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Abstract

Exploring the capabilities of Large Language
Models (LLMs) in puzzle solving unveils criti-
cal insights into their potential and challenges
in AI, marking a significant step towards un-
derstanding their applicability in complex rea-
soning tasks. This survey leverages a unique
taxonomy—dividing puzzles into rule-based
and rule-less categories—to critically assess
LLMs through various methodologies, includ-
ing prompting techniques, neuro-symbolic ap-
proaches, and fine-tuning. Through a critical
review of relevant datasets and benchmarks, we
assess LLMs’ performance, identifying signif-
icant challenges in complex puzzle scenarios.
Our findings highlight the disparity between
LLM capabilities and human-like reasoning,
particularly in those requiring advanced logical
inference. The survey underscores the neces-
sity for novel strategies and richer datasets to
advance LLMs’ puzzle-solving proficiency and
contribute to AI’s logical reasoning and cre-
ative problem-solving advancements.

1 Introduction

Recent developments in LLMs such as GPT-3
(Brown et al., 2020) and GPT-4 (OpenAI et al.,
2023) have showcased their logical reasoning abil-
ities across various domains (Liu et al., 2023a,b;
Bao et al., 2023; Creswell et al., 2022). Despite
these advances and their demonstrated capabili-
ties in deductive reasoning (Saparov et al., 2023),
LLMs face limitations in inductive reasoning set-
tings, as analyzed by Xu et al. (2023a); Bang et al.
(2023). The specific application of LLMs to puzzle
solving, has not been thoroughly summarized.

Our main contributions are as follows: 1 We
introduce a distinction between rule-based and rule-
less puzzles (§2), highlighting the varied knowl-
edge demands necessary to tackle them. 2 We
analyze the methodologies LLMs use to solve puz-
zles (§3), assessing their impact on each category

Figure 1: Riddle from RiddleSense (Lin et al., 2021).
GPT-4, LLaMA2-70B and Bard chose the right answer.

and comparing them with conventional problem-
solving methods. 3 A detailed exploration of
existing benchmarks that gauge models’ reasoning
abilities is conducted (§4). 4 Finally, this paper
offers a detailed view of the present obstacles faced
in puzzle-solving with LLMs and highlights a wide
array of prospects for future research (§5).

Our categorization diverges from existing logi-
cal reasoning taxonomies by emphasizing on the
underlying cognitive processes and the skills re-
quired for puzzle solving, rather than the question
format (Luo et al., 2023) or the nature of reasoning
(deductive, inductive, abductive) (Luo et al., 2023;
Yu et al., 2023a; Yang et al., 2023b; Qiao et al.,
2022; Huang and Chang, 2022; Flach and Kakas,
2000). For instance, the existence of rules in puz-
zles such as Sudoku, Crosswords, or Minesweeper
necessitates additional skills (e.g. strategy devel-
opment) to correctly understand the game’s rules
or the ability to correctly format the output. In
contrast, rule-less puzzles, such as riddles (Figure
1), programming challenges, and commonsense
reasoning problems, leverage the model’s inherent
knowledge for solution derivation.

In our work, we define puzzles as problems that
test cognitive abilities including logical reasoning,
spatial cognition, and creative thinking by requir-
ing the solver to discern patterns, apply deduction,
and combine insights from available information
in order to arrive at the correct solution. Notably,
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Rule-less puzzles: rely
more on flexible think-
ing, real-world knowl-
edge and inferential rea-
soning

Commonsense reasoning puzzles:
require understanding real-world sit-
uations and making inferences based
on implicit knowledge

LatEval (Huang et al., 2023b), True Detective (Del and Fishel,
2022), DetectBench (Gu et al., 2023), MARB (Tong et al., 2023)

Programming puzzles: involve ana-
lyzing or modifying code snippets to
achieve a specific goal

P3 (Schuster et al., 2021), (Savelka et al., 2023)

Riddles: use wordplay and metaphors
to conceal the answers, requiring ab-
stract connections and lateral thinking

BrainTeaser (Jiang et al., 2023), RiddleSense (Lin et al., 2021),
BiRdQA (Zhang and Wan, 2021), CC-Riddle (Xu et al., 2022),
PUZZLEQA (Zhao and Anderson, 2023), MARB (Tong et al.,
2023)

