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Abstract

Recent efforts have aimed to utilize multi-
lingual pretrained language models (mPLMs)
to extend semantic parsing (SP) across mul-
tiple languages without requiring extensive
annotations. However, achieving zero-shot
cross-lingual transfer for SP remains challeng-
ing, leading to a performance gap between
source and target languages. In this study, we
propose Cross-lingual Back-Parsing (CBP),
a novel data augmentation methodology de-
signed to enhance cross-lingual transfer for
SP. Leveraging the representation geometry
of the mPLMs, CBP synthesizes target lan-
guage utterances from source meaning repre-
sentations. Our methodology effectively per-
forms cross-lingual data augmentation in chal-
lenging zero-resource settings, by utilizing only
labeled data in the source language and mono-
lingual corpora. Extensive experiments on two
cross-lingual SP benchmarks (Mschema2QA
and Xspider) demonstrate that CBP brings sub-
stantial gains in the target language. Further
analysis of the synthesized utterances shows
that our method successfully generates target
language utterances with high slot value align-
ment rates while preserving semantic integrity. !

1 Introduction

Semantic Parsing (SP) is the task of converting nat-
ural language utterances into meaning representa-
tions such as SQL or Python code. With numerous
English parsing datasets available, recent studies
have enabled applications ranging from natural lan-
guage interfaces for databases to code generation
(Le et al., 2022; Li et al., 2023). Despite SP’s prac-
ticality, extending it beyond English is challenging.
Manually annotating examples for other languages
is very costly, and relying on machine translation is
often impractical due to the complex slot alignment
step after translation (Nicosia et al., 2021).

'Our codes and data are publicly available at https://
github.com/deokhk/CBP.
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Figure 1: An overview of the data augmentation process
with CBP. The utterance generator equipped with the
language adapter A; synthesizes utterances in the target
language ¢, and a filtering mechanism is applied to dis-
card low-quality utterances. In the example, a Korean
utterance is generated, with the corresponding English
translation provided in parentheses.

Recent studies focus on leveraging multilin-
gual pretrained language models (mPLMs) (De-
vlin et al., 2019; Xue et al., 2021) to extend SP
across multiple languages without costly annota-
tions (Sherborne and Lapata, 2022; Held et al.,
2023a). After being pretrained on large-scale non-
parallel multilingual corpora, mPLMs demonstrate
strong zero-shot cross-lingual transferability: Once
these models are fine-tuned with labeled data from
the source language, they show remarkable per-
formance in target languages without using any
labeled data from the target language. Nonetheless,
zero-shot cross-lingual transfer for SP is still chal-
lenging for state-of-the-art multilingual models, re-
sulting in a notable performance gap between the
source and target languages (Ruder et al., 2021).

To this end, we propose Cross-lingual Back-
Parsing (CBP), a novel data augmentation method-
ology for enhancing zero-shot cross-lingual trans-
fer for SP. CBP is designed to be widely applicable
by synthesizing target utterances from source mean-
ing representations under zero-resource settings -
where resources such as translators, annotated ex-
amples, and parallel corpora in target languages are
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unavailable. As shown in Figure 1, CBP comprises
two components: an utterance generator synthesiz-
ing utterances in the target languages and a filtering
mechanism discarding low-quality utterances.

To synthesize target utterances in the zero-
resource setting, the utterance generator leverages
a multilingual pretrained sequence-to-sequence
(seq2seq) model such as mT5 (Xue et al., 2021)
with modular language-specific adapters (Houlsby
et al., 2019; Pfeiffer et al., 2020) inserted into the
decoder. To enable the model to generate output
text different from the input, we design a novel
source-switched denoising objective for training
the language adapters, leveraging findings (Yang
et al., 2021) that the language identity component
can be extracted from contextualized representa-
tions of mPLMs. Using unlabeled target language
sentences, we train the adapters to denoise input
sentences from encoded representations with their
language identity switched to the source language.
This allows the adapters to control the output lan-
guage of the utterance generator during inference.

We then synthesize target utterances from the
source meaning representations using the utter-
ance generator equipped with the target language
adapters. This process effectively performs data
synthesis to create new target language utterances,
serving as data augmentation. Finally, we filter
these synthesized utterances to discard low-quality
ones using a filtering mechanism inspired by round-
trip consistency (Alberti et al., 2019), thereby en-
hancing the quality of the augmented dataset.

We assess the efficacy and robustness of CBP
on two challenging cross-lingual SP benchmarks,
Mschema2QA (Zhang et al., 2023) and Xspi-
der (Shi et al., 2022), encompassing a total of 11
languages. In the Mschema2QA benchmark, CBP
notably improves the average exact match by 3.2
points. Utilizing solely monolingual corpora for
data augmentation, CBP surpasses all baselines that
rely on translator-based data augmentation. For the
Xspider benchmark, CBP exceeds the state-of-the-
art, improving the exact match for Chinese from
52.7 to 54.0. Extensive analyses substantiate the
effectiveness of our methodology. Further inves-
tigations into synthesized utterances indicate that
CBP successfully generates utterances in the tar-
get languages high slot value alignment rates while
moderately preserving semantic integrity, despite
the absence of parallel corpora.

