performance gap is observed.
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Models MixATIS MixSNIPS
Overall(Acc) Slot (F1) Intent(Acc) Overall(Acc) Slot(F1) Intent(Acc)

C
la

ss
ifi

ca
tio

n-
ba

se
d

M
od

el
s

Attention BiRNN (Liu and Lane, 2016) 39.1 86.4 74.6 59.5 89.4 95.4
Slot-Gated (Goo et al., 2018) 35.5 87.7 63.9 55.4 87.9 94.6
Bi-Model (Wang et al., 2018) 34.4 83.9 70.3 63.4 90.7 95.6
SF-ID (E et al., 2019) 34.9 87.4 66.2 59.9 90.6 95.0
Stack-Propagation (Qin et al., 2019) 40.1 87.8 72.1 72.9 94.2 96.0
JMID-SF (Gangadharaiah and Narayanaswamy, 2019) 36.1 84.6 73.4 62.9 90.6 95.1
AGIF (Qin et al., 2020) 40.8 86.7 74.4 74.2 94.2 95.1
GL-GIN (Qin et al., 2021) 43.5 88.3 76.3 75.4 94.9 95.6
GISC (Song et al., 2022) 48.2 88.5 75.0 75.9 95.0 95.5
Co-guiding Net (Xing and Tsang, 2022a) 51.3 89.8 79.1 77.5 95.1 97.7
ReLa-Net (Xing and Tsang, 2022b) 52.2 90.1 78.5 76.1 94.7 97.6
Co-guiding Net+LCLR (Zhu et al., 2023) 52.0 90.2 79.4 78.1 95.5 98.1
DARER2 (Xing and Tsang, 2023) 49.0 89.2 77.3 76.3 94.9 96.7
GL-GIN∗ (RoBERTa-base, full fine-tuning, TP=125M+) 50.1 86.9 80.8 82.6 96.4 97.3
Go-guiding∗ (RoBERTa-base, full fine-tuning, TP=125M+) 54.3 88.4 83.2 83.9 97.6 98.1
DARER2∗ (RoBERTa-base, full fine-tuning, TP=125M+) 53.8 88.2 83.1 83.5 97.3 97.9

G
en

er
at

iv
e

M
od

el
s UGEN∗ (T5-base, full fine-tuning, TP=220M) (Wu et al., 2022) 55.4 89.1 83.1 79.1 94.8 96.8

UGEN∗ (T5-large, full fine-tuning, TP=770M) 57.9 89.6 84.2 81.0 95.8 97.2
UGEN∗ (LLama2-7B, LoRA fine-tuning, TP=17M) 62.4 90.1 94.2 82.0 96.4 96.1
UGEN∗ (LLama2-13B, LoRA fine-tuning, TP=26M) 64.3 90.3 96.1 84.0 96.7 96.3
ChatGPT (gpt-3.5-turbo 175B, https://chat.openai.com/) 1.9 34.5 22.1 1.4 30.0 67.5
DC-Instruct† (T5-base, full fine-tuning, TP=220M) 58.1 90.4 84.4 81.2 95.7 97.6
DC-Instruct† (T5-large, full fine-tuning, TP=770M) 60.5 90.7 84.9 83.9 96.4 97.8
DC-Instruct† (LLama2-7B, LoRA fine-tuning, TP=17M) 65.0 90.7 94.6 84.0 96.7 96.3
DC-Instruct† (LLama2-13B, LoRA fine-tuning, TP=26M) 66.7 91.7 96.9 84.6 96.9 97.1

Table 1: Results comparison. ∗ denotes we implement the model using the official code. † denotes DC-Instruct
models significantly outperform UGEN counterparts (p < 0.01 under t-test). TP denotes the trainable parameter size.

the training data. We use the shuffled training
data to train the model in the text-to-text gener-
ation form. The training objective is to minimize
the negative log-likelihood for each instruction:
L = −∑N

n=1 log p (yn | y<n, I). N is the length
of the golden output sequence y1, ..., yN and I de-
notes the current input instruction.

Inference In the inference stage, only I1 and I5
are used to generate the predictions for multiple
intent detection and slot filling, respectively.

