
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 12143–12170
November 12-16, 2024 ©2024 Association for Computational Linguistics

Medical Adaptation of Large Language and Vision-Language Models:
Are We Making Progress?

Daniel P. Jeong1, Saurabh Garg1,2, Zachary C. Lipton1,4, Michael Oberst3,4

1Machine Learning Department, Carnegie Mellon University
2Mistral AI

3Department of Computer Science, Johns Hopkins University
4Abridge AI

{danielje,sgarg2,zlipton}@cs.cmu.edu,moberst@jhu.edu
Correspondence: danielje@cs.cmu.edu

Abstract

Several recent works seek to develop founda-
tion models specifically for medical applica-
tions, adapting general-purpose large language
models (LLMs) and vision-language models
(VLMs) via continued pretraining on publicly
available biomedical corpora. These works typ-
ically claim that such domain-adaptive pretrain-
ing (DAPT) improves performance on down-
stream medical tasks, such as answering medi-
cal licensing exam questions. In this paper, we
compare seven public “medical” LLMs and two
VLMs against their corresponding base models,
arriving at a different conclusion: all medical
VLMs and nearly all medical LLMs fail to con-
sistently improve over their base models in the
zero-/few-shot prompting regime for medical
question-answering (QA) tasks. For instance,
across the tasks and model pairs we consider in
the 3-shot setting, medical LLMs only outper-
form their base models in 12.1% of cases, reach
a (statistical) tie in 49.8% of cases, and are sig-
nificantly worse than their base models in the
remaining 38.2% of cases. Our conclusions
are based on (i) comparing each medical model
head-to-head, directly against the correspond-
ing base model; (ii) optimizing the prompts
for each model separately; and (iii) account-
ing for statistical uncertainty in comparisons.
While these basic practices are not consistently
adopted in the literature, our ablations show
that they substantially impact conclusions. Our
findings suggest that state-of-the-art general-
domain models may already exhibit strong med-
ical knowledge and reasoning capabilities, and
offer recommendations to strengthen the con-
clusions of future studies.

1 Introduction

Recent advances in autoregressive large lan-
guage models (LLMs) and vision-language models
(VLMs) have attracted interest from practitioners
in medicine, where these models hold great poten-
tial to transform various aspects of clinical practice

(e.g., medical diagnosis, information retrieval from
clinical documents, patient triaging) (Fries et al.,
2022a; Moor et al., 2023a). State-of-the-art perfor-
mance on various medical benchmarks is typically
achieved by massive-scale closed-source models,
such as GPT-4 (OpenAI, 2023a,b), MED-GEMINI

(Saab et al., 2024; Yang et al., 2024), and MED-
PALM (Singhal et al., 2023a,b; Tu et al., 2024),
often performing on par with humans on medical
licensing exams and open-ended consumer health
question-answering (QA) tasks. However, the gen-
eral lack of transparency in these models, high
API usage costs, and patient data privacy concerns
make their integration into routine clinical work-
flows challenging (Marks and Haupt, 2023).

To address such concerns, recent works have pro-
posed cheaper, open-source alternatives through
domain-adaptive pretraining (DAPT; Gururangan
et al., 2020), where a pretrained open-source
general-domain model—such as LLAMA (Touvron
et al., 2023a,b; Meta, 2024) or MISTRAL (Jiang
et al., 2023) in the language space, and LLAVA
(Liu et al., 2023) or OPEN-FLAMINGO (Awadalla
et al., 2023) in the vision-language space—is con-
tinually pretrained on biomedical (image-)text cor-
pora from public sources such as PubMed and med-
ical textbooks. While some prior works show that
medical models pretrained from scratch only us-
ing domain-specific corpora can outperform those
trained via DAPT, both in the context of BERT-
style encoder-only models (Devlin et al., 2019; Gu
et al., 2021; Yang et al., 2022) and decoder models
(Taylor et al., 2022; Luo et al., 2022; Hernandez
et al., 2023; Bolton et al., 2024), the DAPT ap-
proach has become common practice, resulting in a
trend where the release of a more capable general-
domain model is typically followed by the release
of its medical counterpart.

Despite the widespread adoption of medical
DAPT, the claimed improvements in performance
are worth scrutinizing. While the story is intu-

12143

mailto:danielje@cs.cmu.edu


(a)

General-Domain 
VLM/LLM


Medical

VLM/LLM


+

Medical

DAPT

 vs

Head-to-Head Comparison: Zero-/Few-shot Prompting

+

Select Best

Prompt Format

Select Best

Examples

Select Best

Prompt Format

Select Best 

Examples

(b)

LLM VLM LLM VLM0

20

40

60

80

100

Pr
op

or
tio

n 
of

(M
od

el
 P

ai
r, 

QA
 D

at
as

et
)

Co
m

bi
na

tio
ns

 (%
)

9.4%

56.3%

34.2%

6.3%

75.0%

18.8%

12.1%

49.8%

38.2%

6.3%

81.3%

12.5%

Zero-shot 3-shot

Medical Model Wins Tie Medical Model Loses

Figure 1: Medical LLMs and VLMs trained via domain-adaptive pretraining (DAPT) show limited improvement
over their general-domain counterparts. (a) Overview of our head-to-head evaluation approach for each pair of
general-domain (blue) and medically adapted LLM/VLM (red). (b) Win/tie/loss rate (%) of medical models vs.
their corresponding base models across all (model pair, QA dataset) combinations. Win rate refers to the proportion
of (model pair, QA dataset) combinations where a medical model shows a statistically significant improvement.

itive, more recent base models (e.g., LLAMA-3-
8B (Meta, 2024)) already exhibit strong off-the-
shelf performance on medical benchmarks without
any adaptation (e.g., Open Medical LLM Leader-
board (Pal et al., 2024)), and given a lack of trans-
parency about the pretraining corpora used to train
the general-domain model in the first place, they
may already be trained on relevant medical text.

Perhaps more concerning is the lack of apples-to-
apples comparisons in the literature. First, medical
models resulting from DAPT are often only com-
pared against other baselines with different archi-
tectures (e.g., CLINICALCAMEL-70B (Toma et al.,
2023) vs. GPT-4 (OpenAI, 2023a)) and under
inconsistent evaluation setups (e.g., MEDITRON-
70B (Chen et al., 2023) fine-tuned on MedQA (Jin
et al., 2020) vs. non-fine-tuned MED42-V1-70B
(Christophe et al., 2024)), which can confound the
interpretation of results. Second, the common prac-
tice of using a single, fixed prompting setup (e.g.,
prompt format, choice of few-shot examples) for
all models under evaluation also warrants concern,
as LLM/VLM behavior is extremely sensitive to
such design decisions (Jiang et al., 2020; Zhao
et al., 2021; Ceballos-Arroyo et al., 2024), and the
“optimal” choice of such details rarely correlates
between different models (Sclar et al., 2024).

In this paper, we perform an apples-to-apples
comparison that addresses these concerns, compar-
ing seven medical LLMs and two medical VLMs
against their general-domain base models. We find
that, for all but one LLM pair—BIOMISTRAL-7B
(Labrak et al., 2024) vs. MISTRAL-7B-INSTRUCT-
V0.1 (Jiang et al., 2023), a pair of models that
performs fairly poorly in absolute terms—the
open-source medical LLMs and VLMs that we

evaluate do not consistently improve over their
general-domain counterparts on various medical
(visual) QA tasks (Figure 1). We compare sev-
eral pairs of general-domain and medically adapted
LLMs/VLMs (see Table 1), whose only differ-
ences lie in medical DAPT (i.e., one model is
the base model, from which the other is derived
via medical DAPT). For each pair, we compare
their performances from zero-/few-shot prompting
(Radford et al., 2019; Brown et al., 2020), after
independently selecting the “best” prompt format
and few-shot examples for each model based on
the validation set and accounting for statistical un-
certainty in model comparison.

Our findings (Section 4) suggest that state-of-
the-art general-domain models may already ex-
hibit strong medical knowledge and reasoning ca-
pabilities that can be leveraged effectively when
prompted appropriately.

Our main contributions can be summarized as
follows:

1. We provide a comprehensive head-to-head
comparison between state-of-the-art general-
domain LLMs/VLMs and their medical DAPT
counterparts on various medical (visual) QA
benchmarks, to investigate the effectiveness
of DAPT for medical specialization.

2. We find that after optimizing the prompts
for medical and general-domain models in-
dependently, all medical VLMs and nearly
all medical LLMs that we evaluate fail to
consistently improve over their correspond-
ing general-domain base models.

3. We show that using a single, fixed prompt for-
mat and choice of few-shot examples for all
models without testing for statistical signif-
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Table 1: Summary of open-source autoregressive VLM and LLM pairs used for evaluation.