2 Related Work

Zero-shot cross-lingual semantic parsing Zero-
shot cross-lingual SP aims to transfer parsing ca-
pabilities from a high-resource language (e.g., En-
glish) to low-resource languages without requiring
any training data in the low-resource languages.
To enhance cross-lingual transfer, several studies
introduce auxiliary objectives during training to
improve the alignment of semantic spaces between
languages (Sherborne and Lapata, 2022; Held et al.,
2023b). Our method, however, aligns with a dif-
ferent line of research: data augmentation. Xia
and Monti (2021) utilize machine translation to
convert English datasets into target languages, fol-
lowed by word aligners to match corresponding
elements, whereas Nicosia et al. (2021) directly
generate aligned datasets using a fine-tuned model.
Although not in the zero-shot setting, some works
prompt large language models (LLMs) to generate
synthetic data in the target language, using a few
examples in the target language (Rosenbaum et al.,
2022; Awasthi et al., 2023). In contrast, our re-
search addresses data augmentation in a relatively
unexplored zero-resource setting, where no target
language data, translators, or parallel corpora are
available. Our approach leverages multilingual
pretrained language models and monolingual cor-
pora in the target language for augmentation, en-
suring effective cross-lingual transfer without such
resources.

Multilingual language models Research on the
representation geometry of multilingual pretrained
language models (mPLMs) has revealed that the
encoder representations of these models possess
a shared multilingual representation space while
still encoding language-specific information. A
study by Libovicky et al. (2019) shows that sub-
tracting the language mean from representations en-
hances cross-lingual transfer by inducing language-
agnostic representations. Additionally, Chang et al.
(2022) demonstrates that projecting representations
onto language-specific subspaces can facilitate to-
ken predictions in specific languages. Leverag-
ing these findings, Yang et al. (2021) enhances
cross-lingual retrieval performance by removing
language information from multilingual represen-
tations, while Deb et al. (2023) improves cross-
lingual question answering by projecting source
representations onto target language subspaces dur-
ing fine-tuning. The study most closely related
to ours is by Wu et al. (2022), which enhances
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Figure 2: Overview of the utterance generator training. First, we individually train language adapters, represented
by colored boxes in the decoder, using monolingual corpora for each language through source-switched denoising
training. The remaining shared parameters are frozen during this process (2a). Next, we use labeled data to fine-tune
the utterance generator for the utterance generation task, keeping the trained adapters frozen while selectively
training the other parameters (2b). The figure is adapted from Ustiin et al. (2021).

cross-lingual transfer in natural language genera-
tion tasks by selectively removing language iden-
tity during the training process of a multilingual
seq2seq model. In contrast, our approach lever-
ages the model’s language identity to modify the
generation language of an already fine-tuned multi-
lingual seq2seq model, enabling cross-lingual data
augmentation in a zero-resource setting.

3 Methodology

Overview In this study, we synthesize target lan-
guage utterances u;y; from source language mean-
ing representation mrg,. to enhance the perfor-
mance of SP models that convert u;4; into mrtgt.2
CBP consists of two components: (1) an utterance
generator (Section 3.1) that synthesizes utterances
in the target languages from source mr; (2) a fil-
tering mechanism (Section 3.2) that discards low-
quality synthesized utterances. To train the models
in each step, we utilize SP datasets in the source lan-
guage and monolingual corpora in both the source
and target languages.

The utterance generator, which utilizes a seq2seq
Transformer (Vaswani et al., 2017) as its backbone,
is trained to generate ug,. from the input mrg,c,
and subsequently generates u;y; from mr.. during

2As shown in Figure 1, the meaning representation is
largely language-independent, similar to Python code or SQL
grammar, except for its slot values. Therefore, synthetic ut-
terances in the target language that contain slot values from
the source language are still useful for training SP models in
target languages.

inference. To achieve this, the model must be capa-
ble of generating utterances in different languages
from the same meaning representations. Therefore,
we introduce a language identity switch operation
and a language-specific adapter to control the lan-
guage of the generated utterances.

The language identity switch operation alters
the encoder output representation of the generator
to reflect the source language identity, ensuring
that the generator’s decoder always receives the
encoder representation with the source language
identity regardless of the input language. We then
train the utterance generator to produce output se-
quences in the target language using the modified
encoder representation, while integrating language-
specific adapters (Houlsby et al., 2019) into the
Transformer decoder. This training enables the
adapter to prompt the generator to produce utter-
ances in different languages while maintaining the
same meaning from a given representation.

Then, we remove low-quality data from the syn-
thesized utterances using the filtering mechanism.
By re-parsing the generated utterances, we mea-
sure round-trip consistency (Alberti et al., 2019)
to determine whether it accurately maps back to
the input meaning representation used during gen-
eration. This data filtration process improves the
quality of the synthesized data.

3.1 Utterance generator

Architecture We construct the utterance genera-
tor using a multilingual pretrained seq2seq model,
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such as mT5 (Xue et al., 2021), as its backbone.
To control the output languages, we integrate a
language-specific adapter into each decoder block
of the generator, positioning it immediately af-
ter the feed-forward layers. These adapters are
lightweight bottleneck feed-forward layers that en-
able the generator to adapt to specific languages
by learning modular representations (Pfeiffer et al.,
2020; Parovic¢ et al., 2022).

