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Abstract

This paper investigates the limitations of trans-
formers for entity-tracking tasks in large lan-
guage models. We identify a theoretical con-
straint, showing that transformers require at
least log2(n+ 1) layers to handle entity track-
ing with n state changes. To address this issue,
we propose an efficient and frugal enhancement
to the standard attention mechanism, enabling
it to manage long-term dependencies more ef-
ficiently. By considering attention as an adja-
cency matrix, our model can track entity states
with a single layer. Empirical results demon-
strate significant improvements in entity track-
ing datasets while keeping competitive perfor-
mance on standard natural language modeling.
Our modified attention allows us to achieve the
same performance with drastically fewer layers.
Additionally, our enhanced mechanism reveals
structured internal representations of attention.
Extensive experiments on both toy and complex
datasets validate our approach. Our contribu-
tions include theoretical insights, an improved
attention mechanism, and empirical validation.

1 Introduction

Transformers (Vaswani et al., 2017) have deeply re-
newed state-of-the-art approaches in many natural
language processing (NLP) tasks. More specifi-
cally, the attention mechanism can readily handle
long-range dependencies and complex linguistic
phenomena. This kind of architecture surpasses the
previous ones, like Markov models and recurrent
networks. For instance, transformers exhibit an
expressivity in fluent language generation, even for
long text, that was not possible before. Moreover,
self-attention is very powerful in deriving rich and
meaningful representations of languages.

This major paradigm shift paved the way for
Large Language Models (LLM). Starting with GPT
(Radford et al., 2018) and BERT (Devlin et al.,
2019), many successors have emerged, witness-
ing a massive scaling up of model sizes by several

orders of magnitude along with unprecedented im-
provements in performance. Nowadays, state-of-
the-art approaches mostly rely on LLMs for most
of the NLP, setting a new standard for the develop-
ment and application of language models in both
academia and industry (Brown et al., 2020b; Liu
et al., 2019; Raffel et al., 2020a; Yang et al., 2019;
He et al., 2021).

However, the amount of resources needed to
train and use them has also increased by several
orders of magnitude. This raises important con-
cerns regarding their ecological impact and limits
their use and applications (Luccioni et al., 2023;
Faiz et al., 2024). This sustainability issue has mo-
tivated different lines of work to make LLMs more
frugal by optimizing architectures and reducing
computational overhead without a drop in perfor-
mance. Various approaches have been proposed,
such as pruning, quantization, and efficient train-
ing techniques, to reduce the carbon footprint of
LLMs (Dao et al., 2022; Tay et al., 2022; Fedus
et al., 2022; Hinton et al., 2015; Hu et al., 2022;
Tay et al., 2022).

Most of these methods address this call for fru-
gality in a task-agnostic way, while the complexity
and computational resources may greatly differ de-
pending on the downstream task under study. Some
tasks like entity tracking imply long-range depen-
dencies with chain-like memorization (Kim and
Schuster, 2023). More precisely, for entity track-
ing, the model has to maintain and update the states
of entities as described through a sequence of op-
erations. While it looks fairly easy for humans,
this is challenging for standard transformer mod-
els. Zhang et al. (2023) indeed show that current
LLMs have underwhelming performance on causal
reasoning of event plausibility and entity states, de-
spite the crucial part it plays in natural language
reasoning. Moreover, the complexity drastically
increases with the sequence length. Therefore, in
this work, we focus on the entity tracking task,
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which is critical in many applications like question-
answering, dialogue systems, text-based games,
and reasoning (Tandon et al., 2019; Mysore et al.,
2019; Zhang et al., 2024).

In this paper, we introduce a modified attention
layer to overcome this limitation. Our goal is to en-
hance the standard attention mechanism with a new
design, to better cope with long-term and chain-
like dependencies. For this purpose, our approach
relies on a different interpretation of the attention
matrix as an adjacency matrix.

Our contributions are the following:

• We formalize entity tracking to prove that a
transformer needs at least log2(n+ 1) layers
to handle an entity tracking task with n jumps,
since the computation graph takes the form
of a binary tree. This theorem is confirmed
empirically.

• We design an improved attention mechanism
to overcome this limitation with a single layer
and show it works empirically for entity track-
ing tasks of arbitrary length.

• Our attention layer matches the performance
of standard transformers on standard pre-
training tasks (language, code), but greatly
improves on specific entity tracking datasets.

Our theoretical and empirical results extend the
understanding of how attention layers are used to
handle entity tracking in language models.

2 Background and related work

In this work, we focus on the decoder-only archi-
tecture (Radford and Narasimhan, 2018) based on
transformers (Vaswani et al., 2017). This kind
of generative architecture is at the core of Causal
Language Modeling (CLM). While there are many
variants (Radford and Narasimhan, 2018; Radford
et al., 2019; Brown et al., 2020a; Raffel et al.,
2020b; Lewis et al., 2020), they all rely on the same
framework. After a tokenization step of the texts,
the embedding layer converts the pre-processed in-
put in a sequence of vectors, i.e a matrix. Then,
L layers of transformers process this matrix, each
made of a self-attention layer followed by a feed-
forward network. The output vectors are finally
projected into logits for prediction purposes.