Model Class General Domain Medical Domain Medical Adaptation Corpora

LLM

LLAMA-3-70B-INSTRUCT (Meta, 2024) OPENBIOLLM-70B (Pal and Sankarasubbu, 2024) Undisclosed

LLAMA-2-70B (Touvron et al., 2023b) MEDITRON-70B (Chen et al., 2023)
Clinical Practice Guidelines (e.g., CDC, WHO)
PubMed Articles (S2ORC; Lo et al., 2020)

LLAMA-2-70B (Touvron et al., 2023b) CLINICAL-CAMEL-70B (Toma et al., 2023)
ShareGPT
20k PubMed Articles Published Before 2021
Random 4k Subset of MedQA (Jin et al., 2020)

LLAMA-3-8B (Meta, 2024) OPENBIOLLM-8B (Pal and Sankarasubbu, 2024) Undisclosed

LLAMA-2-7B (Touvron et al., 2023b) MEDITRON-7B (Chen et al., 2023)
Clinical Practice Guidelines (e.g., CDC, WHO)
PubMed Articles (S2ORC; Lo et al., 2020)

MISTRAL-7B-INSTRUCT-V0.1 (Jiang et al., 2023) BIOMISTRAL-7B (Labrak et al., 2024) PubMed Articles (PMC Open Access Subset)

LLAMA-2-7B-CHAT (Touvron et al., 2023b) BIOMEDGPT-LM-7B (Luo et al., 2023) PubMed Articles (S2ORC; Lo et al., 2020)

VLM
LLAVA-V0-7B (Liu et al., 2023) LLAVA-MED-7B (Li et al., 2023) PubMed Articles (PMC-15M; Zhang et al., 2023)

OPEN-FLAMINGO-9B (Awadalla et al., 2023) MED-FLAMINGO-9B (Moor et al., 2023b)
Medical Textbooks (MTB; Moor et al., 2023b)
PubMed Articles (PMC-OA; Lin et al., 2023)

icance can lead to overly optimistic conclu-
sions about the benefits from medical DAPT.

2 Related Work

DAPT (Gururangan et al., 2020) is a transfer learn-
ing approach, where a pretrained model is further
pretrained on domain-specific data for better align-
ment to a target domain of interest (e.g., medicine,
law). Several studies show that language models
trained via DAPT often outperform their general-
domain counterparts on domain-specific tasks, such
as claim detection from blog posts (Chakrabarty
et al., 2019), named entity recognition from Ger-
man novels (Konle and Jannidis, 2020), and judg-
ment prediction for legal cases (Xiao et al., 2021).
In the medical domain, prior works based on BERT-
style encoder-only language models (Devlin et al.,
2019), such as BIOBERT (Lee et al., 2019) and
CLINICALBERT (Alsentzer et al., 2019), show that
medical DAPT improves fine-tuning performance
on tasks such as medical concept extraction from
patient reports (Uzuner et al., 2011), identification
of gene-disease relations from PubMed abstracts
(Doğan et al., 2014; Bravo et al., 2015; Krallinger
et al., 2017), and natural language inference on
clinical notes (Romanov and Shivade, 2018).

More recent works suggest that decoder-based
autoregressive LLMs and VLMs trained via med-
ical DAPT also show strong performance on vari-
ous medical tasks. Medical LLMs such as MED-
ITRON (Chen et al., 2023), adapted from LLAMA-
2 (Touvron et al., 2023b); and BIOMISTRAL

(Labrak et al., 2024), adapted from MISTRAL-
7B-INSTRUCT-V0.1 (Jiang et al., 2023); perform
well on knowledge-intensive QA tasks based on
medical licensing and academic exams (Jin et al.,
2020; Pal et al., 2022; Hendrycks et al., 2021)

and PubMed abstracts (Jin et al., 2019). Medi-
cal VLMs such as LLAVA-MED (Li et al., 2023),
adapted from LLAVA (Liu et al., 2023); and MED-
FLAMINGO (Moor et al., 2023b), adapted from
OPEN-FLAMINGO (Awadalla et al., 2023); also
perform well on visual QA tasks based on radiol-
ogy (Lau et al., 2018; Liu et al., 2021) and pathol-
ogy images (He et al., 2020) and academic exams
(Yue et al., 2024). These encouraging results have
established DAPT as a go-to approach for training
a medically specialized model, a conclusion that
we re-examine in this work.

3 Experimental Setup

To investigate the effectiveness of medical DAPT
in improving zero-/few-shot performance, we com-
pare 7 medical LLMs and 2 medical VLMs against
their general-domain counterparts in pairs (Figure
1(a)), on 13 textual QA datasets and 8 visual QA
datasets, respectively. The models in each pair are
exactly identical in model architecture and scale,
and their only difference lies in whether they were
additionally pretrained on medical data. We also
note that while some of datasets used for evaluation
contain both closed-ended (i.e., has clear ground-
truth answers) and open-ended questions, we focus
our evaluations on the former, where an objective,
quantitative assessment of medical knowledge and
reasoning capabilities is possible. For reproducibil-
ity of our results, we open-source the source code
used for all of our evaluations described below via
our GitHub repository1.

Models. In Table 1, we provide a summary of
all of the LLM and VLM pairs that we use for
evaluation, along with details about the pretraining

1https://github.com/taekb/eval-medical-dapt
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corpora used for adaptation to the medical domain.
For LLAVA (Liu et al., 2023), we use the very first
version (v0) that uses VICUNA-V0 (Chiang et al.,
2023) as the LLM backbone, as LLAVA-MED (Li
et al., 2023) was adapted from that particular ver-
sion. For all models, we use the checkpoints made
available via HuggingFace. In all experiments, we
generate predictions from each model via (i) greedy
decoding (i.e., sampling with temperature T = 0)
and (ii) constrained decoding. For constrained de-
coding, we constrain the token vocabulary to be
one of the answer choice letters (e.g., one of [“A”,
“B”, “C”, “D”] for a four-choice QA dataset) and
treat the answer choice with the highest token prob-
ability as a given model’s prediction.

Textual QA Datasets. For textual QA, we use
MedQA (Jin et al., 2020), MedMCQA (Pal et al.,
2022), PubMedQA (Jin et al., 2019), and MMLU-
Medical (Hendrycks et al., 2021) for evaluation.
MMLU-Medical refers to a subset of MMLU
corresponding to 9 subjects related to medicine:
anatomy, clinical knowledge, college biology, col-
lege medicine, high school biology, medical genet-
ics, nutrition, professional medicine, and virology.
For MedQA, we use the official train-validation-
test splits as provided through BigBio (Fries et al.,
2022b). We note that MedQA has two versions,
one with four answer choices per question and the
other with five, and we use both for evaluation. For
MedMCQA, which does not have a public test set,
we follow the approach taken by Wu et al. (2024)
and Labrak et al. (2024), taking a random 80–20
train–validation split of the official training set and
using the official validation set for testing. For Pub-
MedQA, we follow Singhal et al. (2023a), using the
211k artifically generated QA samples for training,
and taking a 50–50 split on the 1k expert-labeled
examples. For MMLU-Medical, we use the official
split as provided. We provide the remaining dataset
details in Appendix A.

Visual QA Datasets. For visual QA, we use
VQA-RAD (Lau et al., 2018), PathVQA (He et al.,
2020), SLAKE (Liu et al., 2021), and MMMU-
Medical (Yue et al., 2024) for evaluation. MMMU-
Medical refers to a subset of MMMU correspond-
ing to 5 subjects relevant to medicine: basic medi-
cal science, clinical medicine, diagnostics and lab-
oratory medicine, pharmacy, and public health. For
VQA-RAD, we address the train-test leakage and
duplication issues in the official train–test splits,
previously noted by Moor et al. (2023b), by remov-

ing the training examples repeated in the test set
and removing all duplicates in both sets. We then
take a random 80–20 split on the training set to
create a new train–validation split, as the official
split does not include a validation set. For MMMU-
Medical, which does not have a public test set, we
randomly select 5 examples from the official vali-
dation set for validation, and reserve the remaining
25 examples for testing. For all other datasets, we
use the official split as provided. We provide the
remaining dataset details in Appendix A.

Evaluation Metric. Since we focus on closed-
ended QA tasks, we use exact-match accuracy as
our main evaluation metric. Following the Holistic
Evaluation of Language Models (HELM) bench-
mark (Liang et al., 2023), when we consider greedy
decoding, we treat the text generated by a model
(without any constraints on the vocabulary) to be its
prediction, and check for an exact match between
the prediction and the correct answer up to primi-
tive string operations (e.g., lower-casing, removing
white space/punctuation). To handle cases where
the model simply repeats the list of answer choices
or produces an ambiguous answer (e.g., selecting
multiple answer choices), we take a conservative
approach and treat the prediction to be incorrect,
even if there is a match. Meanwhile, to quantify
the extent of improvement from medical DAPT, we
also consider the relative accuracy of the medical
model with respect to the general-domain model.
Formally, we define relative exact-match accuracy
as E[1[fmedical(x) = y] − 1[fgeneral(x) = y]] ∈
[−1, 1], where fmedical and fgeneral denote the med-
ical and general-domain models, x and y denote
the input prompt and answer in a QA pair from
the test set, and 1[·] denotes the indicator function.
This metric quantifies the difference in accuracy
between the medical model and the general-domain
model. To distinguish the two metrics, we refer to
the former as the absolute exact-match accuracy in
subsequent discussions.

Assessing Statistical Significance. Given the rel-
atively small size of test datasets in medical QA
benchmarks, it is important to assess whether the
perceived improvements in performance from med-
ical DAPT are attributable to chance. To account
for statistical uncertainty, we use the percentile
bootstrap, re-sampling (with replacement) ques-
tions from the test set to get a sample of the same
size as the original test set. Within each resam-
ple, we compute the difference in accuracy for the
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Figure 2: Overview of the prompt format sampling (left) and prompting strategy selection (right) process.

paired models, and repeat this process for 10,000
iterations. The resulting distribution of relative ac-
curacy is used to derive a 95% confidence interval,
and we judge a difference to be statistically signif-
icant if this interval does not cross zero. We do
not perform any type of multiple-testing correc-
tion, which would have the effect of lowering the
number of comparisons deemed to be significant.