Training language adapters As illustrated in
Figure 2a, we initially train the language adapters
using monolingual corpora for each language, re-
spectively. Each language adapter is updated
through a denoising task, where the utterance gener-
ator reconstructs randomly masked sentences into
their original forms. During this training process,
the model learns solely from data where the in-
put and output sequences share the same language.
However, during the data synthesis step, the model
is required to generate an output sequence in the
target language (u¢4¢) when provided with an input
sequence in the source language (mrs..). When
we train the adapter with a conventional denoising
objective (Lewis et al., 2020; Ustiin et al., 2021),
this mismatch leads to failure in synthesizing utter-
ances in target languages (Figure 4). To mitigate
this language mismatch in the zero-resource set-
ting without parallel corpora, we propose a novel
source-switched denoising objective to train the
adapters, leveraging the representation geometry
of mPLMs.

Previous studies (Libovicky et al., 2020; Yang
et al., 2021) have shown that the representation of
mPLMs can be decomposed into language-specific
and language-neutral components, which respec-
tively capture language identity and semantic infor-
mation. Inspired by this property, we switch the
language identity of input sequences to the source
language during the denoising task to prevent the
model from determining the output language based
on the input language. Following Libovicky et al.
(2020), we estimate the language-specific compo-
nent for language [ as the language mean vector p;.
We compute (; as the mean of 1M contextualized
token representations obtained from the encoder
of the utterance generator, using a set of sentences
from the monolingual corpora Cj.

During the training of the language adapter A;,
a masked sentence g(s;) in language [ is fed into
the encoder Enc of the utterance generator and
encoded into a representation. We then modify

l

o B
src

Figure 3: During source-switched denoising training,
the language identity switch operation ® switches the
language identity of the encoded representation of the
masked sentence & from language [ to the source lan-
guage, resulting in &.

the language-specific component of the encoded
representation to the source language using the
language identity switch operation ®. Formally,
the operation is defined as:

(Enc(g(s1))) = Enc(g(si) — pu + psre

where pi5-c 1S a language mean vector of the source
language. This operation maintains the semantic
equivalence of the representation while changing
its identity to the source language (Figure 3).

The language-specific adapter learns to map in-
put sentences from the source language to sen-
tences in each target language while preserving
the meaning, using the source-switched denois-
ing objective. Initially, sentences are distorted us-
ing a noise function g, which replaces consecu-
tive spans of the input sentence with a mask token.
The decoder then reconstructs the original sentence
based on the encoder representation with the lan-
guage identity switched to the source language. For
each language [, language adapter A; is separately
trained to minimize L 4, :

La, = Y ~logP(si|®(Enc(g(s0)); Ar)

s1€C

where s; is a sentence belonging to monolingual
corpora Cj of language [. All utterance generator
parameters are frozen during the training except
those of the adapter.

While we focus on training adapters in this work,
these source-switched denoising training strategies
can potentially be applied to other modular meth-
ods such as LoRA (Hu et al., 2022). We chose to
focus on adapters for two main reasons: (1) they
generally show better performance compared to
other modular methods given the same size of train-
able parameters (He et al., 2022), and (2) the liter-
ature background on their usage for cross-lingual
transfer (Pfeiffer et al., 2020, 2023).
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Fine-tuning Utterance generator After train-
ing language adapters for each language, we fine-
tune the utterance generator to synthesize us,. from
mrg,. using labeled data in the source language, as
shown in Figure 2b. This process involves integrat-
ing the source language adapter into the decoder
and selectively freezing other layers of the utter-
ance generator and the adapter to prevent catas-
trophic forgetting.’

Synthesizing target utterances After fine-
tuning the utterance generator, we synthesize u; 4
from mrg,.. For each mrg,. in the labeled data, we
generate u;4; across various target languages by
incorporating the corresponding language-specific
adapter Ay into the decoder.

3.2 Filtering mechanism

To filter out low-quality synthesized utterances, we
propose a filtering mechanism inspired by round-
trip consistency (Alberti et al., 2019). We fine-tune
the same backbone model for the utterance gener-
ator for the SP task using only labeled data from
the source language. For each target language utter-
ance uyq; initially generated from mr .., the trained
SP model predicts its corresponding meaning rep-
resentation mry,.q. We use the set (uyge, mrgec)
where mrg.. exactly matches mry,..q4 to ensure that
the synthesized u;q; preserves the meaning of the
mrspc.

4 Experimental Settings

4.1 Datasets

To evaluate whether our methodology generalizes
across different languages and meaning representa-
tions, we assess our methods on two cross-lingual
SP datasets: Mschema2QA (Zhang et al., 2023)
and Xspider (Shi et al., 2022). Examples of each
dataset are presented in Table 1.

Mschema2QA is a question-answering dataset
over schema.org web data that pairs user utterances
with meaning representations in the ThingTalk
Query Language. The dataset contains 8,932 train-
ing and 971 test examples, each available in 11
languages. Using English as the source language,

3Inspired by Pfeiffer et al. (2023), we explore various freez-
ing configurations to optimize utterance synthesis of the target
language. Table 6 in the Appendix illustrates that the best
results are obtained by additionally freezing the embedding
layer, decoder attention, and cross-attention.

we evaluate our model on the test split across 10
target languages*.