2.1 Self-attention layer
At the core of the transformer architecture is the
attention layer. Given an input X ∈ RL×d (L

vectors of dimension d), a standard attention head
outputs Y, computed as follows:

A = Softmax

(
(XWq)(XWk)

T

√
dk

+M

)
(1)

Y = AXWv = AV (2)

where Wq ∈ Rd×dk , Wk ∈ Rd×dk , and Wv ∈
Rd×dv are learned matrices. M is a masking matrix
that enforces causality: a token cannot see a future
token. It is a strict upper-triangular matrix where
the nonzero entries are −∞. Multi-head attention
is obtained by stacking attention heads together,
each with dk = dv = d/nheads, and then perform-
ing a final multiplication by a learned matrix Wo.

Multi-hop attention A work closely related to
our findings is the Multi-Hop Attention Graph Neu-
ral Network (MAGNA) (Wang et al., 2020). Un-
like standard graph neural networks (GNNs) that
compute attention only between directly connected
nodes, MAGNA incorporates multi-hop context
information into attention computations at each
layer, thereby increasing their receptive field. This
enhancement of graph attention is similar to how
we enhance attention for language modeling, yet
shows significant differences in motivation, inter-
pretation, and realization.

2.2 Entity tracking
Entity tracking, also referred to as state tracking,
is the task of keeping track of the state of one or
several entities over time. Such a problem may hap-
pen in a variety of ways. For example, consider a
cooking recipe: "Place the sliced onions in a frying
pan. Stir until golden brown, then transfer them
to a plate.". Here, the model needs to comprehend
that the onions are now cooked and on the plate.
Figure 1 provides another illustration of this task.

Entity tracking and interpretability The study
of entity tracking in language models started with
the work of Li et al. (2021). They transformed
two existing datasets, Alchemy (Long et al., 2016)
and TextWorld (Côté et al., 2019), into full texts.
Inputs from the Alchemy dataset start by describ-
ing the contents of some beakers (e.g. "The first
beaker has 1 green, the second beaker has 2 red, the
third beaker has 3 red."), and then describe changes
made to these beakers ("Pour the last red beaker
into beaker 1. Mix."). We then expect the model to
keep track of what is inside each beaker. With two
LLMs, T5 (Raffel et al., 2020b) and BART (Lewis
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Textual description
The apple is in box A.
There is nothing in box B.
Move the contents of box A to box B.
Put the book into box A.
Move the contents of box B to box A.
What is in box A?

Abstract
x0 ← {apple}
x1 ← {}
x2 ← x0 ∪ x1, x3 ← {}
x4 ← x3 ∪ {book}
x5 ← x2 ∪ x4
x5 = ?

x0

x1

x2

x3
x4

x5

Figure 1: Illustration of an entity tracking task and its computational graph representation. From left to right: (a)
Textual description of the task. (b) Abstract representation of the task in terms of variable assignments. (c) Graph
representation of the task showing dependencies between states.

et al., 2020), they investigated what information
is stored in the hidden states and where. They
conclude that the internal representations of entity
states are highly interpretable and structured.

Similarly, Li et al. (2023) investigated the con-
tents of the hidden states in a GPT model (Rad-
ford and Narasimhan, 2018; Brown et al., 2020a)
trained on Othello game records. They showed
that the board state can be recovered from the hid-
den states. It shows that the LLM maintains a
high-level representation of the game board. Fur-
thermore, Toshniwal et al. (2022) showed the same
fact with GPT-2 models (Radford et al., 2019) on
chess games. Therefore, transformer models can
achieve impressive performance when trained on
entity tracking tasks, but this ability has a cost (see
Theorem 1).

Emergence of entity tracking abilities Identi-
fying the conditions that enable language models
to acquire entity-tracking capabilities is a recent
line of work. In (Kim and Schuster, 2023), pre-
trained LLMs like GPT-3, GPT-3.5, and Flan-T5
(Chung et al., 2024) are evaluated on entity tracking
tasks without fine-tuning. Their empirical results
suggest that pre-training on text corpora only is
not enough to build skills for entity tracking. No-
tably, only models additionally trained on code
data demonstrated reliable entity tracking perfor-
mance. Further emphasizing the role of training
data, Kim et al. (2024) investigated various training
datasets and concluded that entity tracking abilities
predominantly emerge when models are trained on
code-related data.

In a related study, Muennighoff et al. (2023)
explored the impact of integrating code-based
pre-training into language models, and observed
that incorporating code data up to 50% during
pre-training significantly enhances long-term state
tracking capabilities without compromising perfor-

mance on traditional natural language modeling
tasks. In (Prakash et al., 2024), the authors explore
how fine-tuning can modify transformer models’
mechanisms for entity tracking. They observe a
clear improvement without fundamentally altering
the mechanistic operation of the model.

All of these empirical results demonstrate the
potential benefits of incorporating domain-specific
knowledge into transformer models to improve
their adaptability and performance in tasks that
require persistent state tracking. However, they
focus on the importance of providing adapted train-
ing data, while our goal is to modify the attention
mechanism to leverage this ability.

3 Theoretical limits of transformers for
entity tracking

Following the introduction of entity tracking in sec-
tion 2.2, we here more formally define this task to
specify the theoretical limitations of transformers.