3.1 Zero-/Few-shot Prompting with
Model-Specific Prompt Selection

In this section, we provide an overview of our
approach to assess whether medical DAPT leads
to statistically significant improvements in zero-
/few-shot medical QA performance. For few-shot
prompting, we consider the 3-shot setting to ensure
that the input prompt is shorter than the context win-
dow sizes for all models evaluated. For evaluation,
we pay special attention to two aspects. First, lan-
guage models are highly sensitive to the choice of
prompting strategy (e.g., prompt format, choice of
few-shot examples), where seemingly insignificant
changes to the prompt can lead to idiosyncratic
model behavior (Jiang et al., 2020; Zhao et al.,
2021). Second, prior works show that the “optimal”
choice of prompt format rarely correlates between
different models (Sclar et al., 2024), suggesting
that using a single, fixed prompt for all models for
comparison can result in misleading conclusions.

To ensure a fair comparison that isolates the
impact of medical DAPT, we treat the choice of
prompt format and few-shot examples as additional
hyperparameters when generating predictions, and
tailor them to each model independently (Figure
2). We first randomly sample 10 plausible prompt
formats from a predefined search space and 10 dif-
ferent sets of few-shot examples from the training
set of each dataset. We then search over all pairs
of prompt formats (plus one additional manually
designed default format) and few-shot examples,

and select the best pair out of (10+ 1)× 10 = 110
that results in the highest validation exact-match ac-
curacy. Given that a grid search at this scale can be
computationally expensive, especially for datasets
like MedMCQA that contain 37k validation QA
pairs (see Table A1), we randomly subsample 500
validation QA pairs for datasets that have more than
500. Using the vLLM framework (Kwon et al.,
2023) for sampling model outputs, this leads to
a runtime of around 5–15 minutes per trial, on 4
NVIDIA A6000 GPUs for the 70B models and 2
GPUs for the others. We then generate predictions
on the test set using the selected prompt format and
few-shot samples. In the zero-shot setting, we only
search over the prompt formats.

To define the prompt format search space, we
follow the approach by Sclar et al. (2024) and
construct a context-free grammar of semantically
equivalent yet syntactically distinct prompt formats
(Figure 2, left). For the medical models that have a
specific prompt format designed and recommended
for closed-ended QA tasks (e.g., BIOMISTRAL

(Labrak et al., 2024)), we fix the prompt format
to what is provided and only search over the choice
of few-shot examples. In the case when such in-
formation is missing or only partially available
(see Table C1), we search over both the prompt
formats and few-shot examples. For instruction-
tuned models, which typically have a structured
conversational format (e.g., ‘### User:. . . ###
Assistant:. . . ”) that is expected, we use the
sampled question and answer templates to format
each “user” query and “assistant” response. We
provide the remaining details in Appendix B–C.

4 Results

Here, we summarize the main findings from the
zero-/few-shot prompting experiments outlined in
Section 3. Unless specified otherwise, we focus
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Figure 3: Medical LLMs do not consistently show a statistically significant improvement over their general-domain
counterparts in the 3-shot setting, after independently selecting the best prompt format and examples for each model.
Top row shows the absolute exact-match accuracies on the test set, and bottom row shows the relative exact-match
accuracies along with 95% confidence intervals derived via bootstrapping on the test set (see Section 3). Here, we
show the results for greedy decoding. The 3-shot results for constrained decoding are similar (see Figure E1(b)).

on the greedy decoding results in subsequent dis-
cussions and include the results for constrained
decoding in Appendix E. Overall, we find that all
medical VLMs and nearly all medical LLMs fail
to consistently improve over their general-domain
counterparts in the zero-shot and few-shot prompt-
ing regimes. Moreover, we demonstrate the impor-
tance of rigorous experimental design in surfacing
this finding—performing pairwise model compari-
son with a single, fixed prompt optimized only for
the medical model, while ignoring statistical uncer-
tainty, paints a misleadingly optimistic picture of
medical DAPT performance.

Finding 1: After model-specific prompt selec-
tion, the vast majority of medical models fail
to consistently show a statistically significant
improvement over the general-domain models.
In Figures 3–4, we show the absolute and relative
exact-match accuracies achieved by the medical
and general-domain LLMs and VLMs in the zero-
/few-shot prompting regime. For LLMs, we only
show the 3-shot prompting results in the main text
(see Appendix D for results in the zero-shot set-
ting, which are similar). We exclude the results
for CLINICAL-CAMEL-70B on both versions of

MedQA, as the model has already been trained on
a subset of the official training split (see Table 1
in Toma et al. (2023)). For VLMs, we show both
zero-shot and 3-shot results, as LLAVA-V0-7B
and LLAVA-MED-7B were not pretrained to han-
dle inputs with multiple images. We calculate the
confidence intervals via bootstrapping on the test
set, as described in Section 3.

The top row of Figure 3 shows that the absolute
exact-match accuracies are mostly similar between
each model pair across all datasets and model
scales, with marginal performance improvements.
In fact, the bottom row of Figure 3 shows that only
2 out of 7 medical LLMs—OPENBIOLLM-70B
and BIOMISTRAL-7B—show statistically signifi-
cant improvements in performance, with the 95%
confidence intervals crossing zero relative accu-
racy in most cases for the other models. When
compared against their corresponding base mod-
els, OPENBIOLLM-70B achieves a win rate of
30.8%, tie rate of 69.2%, and loss rate of 0%, while
BIOMISTRAL-7B achieves a win rate of 46.2%,
tie rate of 53.8%, and loss rate of 0% (Table D2).
Notably, MEDITRON-7B and BIOMEDGPT-LM-
7B actually show significantly worse performance
than their base models, with loss rates of 76.9%
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Figure 4: Medical VLMs do not show a statistically significant improvement over their general-domain counterparts
in the (a) zero-shot and (b) 3-shot settings, after independently selecting the best prompt format and examples for
each model. Top row shows the absolute exact-match accuracies on the test set, and bottom row shows the relative
exact-match accuracies along with 95% confidence intervals derived via bootstrapping on the test set (see Section 3).
Here, we show the results for greedy decoding. The results for constrained decoding are similar (see Figure E2).

and 92.3%, respectively. Similar trends hold for the
zero-shot setting (Figure D1 and Table D1), where
only CLINICAL-CAMEL-70B and BIOMISTRAL-
7B show statistically significant improvements.

We note that, while OPENBIOLLM-70B shows
improvement in the 3-shot setting, it does not
show improvement in the zero-shot setting (win-
ning on 7.7% and losing on 23.1% of tasks, see
Table D1), and vice versa for CLINICAL-CAMEL-
70B (winning on 0% of tasks and losing on 36.4%
of tasks in the 3-shot setting, see Table D2), leav-
ing BIOMISTRAL-7B as the only medical LLM
that wins more than it loses against its base model
(MISTRAL-7B-INSTRUCT-V0.1) in both settings,
albeit with relatively low absolute performance.

In Figure 4, we make similar observations for
medical VLMs in both zero-shot and 3-shot set-
tings, where both LLAVA-MED-7B and MED-
FLAMINGO-9B are virtually indistinguishable
from their base models in terms of performance,
showing no statistically significant improve-
ments. Tables D1–D2 show that LLAVA-MED-7B
achieves win/tie/loss rates of 12.5%/62.5%/25.0%
in both zero-shot and 3-shot settings, while
MED-FLAMINGO-9B achieves win/tie/loss rates
of 0%/87.5%/12.5% in the zero-shot setting and
0%/100%/0% in the 3-shot setting. Meanwhile, we
note that the confidence intervals for the MMMU-
Medical datasets tend to be much wider than for
the other visual QA datasets, as the test sets only in-
clude 25 QA examples for each subject (Table A1).

We similarly observe limited improvements over-
all with constrained decoding (see Appendix E.1).
As shown in Figure E5(a), when we aggregate the
results over all (model pair, QA dataset) combi-
nations, medical LLMs achieve win/tie/loss rates
of 16.9%/68.6%/14.5% in the zero-shot setting
and 11.2%/74.1%/14.7% in the 3-shot setting,
while medical VLMs achieve win/tie/loss rates
of 6.3%/87.5%/6.3% in the zero-shot setting and
0%/93.8%/6.3% in the 3-shot setting. In fact, no
medical VLM shows improvement over their base
models regardless of the decoding strategy. Mean-
while, as shown in Tables E1–E2, we find that some
medical LLMs show larger improvements with con-
strained decoding (notably, MEDITRON-70B and
MEDITRON-7B), although the results are mixed
(e.g., CLINICAL-CAMEL-70B performs worse in
the zero-shot setting with constrained decoding).

In summary, these results suggest that when
prompted with the “right” set of examples in an
appropriate format, general-domain models may
already exhibit the capacity to achieve performance
competitive with medically adapted models, on var-
ious medical QA tasks.

Finding 2: Using a single, fixed prompt for all
models and overlooking statistical uncertainty
may overestimate the performance benefits of
medical DAPT. Based on Finding 1, we further
investigate whether the conclusions differ if the
same prompt is used for each pair of medical and
general-domain models. In particular, we consider
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Figure 5: Optimizing the prompt for only the medical model and comparing models without accounting for statistical
uncertainty can overestimate the performance improvements from medical DAPT. We show the win/tie/loss rate (%)
of medical models vs. their base models across all (model pair, QA dataset) combinations, when (a) independently
optimizing the prompt for each model and performing statistical testing, (b) optimizing the prompt only for the
medical model and performing statistical testing, (c) independently optimizing the prompt for each model without
statistical testing, and (d) optimizing the prompt only for the medical model without statistical testing. Here, we
show the results for greedy decoding. The results for constrained decoding are similar (see Figure E5).

whether selecting a prompt only for the medical
model, following Section 3.1, and using it for the
corresponding general-domain model can widen
the performance gap between each pair. We also
assess whether this gap becomes amplified when
models are compared without accounting for statis-
tical uncertainty, which is often done in practice.