Xspider is a cross-domain text-to-SQL dataset
that pairs user utterances with SQL queries. We
train our model on the English Spider dataset(Yu
et al., 2018) consisting of 7,000 training examples
and evaluate on the Chinese (Min et al., 2019) and
Vietnamese (Nguyen et al., 2020) dev split. We did
not assess Farsi and Hindi as they are not publicly
available.

u quali sono i luoghi da piazza barberini, 9

mr | now => ( @org.schema.Hotel.Hotel ) filter
param:geo:Location == location: "piazza barberini,
9" => notify

u | REFEZADT?

mr | SELECT count(*) FROM employee

Table 1: Italian and Chinese examples of utterances
(u) and corresponding meaning representations (mr) for
Mschema2QA (Zhang et al. (2023), in red) and Xspider
(Shi et al. (2022), in ), respectively. Mschema2QA
tends to have phrase-level slot values (in bold).

Monolingual corpora We create unlabeled
monolingual corpora C; for each language [ by
extracting 1 million sentences from the November
20, 2023, Wikipedia dump in the respective lan-
guage. We extract the raw article texts from the
dump using WikiExtractor (Attardi, 2015) and split
them into sentences using BlingFire (Microsoft,
2020).

4.2 Implementation details

We use the multilingual pretrained seq2seq model
mT5-large (Xue et al., 2021) as the backbone for
our SP model and utterance generator. The syn-
thesized datasets for Mschema2QA and Xspider
contain 49.4k and 8.2k examples, respectively. We
train the model in a single stage using these syn-
thesized datasets along with the labeled data in
the source language (D), which is English. Em-
ploying AdamW (Loshchilov and Hutter, 2017)
optimizer, we train the SP model for 50 epochs on
both datasets, with a batch size of 32 and a learning
rate of 3e-5. Appendix A.1 has further details.

4.3 Baselines

As the datasets have been proposed recently, few
prior results are available in the literature. There-
fore, we developed several strong baselines that do

*Arabic (ar), German (de), Spanish (es), Persian (fa),

Finnish (fi), Italian (it), Japanese (ja), Polish (pl), Turkish
(tr), and Chinese (zh)
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not use labeled datasets in target languages. All
baselines, except those using LLM, utilize mT5-
large as the backbone model.

Translation-Based Baselines For Translate-
Test, we use Google Translate (Wu et al., 2016) to
convert the target language test set into English and
then input it into the model trained only with Dg,..
In Translate-Train, D, is translated into all tar-
get languages using machine translation (MT), and
a model is trained on this data. For TAP-Train, we
translate utterances from Dy, into all target lan-
guages with MT. Then, we use representative neu-
ral word aligners - awesome-align (Dou and Neu-
big, 2021) - to align utterances with values from
meaning representations, constructing a dataset to
train a multilingual parser. In TAP-Train + source,
we supplement the dataset from TAP-Train with
Dy, to train the model.

In-Context Learning with Multilingual LLMs
We use gpt-3.5-turbo’ for in-context learning. The
prompt is constructed by appending English exam-
ples and an utterance from the evaluation dataset,
with eight examples for Mschema2QA and one
for Xspider to meet input limits. For Xspider,
we additionally compare against the state-of-the-
art method that uses LLM, DE-R?+Translation-
P (Shi et al., 2022).

Zero-Resource Baselines For Zero-shot, we
train a model using the English-labeled dataset
Dgyc only. In word translation, inspired by Zhou
et al. (2021), we create an augmented dataset by
replacing words in English utterances from Dy,..
with their counterparts in the target language, using
bilingual dictionaries from MUSE (Conneau et al.,
2017). To preserve alignment between the mean-
ing representation and the utterance, we only re-
place words that are not part of the values. Models
are trained using both Dy, and the word-replaced
dataset across target languages. For reconstruc-
tion, inspired by Maurya et al. (2021), we train
an SP model with an auxiliary task of reconstruct-
ing input from noisy data using unlabeled corpora
across target languages. This reconstruction objec-
tive aims to enrich the cross-lingual latent represen-
tation space across languages.

Additionally, We report supervised performance
as an upper bound, trained on data from all lan-
guages. We train baselines utilizing mTS5 with the
same hyperparameters and setup as the proposed

>https://platform.openai.com/docs/models/gpt-3-5-turbo

method. Additional details for baseline models can
be found in Appendix A.2.

4.4 Evaluation metrics

We measure Exact Match (EM) accuracy for the
Mschema2QA and XSpider datasets. Additionally,
we report Test-suite (TS) accuracy for the XSpider
dataset following Zhong et al. (2020). Each score
is averaged over three runs with different random
seeds.

5 Results and Analysis

In Tables 2 and 3, we compare the performance
of CBP against competitive baselines on the
Mschema2QA and Xspider benchmarks. CBP im-
proves the average EM score on Mschema2QA
by 3.2%, with significant improvements of 8.8%
in Turkish and 5.0% in German, compared to the
zero-shot method without data augmentation. Simi-
larly, on Xspider, our method enhances Chinese
performance by 4.7% in EM and 3.8% in TS.
The filtering mechanism proves essential for our
method, as evidenced by the significant drop in
performance in its ablation (w/o filtering). Remark-
ably, despite operating under the zero-resource set-
ting, our method outperforms all baseline models
on the Mschema2QA dataset and even surpasses
DE-R2+Translation-P, the state-of-the-art in the lit-
erature on the Xspider dataset. These results high-
light the effectiveness and practicality of CBP in
cross-lingual SP.