Rule-based puzzles: pro-
vide explicit victory con-
ditions, legal move sets or
state transition rules that
the model must follow to
solve the puzzle

Stochastic games: incorporate ran-
domness or hidden information, result-
ing in different outcomes

Minesweeper (Li et al., 2023), BoardgameQA (Kazemi et al.,
2023), Card Games (Huang et al., 2024; Gupta, 2023), Social
Deduction Games (Wang et al., 2023b; Xu et al., 2023b; Lan
et al., 2023)

Deterministic games: provide all the
information needed to produce an out-
come from a given starting state and
set of actions

BoardgameQA (Kazemi et al., 2023), Sudoku (Noever and
Burdick, 2021; Long, 2023; Ishay et al., 2023), Rubik’s Cube
(Noever and Burdick, 2021; Ding et al., 2023), Maze (Noever
and Burdick, 2021), Crossword (Yao et al., 2023; Rozner et al.,
2021; Efrat et al., 2021; Kulshreshtha et al., 2022), 8-puzzle
(Ding et al., 2023), Game of 24 (Ding et al., 2023; Yao et al.,
2023), Chess (Ishay et al., 2023; Feng et al., 2023b)

Figure 2: A taxonomy of Puzzle Categories with the corresponding Datasets.

we exclude puzzles that cannot be expressed in text
in any way, such as jigsaw puzzles (Markaki and
Panagiotakis, 2022), or problems that require multi-
modal understanding abilities of LLMs (Chia et al.,
2024; Ghosal et al., 2024). Mathematical puzzles
are also excluded, as this area diligently covered
by the recent work of Liu et al. (2023c).

We keep track of the latest progress in the field of
puzzle solving using LLM reasoning in our GitHub
https://puzzlellms.github.io/.

2 Categorization of Puzzle Problems

In assessing LLMs’ reasoning capabilities, it is es-
sential to categorize puzzles into coherent groups.
We distinguish puzzles by their reliance on formal
rules or broader world knowledge accompanied by
general inferential skills, as illustrated in Figure 2.
This categorization not only highlights the cogni-
tive diversity puzzles present, but also aligns with
distinct reasoning challenges: rule-based puzzles
demand logical deduction and strategic foresight
within closed environments with defined parame-
ters, whereas rule-less puzzles require general rea-
soning abilities, interpreting situations and explain-
ing events by drawing inferences based on practical
knowledge about the everyday world.

By separating puzzles into these categories,
we aim to provide a nuanced analysis of LLMs’
problem-solving abilities, reflecting on both struc-
tured challenges and those necessitating broader
inferential reasoning.

2.1 Rule-based Puzzles

Rule-based Puzzles provide the model with explicit
victory conditions, legal move sets or state transi-
tion rules. We further subdivide this category based
on whether the state transitions are deterministic or
incorporate randomness.

Deterministic games always produce the same
successor state given a current game state and ac-
tion taken according to the rules. For example, in
Chess, making a move always yields one unam-
biguous new board layout. Other examples include
Sudoku, maze navigation, or solving a Rubik’s
cube. The model should learn strategies that op-
erate within the possibility space defined by legal
game mechanics.

Stochastic games incorporate randomness or
hidden information, i.e. the same player action can
lead to different probability distributions over next
states. Examples include Minesweeper (hidden
bomb locations) or card games e.g. Poker where op-
ponents hold private hands. Mastering these games
requires reasoning over uncertain states, planning
multiple moves in advance and managing risk.

Thus, while both subgroups require logical rea-
soning bounded by formal rules, stochastic games
pose the additional challenge of decision-making
under uncertainty. Excelling in deterministic games
enables pure reliance on deduction and forward
search, while stochastic environments also require
abilities for probabilistic inference, risk analysis,
and reasoning with incomplete information.
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2.2 Rule-less Puzzles

Unlike rule-bounded puzzles, rule-less problems
rely more on flexible thinking and real-world
knowledge to interpret vague situations and infer
unobserved details. Rather than testing systematic
search or strategic planning, these puzzles measure
cognitive skills for contextual interpretation, con-
ceptual combination, and reasoning from common
experiences. The following fall under this category.