In Figure 5, we show how the win/tie/loss rates
of the medical models, computed over all (model
pair, QA dataset) combinations, change as we vary
the following aspects of the experimental setup:

1. select prompts for each model independently
vs. only based on the medical model;

2. determine a win for the medical model based
on confidence intervals in relative accuracy vs.
raw absolute accuracy.

We note that when comparing each model pair
based on absolute accuracy, there are no ties, as
the real-valued absolute accuracies are rarely iden-
tical. In Appendix D, we include Figures D2–D3 to
show how the absolute and relative exact-match ac-
curacies change when the prompt is only optimized
for the medical model. We also include Tables D3–
D4 to show changes in win/tie/loss rates. We show
the same set of results for constrained decoding in
Figures E3–E4 and Tables E3–E4 in Appendix E.

Overall, we find that for both LLMs and VLMs,
the performance improvement from using a medi-
cally adapted model instead of its general-domain
counterpart can be substantially overestimated
when (i) the prompt is only tailored to the medical
model; and (ii) the models are compared only based

on their absolute accuracies. Notably, in the zero-
shot setting, the win rate increases from 9.4% to
70.5% for medical LLMs and from 6.3% to 62.5%
for medical VLMs, when only performing prompt
selection for the medical model and comparing
based on absolute accuracy. Figure E5 in Ap-
pendix E.2 shows a similar trend in the win/tie/loss
rates, when the model predictions are generated
via constrained decoding. These results highlight
the importance of accounting for LLM/VLM sen-
sitivity to the prompting details, as suggested by
Sclar et al. (2024), and the statistical uncertainty
in model comparison, in order to draw reliable con-
clusions about the effectiveness of medical DAPT.

5 Discussion and Conclusion

In this work, we investigated the effectiveness of
DAPT for training medically specialized LLMs
and autoregressive VLMs suitable for knowledge-
intensive medical (visual) QA tasks. To that end,
we compared several pairs of state-of-the-art medi-
cal LLMs/VLMs to their general-domain counter-
parts, whose only differences lie in medical DAPT
and are exactly identical in model architecture and
scale. Our work diverges from prior works by pro-
viding a direct apples-to-apples comparison of med-
ical and general-domain models while accounting
for LLM/VLM sensitivity to prompting details and
assessing the statistical significance of the results.

Across both model classes and all model scales,
we found that the performance benefits from medi-
cal DAPT largely disappear when we (i) tailor the
prompt format and choice of few-shot examples

12150



to each medical and general-domain model sepa-
rately; and (ii) account for statistical uncertainty
in model comparison. In particular, we found that
when we optimize the prompt only for the medical
model and compare each model pair based on their
absolute accuracies without accounting for uncer-
tainty, the performance improvements from medi-
cal DAPT can be overestimated, potentially leading
to unreliable conclusions about the benefits of med-
ical DAPT. For example, in the zero-shot setting,
evaluation under this setup leads to the conclusion
that medical LLMs and VLMs, on average, outper-
form the corresponding general-domain models in
70.5% and 62.5% of all QA tasks, while the im-
provements are in reality statistically significant in
only 9.4% and 6.3% of tasks after optimizing the
prompt for each model to ensure a fair comparison.

Our findings suggest that for state-of-the-art
general-domain LLMs and VLMs, the performance
benefits from additionally pretraining on medical
data from public sources such as PubMed may be
limited. Notably, almost all of the medical models
used in our evaluation use PubMed as the primary
source of pretraining data for medical adaptation
(Table 1), while open-source datasets commonly
used for pretraining the general-domain base mod-
els in the first place (e.g., the Pile (Gao et al., 2020),
S2ORC (Lo et al., 2020)) often already include
PubMed data. Prior works also suggest that the
intrinsic capacity of LLMs to solve a downstream
task is largely obtained during the initial pretrain-
ing phase, and that post-training adjustments and
prompt engineering efforts may only help elicit
the existing capabilities (Reynolds and McDonell,
2021; Min et al., 2022). Thus, we argue that any
claims about improvement from a proposed med-
ical DAPT procedure should be evidenced by rig-
orous head-to-head comparisons against the corre-
sponding general-domain model, in order to draw
reliable conclusions about its effectiveness.

6 Limitations

We discuss our findings with the following caveats.
First, there is a vast and growing set of papers on

applying medical DAPT to various general-domain
base models, and we could not hope to compare all
publicly available models here. While we selected
the models to cover a wide range of general-domain
base models and model scales (7B–70B) (Table 1)
and included some of the latest models (e.g., OPEN-
BIOLLM and LLAMA-3), it is always possible that

some newly released models do in fact yield better
zero- or few-shot performance on medical QA.

Second, we focus in this paper on the narrower
task of closed-ended medical QA. In part, this
choice reflects the fact that such benchmarks are
well-standardized and highly publicized. However,
they do not reflect the breadth of possible appli-
cations of LLMs and VLMs in medical domains.
For instance, Singhal et al. (2023b) show that med-
ical LLMs such as MED-PALM-2 can produce
physician-level answers to open-ended consumer
health queries, and Agrawal et al. (2022) demon-
strate the potential of using LLMs for extracting
information from structured clinical notes. Some
would argue that such tasks are a more realistic
application of such models in practice, and it is cer-
tainly possible that an analysis like ours would find
improved performance on such tasks, though we
do not investigate these tasks in the present work.

Third, we do not consider downstream fine-
tuning of models subject to medical DAPT. In part,
this reflects issues of computational cost (e.g., to
fine-tune 70B-parameter models) and the added
complexity of reproducing a fine-tuning procedure,
versus using publicly available model checkpoints.
However, we acknowledge that zero- and few-shot
performance are only part of a broader narrative
around the claimed benefits of medical DAPT,
which generally includes the additional claim that
it provides a better initialization for downstream
fine-tuning (Chen et al., 2023; Li et al., 2023).

While we acknowledge the limitations above, we
do not believe they detract from the value of this
work. We hope that our results call attention to a
need for rigorous head-to-head evaluations when
making similar claims of improved performance
via medical DAPT, whether with other models, on
other clinical tasks, or with respect to fine-tuning
versus zero-/few-shot performance.
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A Additional Details on Datasets

Table A1: Summary of the number of examples in the
train, validation, and test sets of all textual and visual
QA datasets used for evaluation, in the top and bottom
sections, respectively.

Dataset Train Validation Test

MedQA (4 & 5 Options) 10178 1272 1273
MedMCQA 146257 36565 4183
PubMedQA 211269 500 500
MMLU: Anatomy 5 14 135
MMLU: Clinical Knowledge 5 29 265
MMLU: College Biology 5 16 144
MMLU: College Medicine 5 22 173
MMLU: High School Biology 5 32 310
MMLU: Medical Genetics 5 11 100
MMLU: Nutrition 5 33 306
MMLU: Professional Medicine 5 31 272
MMLU: Virology 5 18 166

VQA-RAD 820 205 272
PathVQA 9806 3135 3391
SLAKE 1943 422 415
MMMU: Basic Medical Science 5 5 25
MMMU: Clinical Medicine 5 5 25
MMMU: Diag. & Lab Medicine 5 5 25
MMMU: Pharmacy 5 5 25
MMMU: Public Health 5 5 25

In this section, we provide additional details on the
textual and visual QA datasets introduced in Sec-
tion 3. In Table A1, we summarize the number of
QA examples included in the train, validation, and
test sets of each dataset, after following the prepro-
cessing steps detailed in Section 3. For VQA-RAD
(Lau et al., 2018), PathVQA (He et al., 2020), and
SLAKE (Liu et al., 2021), we only show the num-
ber of closed-ended visual QA examples, since our
evaluations focus on closed-ended visual QA. For
the datasets that required additional splits from the
official train-validation-test split (e.g., due to the
lack of a public test set), we include all of the fixed
random seeds in our repository for reproducibility.

B Additional Details on Model-Specific
Prompt Selection

In this section, we provide additional details on
how we define the prompt format search space dis-
cussed in Section 3.1. We construct a context-free
grammar of plausible prompt formats following
the approach by Sclar et al. (2024) (see Section 3.1
and Appendix A of the paper for reference). Using
the Backus-Naur notation, we first define the ba-
sic fields Hq for the question header (e.g., “###
Question:”), Hc for the answer choice header

(’e.g., “### Options:”), and Ha for the answer
header (e.g., “### Answer:”) as

Hq(fcase, dq, s1) ::= fcase(dq)s1⟨text⟩,
Hc(fcase, dc, s1) ::= fcase(dc)s1,

Ha(fcase, da, s1) ::= fcase(da)s1⟨text⟩,

where fcase ∈ Fcase denotes the casing function
(e.g., x 7→ “### ” + x, x 7→ x.upper()), dq ∈ Dq

denotes the question descriptor (e.g., “Question”),
dc ∈ Dc denotes the answer choice descriptor (e.g.,
“Options”), da ∈ Da denotes the answer descrip-
tor (e.g., “Answer”), s1 ∈ S1 denotes the header
separator (e.g., ‘:’), and ⟨text⟩ denotes a text place-
holder. For formatting the list of answer choices,
we also define the basic fields C for formatting
each answer choice (e.g., “(A) yes”) and L for
the concatenation of all answer choices as follows:

C(fwrap, findex, i) ::= fwrap(findex(i))⟨text⟩,
L(fwrap, findex, n, s2) ::= C(fwrap, findex, 0)s2 . . .

s2C(fwrap, findex, n− 1),

where fwrap ∈ Fwrap denotes the wrapper func-
tion for the answer choice letter (e.g., x 7→ “(”
+ x + “)”), findex ∈ Findex denotes the number-
ing function that converts an integer index into a
number format (e.g., 0 → “A”), i ∈ Z+ denotes
the index of a particular answer choice from the
list, s2 ∈ S2 denotes the answer choice separa-
tor, n denotes the number of answer choices, and
⟨text⟩ denotes a text placeholder. The full prompt
format P (fcase, fwrap, findex, dq, dc, da, s1, s2, n) is
then constructed by concatenating all of the headers
and the answer choices, while adding space t ∈ T
(e.g., “\n”) in-between:

P ::= HqtHctLtHa, (1)

where we have left out the notations for the argu-
ments for notational simplicity.