3.1 Entity tracking as a graph traversal task

An instance of entity tracking starts by initializing
the states of some entities, followed by a sequence
of operations that modify these states. Each op-
eration can be written as a function fi, applied to
the states of the entities (x0, . . . , xi−1), and which
produces the new state xi of one of the entities:

xi ← fi(x0, . . . , xi−1) (3)

An example is provided in Figure 1, where x0
and x1 are the initial states of boxes A and B re-
spectively, and x2 represents the new state of box
B after receiving the contents of box A.

Representation as a computational graph Now
that we can essentially represent an entity tracking
problem as an algorithm, we can consider the de-
pendency graph between the variables. The nodes
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are the variables xi, and there is a directed edge
from xi to xj if xi has been used directly to com-
pute xj . As a variable can only be computed from
previous variables, the graph is a Directed Acyclic
Graph. We show how we convert an entity track-
ing task example into its equivalent computational
graph in Figure 1.

3.2 A theoretical limitation of transformers

We now show that transformers have inherent limi-
tations when dealing with tasks that require deep
and complex state tracking, formalized in the fol-
lowing theorem:

Theorem 1 Given an entity tracking task instance,
let G be its corresponding computational graph
as defined in Section 3.1. We assume that each
attention layer has a receptive field equal to 1 in
the computational graph 1.

Then a transformer model requires a minimum
of Lmin(G) attention layers to solve the task, with:

Lmin(G) = ⌈log2(depth(G) + 1)⌉ (4)

where we define depth(G) as the length of its
longest path.

This theorem implies that the number of layers
required grows logarithmically with the number of
state transitions, due to the inherent structure of the
dependency graph in such tasks. This is particu-
larly relevant for long sequences where many state
changes occur.

This result comes naturally by considering a sin-
gle chain of dependencies between variables. We
illustrate this intuition in Figure 2. Similarly to a
linked list, an element initially only knows about
the previous element. The first attention layer then
allows it to look one step further. As we apply more
attention layers, a binary tree structure emerges, as
shown in black lines in Figure 2. We present a
more detailed proof in Appendix A.

4 Method

In this section, we introduce a novel attention mech-
anism that enhances traditional attention by en-
abling a single attention layer to handle long-term
entity tracking.

1In other words, a layer cannot make the connection be-
tween two nodes of the computational graph that are not
directly connected. We further discuss the motivation and
validity of this assumption in Appendix B.

x

y

Figure 2: Illustration of how a standard transformer can
process a sequence containing chained dependencies.
Red arrows represent the reference to a previous node,
and black lines show attention connections. With 8
nodes (represented as colored circles), log2(8) = 3
attention layers are needed to process and gather all the
information.

4.1 Enhanced attention

With the notations of Equations 1 and 2, a stan-
dard attention layer outputs Y = AV. While ef-
fective, this approach can struggle with capturing
long-range dependencies due to the limited recep-
tive field of a single layer, which is linked to the
way the computational graph is explored. To ad-
dress this, we propose an enhanced attention mech-
anism that uses a modified attention map to extend
the receptive field, allowing the model to capture
long-term dependencies more effectively.

Adjacency matrix perspective The attention
matrix from the first layer can be viewed as an
adjacency matrix representing dependencies in a
computational graph. By leveraging the properties
of the adjacency matrix, our approach simplifies
entity tracking to a single layer instead of requir-
ing multiple layers. Consider the adjacency matrix
A of a graph, where each entry represents the di-
rect connection between nodes (i.e., the attention
scores). The power of this matrix, A2, captures
paths of length 2, A3 captures paths of length 3,
and so on. To fully understand the dependencies
and track states in a computational graph where
the longest chain is n, it is necessary to consider
paths of all lengths up to n. This can be achieved
by the matrix series: A +A2 +A3 + · · · which
represents the sum of all possible paths. Assuming
this series converges, it has a closed form formula:
A(I − A)−1. Integrating this into the attention
layers allows the model to capture paths of any
length within the computational graph, extending
its ability to track states over long dependencies.
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Chain and Causal Attention Layer (ChaCAL)
Building upon this intuition, we propose the en-
hanced attention mechanism ChaCAL where the
output is computed as:

Y = (1− γ) ·A(I − γA)−1V (5)

We introduce a new parameter γ ∈ [0, 1) which
has two roles: i) ensuring convergence of the series
A+γA2+γ2A3+· · · , and ii) allowing continuous
interpolation between standard attention (γ = 0, re-
verting the expression to Equation 2) and ChaCAL
(γ ≈ 1). We analyze the influence of γ on perfor-
mance and stability in Appendix C, concluding that
any value between 0.8 and 1 seems to work, and
that 0.9 is a good default choice. Additionally, in
practice we remove the diagonal part of the adja-
cency matrix in the inverse, which corresponds to a
token attending to itself, as it is trivial and improves
learning. This enhanced mechanism enables the
model to consider longer paths, thereby improving
its ability to handle long-term dependencies.