Riddles utilize clever wordplay and literary de-
vices to conceal answers. For example, "What gets
wetter the more it dries?" obscures the solution
of "a towel" through metaphor. Solving riddles
requires making abstract connections between con-
cepts hidden in lyrical language. This assesses
skills for fluid reasoning, conceptual blending, and
lateral thinking to decode linguistic relationships.

Programming Puzzles provide code snippets
and require analyzing or modifying the underlying
program logic. Schuster et al. (2021) define a pro-
gramming puzzle as a short Python program f , and
the goal is to find an input which makes f return
True. Such puzzles assess skills like tracing exe-
cution, fixing errors, or anticipating outputs based
on coding semantics. For example, the following
puzzle tests understanding programming semantics
to predict a system’s behaviour:

def mystery(x):
return x // 2

print(mystery (10))

Commonsense Reasoning Puzzles depict typ-
ical situations omitting key details. Solvers must
explain events by inferring plausible implicit as-
sumptions about motivations, causes and effects.
For instance, the question "A man who was out-
side in the rain without an umbrella or hat didn’t
get a single hair on his head wet. Why?" requires
pragmatic analysis of unstated contextual factors.

3 Methods and Strategies

In applying LLMs to puzzle solving, a wide array
of methods and strategies enhances complex rea-
soning and performance. This section outlines the
approaches used to address puzzles, aiming to high-
light their application within this unique context.
Given the extensive literature on prompt engineer-
ing and related methods Besta et al. (2024); Chen
et al. (2023); Yu et al. (2023b); Chu et al. (2023);
Qiao et al. (2022); Liu et al. (2021), we concentrate
on the techniques most prevalent for puzzle solving,
instead of describing each method separately. We

divide existing methods into prompting techniques,
neuro-symbolic approaches for puzzle translation
and fine-tuning for specific domains. A detailed
overview of the methods utilized across different
puzzle categories is presented in Table 1. We also
discuss how conventional methods have faced these
problems before the LLM era (App. A.2).

3.1 Prompting Methods
Prompting strategies that provide intermediate rea-
soning steps are pivotal in enhancing the puzzle-
solving capabilities of language models. The few-
shot in-context learning paradigm offers one or
more demonstrations within prompts, significantly
improving performance for both rule-based and
rule-less puzzles by showcasing the reasoning pro-
cess without additional training (Brown et al., 2020;
Dong et al., 2023; Zhou et al., 2022).

Recent works focus on how different ‘thought
structures’ can guide LLMs to the final solution
(Besta et al., 2024).

Chain topologies, which include Chain-of-
Thought (CoT) (Wei et al., 2022; Kojima et al.,
2022) have been applied to all kinds of puzzles,
demonstrating their superiority over simple IO
prompts. Self-Refine (Madaan et al., 2023) is used
for the Game of 24 (rule-based/deterministic), out-
performing CoT with a 13% higher success rate
(Yao et al., 2023). Gu et al. (2023) use several meth-
ods in a rule-less detective-style benchmark, includ-
ing Automatic CoT, which autonomously gener-
ates diverse reasoning chains for various questions
(Zhang et al., 2022); Complexity CoT leverages
the complexity of prompted chains, where more
intricate reasoning steps often lead to improved
performance in complex inference tasks by select-
ing outcomes that demonstrate deeper reasoning
capabilities (Fu et al., 2022); and the Plan-and-
Solve (PS) method, which uses two prompts for
each problem—one to generate the reasoning pro-
cess and the corresponding answer, and another
to extract the final answer from the initial gen-
eration (Wang et al., 2023a). Despite the varied
approaches, none of these methods clearly outper-
formed CoT across all tested LLMs. The best re-
sults are achieved by Detective Thinking Prompt,
a CoT-like method introduced in the same study,
which does not exceed the 61.6% accuracy score
of the best model, GPT-4. The method encourages
the model to consider and analyze multiple clues
within a given scenario, sequentially building to-
wards a conclusion. This type of prompting can
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help the model handle complex scenarios where
synthesizing disparate information correctly is cru-
cial to generating accurate and logical outcomes.
Schuster et al. (2021) exclusively utilized the solu-
tions to programming puzzles that the model had
already solved as examples, surpassing alternative
approaches.