To define the prompt format search space, we
instantiate the grammar above with the descriptors,
separators, spaces, and functions shown below.

Descriptors:

Dq = {“Question”, “”};
Dc = {“Options”, “Choices”, “”};
Da = {“Answer”, “The answer is”}.
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Separators:

S1 = {“: ”, “ : ”, “ :: ”, “:\n”, “= ”,

“ = ”, “ == ”, “=\n”, “ - ”,

“ – ”, “—”, “\n”, “\n\n”};
S2 = {“\n”, “\\”, “; ”, “ || ”, “ ”

“;\n”, “;\n\n”, “, ”}.

Spaces:

T = {“\n”, “\n\n”, “ || ”, “ ”}.

Casing, Wrapper, and Numbering Functions:

Fcase = {x 7→ x, x 7→ x.title(),

x 7→ x.upper(), x 7→ x.lower()

x 7→ “### ” + x

x 7→ “**” + x + “**”};
Fwrap = {x 7→ “(” + x + “)”, x 7→ x + “.”

x 7→ x + “)”, x 7→ “[” + x + “]”

x 7→ x + “ )”, x 7→ “<” + x + “>”};
Findex = {x 7→ chr(ord(“A”) + x)}.

To randomly sample a prompt format accepted
by the grammar, we randomly sample each of
these components and construct the full prompt
format, following Equation (1). Below, we show
an example QA pair from the MedQA dataset
(four answer choices), formatted according to the
formats sampled from the prompt format space
defined by the above context-free grammar.

Example 1:

A key factor facilitating the application of
nested case-control studies from the MACS
was:
OPTIONS – A ) Data collection
B ) Establishment of a repository of biologic
specimens
C ) Participant interest
D ) Administration of the questionnaire by
staff
THE ANSWER IS – B ) Establishment of a
repository of biologic specimens

Example 2:

QUESTION – A key factor facilitating the
application of nested case-control studies from
the MACS was:
CHOICES – [A] Data collection; [B] Estab-
lishment of a repository of biologic specimens;

[C] Participant interest; [D] Administration of
the questionnaire by staff
ANSWER – [B] Establishment of a repository
of biologic specimens

C Additional Details on Zero-/Few-shot
Prompting

In this section, we summarize the prompting details
made available for the medical LLMs and VLMs
used in our evaluation (Appendix C.1), and the de-
fault prompt formats used for each LLM (Appendix
C.2) and VLM (Appendix C.3), which have been
reproduced based on the former.

C.1 Reproducibility of Prompting Details

In Table C1, we provide a summary of all of
the prompting details available (in the context of
closed-ended medical QA) for all medical LLMs
and VLMs used in our evaluation. We share these
details to demonstrate our best efforts with repro-
ducing the original prompting setups considered
for performing our evaluations. In particular, we
focus on whether the following four components
are explicitly made available, either in the original
publications or the publicly released code reposi-
tory: (i) system prompt; (ii) zero-/few-shot prompt
format (used for closed-ended QA tasks); (iii) the
choice of few-shot examples; and (iv) details on
how the text generations are sampled (e.g., soft-
max temperature, top-p, beam size, random seeds
used for sampling). Below, we provide detailed
clarifications for each model.

OPENBIOLLM (Pal and Sankarasubbu, 2024).
For the OPENBIOLLM models, we follow the in-
structions provided in the model cards posted by
the authors on HuggingFace, for the 70B-parameter
and 8B-parameter models. We use the recom-
mended system prompt and the LLAMA-3-based
conversational prompt format. Meanwhile, in Ta-
ble C1, we treat the prompt format as partially
missing, as the exact format that was used to for-
mat each question (“user” query) and answer (“as-
sistant” response) for evaluation on closed-ended
multiple-choice questions is not provided. At the
time of writing, there are no additional details about
the models that have been publicly released, be-
yond what is provided in the model cards. We
include the default prompt format used for OPEN-
BIOLLM in Appendix C.2.1.
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Table C1: Summary of all of the prompting details made available for each medical LLM and VLM used for
evaluation. For each column, a checkmark (✓) indicates that the information was fully provided, a triangle (▲)
indicates that the information was partially provided (e.g., random sampling without information about the seeds),
and a cross (✗) indicates that the information was not provided at all. “N/A” indicates that the corresponding
information is not available due to its irrelevance to the evaluation setup considered in the paper (e.g., lack of
few-shot example details because the model was only originally evaluated in zero-shot or fine-tuning regimes).

Model
System
Prompt

Zero-/Few-Shot
Prompt Format

Few-Shot
Examples

Sampling
Details

OPENBIOLLM (Pal and Sankarasubbu, 2024) ✓ ▲ ✗ ✗

CLINICAL-CAMEL (Toma et al., 2023) ✗ ▲ ✗ ▲

BIOMISTRAL (Labrak et al., 2024) ✓ ✓ ✗ ▲

MEDITRON (Chen et al., 2023) ✓ ▲ ✓ ✓

BIOMEDGPT-LM (Luo et al., 2023) ✗ ✗ N/A ✗

LLAVA-MED (Li et al., 2023) ▲ ▲ N/A ▲

MED-FLAMINGO (Moor et al., 2023b) ✓ ▲ ✗ ✗

CLINICAL-CAMEL (Toma et al., 2023). For
CLINICAL-CAMEL, we use the conversational
prompt format used in the official GitHub reposi-
tory, which corresponds to the official chat format
for LLAMA-2 (Touvron et al., 2023b). As the sys-
tem prompts and few-shot examples used for the
main evaluations in the paper are not provided,
we use our own manually designed default system
prompt and search over different choices of few-
shot examples. For sampling, the evaluation code
uses default temperature setting of 0.7 (albeit with-
out the random seeds), which differs from our eval-
uation setup. We include the default prompt format
used for CLINICAL-CAMEL in Appendix C.2.2.

BIOMISTRAL (Labrak et al., 2024). For
BIOMISTRAL, we use the system prompt and zero-
/few-shot prompt format provided in Appendix F
of the paper. At the time of writing, the code reposi-
tory is not publicly available, and the paper does not
provide details on what few-shot examples were
used for evaluation. In Section 4.3 of the paper,
Labrak et al. (2024) mention that the output vo-
cabulary is constrained to be one of the answer
choices in lettered format (e.g., one of [A,B,C,D])
to force the model to avoid generating irrelevant
tokens in its output. Meanwhile, it is not explic-
itly clear whether (i) the filtered token with the
highest probability was treated as the model’s pre-
diction or (ii) a token was randomly sampled based
on the renormalized token probabilities. We also
note that the vocabulary filtering procedure makes
their evaluation setup different from ours, as we
use greedy decoding to sample the model outputs
without any constraints on the vocabulary (see Sec-

tion 3). We include the default prompt format used
for BIOMISTRAL in Appendix C.2.3.

MEDITRON (Chen et al., 2023). For the MED-
ITRON models, we use the system prompts—
tailored specifically to MedQA, MedMCQA, Pub-
MedQA, and the MMLU datasets—provided in
Table 2 of the paper. For the prompt formats, we
use the ones provided in the official GitHub repos-
itory, as the prompt formats (those with special
‘<|im_start|>’ and ‘<|im_end|>’ tokens, fol-
lowing the ChatML format) shown in the paper
are only applicable to the fine-tuned models (see
this discussion from the official GitHub repository).
In particular, we refer to the prompt formats pro-
vided in the dataset preprocessing code and used
for evaluation to determine the default prompt for-
mat for both the 70B- and 7B-parameter models.
However, we were unable to reliably reproduce the
zero-/few-shot prompting performance using this
prompt format, and therefore perform a grid search
over the prompt formats as well for model-specific
prompt selection. In the evaluation code, Chen et al.
(2023) provide the random seeds used for sampling
the few-shot examples; however, we also search
over the set of few-shot examples to consider a
larger number of few-shot example choices. For
sampling, we use the same greedy decoding ap-
proach as considered in the paper (referred to “Top
Token Selection” in Section 4.3 of the paper). We
include the default prompt format used for MED-
ITRON in Appendix C.2.4.

BIOMEDGPT-LM (Luo et al., 2023). While
BIOMEDGPT-LM was evaluated on textual med-
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ical QA datasets such as MedMCQA and Pub-
MedQA, the evaluation was performed only in the
supervised fine-tuning regime, and the prompt for-
mats used for these datasets are not available, to
the best of our knowledge. Meanwhile, the official
GitHub repository provides Jupyter notebook ex-
amples containing a conversational prompt format
used in the context of other QA tasks. We there-
fore use this format by default but search over the
prompt formats for model-specific prompt selec-
tion, since it is not specifically designed for closed-
ended multiple-choice QA tasks. Moreover, as the
system prompt provided is not semantically appli-
cable to the QA tasks that we consider (e.g., “You
are working as an excellent assistant in
chemistry and molecule discovery.”, we use
our own manually designed default system prompt.
We include the default prompt format used for
BIOMEDGPT-LM in Appendix C.2.5.