5 Experiments

5.1 Main Results
Due to space limitation, we put experiment settings
in Appendix A. The performance comparison of
our model and baselines are shown in Table 1, from
which we have the following observations:
(1) Our model achieves new state-of-the-art per-
formance on all tasks and datasets. Specifically,
on MixATIS dataset, DC-Instruct (T5-base) over-
passes UGEN (T5-base) by 2.7%, 1.3%, and 1.3%
on overall accuracy, slot F1, and intent accuracy,
respectively; on MixSNIPS dataset, it overpasses
UGEN by 2.1%, 0.9% and 0.8% on overall accu-
racy, slot F1, and intent accuracy. This is because
our model explicitly captures dual-task dependen-
cies via dual-task inter-dependent instructions, and
our designed supervised contrastive instructions

further enhance the LLM’s ability on task-specific
semantics understanding. Besides, T5-based mod-
els perform worse than RoBERTa-based models
on MixSNIPS dataset. We suspect the reason is
that MixSNIPS has much more training samples
while much fewer labels, which makes it easier for
classification-based models to precisely choose the
correct label index from the limited label space.
(2) Based on up-to-date larger generative LLMs
(e.g., LLama2), our DC-Instruct model can still
achieve significant improvements. The reason is
that the advantages of our approach are orthogo-
nal to the ability of LLMs. Our method can teach
LLMs to capture dual-task dependencies and ex-
tract task-specific semantics, which can hardly be
learned in the pre-training process.
(3) ChatGPT can hardly handle multi-intent SLU,
consistent with the recent observations (Pan et al.,
2023; Qin et al., 2023). We suspect the reason
is that this task requires task-specific knowledge,
which is better captured in the fine-tuning process.
Besides, the schema of intent and slot labels is
complex. We believe advanced in-context-learning
strategies like chain-of-thought can improve Chat-
GPT to some extent, while this is not our focus in
this paper. Since ChatGPT cannot obtain promis-
ing results on multi-intent SLU, prompt tuning is
necessary for LLMs. We give the error analysis in
Sec. 5.5 and some error cases in Appendix.
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MixATIS
1-shot (TSN=571) 5-shot (TSN=2707) 5% (TSN=658) 10% (TSN=1316)

Overall
(Acc)

Slot
(F1)

Intent
(Acc)

Overall
(Acc)

Slot
(F1)

Intent
(Acc)

Overall
(Acc)

Slot
(F1)

Intent
(Acc)

Overall
(Acc)

Slot
(F1)

Intent
(Acc)

Co-guiding Net (RoBERTa) 36.5 81.2 73.6 51.9 86.9 79.6 44.3 82.5 78.0 46.7 86.5 76.7
DARER2 (RoBERTa) 36.1 80.8 73.7 51.6 84.7 79.2 43.1 82.1 78.2 46.5 86.9 75.8
UGEN (T5) 42.8 85.3 78.6 53.1 88.5 81.8 47.0 85.5 80.9 50.4 87.3 81.4

DC-Instruct (T5) 45.9 86.9 80.6 55.0 89.7 82.9 49.6 86.6 82.1 52.4 88.5 82.7

MixSNIPS
5-shot (TSN=416) 10-shot (TSN=708) 5% (TSN=1988) 10% (TSN=3977)

Overall
(Acc)

Slot
(F1)

Intent
(Acc)

Overall
(Acc)

Slot
(F1)

Intent
(Acc)

Overall
(Acc)

Slot
(F1)

Intent
(Acc)

Overall
(Acc)

Slot
(F1)

Intent
(Acc)

Co-guiding Net (RoBERTa) 42.1 82.5 89.5 54.1 87.8 91.4 69.9 92.7 94.9 76.8 94.7 96.7
DARER2 (RoBERTa) 42.2 82.4 89.6 53.9 87.8 91.2 69.5 92.3 94.8 75.6 94.3 96.5
UGEN (T5) 43.3 85.0 92.5 52.0 88.0 93.5 68.7 92.4 96.5 72.8 93.9 96.7

DC-Instruct (T5) 46.7 86.2 93.0 54.8 89.0 94.5 70.6 93.5 96.9 74.4 94.5 97.4

Table 2: Experiment results on different low-resource settings. TSN denotes the number of training samples.