Tree topologies cover a variety of methods. Self-
Consistency (SC) (Wang et al., 2022) has been
tested on rule-based/deterministic puzzles, such
as the 8-puzzle, Game of 24 and Pocket Cube, as
well as on rule-less commonsense reasoning puz-
zles, showcasing a small gain in the first category
over CoT (Ding et al., 2023; Yao et al., 2023; Mo
and Xin, 2023) and no clear benefit in the second
one (Gu et al., 2023). Tree-of-Thought(s) (ToT)
(Yao et al., 2023; Long, 2023) has been exclusively
applied to rule-based/deterministic puzzles so far,
achieving significantly improved success rates over
CoT, with increases ranging from 26% (Mo and
Xin, 2023) to 70% (Yao et al., 2023) depending
on the puzzle and the depth of the tree, despite
the increased LLM invocations (Ding et al., 2023).
Tree-of-Uncertain-Thought (TouT) (Mo and Xin,
2023) achieved even better results than ToT on the
same challenges, with a 9% higher success rate
on the Game of 24 and 3% on mini-crosswords.
Finally, Inference-Exclusion-Prompting (IEP)
(Tong et al., 2023) employs a combination of for-
ward and backward reasoning to approximate hu-
man logic and delivered some of the best results on
riddles and commonsense puzzles when combined
with CoT, scoring 82% on puzzles–up from 81%
with zero-shot CoT–and 79% on riddles, compared
to 82% with zero-shot CoT.

Graph topologies entail the following: Graph-
of-Thought(s) (GoT) (Besta et al., 2023; Lei
et al., 2023) and Everything-of-Thought (XoT)
(Ding et al., 2023) have been used to solve rule-
based/deterministic puzzles. While GoT has shown
poorer results compared to ToT, with a decrease
ranging from 2% to 6% (Ding et al., 2023), XoT
has been recognized as the most effective method
for these puzzles. XoT integrates Monte Carlo Tree
Search (MCTS) with LLMs for enhanced thought
generation, achieving improvements in results from
53% to 69% compared to ToT. Additionally, XoT
presents the fewest LLM invocations among the
methods tested, including CoT, SC, ToT, and GoT.

A brief analysis of some basic methods not de-
scribed here is presented in Appendix A.1, while a
more detailed analysis of all the methods discussed

can be found in the extensive work of Besta et al.
(2024). Beyond the aforementioned methods, the
use of extra information such as hints for riddles
and commonsense puzzles, or introductions and
summarizations of the puzzles, has also been em-
ployed. The inclusion of supplementary details
appears to yield positive results, although this is
not always the case; for instance, Chinese riddles
typically show worse results when hints are used
(Zhang and Wan, 2021).

3.2 Puzzle Translation
In this subsection, we summarize the neuro-
symbolic techniques used by LLMs to translate
text puzzles from natural language into forms more
amenable to solutions by external tools. Notably,
these methods do not test the LLMs’ puzzle solv-
ing capacity but rather assess their ability to encode
puzzles into appropriate representations.

The primary approach involves using LLMs to
generate logic rules from the puzzle’s natural lan-
guage and subsequently solve it using a symbolic
solver. Ishay et al. (2023) employ GPT-3 and GPT-
4 to transform logic puzzles, such as chess puzzles,
Jobs puzzle and Sudoku (rule-based/deterministic)
into Answer Set Programming (ASP) formats by
generating predicates and rules. They demonstrate
that this method achieved significant results, with
GPT-4 scoring 92% accuracy in a logic puzzles
dataset Mitra and Baral (2015), compared to 7%
in few-shot and 21% in zero-shot settings with
the same model. They note that in few-shot set-
tings, LLMs can generate complex programs that
humans can easily refine and correct in case of
code errors. Additionally, similar frameworks such
as Logic-LM (Pan et al., 2023a), LINC (Olaus-
son et al., 2023) and Yang et al. (2023a)’s method
show promising results in logical reasoning tasks,
although not specifically in puzzle settings.

While neuro-symbolic approaches have been ap-
plied to puzzle translation into logic rules, we have
found no studies on transforming puzzles from nat-
ural language into code. However, techniques such
as Program of Thoughts (PoT) prompting (Chen
et al., 2022) and Program-Aided Language (PAL)
(Gao et al., 2022) employ models to convert reason-
ing into Python programs for logical and mathemat-
ical reasoning datasets. Therefore, we encourage
the research community to explore these methods
for puzzle-solving tasks as well.