4.2 Fixed point interpretation

Previous works have demonstrated success in re-
placing multiple transformer layers with a single
layer repeated multiple times (Reid et al., 2021;
Wang and Li, 2024) or even finding its fixed point
(Bai et al., 2019). Our algorithm can be interpreted
as finding the fixed point of the following linear
function:

f(Z) = A · (γZ+ (1− γ)V) (6)

While the absence of nonlinearity in f limits the
expressiveness of this layer, the benefit lies in the
computationally efficient closed-form solution pro-
vided by Equation 5. This approach enables the
model to handle long-term dependencies with a
single attention layer.

4.3 Efficient computation

Considering the context of causal language mod-
eling, the attention matrix A is lower-triangular,
and so is I− γA. Moreover, as long as γ < 1, its
eigenvalues are nonzero, meaning it is invertible.
We can thus write the output Y as the solution of:

BY = C (7)

where

{
B = I− γA
C = (1− γ) ·AV

This has a unique solution and is easy to solve as
it is a triangular system. Note that it does not re-
quire explicitly computing the inverse of the matrix,
which leads to a more stable and efficient imple-
mentation. The algorithm however differs between
training and inference, as inference involves decod-
ing one token at a time.

Training The solution to Equation 7 can be com-
puted efficiently using any triangular solver. We
use torch.linalg.solve_triangular from the
PyTorch library, which runs efficiently on GPU and
automatically handles differentiation.

Inference When decoding, we solve one row of
the triangular system per token decoded. This is
done by forward substitution:

yt =
1

Btt

[
Ct −

t−1∑

i=1

Bm,i yi

]
(8)

where yt denotes the t-th row of Y , i.e. the
output vector at position t in the sequence.

More generally, if we have already solved the
system for the first t tokens, and we want to solve
the next k tokens, we can use:

BY = C

⇔
[
B0 0
B1 B2

] [
Y1:t

Yt:t+k

]
=

[
C1:t

Ct:t+k

]

⇔
{
B0Y1:t = C1:t

B2Yt:t+k = Ct:t+k −B1Y1:t

(9)

In other words, Equation 9 means that we can
encode the first t tokens (e.g. a text prompt) by
solving a first triangular system, and then use the
solution to compute the next tokens efficiently with
a second triangular system.

5 Experiments

Throughout all of our experiments, we base our
models on the GPT-2 (Radford et al., 2019) archi-
tecture, which is the base of most modern LLMs.
We compare standard transformer models and our
proposed enhanced attention layer on 3 experi-
ments: an abstract toy dataset, a textual entity track-
ing task, and fine-tuning on a standard language
modeling task. While our method introduces a new
hyperparameter γ, we used γ = 0.9, as we show in
Appendix C that any value between 0.8 and 1 seems
to work fine. Detailed experimental information is
in Appendix D.
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Figure 3: Test accuracy of transformer models during
training on our toy dataset. The standard transformer
architecture struggles to learn the task and needs 4 to
5 layers to reach 100%, while our enhanced attention
consistently solves the task with only one layer. We
show the average, min and max values over 4 runs for
each model.

5.1 Experiment 1: Toy dataset
We first confirm the assumptions from previous sec-
tions by experimenting on a toy dataset, designed
to highlight the limitation of transformers for long-
term entity tracking.

5.1.1 Setup
Task description We generate sequences of num-
bers [x1, . . . , xn]. The first k tokens contain ran-
dom values. The next k tokens contain the shuffled
indices of the first k tokens. We then repeat the pro-
cess: the next k tokens contain the shuffled indices
of the previous k tokens, and so on.

The goal of the model is to predict, for every
position k, the indices included in the reference
chain: [xk, xxk

, xxxk
, . . . ].

Goals We define this abstract toy task to exper-
imentally show the limitations of attention in a
controlled and arbitrarily difficult setting. In our
experiments, we take sequences of length n = 128
(16 blocks of size k = 8). Therefore, the longest
reference chain will be of length 15, and we will
expect from Theorem 1 that a transformer needs at
least L = log2(16) = 4 layers to solve the task.

5.1.2 Results
Results for the toy dataset are shown in Figure 3
and Table 1. We evaluate standard transformer
models following the GPT-2 architecture (Radford
et al., 2019), with 1 to 5 layers, as well as our pro-
posed enhanced attention with a single layer. Note
that all runs use the same setup and hyperparame-
ters, and only the architecture is modified.

Attention L Size Loss Accuracy

Standard

1 3.3M 1.20 49.9% ± 0.5
2 6.4M 0.54 77.6% ± 2.8
3 9.6M 0.21 90.9% ± 5.2
4 12.7M 0.03 98.5% ± 2.7
5 15.9M 0.00 100% ± 0.0

ChaCAL 1 3.3M 0.00 100% ± 0.0

Table 1: Test loss and accuracy for the models evaluated
on the toy dataset. We compare standard transformers
with L = 1 to 5 layers, to a single transformer layer
using our enhanced attention.

A first observation is that standard transformers
need at least L = 4 layers to get a close to perfect
score, which is the theoretical minimum number of
layers predicted by Theorem 1. However, L = 5
layers are needed to solve the task consistently.

ChaCAL achieves a perfect score of 100% on
test accuracy in only 3 epochs, and with a single
layer. This synthetic dataset, specifically designed
for difficult entity-tracking tasks, showcases that
our architecture is particularly effective in handling
such challenges.