LLAVA-MED (Li et al., 2023). For LLAVA-
MED, we use the system prompt and conversational
prompt format included in the “simple_conv_med”
template from the official GitHub repository (for
LLAVA-V0 (Liu et al., 2023), we use the “sim-
ple_conv” template) by default. For formatting
the visual questions, we also refer to this file con-
taining the raw visual QA results on VQA-RAD
(“Please choose from the following two
options: [yes, no]”). Meanwhile, we make
these choices with the following caveats, to the
best of our knowledge. First, the exact choice of
system prompt and conversational prompt format
used for evaluation are not discussed in the pa-
per or the code repository, and we choose the one
that has a system prompt specific to LLAVA-MED

(“You are LLaVA-Med, a large language and
vision assistant trained by a group of
researchers at Microsoft . . . ”) and follows
the conversational format used for VICUNA-V0
(Chiang et al., 2023), which forms its LLM back-
bone. Second, details on how the answer choices
should be formatted in the context of closed-ended
QA tasks is only shown in the VQA-RAD results
file. Given the uncertainty in such details, we also
search over the prompt formats for model-specific
prompt selection. We note that LLAVA-MED was
not pretrained on multi-image inputs or evaluated
in few-shot setting, and therefore details on the
choice of few-shot examples are irrelevant. For
sampling, the evaluation code uses a default tem-
perature setting of 0.7 (albeit without the random

seeds), which differs from our evaluation setup. We
include the default prompt format used for LLAVA-
MED in Appendix C.3.1 and that for LLAVA-V0
in Appendix C.3.2.

MED-FLAMINGO (Moor et al., 2023b). For
MED-FLAMINGO, we use the system prompt and
prompt format provided in the demo code from
the official GitHub repository by default. How-
ever, we search over the prompt formats when per-
forming model-specific prompt selection, as the
example prompt in the demo does not show details
for formatting answer choices in a closed-ended
QA context. The choice of few-shot examples and
the sampling details used for the original evalua-
tions on VQA-RAD and PathVQA are not avail-
able. We include the default prompt format used
for MED-FLAMINGO in Appendix C.3.3 and that
for OPEN-FLAMINGO in Appendix C.3.4.

C.2 Default LLM Prompt Formats
In this section, we share the default prompt formats
that we use for each LLM, using MMLU (Clinical
Knowledge) (Hendrycks et al., 2021) as a running
example. We denote the system prompt in red, any
few-shot examples in green, and the question being
asked of the model in purple.

For models that do not have a specific system
prompt and prompt format designed for closed-
ended medical QA (see Section C.1), we use a
manually designed prompt format by default. This
includes all of the general-domain LLMs. For ex-
ample, in the 1-shot setting, the default prompt for
non-instruction-tuned models is as follows:

The following is a multiple-choice question
about medical knowledge. Answer the ques-
tion by choosing one of the options from A to
D.
### Question: Glycolysis is the name given to
the pathway involving the conversion of:
(A) glycogen to glucose-1-phosphate.
(B) glycogen or glucose to fructose.
(C) glycogen or glucose to pyruvate or lactate.
(D) glycogen or glucose to pyruvate or acetyl
CoA.
### Answer: (C) glycogen or glucose to pyru-
vate or lactate.
### Question: What size of cannula would
you use in a patient who needed a rapid blood
transfusion (as of 2020 medical knowledge)?
(A) 18 gauge.
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(B) 20 gauge.
(C) 22 gauge.
(D) 24 gauge.
### Answer:

For instruction-tuned models, which typically ex-
pect a specific conversational format, we apply the
above format to each “user” query and “assistant”
response and remove the ‘###’ and ‘Answer:’
tags. For example, the input prompt to LLAMA-3-
70B-INSTRUCT is as follows:

<|begin_of_text|>
<|start_header_id|> system <|end_header_id|>
The following is a multiple-choice question
about medical knowledge. Answer the
question by choosing one of the options from
A to D.<|eot_id|>
<|start_header_id|>user<|end_header_id|>
Question: Glycolysis is the name given to the
pathway involving the conversion of:
(A) glycogen to glucose-1-phosphate.
(B) glycogen or glucose to fructose.
(C) glycogen or glucose to pyruvate or lactate.
(D) glycogen or glucose to pyruvate or acetyl
CoA.<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>
(C) glycogen or glucose to pyruvate or lac-
tate.<|eot_id|>
<|start_header_id|>user<|end_header_id|>
Question: What size of cannula would you
use in a patient who needed a rapid blood
transfusion (as of 2020 medical knowledge)?
(A) 18 gauge.
(B) 20 gauge.
(C) 22 gauge.
(D) 24 gauge.<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>

In the following subsections, we show the sys-
tem prompt and prompt formats used in the 1-
shot setting for models that have a dedicated for-
mat. We exclude the model-specific special tokens
(e.g., ‘[INST]’) for ease of presentation, and add
‘[User]’ and ‘[Model]’ to demarcate each ques-
tion and answer for the instruction-tuned models.

C.2.1 OPENBIOLLM (Pal and
Sankarasubbu, 2024)

You are an expert and experienced from the
healthcare and biomedical domain with exten-
sive medical knowledge and practical experi-
ence. Your name is OpenBioLLM, and you

were developed by Saama AI Labs. who’s
willing to help answer the user’s query with
explanation. In your explanation, leverage
your deep medical expertise such as relevant
anatomical structures, physiological processes,
diagnostic criteria, treatment guidelines, or
other pertinent medical concepts. Use pre-
cise medical terminology while still aiming to
make the explanation clear and accessible to a
general audience.
[User] Question: Glycolysis is the name given
to the pathway involving the conversion of:
(A) glycogen to glucose-1-phosphate.
(B) glycogen or glucose to fructose.
(C) glycogen or glucose to pyruvate or lactate.
(D) glycogen or glucose to pyruvate or acetyl
CoA.
[Model] (C) glycogen or glucose to pyruvate
or lactate.
[User] Question: What size of cannula would
you use in a patient who needed a rapid blood
transfusion (as of 2020 medical knowledge)?
(A) 18 gauge.
(B) 20 gauge.
(C) 22 gauge.
(D) 24 gauge.

C.2.2 CLINICAL-CAMEL (Toma et al., 2023)
<s>[INST] «SYS»
The following is a multiple-choice question
about medical knowledge. Answer the
question by choosing one of the options from
A to D.
«/SYS»

Question: Glycolysis is the name given
to the pathway involving the conversion of:
(A) glycogen to glucose-1-phosphate.
(B) glycogen or glucose to fructose.
(C) glycogen or glucose to pyruvate or lactate.
(D) glycogen or glucose to pyruvate or acetyl
CoA. [/INST] (C) glycogen or glucose to
pyruvate or lactate.</s><s>[INST] Question:
What size of cannula would you use in a
patient who needed a rapid blood transfusion
(as of 2020 medical knowledge)?
(A) 18 gauge.
(B) 20 gauge.
(C) 22 gauge.
(D) 24 gauge. [/INST]

C.2.3 BIOMISTRAL (Labrak et al., 2024)
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The following are multiple choice questions
(with answers) about medical knowledge.
**Question:** Glycolysis is the name given
to the pathway involving the conversion of:
(A) glycogen to glucose-1-phosphate.
(B) glycogen or glucose to fructose.
(C) glycogen or glucose to pyruvate or lactate.
(D) glycogen or glucose to pyruvate or acetyl
CoA.
**Answer:** (C
**Question:** What size of cannula would
you use in a patient who needed a rapid blood
transfusion (as of 2020 medical knowledge)?
(A) 18 gauge.
(B) 20 gauge.
(C) 22 gauge.
(D) 24 gauge.
**Answer:** (

C.2.4 MEDITRON (Chen et al., 2023)
You are a medical doctor answering real-world
medical entrance exam questions. Based
on your understanding of basic and clini-
cal science, medical knowledge, and mecha-
nisms underlying health, disease, patient care,
and modes of therapy, answer the following
multiple-choice question. Select one correct
answer from A to D. Base your answer on the
current and standard practices referenced in
medical guidelines.
Question: Glycolysis is the name given to the
pathway involving the conversion of:
Options:
A. glycogen to glucose-1-phosphate.
B. glycogen or glucose to fructose.
C. glycogen or glucose to pyruvate or lactate.
D. glycogen or glucose to pyruvate or acetyl
CoA.
The answer is: C
Question: What size of cannula would you use
in a patient who needed a rapid blood transfu-
sion (as of 2020 medical knowledge)?
Options:
A. 18 gauge.
B. 20 gauge.
C. 22 gauge.
D. 24 gauge.
The answer is:

C.2.5 BIOMEDGPT-LM (Luo et al., 2023)

The following is a multiple-choice question
about medical knowledge. Answer the ques-
tion by choosing one of the options from A to
D.
### Human: Glycolysis is the name given to
the pathway involving the conversion of:
(A) glycogen to glucose-1-phosphate.
(B) glycogen or glucose to fructose.
(C) glycogen or glucose to pyruvate or lactate.
(D) glycogen or glucose to pyruvate or acetyl
CoA.
### Assistant: (C) glycogen or glucose to
pyruvate or lactate.
### Human: What size of cannula would you
use in a patient who needed a rapid blood trans-
fusion (as of 2020 medical knowledge)?
(A) 18 gauge.
(B) 20 gauge.
(C) 22 gauge.
(D) 24 gauge.
### Assistant:

C.3 Default VLM Prompt Formats

In this section, we share the default prompt formats
that we use for each general-domain/medical VLM,
using VQA-RAD (Lau et al., 2018) as a running
example. We denote the system prompt in red, any
few-shot examples in green, and the question being
asked of the model in purple. By default, we show
the format used in the 1-shot setting.