Given the structured nature of rule-based puz-
zles, this approach is inherently suitable for them.
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Consequently, it is logical that no studies have yet
been conducted on rule-less puzzles in this context.

3.3 Fine-Tuning

Fine-tuning LLMs emerges as a potent strategy
for enhancing their reasoning capabilities, ranging
from general logical reasoning to specific puzzle-
solving skills.

Logical Reasoning
LoGiPT (Feng et al., 2023a) is a language model
fine-tuned to excel in logical reasoning tasks
by mimicking the symbolic reasoning of logical
solvers. The fine-tuning process involves construct-
ing an instruction-tuning dataset comprising natural
language (NL) logical questions paired with sym-
bolic reasoning steps. It is fine-tuned to bypass syn-
tax errors typically encountered in NL to symbolic
language parsing, enabling it to directly produce
answers. LogiT5 (Luo et al., 2023) leverages a
multi-task learning approach, incorporating diverse
datasets to enhance its reasoning capabilities across
different logical domains. The model is fine-tuned
on the LOGIGLUE benchmark, which includes
various logical reasoning datasets, enabling it to
perform better on tasks with limited data by trans-
ferring knowledge across tasks.

Rule-based Puzzles
In the domain of rule-based deterministic puzzles,
Noever and Burdick (2021) observe suboptimal re-
sults when fine-tuning GPT-2 on Sudoku, Rubik’s
Cube and Mazes, potentially due to a brief fine-
tuning period and limited training examples. Re-
garding crosswords, various studies (Rozner et al.,
2021; Efrat et al., 2021) show mixed results, with
some fine-tuned LLMs outperforming non-neural
baselines and others not, highlighting the inherent
challenge of cryptic crosswords for LLMs. Kazemi
et al. (2023) demonstrate that fine-tuning LLMs
with proofs and CoT under rule-based contexts
yields some of the best results.

Rule-less Puzzles
In the realm of riddles, the study of Lin et al. (2021)
illustrates that models like BERT (Devlin et al.,
2019), RoBERTa (Liu et al., 2019) and ALBERT
(Lan et al., 2019) perform better when trained on
both RiddleSense Lin et al. (2021) and Common-
senseQA (Talmor et al., 2019) datasets, leverag-
ing commonsense knowledge effectively. More-
over, Zhang and Wan (2021) report that combining

fine-tuning on ALBERT-XXL with transfer learn-
ing from CommonsenseQA achieved the highest
accuracy, noting a 4% improvement over simple
fine-tuning. Lastly, the effectiveness of fine-tuning
extends to commonsense reasoning (Del and Fishel,
2022) and programming puzzles (Schuster et al.,
2021), showcasing its broad applicability across
puzzle categories.

4 Datasets, Benchmarks and Tasks

Exploring diverse datasets, benchmarks, and tasks
is crucial for evaluating LLMs in puzzle-solving.
This section examines datasets within our puzzle
taxonomy, encompassing formats, evaluation met-
rics, and methodologies. Figure 2 provides a de-
tailed summary of datasets utilized across the tax-
onomy’s categories, organized according to puzzle
type. The analysis demonstrates LLMs’ versatility
and the impact of techniques discussed in §3.

4.1 Rule-based Puzzles

We explore rule-based puzzles to assess LLMs’ un-
derstanding within structured, closed-world envi-
ronments. This includes deterministic puzzles such
as Sudoku, Rubik’s Cube, Crosswords, and the 8-
puzzle, where solutions follow a set of defined rules.
In contrast, stochastic games e.g. Minesweeper,
card and social deduction games present variable
outcomes from the same actions due to hidden fac-
tors. Research predominantly focuses on deter-
ministic puzzles, highlighting a gap in addressing
stochastic puzzle uncertainties—a promising direc-
tion for future research.