5.2 Experiment 2: Boxes dataset
We base our second experiment on the dataset de-
signed by Kim and Schuster (2023) and slightly
modified by Prakash et al. (2024). The task in-
volves placing items in boxes and moving them
around, to determine where the items are after all
these operations correctly.

5.2.1 Setup and Task Description
Input from this dataset starts by describing the con-
tents of the boxes (e.g. "The camera is in Box F, the
gift is in Box D."). Then a sequence of operations
follows. There are 3 possible operations:

• "Put": some items are placed in a box (e.g.
"Put the shirt into Box H.")

• "Remove": some items are removed from a
box (e.g. "Remove the camera from Box F.")

• "Move": some items are moved from one
box to another. It can be formulated either
explicitly (e.g. "Move the shirt from Box H
to Box F."), or implicitly (e.g. "Move the
contents of Box H to Box F.") which requires
the model to know what was in the box before.

Two versions of this dataset are used in our exper-
iments. The default version is the original dataset
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Figure 4: Exact match rate on the test set of each model
during training on the advanced version of the boxes
dataset.

designed by Kim and Schuster (2023) with the
minor modifications from Prakash et al. (2024),
except we increase the number of operations per
example from 12 to 32, and we train the model to
predict the contents of all boxes instead of only
one.

The advanced version always uses the implicit
formulation of the "Move" operation, and enforces
that only half boxes contain items, which means
each item will undergo more operations. These
modifications make the computational graph of the
entity tracking much deeper, which is harder to han-
dle with standard transformers according to Theo-
rem 1). Additionally, we randomize the number of
operations per example using a log-uniform distri-
bution between 1 and 31, in order to include more
easy examples. We observed this was important
for making all the models learn the task faster and
more consistently.

Models Solving the task requires a two-step pro-
cess: first understanding what each sentence means,
and then reasoning about these sentences to deduce
the contents of each box. This cannot be done in
a single layer, so we added a standard transformer
layer before our ChaCAL.

5.2.2 Results
We report our results for both versions of the
dataset in Table 2. In particular, we show the exact
match rate, i.e. the proportion of the test set for
which the model generates the same sequence as
the ground truth. In other words, this metric mea-
sures the ability of the model to track the content
of all boxes perfectly.

On the default version of the dataset, ChaCAL
outperforms the standard transformer with L = 2

or 3 layers, but does not improve over 4 or 5 trans-
former layers. Our intuition is that this dataset is
too easy, as most of the sentences explicitly men-
tion the items that are added, moved, or removed,
which makes the contents of the boxes easy to track.
Additionally, we observe that all models struggle
to learn this task quickly, which may be caused
by the sequences being too long, leading to slow
convergence and high variance.

The advanced version, however, highlights more
the advantages of ChaCAL over standard trans-
former models. We show the learning curves of
each model on this dataset version in Figure 4. Not
only does it solve the task, but it also does it much
more efficiently in comparison to what would be
needed with standard transformers. As shown in Ta-
ble 2, ChaCAL is 1.75 times faster than a 5-layered
transformer, but still beats it by 2% (99.1% against
97.0%).

5.3 Experiment 3: Language modeling

In this final experiment, we evaluate ChaCAL on a
standard natural language modeling task. Starting
from the pre-trained GPT-2 model, we replace its
attention with ours and fine-tune the model. As the
pre-training dataset of GPT-2 was not released pub-
licly, we use a subset of OpenWebText (Gokaslan
and Cohen, 2019) – its open-source version – to
fine-tune both the standard and modified models.

Goal Our experimental setup is highly unbal-
anced towards the standard transformer model, as
we initialize the weights with those of a model pre-
trained with standard attention. Nevertheless, our
goal with this experiment is to assess the viability
of our modified attention layer for standard natural
language processing tasks.

Results As shown in Table 3, a short fine-tuning
of a pre-trained model with our new attention layer
can recover a perplexity similar to the model fine-
tuned with standard attention layers.

6 Discussion

Our results correlate with the theoretical prediction
that transformers require at least log2(n+1) layers
for entity tracking tasks with n jumps. Indeed, our
toy dataset has n = 15 and models only start reach-
ing 100% accuracy at L = 4 = log2(16). Simi-
larly, our advanced version of the boxes dataset has
n ≤ 31 and we notice that L = 5 = log2(32) lay-
ers are needed to get a perfect score. This confirms
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Training Default Advanced
Attention layer L Size time Loss Exact match Loss Exact match

Standard

2 6.4M ×1.00 0.0543 45.1% ± 2.5 0.0626 58.8% ± 1.2
3 9.6M ×1.46 0.0316 65.3% ± 19.2 0.0198 84.8% ± 6.4
4 12.7M ×1.90 0.0129 83.7% ± 1.6 0.0075 94.3% ± 4.0
5 15.9M ×2.37 0.0102 84.6% ± 5.2 0.0040 97.0% ± 1.7

ChaCAL (ours) 2 6.4M ×1.36 0.0234 70.6% ± 13.8 0.0012 99.1% ± 0.7

Table 2: Test loss and accuracy for the models evaluated on the default and advanced versions of the boxes dataset.
We compare standard transformers with L = 2 to 5 layers, to a 2-layered transformer using our enhanced attention
in the second layer.