Models MixATIS MixSNIPS
Overall
(Acc)

Slot
(F1)

Intent
(Acc)

Overall
(Acc)

Slot
(F1)

Intent
(Acc)

DC-Instruct 58.1 90.4 84.4 81.2 95.7 97.6

w/o DII (I6, I7) 56.9 89.6 83.6 80.3 95.3 97.2
w/o SgMID (I6) 57.6 90.3 83.8 80.7 95.6 97.3
w/o IgSF (I7) 57.8 89.9 84.3 80.8 95.4 97.5

w/o SCI (I8, I9) 57.3 89.8 83.8 80.7 95.3 97.2
w/o Intent-SCI (I8) 57.6 90.3 84.0 80.9 95.6 97.3
w/o Slot-SCI (I9) 57.7 90.0 84.3 81.0 95.2 97.5

Table 3: Results of ablation experiments.

5.2 Ablation Study

We conduct ablation experiments to study the effect
of each component of our DC-Instruct model and
the results are shown in Table 3.
Dual-task Inter-dependent Instructions (DII).
When removing DII (I6, I7), obvious drops can
be witnessed on all metrics, especially overall ac-
curacy. This proves that DII can effectively and
explicitly model the dual-task dependencies, which
significantly improves the performance. We can
also find that removing any one of the slot-guided
multiple intent detection instruction (SgMID, I6)
and intent-guided slot filling instruction (IgSF, I7)
not only causes the own task’s performance drops
but also leads to drops on overall accuracy and the
other task’s performance. This can further verify
the fact that DII can effectively align the two tasks
and make them deeply coupled.
Supervised Contrastive Instructions (SCI). The
aim of SCI is to enhance the LLM’s ability on task-
specific semantics understanding. We can find that
removing SCI leads to significant decreases in all
metrics, verifying its necessity. Besides, remov-
ing Intent-SCI harms multiple intent detection and
causes performance decreases in slot filling and
sentence-level semantics parsing simultaneously.
Similarly, removing Slot-SCI leads to performance

decreases not only in slot F1 but also in intent ac-
curacy and overall accuracy. This can be attributed
to two facts. First, Intent-SCI and Slot-SCI can
effectively improve the performances on their own
tasks. Second, our proposed DII makes the two
tasks deeply coupled and interrelated with each
other’s performances. Therefore, removing any one
of Intent-SCI and Slot-SCI leads to performance
decreases on all of overall accuracy, slot F1 and
intent accuracy.

5.3 Experiments on Low-resource Setting

In real-world scenarios, obtaining a large number
of golden-labeled SLU samples is usually expen-
sive and difficult. Therefore, we conducted exper-
iments on 1/5/10-shot and 5%/10%-ratio settings
to simulate the low-resource setting and study the
quick adaptation ability of our model. The imple-
mentation details are shown in Appendix B and the
experiment results are shown in Table 2. From the
results, we can observe that:
(1) UGEN and our DC-Instruct model outper-
form other baselines by a large margin on Mix-
ATIS dataset. This is because the prompt learning
paradigm has a strong ability for generalization
and it unifies the decoding process of the two tasks,
which is beneficial for capturing dual-task depen-
dencies. Our model can further achieve significant
and consistent improvement over UGEN under all
low-resource settings on all metrics. This can be at-
tributed to the fact that our proposed dual-task inter-
dependent instructions and supervised contrastive
instructions can effectively distill more beneficial
dual-task correlative knowledge and task semantics
knowledge from the limited training data.
(2) On MixSNIPS dataset, as the training sample
number increases, the performance gap between
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Utterance: what's the fare for 
a taxi to denver and are meals 
ever served on tower air

Predictions of DICI (LLama2-7B) 
Intents: ground fare, meal
Slot Value-name Pairs: (taxi, transport 
type), (denver, city name), (meals, meal), 
(tower air, airline name)]

Predictions of UGEN (LLama2-7B) 
Intents: aircraft, meal
Slot Value-name Pairs: (taxi, transport 
type), (denver, to location.city name), 
(meals, meal), (tower air, airline name)]

Utterance: what does q mean

Predictions of DICI (LLama2-7B)
Intents: abbreviation
Slot Value-name Pairs: (q, fare basis code)

Predictions of UGEN(LLama2-7B) 
Intents: abbreviation
Slot Value-name Pairs: ()

Case A

Case B

Figure 6: Illustration of two cases with predictions from DC-Instruct (LLama2-7B) and UGEN (LLama2-7B).