C.3.1 LLAVA-MED (Li et al., 2023)

You are LLaVA-Med, a large language and vi-
sion assistant trained by a group of researchers
at Microsoft, based on the general domain
LLaVA architecture. You are able to under-
stand the visual content that the user provides,
and assist the user with a variety of medical
and clinical tasks using natural language.
Follow the instructions carefully and explain
your answers in detail.
### Human: Does this patient have multiple
lesions in their chest? Please choose from the
following options: [yes, no]. <image>
### Assistant: no
### Human: Is there evidence of an aortic
aneurysm? Please choose from the following
options: [yes, no]. <image>
### Assistant:

C.3.2 LLAVA-V0 (Liu et al., 2023)

12162



A chat between a curious human and an artifi-
cial intelligence assistant. The assistant gives
helpful, detailed, and polite answers to the
human’s questions.
### Human: Does this patient have multiple
lesions in their chest? Please choose from the
following options: [yes, no]. <image>
### Assistant: no
### Human: Is there evidence of an aortic
aneurysm? Please choose from the following
options: [yes, no]. <image>
### Assistant:

C.3.3 MED-FLAMINGO (Moor et al., 2023b)

You are a helpful medical assistant. You are
being provided with images, a question about
the image and an answer. Follow the examples
and answer the last question.
<image> Does this patient have multiple le-
sions in their chest?
(A) yes
(B) no
Answer: (B) no <|endofchunk|>
<image> Is there evidence of an aortic
aneurysm?
(A) yes
(B) no
Answer:

C.3.4 OPEN-FLAMINGO (Awadalla et al.,
2023)

The following is a multiple-choice visual ques-
tion requiring medical knowledge. Answer the
question by choosing one of the provided an-
swer options.
<image> Does this patient have multiple le-
sions in their chest?
(A) yes
(B) no
Answer: (B) no <|endofchunk|> <image> Is
there evidence of an aortic aneurysm?
(A) yes
(B) no
Answer:

D Additional Results for the
Zero-/Few-Shot Prompting Evaluations
with Greedy Decoding

In this section, we provide additional results for the
main zero-/few-shot prompting experiments with
greedy decoding, which are discussed in Section 4.

Table D1: The win, tie, and loss rates (%) of all medical
LLMs (top) and VLMs (bottom) in the zero-shot setting,
after independently optimizing the prompts for both
medical and general-domain models. Model predictions
are generated via greedy decoding.

Model Win Tie Loss

OPENBIOLLM-70B (Pal and Sankarasubbu, 2024) 7.7 69.2 23.1
MEDITRON-70B (Chen et al., 2023) 0 61.5 38.5
CLINICAL-CAMEL-70B (Toma et al., 2023) 27.3 63.6 9.1
OPENBIOLLM-8B (Pal and Sankarasubbu, 2024) 0 46.2 53.8
MEDITRON-7B (Chen et al., 2023) 0 69.2 30.8
BIOMISTRAL-7B (Labrak et al., 2024) 30.8 69.2 0
BIOMEDGPT-LM-7B (Luo et al., 2023) 0 15.4 84.6

LLAVA-MED-7B (Li et al., 2023) 12.5 62.5 25.0
MED-FLAMINGO-9B (Moor et al., 2023b) 0 87.5 12.5

Table D2: The win, tie, and loss rates (%) of all medical
LLMs (top) and VLMs (bottom) in the 3-shot setting,
after independently optimizing the prompts for both
medical and general-domain models. Model predictions
are generated via greedy decoding.

Model Win Tie Loss

OPENBIOLLM-70B (Pal and Sankarasubbu, 2024) 30.8 69.2 0
MEDITRON-70B (Chen et al., 2023) 0 69.2 30.8
CLINICAL-CAMEL-70B (Toma et al., 2023) 0 63.6 36.4
OPENBIOLLM-8B (Pal and Sankarasubbu, 2024) 7.7 61.5 30.8
MEDITRON-7B (Chen et al., 2023) 0 23.1 76.9
BIOMISTRAL-7B (Labrak et al., 2024) 46.2 53.8 0
BIOMEDGPT-LM-7B (Luo et al., 2023) 0 7.7 92.3

LLAVA-MED-7B (Li et al., 2023) 12.5 62.5 25.0
MED-FLAMINGO-9B (Moor et al., 2023b) 0 100.0 0

D.1 Finding 1 (Section 4)

Figure D1 shows the absolute and relative exact-
match accuracies achieved by the medical and
general-domain LLMs in the zero-shot prompting
regime, after independently optimizing the prompt
for each model. In Tables D1–D2, we also show
the zero-shot and 3-shot win/tie/loss rates achieved
by the medical LLMs and VLMs. For CLINICAL-
CAMEL-70B, we compute the win/tie/loss rates
while excluding the MedQA datasets, as discussed
in Section 4. We boldface the medical models that
win on more datasets than they lose when compared
against their general-domain counterparts.

As discussed in Finding 1 of Section 4, we
find that in both the zero-shot and 3-shot settings,
only 2 out of 7 medical models show statistically
significant improvements over their correspond-
ing base models (CLINICAL-CAMEL-70B and
BIOMISTRAL-7B for zero-shot; OPENBIOLLM-
70B and BIOMISTRAL-7B for 3-shot), albeit by a
limited margin in terms of absolute accuracy. For
all other models, the win rates are less than or equal
to the loss rates, and the majority of cases result
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Figure D1: Medical LLMs do not show a statistically significant improvement over their general-domain counterparts
in the zero-shot setting, after independently selecting the best prompt format and examples for each model. Top row
shows the absolute exact-match accuracies on the test set, and bottom row shows the relative exact-match accuracies
along with 95% confidence intervals derived via bootstrapping on the test set (see Section 3). We show the results
for when model predictions are generated via greedy decoding.

Table D3: The win, tie, and loss rates (%) of all medical
LLMs (top) and VLMs (bottom) in the zero-shot setting,
when using a single, fixed prompt optimized only for
the medical model. Model predictions are generated via
greedy decoding.

Model Win Tie Loss

OPENBIOLLM-70B (Pal and Sankarasubbu, 2024) 23.1 61.5 15.4
MEDITRON-70B (Chen et al., 2023) 23.1 69.2 7.7
CLINICAL-CAMEL-70B (Toma et al., 2023) 90.9 9.1 0
OPENBIOLLM-8B (Pal and Sankarasubbu, 2024) 69.2 30.8 0
MEDITRON-7B (Chen et al., 2023) 76.9 23.1 0
BIOMISTRAL-7B (Labrak et al., 2024) 30.8 69.2 0
BIOMEDGPT-LM-7B (Luo et al., 2023) 0 38.5 61.5

LLAVA-MED-7B (Li et al., 2023) 25.0 62.5 12.5
MED-FLAMINGO-9B (Moor et al., 2023b) 25.0 62.5 12.5

in a tie (i.e., the confidence interval crosses zero
relative accuracy).

D.2 Finding 2 (Section 4)

Figures D2–D3 show how the absolute and rela-
tive exact-match accuracies change for LLMs and
VLMs in the zero-shot and 3-shot settings, when
we use a single, fixed prompt that is only optimized
for the medical model. In Tables D3–D4, we also
show the zero-shot and 3-shot win/tie/loss rates in
this scenario. We boldface the medical models that

Table D4: The win, tie, and loss rates (%) of all medical
LLMs (top) and VLMs (bottom) in the 3-shot setting,
when using a single, fixed prompt optimized only for
the medical model. Model predictions are generated via
greedy decoding.

Model Win Tie Loss

OPENBIOLLM-70B (Pal and Sankarasubbu, 2024) 38.5 61.5 0
MEDITRON-70B (Chen et al., 2023) 0 100.0 0
CLINICAL-CAMEL-70B (Toma et al., 2023) 54.5 45.5 0
OPENBIOLLM-8B (Pal and Sankarasubbu, 2024) 30.8 69.2 0
MEDITRON-7B (Chen et al., 2023) 38.5 23.1 38.5
BIOMISTRAL-7B (Labrak et al., 2024) 0 100.0 0
BIOMEDGPT-LM-7B (Luo et al., 2023) 7.7 46.2 46.2

LLAVA-MED-7B (Li et al., 2023) 50.0 37.5 12.5
MED-FLAMINGO-9B (Moor et al., 2023b) 25.0 75.0 0

win on more datasets than they lose when com-
pared against their general-domain counterparts.
Compared to when the prompt is independently
optimized for each model, we see that a greater
number of medical models show statistically sig-
nificant improvements. Notably, all medical VLMs
outperform their general-domain counterparts in
both zero-shot and few-shot accuracy under this
setup, and all but one medical LLMs outperform
their general-domain counterparts in the zero-shot
setting. These results suggest that using a single,
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Figure D2: Using a single, fixed prompt format only optimized for the medical model can overestimate the
performance improvements from medical DAPT, in both (a) zero-shot and (b) 3-shot settings. For each setting,
top row shows the absolute exact-match accuracies on the test set, and bottom row shows the relative exact-match
accuracies along with 95% confidence intervals derived via bootstrapping on the test set (see Section 3). For
LLAMA-2-70B, which has multiple corresponding medical LLMs (MEDITRON-70B and CLINICAL-CAMEL-
70B), we include a min-max error bar in the absolute accuracy plots to show how the absolute accuracy changes
with respect to each prompt. We show the results for when model predictions are generated via greedy decoding.

fixed prompt that is only tailored to one model can
result in an unfair comparison and can potentially
lead to an overestimation of the performance bene-
fits of medical DAPT.

E Results for the Zero-/Few-Shot
Prompting Evaluations with
Constrained Decoding

In this section, we provide all of the results for the
zero-/few-shot prompting evaluations described in
Section 3, where the model predictions are gener-
ated via constrained instead of greedy decoding.
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Figure D3: Using a single, fixed prompt format only optimized for the medical model can overestimate the
performance improvements from medical DAPT, in both (a) zero-shot and (b) 3-shot settings. For each setting,
top row shows the raw exact-match accuracies on the test set, and the bottom row shows the relative exact-match
accuracies along with 95% confidence intervals derived via boostrapping on the test set (see Section 3). We show
the results for when model predictions are generated via greedy decoding.