4.1.1 Deterministic Puzzles

Sudoku serves as a prime benchmark for LLMs
due to its logical complexity. Noever and Burdick
(2021) fine-tune GPT-2 (Radford et al., 2019) on
1M Sudoku games, experimenting with compact
single-string format, with empty cells represented
by "-", and posited that a matrix representation may
enhance the model’s learning efficacy. Long (2023)
uses nested lists for puzzle representation1, finding
the Tree-of-Thought (ToT) method most effective,
especially for smaller puzzles. Ishay et al. (2023)
explore neuro-symbolic approaches across Sudoku,
Jobs puzzles and logic puzzles, demonstrating that
well-prompted LLMs can accurately generate an-
swer set programming rules.

1e.g. [[3,*,*,2], [1,*,3,*],[*,1,*,3],[4,*,*,1]]
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For Rubik’s Cube and Maze solvers, Noever
and Burdick (2021) assess GPT-2’s spatial reason-
ing using over 2,400 Rubik’s Cube samples and
10K mazes. Despite limited fine-tuning and token
constrains, GPT-2 successfully solved the Rubik’s
Cube in 1 out of 7 attempts, showing potential de-
spite a high rate of valid though incorrect solutions.
Ding et al. (2023) apply multiple methods such as
CoT, Self-Consistency, and various Thoughts (ToT,
GoT, XoT) on a 2×2×2 Rubik’s Cube using GPT-
3.5 and GPT-4. XoT with self-revision emerges as
most accurate, significantly outperforming others
with a 77.6% success rate.

Exploring LLM versatility, Ding et al. (2023)
evaluate the effectiveness of XoT on the spatial 8-
Puzzle and numerical Game of 24. The 8-Puzzle’s
goal configuration challenges are solved with a re-
markable 93.2% accuracy across 419 puzzles using
XoT with revision, showcasing superior efficiency
over few-shot prompting and CoT. This high ac-
curacy, coupled with a reduced number of LLM
invocations, underscores the efficiency and poten-
tial of XoT in complex puzzle-solving contexts.

As for Crosswords, Rozner et al. (2021) and
Efrat et al. (2021) fine-tune T5 models (Raffel et al.,
2019) on extensive datasets of individual cryptic
clues, revealing T5’s advantage over traditional
methods and highlighting areas for improvement,
particularly with quick clues and specified answer
lengths. Kulshreshtha et al. (2022)’s comparison of
BART (Lewis et al., 2019) and T5 indicate a sub-
30% accuracy for clue-answer tasks, with retrieval-
augmented generation transformers surpassing fine-
tuned LLMs. Additionally, Yao et al. (2023) apply
5-shot prompting and ToT to GPT-4 on Crossword
puzzles significantly improving performance by
solving 4 out of 20 puzzles and achieving a 60%
word-level success rate.

Feng et al. (2023b) fine-tune two models, "Chess-
GPT" and "ChessCLIP," using a collection of 3.2M
chess puzzles from the Lichess dataset2. Each puz-
zle in the dataset include annotations for its rating,
theme, and solution.

At last, Kazemi et al. (2023) unveil
BoardgameQA, a dataset featuring multi-choice
questions against a backdrop of contradictory facts
and rules. Models should navigate through these
complexities to provide free-text answers. Their
evaluation reveals that fine-tuning BERT-large and
T5-XXL with proofs emerges as the most effective

2https://lichess.org/

method, contrary to few-shot prompting on PaLM
with CoT. Moreover, the presence of extra or
conflicting information decreases accuracy.

4.1.2 Stochastic Puzzles
The BoardgameQA benchmark (Kazemi et al.,
2023) also explores scenarios with missing infor-
mation, which fall under the stochastic puzzle cat-
egory. It is shown that as missing information
increases, the accuracy of fine-tuned models de-
creases. However, this heightened difficulty does
not similarly impact the performance of prompt-
tuned and few-shot learning methods, which is
likely due to the larger models that were applied.

Minesweeper, known for its hidden informa-
tion and unpredictability, exemplifies stochastic
puzzles, requiring players to deduce mine loca-
tions from numerical clues, challenging spatial
reasoning. Li et al. (2023) evaluated LLMs on
Minesweeper, comparing table and coordinate rep-
resentations. Even though GPT-3.5 displayed ini-
tial understanding, enhancements like few-shot
prompting had minimal effects. Conversely, GPT-4
improved mine identification but struggled to com-
plete boards, highlighting Minesweeper’s role in
evaluating LLMs’ strategic thinking. Experiments
favored the coordinate representation over the table
format for aiding LLM comprehension.