RoBERTa-based models and T5-based models de-
creases, and finally, RoBERTa-based models out-
perform T5-based models. We suspect the reason
is that MixSNIPS has much fewer labels, which
makes it easy for classification-based models to
predict the correct label index.

5.4 Case Study

To demonstrate the superiority of our DC-Instruct
model over the state-of-the-art generative model
UGEN, we present two cases in Fig. 6.

In case A, UGEN cannot identify ‘ground
fare’ intent and outputs a wrong intent
‘aircraft’, while our model can give the cor-
rect prediction. This is because our proposed
SgMID instruction (I6) can guide the LLM to
comprehensively consider utterance semantics of
‘fare for a taxi’ and the slot semantics of
‘transport type’ for intent prediction. Be-
sides, our proposed Intent-SCI (I8) can enhance
the LLM to extract and discriminate the intent-
related semantics. UGEN also makes a mistake on
the slot name of ‘denver’. In MixATIS dataset,
‘to location.city name’ only relates to
the flight destination. Our DC-Instruct model can
correctly predict because the subtle semantics dif-
ference between ‘to location.city name’
and ‘city name’ can be captured by our pro-
posed Slot-SCI.

In case B, although UGEN can correctly pre-
dict intent ‘abbreviation’, it cannot extract
the slot value-name pair (q, fare basis
code). Thanks to our proposed IgSF instruction
(I7), DC-Instruct can correctly extract the slot with
the awareness that there exists at least one abbre-
viation in the utterance. Besides, our proposed
Slot-SCI can help identify the correct slot name by
enhancing the LLM to extract and discriminate the
slot-related semantics.

MixATIS MID SF
Fewer Eq. No. More ×Value ×Name

ChatGPT 4.1 24.2 49.0 91.4 92.9
UGEN(LLama2-7B) 0.6 5.2 0.0 37.8 37.8
DC-Instruct(LLaama2-7B) 0.2 5.1 0.0 34.1 34.1

MixSNIPS MID SF
Fewer Eq. No. More ×Value ×Name

ChatGPT 11.4 20.9 8.8 97.4 98.1
UGEN(LLama2-7B) 0.2 3.7 0.0 17.1 17.1
DC-Instruct(LLaama2-7B) 0.1 3.6 0.0 14.9 14.9

Table 4: Results of error analysis.

5.5 Error Analysis

We count and categorize errors made by Chat-
GPT, UGEN (LLama2-7B), and our DC-Instruct
(LLama2-7B). The results are listed in Table 4.
Due to space limitation, we give the definitions of
different kinds of errors in Appendix F.

ChatGPT tends to assign redundant wrong in-
tents on the MixATIS dataset. We suspect the rea-
son is that the MixATIS dataset has more intent
labels whose semantics is hard to discriminate for
ChatGPT. Besides, ChatGPT can hardly predict
all correct slots for an utterance. It usually makes
mistakes on the span of the slot value and cannot
discriminate the semantics of slot names. Design-
ing advanced in-context-learning methods tailored
for the above errors may improve ChatGPT on
multi-intent SLU. We present some error cases of
ChatGPT in Appendix (Table 7).

Compared with UGEN, DC-Instruct makes
fewer errors on both MID and SF tasks. Espe-
cially, DC-Instruct can correctly predict all slot
value-name pairs for more utterances than UGEN.

6 Conclusion

In this paper, we propose DC-Instruct, addressing
the challenges in generative multi-intent SLU from
two perspectives. Firstly, we propose dual-task
inter-dependent instructions to explicitly model
the dual-task dependencies. Secondly, we propose
supervised contrastive instructions, which exploit
the utterance contrastive relations in the prompt
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learning paradigm. Extensive evaluations on bench-
marks demonstrate the superiority of our method,
which can achieve promising improvements over
various LLMs scaling from 220M to 13B.

Limitations

Despite the promising results of DC-Instruct for
multi-intent SLU, we suppose that DC-Instruct has
two limitations: (1) new intents and slots detec-
tion. Currently, the application of our model is lim-
ited to identifying known intents and slots. In real-
world scenarios, detecting new intents and slots is
an important and challenging task. In the future, we
can investigate to enhance our model on detecting
unknown intents and slots. (2) new intent and slot
label generation. Except for new intents and slots
detection, directly generating their labels based on
the utterance semantics is more useful while harder.
We suppose this is a promising research direction
and we put it as our future work.
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A Experiment Settings

Datasets Following previous works, we evalu-
ate our model on MixATIS (Hemphill et al., 1990;
Qin et al., 2020) and (Coucke et al., 2018; Qin
et al., 2020). MixATIS includes 13162/756/828 ut-
terances for training/validation/testing. MixSNIPS
includes 39776/2198/2199 utterances for training/-
validation/testing.