E.1 Finding 1 (Section 4)

Here, we show the constrained decoding results
for the medical LLMs and VLMs after indepen-
dently optimizing the prompt for each model. In
Figures E1–E2, we show the absolute and relative
exact-match accuracies achieved by all LLMs and
VLMs in the (a) zero-shot and (b) 3-shot prompt-
ing regimes. In Tables E1–E2, we show the zero-
shot and 3-shot win/tie/loss rates achieved by each
model. For CLINICAL-CAMEL-70B, we compute
the win/tie/loss rates while excluding the MedQA
datasets, as discussed in Section 4. We boldface the
medical models that win on more datasets than they
lose when compared against their general-domain
counterparts.

Figure E1(a) and Table E1 show that 4 out of
7 medical LLMs show improvements over their
general-domain counterparts in the zero-shot set-
ting, albeit by a limited margin in absolute terms. In
the 3-shot setting, Figure E1(b) and Table E2 show
that only 2 out of 7 medical LLMs—MEDITRON-
7B and BIOMISTRAL-7B—show improvements
over their general-domain counterpart, but with a
tie on 92.3% of all datasets. For all other models,
the win rates are less than or equal to the loss rates,
and the majority of cases result in a tie. Meanwhile,
Figure E2 and Tables E1–E2 show that no medical
VLM shows a statistically significant improvement
over its general-domain counterpart in either the
zero-shot or 3-shot setting.

Table E1: The win, tie, and loss rates (%) of all medical
LLMs (top) and VLMs (bottom) in the zero-shot setting,
after independently optimizing the prompts for both
medical and general-domain models. Model predictions
are generated via constrained decoding.

Model Win Tie Loss

OPENBIOLLM-70B (Pal and Sankarasubbu, 2024) 7.7 76.9 15.4
MEDITRON-70B (Chen et al., 2023) 30.8 46.2 23.1
CLINICAL-CAMEL-70B (Toma et al., 2023) 18.2 72.7 9.1
OPENBIOLLM-8B (Pal and Sankarasubbu, 2024) 0 53.8 46.2
MEDITRON-7B (Chen et al., 2023) 23.1 76.9 0
BIOMISTRAL-7B (Labrak et al., 2024) 30.8 69.2 0
BIOMEDGPT-LM-7B (Luo et al., 2023) 7.7 84.6 7.7

LLAVA-MED-7B (Li et al., 2023) 0 100.0 0
MED-FLAMINGO-9B (Moor et al., 2023b) 12.5 75.0 12.5

Table E2: The win, tie, and loss rates (%) of all medical
LLMs (top) and VLMs (bottom) in the 3-shot setting,
after independently optimizing the prompts for both
medical and general-domain models. Model predictions
are generated via constrained decoding.

Model Win Tie Loss

OPENBIOLLM-70B (Pal and Sankarasubbu, 2024) 23.1 53.8 23.1
MEDITRON-70B (Chen et al., 2023) 15.4 69.2 15.4
CLINICAL-CAMEL-70B (Toma et al., 2023) 9.1 72.7 18.2
OPENBIOLLM-8B (Pal and Sankarasubbu, 2024) 7.7 69.2 23.1
MEDITRON-7B (Chen et al., 2023) 7.7 92.3 0
BIOMISTRAL-7B (Labrak et al., 2024) 7.7 92.3 0
BIOMEDGPT-LM-7B (Luo et al., 2023) 7.7 69.2 23.1

LLAVA-MED-7B (Li et al., 2023) 0 87.5 12.5
MED-FLAMINGO-9B (Moor et al., 2023b) 0 100.0 0

E.2 Finding 2 (Section 4)

Here, we present the constrained decoding results
for medical LLMs and VLMs when using a single,
fixed prompt format only optimized for the medical
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Figure E1: Medical LLMs do not show a statistically significant improvement over their general-domain counterparts
in both (a) zero-shot and (b) 3-shot settings, after independently selecting the best prompt format and examples for
each model. Top row shows the absolute exact-match accuracies on the test set, and bottom row shows the relative
exact-match accuracies along with 95% confidence intervals derived via bootstrapping on the test set (see Section 3).
We show the results for when model predictions are generated via constrained decoding.

model. In Figures E3–E4, we show how the abso-
lute and relative exact-match accuracies change for
all LLMs and VLMs in the zero-shot and 3-shot
settings. In Tables E3–E4, we also show the zero-
shot and 3-shot win/tie/loss rates in this scenario.
We boldface the medical models that win on more
datasets than they lose when compared against their
general-domain counterparts. Compared to when
the prompt is independently optimized for each

model, we see that a greater number of medical
models show statistically significant improvements.
In Figure E5, we also show how the win/tie/loss
rates of the medical models, computed over all
(model pair, QA dataset) combinations, change as
we vary the prompting setups as in Finding 2 of
Section 4. As in the greedy decoding setup, we find
that for both LLMs and VLMs, the performance
improvements from medical DAPT can be substan-
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Figure E2: Using a single, fixed prompt format only optimized for the medical model can overestimate the
performance improvements from medical DAPT, in both (a) zero-shot and (b) 3-shot settings. For each setting,
top row shows the raw exact-match accuracies on the test set, and the bottom row shows the relative exact-match
accuracies along with 95% confidence intervals derived via boostrapping on the test set (see Section 3). We show
the results for when model predictions are generated via constrained decoding.

Table E3: The win, tie, and loss rates (%) of all medical
LLMs (top) and VLMs (bottom) in the zero-shot setting,
when using a single, fixed prompt optimized only for
the medical model. Model predictions are generated via
constrained decoding.

Model Win Tie Loss

OPENBIOLLM-70B (Pal and Sankarasubbu, 2024) 30.8 69.2 0
MEDITRON-70B (Chen et al., 2023) 30.8 53.8 15.4
CLINICAL-CAMEL-70B (Toma et al., 2023) 63.6 36.4 0
OPENBIOLLM-8B (Pal and Sankarasubbu, 2024) 46.2 46.2 7.7
MEDITRON-7B (Chen et al., 2023) 7.7 76.9 15.4
BIOMISTRAL-7B (Labrak et al., 2024) 23.1 76.9 0
BIOMEDGPT-LM-7B (Luo et al., 2023) 30.8 69.2 0

LLAVA-MED-7B (Li et al., 2023) 0 100.0 0
MED-FLAMINGO-9B (Moor et al., 2023b) 25.0 75.0 0

Table E4: The win, tie, and loss rates (%) of all medical
LLMs (top) and VLMs (bottom) in the 3-shot setting,
when using a single, fixed prompt optimized only for
the medical model. Model predictions are generated via
constrained decoding.

Model Win Tie Loss

OPENBIOLLM-70B (Pal and Sankarasubbu, 2024) 23.1 61.5 15.4
MEDITRON-70B (Chen et al., 2023) 7.7 92.3 0
CLINICAL-CAMEL-70B (Toma et al., 2023) 36.4 63.6 0
OPENBIOLLM-8B (Pal and Sankarasubbu, 2024) 30.8 61.5 7.7
MEDITRON-7B (Chen et al., 2023) 7.7 92.3 0
BIOMISTRAL-7B (Labrak et al., 2024) 7.7 16.7 0
BIOMEDGPT-LM-7B (Luo et al., 2023) 30.8 69.2 0

LLAVA-MED-7B (Li et al., 2023) 25.0 75.0 0
MED-FLAMINGO-9B (Moor et al., 2023b) 0 100.0 0

tially overestimated when (i) the prompt is only
tailored to the medical model; and (ii) the models
are compared only based on their absolute accu-
racies. For example, in the zero-shot setting, the

win rate increases from 16.9% to 68.0% for med-
ical LLMs and from 6.3% to 56.3% for medical
VLMs, when only performing prompt selection for
the medical model and comparing based on raw
absolute accuracy.
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Figure E3: Using a single, fixed prompt format only optimized for the medical model can overestimate the
performance improvements from medical DAPT, in both (a) zero-shot and (b) 3-shot settings. For each setting,
top row shows the absolute exact-match accuracies on the test set, and bottom row shows the relative exact-match
accuracies along with 95% confidence intervals derived via bootstrapping on the test set (see Section 3). For LLAMA-
2-70B, which has multiple corresponding medical LLMs (MEDITRON-70B and CLINICAL-CAMEL-70B), we
include a min-max error bar in the absolute accuracy plots to show how the absolute accuracy changes with respect
to each prompt. We show the results for when model predictions are generated via constrained decoding.
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Figure E4: Using a single, fixed prompt format only optimized for the medical model can overestimate the
performance improvements from medical DAPT, in both (a) zero-shot and (b) 3-shot settings. For each setting,
top row shows the raw exact-match accuracies on the test set, and the bottom row shows the relative exact-match
accuracies along with 95% confidence intervals derived via boostrapping on the test set (see Section 3). Here, we
show the results for when model predictions are generated via constrained decoding.
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Figure E5: Optimizing the prompt for only the medical model and comparing models without accounting for
statistical uncertainty can overestimate the performance improvements from medical DAPT. We show the win/tie/loss
rate (%) of medical models vs. their base models across all (model pair, QA dataset) combinations, when (a)
independently optimizing the prompt for each model and performing statistical testing, (b) optimizing the prompt
only for the medical model and performing statistical testing, (c) independently optimizing the prompt for each
model without statistical testing, and (d) optimizing the prompt only for the medical model without statistical testing.
Here, we show the results when model predictions are generated via constrained decoding.
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