Card games, notably Poker, exemplify stochas-
tic puzzles where strategic skill is crucial. Sim-
plified Poker variants require players to infer op-
ponents’ cards and calculate odds amidst hidden
intentions. Gupta (2023) found that in Poker’s pre-
flop round, ChatGPT and GPT-4 grasp advanced
strategies but do not reach Game Theory Optimal
(GTO) play. ChatGPT leans towards a conservative
approach, while GPT-4 exhibits more aggressive
gameplay. Huang et al. (2024) leverage a Rein-
forcement Learning-trained OPT-1.3B model on all
Poker phases revealing superior outcomes in win
rates and efficiency, ultimately showcasing LLMs’
adeptness at complex strategies in stochastic set-
tings. An agent that leverages GPT-4 (Guo et al.,
2023) also achieves significant results in various
imperfect information card games.

Social deduction games, including Werewolf
and Avalon, blend logical reasoning with complex
social dynamics, making them part of the broader
stochastic puzzle domain. Such games challenge
players to deduce roles involving unpredictable
human behavior. Xu et al. (2023b) propose a Were-
wolf framework using LLMs without tuning, lever-
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aging historical interactions for strategic decisions
and showcasing the models’ ability in this con-
text. Similarly, frameworks for Avalon (Wang et al.,
2023b; Lan et al., 2023) show how LLMs can navi-
gate scenarios demanding social manipulation and
deduction, underscoring LLMs’ proficiency in man-
aging the complex interplay of logic and social
interaction inherent in such games.

4.2 Rule-less Puzzles

This subsection delves into the diverse datasets
related to rule-less puzzles, a category that predom-
inantly encompasses riddles, programming puzzles,
and commonsense reasoning challenges. Notably,
we specifically focus on puzzles in their traditional
sense, thereby excluding code generation datasets,
which represent a distinct task type. A majority of
rule-less puzzles are structured in a multiple-choice
question-answering (QA) format, offering a stan-
dardized approach for evaluating LLMs’ inferential
reasoning. Benchmarks deviating from this format
are specially mentioned, providing a broader per-
spective on the variety of rule-less puzzle datasets
and their implications for LLM performance.

4.2.1 Riddles
RiddleSense (Lin et al., 2021) offers a collection
of 5.7K vertical thinking riddles, testing pre-trained
LMs such as BERT, RoBERTa, ALBERT, and text-
to-text QA models including UnifiedQA (Khashabi
et al., 2020) and T5. Larger LMs generally demon-
strate better performance, with UnifiedQA using
T5-3B leading, yet struggling with metaphors and
counterfactual situations.

Complementing this, BrainTeaser (Jiang et al.,
2023) introduces 1119 lateral thinking puzzles. It
contrasts instruction-based models (ChatGPT, T0,
and FlanT5 (Chung et al., 2022)) with common-
sense ones (including RoBERTa variants and CAR
(Wang et al., 2023c)). ChatGPT excels in both
sentence-based and word-based puzzles, indicat-
ing its strength in lateral thinking. However, over-
all, LLMs still face challenges in exhibiting lateral
thinking, with common errors in memorization and
commonsense association. This dataset highlights
the varied dimensions of reasoning that riddles can
test, from vertical logic to lateral inference.

BiRdQA (Zhang and Wan, 2021) explores the
multilingual aspect of riddles, encompassing En-
glish and Chinese puzzles, while evaluating mono-
lingual LMs (BERT, RoBERTa), as well as mul-
tilingual ones (mBERT, XLM-R (Conneau et al.,

2019)). The use of brief riddle introductions and
hints is also tested. Findings reveal a significant
performance gap between LMs and human-level
understanding, with monolingual models generally
outperforming multilingual ones. Interestingly, ad-
ditional context such as Wikipedia introductions
and hints varied in effectiveness, with such aids
benefiting English but not Chinese riddles.

CC-Riddle centers on 27K Chinese character
riddles, involving multiple-choice, generative, and
retrieval-based formats (Xu et al., 2022). Evalu-
ation demonstrates that models encountered diffi-
culties in comprehension and exhibited misunder-
standings, revealing the complexities inherent in
character-based riddles.