Evaluation Metrics In multi-intent SLU, accu-
racy (Acc), F1 score and overall accuracy are used
as the metrics for multiple intent detection, slot
filling, and sentence-level semantic frame parsing,
respectively. Overall accuracy denotes the ratio of
sentences with all intents and slots correctly pre-
dicted. Implementation Details

Implementation Details For experiments based
on T5-base and T5-large (Raffel et al., 2020), we
use Adam optimizer with a learning rate of 3e−5.
The batch size is 16/40 for MixATIS/MixSNIPS
dataset. The number of gradient accumulation step
is 16/10 for MixATIS/MixSNIPS dataset. Exper-
iments are conducted on a single NVIDIA A40
GPU. For experiments based on LLama2-7B and
LLama13B (Touvron et al., 2023), we use low-rank
adaptation (LoRA) (Hu et al., 2022) to finetune
them with only 17M and 26M trainable parame-
ters, respectively. AdamW optimizer is used with
a learning rate of 3e−4. The batch size is 128/256
for MixATIS/MixSNIPS dataset. Experiments are
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Figure 7: Experiment results on overall accuracy corre-
sponding to different values of α.

conducted on two NVIDIA A40 GPUs. The α ratio
of the instruction of I6 ∼ I9 is set as 0.2.

B Implementation Details of
Low-resource Experiments

We prepare the training samples of the k-shot set-
ting by collecting samples from the original train-
ing set until each intent and slot label appears at
least k times. As for the 5%/10%-ratio setting, we
randomly select 5%/10%-ratio samples from the
original training set.

C Effect of the Value of α

The value of α in our work is set as 0.2. We con-
ducted experiments and tuned this ratio in the range
of [0.0, 0.1 0.2, 0.4, 0.6, 0.8, 1.0]. To study its
effect, we plot the experiment results correspond-
ing to different values of α in Fig. 7. We can
observe that as α increases from 0.0 to 0.2, the
performance improves consistently, while a larger
ratio (>0.2) did not lead to significant improvement
in performance but computational cost. Therefore,
we finally chose the value of 0.2 for α.

D Discussion of Different Inference
Manners

In the inference stage, we tried two different man-
ners. The first one adopts I1 and I5 to separately
conduct inference for each task, which is the cur-
rent one. The other one leverages the predictions
of I1 and I5 and then uses them to inform I6 and
I7 to let multiple intent detection and slot filling
guide each other with their predicted labels. From
the experimental results, we found that using one
task’s generated labels to inform the other task’s
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generation led to comparable performances with
the currently adopted inference setting, which sepa-
rately conducts inference for each task. We suspect
the reason is that although one task’s labels can
provide beneficial knowledge to guide the other
task’s label generation, there may exist error prop-
agations, which may cause one task’s incorrectly
generated labels to mislead the label generation of
the other task. Besides, the second manner leads
to exposure bias because in the training stage, I6
and I7 include all correct labels of another task,
while in the inference stage, I6 and I7 may include
incorrectly predicted labels.

As for the first manner, in the training stage, our
designed instructions can force the LLM to learn
to capture the dual-task inter-dependencies and en-
hance the LLM’s ability on extracting task-specific
semantics. The trained LLM can benefit from the
learned capabilities and comprehensively gener-
ate one task’s labels with the consideration of the
dual-task dependencies, while this is a soft manner
without causing error propagation and exposure
bias.

E Generalization of our Method

The two main contributions of our method – (1)
dual-task inter-dependent instructions and (2) su-
pervised contrastive instructions – can be gen-
eralized to other tasks and datasets. The dual-
task inter-dependent instructions can be format-
ted as [sample + task A question + task B’s la-
bels] ->[generate]->[task A’s labels] and in the
same way, [sample + task B question + task A’s
labels] ->[generate]->[task B’s labels]. By this
means, the inter-dependencies between the tasks
can be explicitly modeled in the prompt learning
paradigm. As for our proposed supervised con-
trastive instructions, it can be formatted as [sam-
ple pair + whether the two samples have the same
xx labels?]->[generate]->[True or False]. By this
means, our proposed supervised contrastive instruc-
tions can be used in all scenarios where the train
samples have golden labels.