Additionally, we find that gpt-3.5-turbo exhibits
different performance trends on the two datasets.
On Mschema2QA, gpt-3.5-turbo performs poorly,
indicating that in-context learning with English ex-
amples alone is insufficient to learn the dataset’s
domain-specific grammar. This highlights the prac-
ticality of zero-shot cross-lingual transfer through
fine-tuning. Conversely, on Xspider, where the
model has pre-trained knowledge about text-to-
SQL (Liu et al., 2023), gpt-3.5-turbo shows strong
performance, surpassing ours in TS. However, our
backbone model, mT5-large (1.2B parameters), is
notably more parameter-efficient and cost-effective
than gpt-3.5-turbo.

Slot value alignment One key challenge in cross-
lingual data augmentation for SP is aligning slot
values between the utterance and the meaning repre-
sentation. Compared to translation-based baselines,
we measure the slot value alignment rate of aug-
mented data synthesized by CBP. The alignment
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Model ar de es fa fi it ja pl tr zh  Avg
Supervised 52.8 68.1 689 467 659 635 619 59.0 63.7 537 604
Translate-Test 209 433 342 220 299 36.6 203 381 309 21.0 29.7
Translate-Train 13.8 408 370 17.8 320 334 29 375 319 74 255
TAP-Train 264 51.1 470 287 538 434 2.6 466 504 88 358
TAP-Train + source 28.8 60.5 532 295 544 48.6 52 479 556 82 392
gpt-3.5-turbo 13.0 157 153 112 164 150 7.5 156 141 125 13.6
Zero-shot 323 588 563 349 499 581 113 499 482 260 426
+ word translation ~ 30.3 634 60.3 31.1 503 603 13.7 529 529 21.1 437
+ reconstruction 299 563 549 268 445 574 6.7 49.6 446 262 39.7
CBP 320 63.8 604 352 56.8 624 112 548 57.0 243 458
 who filtering 94 584 513 17.1 380 546 55 513 439 11.0 340

Table 2: Exact match accuracy on Mschema2QA across (i) supervised models, (ii) translation-based models, (iii)
LLM-based models, and (iv) zero-resource models. The best results among the zero-resource models are highlighted

in bold.
Model zh-full zh vi Dataset Translate-Train TAP-Train CBP
EM |[EM | TS | EM | TS
Supervised 613 | 659 | 722 | 574 | 585 Mschema2QA 55.04 .77 9791
Translate-Test 565 | 62.8 | 69.2 | 35.2 | 383 Xspider 78.89 96.10  94.67
Translate-Train 57.6 | 63.5| 70.6 | 47.9 | 50.0
TAP-Train 59.6 | 653 | 71.0 | 54.2 | 50.1 Table 4: Slot value alignment rates of augmented
TAP-Train + source 593 | 649 | 69.8 | 53.2 | 50.7 datasets across various methods
gpt-3.5-turbo 38.0 | 353|679 375|550
DE-R2+Translation-P 474 | 527 | 55.7 | 43.7 | 43.6
Zero-shot 437 | 49.3 | 557 | 474 | 469 acters and 1.31 words, whereas, in Mschema2QA,
+ word translation 41.0 | 47.1 | 543|470 | 453 e .
© reconstruction 108 | 479 | 543 | 48.6 | 475 it .1s 15.38 chgracters and'2.38 words, ma.kmg slot
CBP 478 | 54.0 | 595 | 473 | 475 alignment with word aligner (TAP-Train) more
" wlofiltering | ¢ 419 [475|541| 410425  challenging. Our method, however, maintains a

Table 3: Performance on Xspider. As only a subset of
data in Cspider can be evaluated with TS, we reported
zh and zh-full individually, following Shi et al. (2022).
T is taken from Shi et al. (2022). The best results among
the zero-resource models are highlighted in bold.

rate is the percentage of training examples where
the utterance contains exactly every slot value from
the corresponding meaning representation. Table 4
presents each dataset’s average slot value align-
ment rates across languages.® Notably, CBP consis-
tently exhibits a high alignment rate across both
the Xspider and Mschema2QA datasets. On the
Mschema2QA dataset, our method achieves a slot
alignment rate of 97.91%, significantly higher than
the 75.77% achieved by the translate-and-project
(TAP-Train) approach while performing competi-
tively in Xspider.

This discrepancy can be attributed to differences
in average slot value length and complexity. In
Xspider, the average slot value length is 7.75 char-

SRefer to Appendix A.3 for the process of extracting slot
values and results across all target languages.

high slot value alignment rate in Mschema2QA,
demonstrating its effectiveness in cross-lingual SP
tasks with longer slot values.

Target language synthesis rate To evaluate the
impact of the source-switched denoising training
on synthesizing target language utterances, we
assess the language of synthesized utterances in
Mschema2QA using the Google Cloud Transla-
tion API’s Language Detection. Figure 4 shows
the target language synthesis rate. Training the
language adapter with a conventional denoising
objective (w/o switch) fails to synthesize target
language utterances effectively. In contrast, our
method, which employs a source-switched denois-
ing objective, achieves a high synthesis rate in the
target language, demonstrating its effectiveness.
Notably, our approach excels in synthesizing lan-
guages that do not share a script with the source lan-
guage (English; Latin script), achieving high syn-
thesis rates. Our method also performs robustly for
languages sharing scripts, though at slightly lower
rates. We speculate that shared scripts may re-
sult in similar language identities during language
adapter training, potentially reducing differentia-
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Figure 4: Target language synthesis rates (from O to
1) on different languages in Mschema2QA. For more
granular results, refer to Appendix Table 7.

tion between languages. Nevertheless, considering
the widespread use of non-Latin scripts globally,
CBP’s consistent target synthesis rate with these
scripts highlights its broad applicability and effec-
tiveness.