Model Perplexity
GPT-2 (pre-trained) 23.78
GPT-2 (fine-tuned) 20.15
GPT-2 + ChaCAL (fine-tuned) 21.46

Table 3: Perplexity of each model on a subset of the
OpenWebText dataset, trained for causal language mod-
eling.

that i) transformers are indeed limited for long-term
entity tracking tasks, and ii) they can successfully
learn the task even when they barely have enough
layers.

The ChaCAL model, with our improved atten-
tion mechanism, successfully learns entity tracking
tasks using the minimal number of layers, outper-
forming by far standard transformers on these spe-
cific datasets. This demonstrates the frugality and
efficiency of our method, as it manages complex
tasks with fewer resources compared to standard
transformers. We however notice a slower conver-
gence at the beginning of training and a greater
variance in the training curves. We believe that
ChaCAL could greatly benefit from understanding
better its training dynamics (e.g. a more suited ini-
tialization, or regularization), which we leave as
future work.

While our modified attention mechanism does
not significantly enhance general language model-
ing tasks, this observation is in line with several
previous studies, such as Kim and Schuster (2023),
Kim et al. (2024), and Muennighoff et al. (2023).
Entity tracking is a relatively rare subtask within
language modeling, indicating that pre-training on
natural language alone does not foster robust entity-
tracking capabilities. We also explain the absence
of immediate benefits in language modeling by the
large size of the models, which have an abundance
of layers that allow them to handle most entity
tracking tasks in theory. As ChaCAL was specially

designed to reduce the number of attention layers,
one may try to explore other architectural choices
more suited to our purpose, involving shallower but
wider models for instance.

A notable finding is that our model with γ =
0.9 across all layers reaches performances similar
to standard transformers. Instead of fine-tuning a
model that was pre-trained using standard attention,
pre-training from scratch with our novel attention
mechanism could lead to a more efficient attention
structure optimized for entity tracking.

Finally, the high computational efficiency of our
method mainly relies on the attention matrix being
lower-triangular, which is only the case in decoder
transformers for causal language modeling. Further
research may attempt to generalize ChaCAL to non-
causal transformers such as BERT (Devlin et al.,
2019) and many others (Vaswani et al., 2017; Liu
et al., 2019; He et al., 2021; Raffel et al., 2020b).

7 Conclusion

In this study, we have theorized that transform-
ers require at least log2(n + 1) layers for effec-
tive entity tracking tasks with n jumps. Multiple
experiments on entity tracking tasks, with both a
toy dataset and a more complex natural language
dataset, validate our claims and consistently demon-
strate that transformers need at least this many lay-
ers to achieve perfect performance.

The ChaCAL model, leveraging our novel at-
tention mechanism, excels in entity tracking tasks
while drastically lowering layer requirements com-
pared to standard transformers, and without adding
more parameters nor requiring special tuning. This
underscores the frugality and computational effi-
ciency of our approach. At last, fine-tuning experi-
ments of GPT-2 with our enhanced attention on a
natural language modeling task suggests that Cha-
CAL can at least match the standard transformer
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models.
Several key questions emerge: how does pre-

training from scratch with ChaCAL compare to
fine-tuning existing models? What are the optimal
settings for γ across different layers and tasks, and
can it be dynamically adjusted during training to
enhance the model’s adaptability and performance?

In conclusion, this study advances our under-
standing of attention mechanisms in transform-
ers, particularly in optimizing models for entity-
tracking tasks. By bridging theory with practical
insights, we lay a foundation for future research
aimed at developing more efficient transformer ar-
chitectures tailored to specific application domains.

Limitations

Firstly, our experiments on Language Modeling
tasks were limited in scope. While our attention
mechanism showed promising results for entity
tracking, its impact on general language modeling
tasks, beyond those specifically designed to evalu-
ate entity tracking, remains understudied. Future
work should explore a broader range of language
tasks to assess the generalizability and versatility
of our approach.

Secondly, while the theoretical foundation of our
layer requirement prediction is agnostic to specific
transformer architectures, we primarily evaluated
our ChaCAL model on GPT-2 layers. Extending
this evaluation to other transformer architectures,
such as GPT-3, BERT, or custom-designed models,
would provide a more comprehensive understand-
ing of the applicability and performance of our
attention mechanism across different frameworks.

Additionally, our study fixed γ = 0.9 uniformly
across all layers. Exploring adaptive strategies
for γ, including layer-specific or task-specific tun-
ing during training, could potentially enhance the
model’s flexibility and performance across a more
diverse set of tasks.

Moreover, our experiments focused primarily on
entity tracking in natural language datasets. Ex-
tending the evaluation to other domains such as
code understanding, mathematical reasoning, and
summarization tasks would elucidate the broader
applicability of our attention mechanism in various
real-world applications.

Lastly, while we discussed the computational fru-
gality of our ChaCAL model compared to standard
transformers, further investigation into the compu-
tational efficiency and scalability of our approach

on larger datasets and models is necessary to fully
assess its practical implications.