F Definitions of different kinds of Errors
in Sec. 5.5

Multiple Intent Detection (MID):
(1) ‘fewer’: the ratio of the incorrectly inferred test
samples whose predicted intents are fewer than the
golden intents.
(2) ‘Eq. No.’: the ratio of the incorrectly inferred

test samples whose predicted intents number is
equal to the golden intents number.
(3) ‘More’: the ratio of the incorrectly inferred test
samples whose predicted intents are more than the
golden intents.
Slot Filling (SF):
(1) ‘× Value’: the ratio of the incorrectly inferred
test samples that have at least one error in the pre-
dicted slot values.
(2) ‘× name’: the ratio of the incorrectly inferred
test samples that have at least one error in the pre-
dicted slot names.
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Instruction Golden Output

I1

utterance: define airline ua, names of airports and also show me city served both by
nationair and canadian airlines international. question: what are the intents of the
utterance according to options? options: <intent label set>

abbreviation,
airport,
city

I2

utterance: define airline ua , names of airports and also show me city served both by
nationair and canadian airlines international. question: which words are the slot values
in the utterance?

ua,
nationair,
canadian airlines international

I3

utterance: define airline ua , names of airports and also show me city served both by
nationair and canadian airlines international. question: list those slot values’ related slot
names in the utterance: ua,nationair,canadian airlines international options: <slot label set>

ua is one airline code,
nationair is one airline name,
canadian airlines international
is one airline name

I4(1)
utterance: define airline ua , names of airports and also show me city served both by
nationair and canadian airlines international. the related slot name for show me city
served both is the time relative?

False

I4(2)
utterance: define airline ua , names of airports and also show me city served both by
nationair and canadian airlines international. the related slot name for canadian airlines
international is the airline name?

True

I5

utterance: define airline ua , names of airports and also show me city served both by
nationair and canadian airlines international. question: which words are the slot values
in the utterance? List them with their slot names. options: <slot label set>

ua is one airline code,
nationair is one airline name,
canadian airlines international
is one airline name

I6

utterance: define airline ua , names of airports and also show me city served both by
nationair and canadian airlines international. This utterance includes these slot types:
airline code,airline name,airline name. question: what are the intents of the utterance
according to options? options: <intent label set>

abbreviation,
airport,
city

I7

utterance: define airline ua , names of airports and also show me city served both by
nationair and canadian airlines international. This utterance expresses these intent:
abbreviation,airport,city. question: which words are the slot values in the utterance?
List them with their slot names. options: <slot label set>

ua is one airline code,
nationair is one airline name,
canadian airlines international
is one airline name

I8(1)

U1: define airline ua , names of airports and also show me city served both by nationair
and canadian airlines international. U2: what is the yn code, houston airports and then what
are the cities that american airlines serves. utterances U1 and U2 express the same intents?

True

I8(2)
U1: define airline ua, names of airports and also show me city served both by nationair
and canadian airlines international. U2: which companies fly between boston and oakland
and what types of meals are available. utterances U1 and U2 express the same intents?

False

I9(1)
U1: define airline ua , names of airports and also show me city served both by nationair
and canadian airlines international. U2: what does ea mean and show me the cities served
by nationair. Utterances U1 and U2 include the same or similar slot types?

True

I9(2)

U1: define airline ua , names of airports and also show me city served both by nationair
and canadian airlines international. U2: what does the fare code yn mean and then how
many fares are there one way from tacoma to montreal. Utterances U1 and U2 include the
same or similar slot types?

False

Table 5: Detailed illustration of I1~I9 of utterance “define airline ua , names of airports and also show me city
served both by nationair and canadian airlines international.”, which is from the MixATIS dataset.
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Instruction Golden Output

I1
utterance: play isham jones and swine not deserves four points. question: what are the intents
of the utterance according to options? options: <intent label set>

play music,
rate book

I2
utterance: play isham jones and swine not deserves four points. question: which words arethe
slot values in the utterance?

isham jones,swine not,
four,points

I3

utterance: play isham jones and swine not deserves four points. question: list those slot values’
related slot names in the utterance: ua,nationair,canadian airlines international.
options: <slot label set>

isham jones is one artist,
swine not is one object name,
four is one rating value,
points is one rating unit

I4(1)
utterance: play isham jones and swine not deserves four points. the related slot name for
deserves four points is the object part of series type?