Quality of synthesized utterances We evaluate
the translation quality between the synthesized ut-
terance from CBP and the English utterance paired
with the meaning representation for the synthesized
utterance. We assess the quality only for the syn-
thesized utterances that were identified as being
in the target language by the language detection
API. We employ GEMBA-stars (Kocmi and Feder-
mann, 2023), a state-of-the-art GPT-based metric
that assesses translation quality on a one-to-five-
star scale through zero-shot prompting. Figure 5
shows the star distribution for synthesized utter-
ances across all languages on Mschema2QA. We
find that the majority of utterances fall within the
two to four-star range, indicating similar meaning
to some degree. This suggests that our method not
only adjusts the synthesized utterances’ language
but also preserves their meaning to some extent.
Synthesized utterances across different languages
are presented in Figure 10 in the Appendix.

17290

15000 1 13900

10000 1

Count

5000 q

Stars

Figure 5: Quality of synthesized utterances measured by
GEMBA-stars. We use gpt-3.5-turbo as the backbone.
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Number of monolingual sentences for training

Figure 6: Average exact match on Mschema2QA across
different languages with varying monolingual corpora
sizes (1K to 1M)

Monolingual data size To assess the impact of
monolingual corpora size in source-switched de-
noising training, we trained adapters for the lan-
guages used in Mschema2QA with progressively
smaller data sizes. Figure 6 illustrates the average
performance of Mschema2QA when trained with
data sizes ranging from 1K to 1M across different
languages. The results reveal better performance
with more data, but notably, CBP outperformed the
zero-shot method even with just 1K corpora per
language. This demonstrates that our approach can
be effective even for languages where acquiring
large monolingual corpora is challenging.

Impact of zero-shot SP performance Figure 7
illustrates the relationship between zero-shot EM
performance and improvement through our data
augmentation across various languages. The re-
sults show that languages with higher zero-shot
performance tend to exhibit greater improvements
from data augmentation. A notable comparison can

® ja A fi *
8 % zh es
* ar ¢ it
fa de A
6] ® tr + zh_xspider
o pl X vi_xspider
5
§ 4 + ¢
>
o
o
E 2
Of @ % x
-2 i i + i i i i
10 20 30 40 50 60

Zero-shot Performance (Exact match)

Figure 7: Relationship between zero-shot exact match
performance and improvement through data augmenta-
tion (in exact match) across various languages. For those
without the suffix "xspider," it pertains to mschema2qa.
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be made between zh and zh_xspider. Despite both
being in Chinese, zh_xspider, which has higher
zero-shot task performance than zh, demonstrates
significant gains from data augmentation, whereas
zh does not. This indicates that the zero-shot perfor-
mance of the task, rather than the language itself, is
the primary factor influencing the magnitude of im-
provement through data augmentation. We hypoth-
esize this is due to our method’s use of zero-shot
cross-lingual transferability of mPLMs for data
synthesis and filtering, making initial zero-shot per-
formance crucial. Future research could focus on
enhancing data augmentation techniques to work
effectively for languages with low zero-shot task
performance.

6 Conclusion

We present Cross-lingual Back-Parsing (CBP), a
novel data augmentation methodology aimed at en-
hancing zero-shot cross-lingual transfer for seman-
tic parsing. Leveraging the representation geome-
try of multilingual pretrained language models, our
method enables data augmentation in zero-resource
settings. Our experiments on two cross-lingual se-
mantic parsing benchmarks demonstrate that CBP
significantly improves performance, underscoring
its effectiveness and practical applicability. While
we focus on semantic parsing, we believe that CBP
has the potential to be applied to other cross-lingual
generation tasks in zero-resource settings. Future
work will investigate the application of our method
to tasks such as cross-lingual text style transfer (Kr-
ishna et al., 2022).

7 Limitations

Our proposed methodology, CBP, synthesizes tar-
get language utterances from source meaning rep-
resentations by leveraging the representation ge-
ometry of mPLMs. Although we have demon-
strated that CBP can effectively synthesize target
utterances while preserving semantics, our experi-
ments were conducted using only one mPLM (mT5-
large). Validating our methodology with mPLMs
of different parameter sizes and pretraining objec-
tives would further demonstrate its generalizability.
Additionally, while we demonstrated that our ap-
proach is beneficial even when the available mono-
lingual corpora are small in size (Figure 6; applica-
ble to actual low-resource language settings), we
couldn’t experiment on actual low-resource lan-
guages due to the limited natural language cover-

age of current semantic parsing datasets (Zhang
et al., 2023). Evaluating our methodology on ac-
tual low-resource languages could further verify
its effectiveness. Finally, our methodology is less
effective in synthesizing data when the zero-shot
task performance is low. This indicates that our
approach may not be effective for mPLMs with
lower inherent performance, such as small-sized
models. Future work could focus on improving our
methodology to enhance performance even in these
challenging scenarios.
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A Appendix