Addressing these limitations in future research
endeavors will contribute to refining and validating
the effectiveness of our attention mechanism in en-
hancing transformer architectures for a wide range
of tasks and domains.
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A Proof of Theorem 1

Consider an entity tracking task represented by
a computational graph G, where nodes represent
state variables and edges denote dependencies be-
tween states. Let depth(G) denote the length of the
longest path in G.

We start by identifying the longest path P =
(v1, v2, . . . , vn) in G with n = depth(G).

Each layer of the transformer model has a recep-
tive field of 1 in G, allowing it to propagate infor-
mation only between directly connected nodes.

To track dependencies across the longest path P ,
we proceed as follows:

Base Case: Initially, the transformer initializes
hidden states based on the input, encoding local
information at each node vi along path P .

Inductive Step: Assume after L layers, the
model can integrate information across paths of
length 2L − 1 along path P .

At L + 1 layers, each node vi on path P can
access information up to 2L+1−1 steps away. This
is because:

• vi already contains information about
(vi, . . . , vi+2L−1),

• vi+2L contains information about
(vi+2L , . . . , vi+2L+1−1).
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Using the attention layer to query the contents
of vi+2L , information from both vi and vi+2L

can be aggregated, enabling the next hidden state
associated with vi to contain information about
(vi, . . . , vi+2L+1−1). Because of our assumption,
we know that no more information could have been
aggregated.

Therefore, Lmin(G) = ⌈log2(n+ 1)⌉ layers are
necessary for the transformer model to effectively
handle dependencies along the longest path P in
G.

B Motivation and validity of the
assumption in Theorem 1

The key assumption we make in Theorem 1 is that
each attention layer only has a receptive field of 1
in the dependency graph. The motivation is that if a
node only contains information about the previous
node, then it has no way of directly accessing nodes
that are 2 or more jumps away. As such, the only
node it can attend to in the attention layer is the
previous node. This is analogous to a linked list
in programming, where each cell only contains a
pointer to the next cell, and does not know where
the other cells are stored in memory.

Using attention, a node A can only query in-
formation from the previous node B. After one
iteration, using the new information from node B
about the next node C, it is then possible to query
information from node C about node D, and so on.
In a sequential algorithm, this would require O(L)
steps, L being the chain length. However, trans-
formers process each token in parallel, which leads
to O(logL) steps instead, and which is what we
prove more formally in Theorem 1.

A limit of the assumption is that in case the
model overfits, the model might manage to "skip"
nodes and look at nodes further away. Indeed, it
could use attention to gather information about the
whole sequence, and then use the feedforward layer
to sort out and process the useful information. This
is never optimal unless the model is largely over-
parametrized. This complicates the formalization
of the assumption. Still, in practice we did not
observe such phenomenon in our entity-tracking
experiments, and out results correlate very well
with the predictions of the theorem.

C Influence of γ

As our method introduces a new hyperparameter γ,
we investigate its influence through an experiment

on our toy dataset (see section 5.1). We train a
single ChaCAL layer in the exact same conditions
as our other experiments on the same dataset. In
particular, we only change γ between the runs. We
report our results in Figure 5.
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Figure 5: Impact of γ over performance and conver-
gence. Accuracy is shown in blue, and the number of
epochs to reach a perfect accuracy is in red.

A first observation is that, as expected, γ = 0
is equivalent to the standard transformer. As γ
increases, the model gets closer to the expected
behavior of ChaCAL and reaches 100% accuracy
for γ ⪆ 0.5.

Although ChaCAL successfully learns the task
for any 0.5 < γ < 1, we observe that convergence
speed differs and is minimized around γ = 0.9,
which is the value we used throughout our experi-
ments.

As clearly visible in Equation 5, when γ = 1 the
output is either zero or undefined. This explains
the increasing instability when γ gets too close to 1,
with the model taking more epochs to converge for
γ ≥ 0.98. However, we believe such instabilities
could be handled by adapting other hyperparam-
eters such as the learning rate and the β1 and β2
parameters of Adam.

D Experimental Setup

D.1 Hardware

We ran our experiments using Nvidia A40 and
A100 GPUs. Each model was trained on a sin-
gle GPU – the experiments did not require the use
of distributed training schemes. We used mixed
precision to speedup training.

D.2 Training

All models were trained using the Adam (Kingma
and Ba, 2014) optimizer, or AdamW (Loshchilov
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and Hutter, 2017) when using weight decay. We
ensured that no model overfitted during training.

All models use the standard negative log-
likelihood loss for learning their tasks. Apart
from weight decay, no special regularization tech-
niques were used – although we experimented with
dropout and label smoothing.

D.3 Hyperparameters
We report the hyperparameters set for the different
experiments in Table 4. Unless stated otherwise,
we use the default values from the original papers
(e.g. GPT-2 or Adam).

D.4 Datasets
Toy dataset As this dataset is very easy and fast,
we regenerate the entire train and test sets after
each epoch, such that no example is used more than
once during training. This completely discards the
possibility of models overfitting.

Boxes dataset This dataset is synthetic but takes
time to generate. As such, we sample 500k and 1M
examples for the default and advanced versions re-
spectively. We use more samples for the advanced
version due to the sequences being shorter on aver-
age than for the default version.