False

I4(2)
utterance: play isham jones and swine not deserves four points. the related slot name for
four is the rating value?

True

I5
utterance: play isham jones and swine not deserves four points. question: which words are the
slot values in the utterance? List them with their slot names. options: <slot label set>

isham jones is one artist,
swine not is one object name,
four is one rating value,
points is one rating unit

I6

utterance: play isham jones and swine not deserves four points. This utterance includes these
slot types: artist,object name,rating value,rating unit. question: what are the intents of the
utterance according to options? options: <intent label set>

abbreviation,
airport,
city

I7

utterance: play isham jones and swine not deserves four points. This utterance expresses these
intent: play music,rate book. question: which words are the slot values in the utterance?
List them with their slot names. options: <slot label set>

isham jones is one artist,
swine not is one object name,
four is one rating value,
points is one rating unit

I8(1)
U1: play isham jones and swine not deserves four points. U2: play me songs from agreable
and rate this novel 5 stars. utterances U1 and U2 express the same intents?

True

I8(2)
U1: play isham jones and swine not deserves four points. U2: add shelby lynne to my playlist
this is luis fonsi and then show me the landing at low tide painting. utterances U1 and U2
express the same intents?

False

I9(1)
U1: play isham jones and swine not deserves four points. U2: play michael angelo batio and
then rate lords of the rim zero stars. Utterances U1 and U2 include the same or similar slot types?

True

I9(2)
U1: play isham jones and swine not deserves four points. U2: play me some music from 199.
utterances U1 and U2 include the same or similar slot types?

False

Table 6: Detailed illustration of I1~I9 of utterance “play isham jones and swine not deserves four points”, which is
from the MixSNIPS dataset.
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Utterances
Golden

Intents

Predicted

Intents
Gold Slot Value-name Pairs Predicted Slot Value-name Pairs

1

list california airports , list la and

how many canadian airlines

international flights use aircraft 320

airport,

city,

quantity

airport,

city,

airline,

aircraft

(california, state name),

(la, city name),

(canadian airlines international,

airline name),

(320, aircraft code)

(list california airports, airport name),

(list la, city name),

(canadian airlines,

airline name),

(aircraft 320, aircraft code)

2

i need a ticket from nashville to

seattle and then flight numbers from

chicago to seattle on continental

airfare,

flight no

airline,

flight no

(nashville, from location.city name),

(seattle, to location.city name),

(chicago, from location.city name),

(seattle, to location.city name),

(continental, airline name)

(i need a ticket, transport type),

(nashville, from location.city name),

(seattle, to location.city name),

(chicago, stop location.city name),

null

(continental, airline name)

3 what cities does northwest fly to city city
(northwest, airline name) (northwest, airline name),

(cities, city name)

Utterances Golden Intents Predicted Intents Gold Slot Value-name Pairs Predicted Slot Value-name Pairs

1

add the song to the soundscapes

for gaming playlist and then play

signe anderson chant music that

is newest

add to playlist,

play music

add to playlist,

play music

(song, music item),

(soundscapes for gaming,

playlist),

(signe anderson, artist),

(chant, music item),

(newest, sort)

(add the song, music item),

(soundscapes for gaming playlist,

playlist),

(signe anderson chant music, artist),

null,

(newest, sort)

2

i want to eat close to bowlegs

seven years from now and then i

want to play the video game

espn major league soccer

book restaurant,

search creative

work

book restaurant

null

(close, spatial relation),

(bowlegs, city),

(seven years from now,

time range),

(video game, object type),

(espn major league soccer,

object name)

null

(bowlegs, location name),

(seven years from now,

time range),

(video game, object type),

(espn major league soccer,

object name)

3

i want to hear any tune from the

twenties and then what time is

holiday heart showing at the

movie house

play music,

search screening

event

play music,

search screening

event

(tune, music item),

(twenties, year),

(holiday heart, movie name),

(movie house,

object location type)

null,

(twenties, year),

(holiday heart, movie name),

(movie house,

facility),

(time, time range)

Table 7: Some error cases of ChatGPT. Errors are in red and ‘null’ denotes the corresponding slot is not extracted.
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