A.1 Implementation details

Language adapter We initialize the language
adapter as a bottleneck feed-forward layer, fol-
lowing the configuration from (Pfeiffer et al.,
2020). We train the adapter individually on source-
switched denoising objectives using 1M sentences
extracted from Wikipedia in each target language.
We train the model for 100K steps with a batch
size of 32 and a learning rate of le-4. We use
AdamW (Loshchilov and Hutter, 2017) as an opti-
mizer and minimize cross-entropy loss between the
predicted sentence and the ground truth sentence.
We use span masking as the noise function g, fol-
lowing the pretraining approach of mBART (Liu
et al., 2020). A span of tokens is substituted with
the mask token, with its length randomly sampled
by a Poisson distribution with lambda=3.5. The
training process took 26 hours on four A100-80GB
GPUs.

Question generator We initialize the question
generator with mT5-large (Xue et al.,, 2021).
We train the model for 50 epochs on both
Mschema2QA and Xspider, with a batch size
of 4 and a learning rate of 3e-5. We use
AdamW (Loshchilov and Hutter, 2017) as an opti-
mizer, and we minimize cross-entropy loss between
the predicted question and the ground truth ques-
tion. We used the final checkpoint to minimize
errors during the utterance generation process. For
Xspider, we append linearized databases to the in-
put, following the style used by Li et al. (2023).
The training process took 8 hours for Xspider and
6 hours for Mschema2QA with four A100-80GB
GPUs.

Semantic parser We initialize the semantic
parser with mT5-large (Xue et al., 2021). We train
the model for 50 epochs on both Mschema2QA
and Xspider, with a batch size of 32 and a learn-
ing rate of 3e-5. We use AdamW (Loshchilov and
Hutter, 2017) as an optimizer, and minimize cross-
entropy loss between the predicted meaning repre-
sentation and the ground truth representation. We
select checkpoints based on validation performance
on the English dev set. For Xspider, we append lin-
earized databases to the input, following the style
used by Li et al. (2023). The training process took
5 hours for Xspider and 11 hours for MschemaQA
with four RTX6000ADA GPUs.

A.2 Additional details for baseline models

In this section, we provide additional details for the
following baselines: TAP-Train, gpt-3.5-turbo, and
reconstruction.

TAP-Train Both Mschema2QA and Xspider
have slot values in their meaning representations
enclosed in double quotes. We used regex to extract
these slot values. Using the unsupervised version
of awesome-align (Dou and Neubig, 2021), we re-
placed the slot values in the meaning representation
with the corresponding values in the utterance. We
found that replacing values in the utterance with
the corresponding slot values from the meaning
representation performed worse, so we opted to re-
place the slot values in the meaning representation
instead.

GPT-3.5-turbo We construct the prompt for gpt-
3.5-turbo by appending English examples and an
utterance in the target language from the evaluation
dataset. To meet input limits, we include eight ex-
amples for Mschema2QA and one for Xspider, se-
lected randomly. Figures 8 and 9 show the prompt
format for Mschema2QA and Xspider, respectively.
We used regular expressions to post-process the
model’s predictions, extracting only the required
meaning representations.

Input Template

Translate the following question into thingtalk QL:

is there michelin 1 star red lion hotel monterey lodgings which
have location where i am now

MR: now => ( @org.schema.Hotel.Hotel ) filter
param:geo:Location == location:current_location and
param:id:Entity(org.schema.Hotel:Hotel) =~ " red lion hotel
monterey " and param:starRating.ratingValue:Number == 1 =>

notify

-+ seven English examples omitted for brevity -

Translate the following question into thingtalk QL:
{target language utterance}
MR:

Model Prediction
{meaning representation}

Figure 8: The input and output template for few-shot
inference of GPT-3.5-turbo for Mschema2QA

Reconstruction In addition to the cross-entropy
loss Lgp used for semantic parsing training, we
introduce a loss L g for the auxiliary task of recon-
structing input from noisy data using unlabeled cor-
pora across target languages. We utilized the same
unlabeled corpora (Wikipedia) that were employed

14314



Input Template

### Complete sqlite SQL query only and with no explanation
## Sqlite SQL tables, with their properties:

#

#

| stadium : stadium.stadium_id , stadium.location , stadium.name ,
stadium.capacity , stadium.highest , stadium.lowest ,
stadium.average | singer : singer.singer_id , singer.name ,
singer.country , singer.song_name , singer.song_release_year ,
singer.age , singer.is_male | concert : concert.concert_id ,
concert.concert_name , concert.theme , concert.stadium_id ,
concert.year | singer_in_concert : singer_in_concert.concert_id ,
singer_in_concert.singer_id | concert.stadium_id =
stadium.stadium_id | singer_in_concert.singer_id =
singer.singer_id | singer_in_concert.concert_id =
concert.concert_id#

### How many singers are there?
select count ( *) from singer

## Complete sqlite SQL query only and with no explanation
#it# Sqlite SQL tables, with their properties:

#

#

{linearized databases}

### {target language utterance}

select

Model Prediction
{meaning representation}

Figure 9: The input and output template for few-shot
inference of GPT-3.5-turbo for Xspider. We used the
prompt format in (Liu et al., 2023), while linearizing
databases following styles used by (Li et al., 2023).

to train the language adapter. After extracting sen-
tences from these corpora, we applied the identical
noise function used in the language adapter train-
ing, which masks spans of tokens. The auxiliary
task aims to reconstruct the original input from this
noised input, and we utilized the cross-entropy loss
between the predicted input and the original input
for the task. The final loss is computed as follows:

L = Lsp+ aLgg,

where « is the weight for Lrg. We empirically op-
timized « to 0.01 among candidates of [0.001, 0.01,
0.1, 0.5], as it performed the best in the evaluation.