OpenWebText As our fine-tuning experiments
for language modeling are relatively fast, we only
use a subset of 500k rows from the original Open-
WebText dataset. As such, we perform slightly
more than 2 epochs for fine-tuning each model,
which is more than enough to prevent the models
from overfitting.

E Dataset samples

We display a random sample from each textual
dataset in Tables 5, 6, and 7.
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Toy dataset Boxes dataset Language modeling
default advanced

dmodel 512 512 768
dinner 2048 2048 3072
nheads 8 8 12
learning rate 3e-4 3e-4 5e-5
batch size 128 256 256
β2 0.98 0.98 0.98
weight decay 0.0 0.01 0.1
training steps 24k 25k 10k
warmup steps 8k 2k 2k
vocab size 128 128 132 50,257
train samples ∞ 1M 500k 550k
test samples ∞ 10k 5k 1100
runs per setting 4 3 4 1

Table 4: Hyperparameters and dataset parameters used in our different experiments.

Prompt
The radio is in Box D, the bone and the clock and the television are in Box C, the bill and the
computer and the tea are in Box B, there is nothing in Box E, the ice and the plant are in Box A, the
game is in Box G, there is nothing in Box F. Move the computer and the tea from Box B to Box E.
Put the milk into Box A. Put the cake into Box B. Remove the computer from Box E. Move the
bone and the television from Box C to Box E. Remove the radio from Box D. Remove the bill from
Box B. Remove the cake from Box B. Move the contents of Box E to Box F. Put the drug and the
map into Box D. Move the contents of Box G to Box D. Move the tea from Box F to Box C. Move
the tea from Box C to Box B. Move the ice from Box A to Box G. Remove the tea from Box B.
Move the map from Box D to Box A. Move the drug from Box D to Box E. Move the contents of
Box G to Box D. Move the contents of Box E to Box D. Remove the game and the ice from Box D.
Put the cake into Box G. Put the disk into Box F. Remove the clock from Box C. Remove the drug
from Box D. Remove the bone from Box F. Put the bell into Box E. Put the stone into Box F. Move
the contents of Box G to Box C. Move the stone and the television from Box F to Box B. Put the
magazine into Box G. Remove the disk from Box F. Remove the television from Box B.
Expected Answer
Box A contains the map and the milk and the plant, Box B contains the stone, Box C contains the
cake, Box D is empty, Box E contains the bell, Box F is empty, Box G contains the magazine.

Table 5: Example of a prompt and the expected answer for the default version of the boxes dataset.

Prompt
The television is in Box A, the cigarette is in Box B, the machine is in Box C, the cream is in Box
H. Move the contents of Box B to Box F. Move the contents of Box F to Box E. Put the sheet into
Box C. Remove the sheet from Box C. Put the coat into Box A. Remove the coat from Box A.
Move the contents of Box H to Box F. Move the contents of Box E to Box G. Move the contents of
Box G to Box E. Move the contents of Box A to Box D. Move the contents of Box D to Box G.
Move the contents of Box C to Box D. Move the contents of Box G to Box C.
Expected Answer
Box C contains the television, Box D contains the machine, Box E contains the cigarette, Box F
contains the cream.

Table 6: Example of a prompt and the expected answer for the advanced version of the boxes dataset.
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Paragraph
An earthquake of magnitude 7.4 has struck offshore near the Indonesian island of Sumatra, near
Aceh province. The quake struck 214km (133 miles) south of Aceh’s capital of Banda Aceh, the
US Geological Survey (USGS) said. A local tsunami alert was issued and later lifted by the Pacific
Tsunami Warning Center. The site is very near that of 2004’s 9.2 magnitude earthquake. About
220,000 people were killed in the Indian Ocean tsunami the quake triggered. The epicentre of the
latest quake was at a depth of 61.4km, about 66km (41 miles) south-west of Meulaboh district,
the USGS said. The district, and other parts of Aceh, were devastated in the 26 December 2004
earthquake. Ring of Fire The quake hit at 1259 (0559 GMT). Local media reported some houses
were damaged and power lines knocked down, Associated Press news agency said. The Pacific
Tsunami Warning Center lifted its tsunami watch several hours after the earthquake. The earthquake
caused some panic in parts of Aceh "Sea level readings indicate that a significant tsunami was not
generated," the Hawaii-based centre said in a statement on its website. "Therefore, the tsunami
watch issued by this center is now cancelled." The USGS earlier said it believed there was no threat
of a destructive, widespread tsunami but the possibility of a local tsunami existed. Indonesia is
located on the volatile Pacific Ring of Fire, a belt of tectonic activity girdling the Pacific Ocean
that triggers earthquakes and volcanic activity. Aceh is on the north-western tip of Sumatra, one of
Indonesia’s main islands, and is frequently rocked by earthquakes. One last year near Padang in
West Sumatra province killed more than 1,000 people. About 170,000 people were killed in Aceh
from the 2004 earthquake and the tsunami it launched. The waves spread across the Indian Ocean
to cause death and destruction as far away as Sri Lanka, Burma and Thailand.

Table 7: Sample text from the OpenWebText dataset (Gokaslan and Cohen, 2019).
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