A.3 Slot value alignment results across
languages

Mschema2QA and Xspider include slot values in
their meaning representations, enclosed in double
quotes. We used regex to extract these slot values.
We measure the slot value alignment rate as the
percentage of examples where the utterance con-
tains every slot value (EM) in the corresponding
meaning representation. In cases where there are
no slot values, we consider the alignment to be sat-
isfied. To assess the alignment rate’s impact on the

model’s performance with the augmented dataset,
we compute the alignment rate across examples in
the training set for each dataset. Table 5 presents
the slot value alignment rates across languages in
Mschema2QA and Xspider.
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Mschema2QA Xspider

ar de es fa fi it ja pl tr zh zh vi
Translate-Train  44.02 67.28 63.95 41.49 61.79 68.06 3898 5832 5880 47.69 | 76.04 81.74
TAP-Train 72,76 80.59 77.79 70.09 81.73 80.5 68.18 76.57 85.17 64.33 | 94.56 97.63
CPB 98.69 98.78 99.03 97.75 99.21 99.09 92.16 98.74 989 96.76 | 93.15 96.18

Table 5: Slot value alignment results across languages. The best results are in bold.

Target synthesis rate
zh vi Avg.
512 62  28.7

Emb Encyy Encay +Encppy Decpny Decyr Deceatr Decppn

X X X 50.5 139 322
X X X X X 933 15.6 544
X X X 88.0 27.7 578
X X X X X 75.0 11.6 433
X X X X 849 6.8 458

Table 6: Utterance synthesis rate in the target language of different freezing configurations, measured in Xspider.
"X" denotes a frozen component.

Synthesized Mschema2QA Xspider
Method Language ar de es fa fi it ja pl tr zh zh vi
target 000 000 1.18 0.00 1399 1418 092 0.00 0.00 0.00 | 0.02 10.65
w/o switch source (en) | 99.82 98.64 96.86 98.86 8547 8438 98.84 99.62 99.36 99.71 | 99.87 89.33
others 018 136 196 114 054 144 024 038 0.64 029 | 0.11 0.02
target 99.58 64.10 3993 97.75 40.15 71.73 9552 89.01 24.82 93.34 | 88.02 27.65
CBP source (en) | 0.30 3542 57.82 193 59.17 2632 3.84 10.88 7432 623 | 11.37 7235
others 012 048 225 032 068 195 064 0.11 086 043 | 0.61 0.00

Table 7: Language distribution of synthesized utterances using language adapters trained with different methods
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mr now => ( @org.schema.Restaurant.Restaurant ) filter
param:aggregateRating.reviewCount:Number == 1 and
param:id:Entity(org.schema.Restaurant:Restaurant) =~ \" jackdaw \" => notify

English search some diner jackdaw that have review count one.
Arabic Jie e @llia o585 off (Sagackdaw a1 Ll G ¢ (: 3)
(It could be a place like Jackdaw, which has 1 rating.)
German i sucht einen jackdaw mit 1 Bewertungen. (%: 2)
(I am looking for a Jackdaw with 1 rating.)
Spanish i am looking for a cafeterias jackdaw, que tiene 1 comentario. (%: 3)
(I am looking for a cafeteria's Jackdaw, which has 1 comment.)
Persian sl o) siu) Guajackdaw L3 Cures H35 S )l 45 (%: 3)
(The list of Jackdaw restaurants that has a population of one person.)
Finnish i am looking for a jackdaw cafeteria, jonka arvostelu on 1. (%: 3)
(I am looking for a Jackdaw cafeteria, which has 1 review.)
Italian i ristoranti jackdaw hanno 1 recensione. (%: 3)
(The Jackdaw restaurants have 1 review.)
Japanese REBY 2 EIBE jackdaw (C1EIL E 2 —A2'H 5, (*:3)
(There is 1 review for the izakaya Jackdaw.)
Polish i szukam restauracji jackdaw z recenzjg 1 (%: 3)
(I am looking for a Jackdaw restaurant with a rating of 1.)
Turkish i am looking for a jackdaw cafeteria, eger 1 yoruma sahiptir. (%: 2)
(I'am looking for a Jackdaw cafeteria, if it has 1 comment.)
Chinese LB T Ajackdaw, FFINTFL o (*:3)

(This restaurant is Jackdaw and has 1 comment.)

Figure 10: An example of synthesized utterances generated from a meaning representation of Mschema2QA (Zhang
et al., 2023). The synthesized utterances for each language are presented along with their corresponding English
translations in parentheses. The numbers next to the stars indicate translation quality measured by GEMBA-
stars (Kocmi and Federmann, 2023). The synthesized utterances convey a meaning similar to that of the English
utterance. Additionally, the slot values remain unchanged in the synthesized utterances (in green).
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