In contrast, PUZZLEQA (Zhao and Anderson,
2023) offers 558 word puzzles in multiple choice
and free-text formats. Larger models, e.g. GPT-
3/3.5 show higher accuracy, especially in multiple-
choice settings. However, methods such as CoT
combined with summarization do not significantly
enhance performance, pointing to the ongoing chal-
lenges in free-response puzzle solving.

Finally, MARB (Tong et al., 2023) encompasses
a variety of riddle tasks. Several methodologies in-
cluding zero-shot, CoT, IEP, and few-shot prompt-
ing are tested on models such as GPT-4 and PaLM2-
540B (Anil et al., 2023). The combination of IEP
and CoT emerged as the most effective method,
highlighting the value of integrating multiple ap-
proaches for diverse riddle types. The dataset also
includes commonsense puzzles (§4.2.3), showing
similar trends with riddles.

4.2.2 Programming Puzzles
P3 (Python Programming Puzzles) (Schuster
et al., 2021) offers a range of Python programming
challenges, from straightforward string manipula-
tions to complex tasks, such as the Tower of Hanoi
and algorithmic puzzles, requiring from the model
to find an input that makes the program f return
"True". Models applied to these puzzles include
enumerative solvers for building Abstract Syntax
Trees and autoregressive Language Model Solvers
such as GPT-3 and Codex (Chen et al., 2021), em-
ploying varied prompting techniques. The evalua-
tion metric pass@k, indicates the models’ ability
to solve a puzzle within a given number of attempts
(Chen et al., 2021). Results show a correlation
between puzzle difficulty for both models and hu-
mans, with descriptive prompts enhancing model
performance. Interestingly, models proficient in
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code completion solved more puzzles with fewer
tries, highlighting the importance of specialized
capabilities in programming challenges.

Savelka et al. (2023) introduce a dataset com-
prised of 530 code snippets from programming
courses, presenting puzzles in a multiple-choice
format. The distinction between questions with and
without code snippets offers a unique perspective
on LLMs’ problem-solving strategies. The dataset
categorizes questions into six types, including true/-
false and output prediction. GPT models were eval-
uated, revealing that code inclusion significantly
increases puzzle complexity. Accuracy rates vary,
with higher performance on completion-oriented
questions, suggesting that LLMs’ effectiveness can
depend heavily on question format and content.

While both P3 and Programming Snippets
Dataset address programming puzzles, they do so
in markedly different ways. P3’s focus on finding
correct Python program inputs contrasts with the
multiple-choice format of the Programming Snip-
pets Dataset. However, both datasets reveal key
insights: descriptive prompts aid problem-solving,
and question format significantly influences LLM
performance.

4.2.3 Commonsense Reasoning Puzzles
True Detective (Del and Fishel, 2022) presents de-
tective puzzles in long-form stories, challenging
LLMs such as GPT-3.5/4 to draw conclusions. Var-
ious methods, including CoT and Golden-CoT, are
applied, revealing difficulties in making final in-
ferences despite all necessary information being
available. Golden-CoT provides the model with
the reasoning behind the correct answer, so the
model only needs to understand this reasoning and
extract the answer. While Vanilla and CoT ap-
proaches perform close to random, Golden-CoT
demonstrates significantly better accuracy, particu-
larly with GPT-4. However, even with Golden-CoT,
GPT-3.5 achieves a solve rate of only 63%, whereas
GPT-4 matches human solver results (without ac-
cess to the reasoning behind the answer).

DetectBench (Gu et al., 2023) containing 1200
questions, also evaluates informal reasoning in
real-life contexts. It tests methods such as use of
hints, various CoT approaches and detective think-
ing on models including GPT-4, GPT-3.5, GLM-
4 and Llama2. Hints emerges as a powerful aid,
with larger models generally outperforming smaller
ones. The effectiveness of different approaches
vary, with detective thinking effectively assisting

most of the models.
Both datasets highlight the complexity of real-

life reasoning and detective-style puzzles, demon-
strating that hints play a crucial role in aiding both
human and model performance.

LatEval (Huang et al., 2023b) introduces a con-
versational format with English and Chinese stories,
requiring players to ask yes/no questions before
providing an answer. GPT-3.5, GPT-4, and various
other Chat models are evaluated on their ability
to ask relevant questions and maintain consistency
with the truth. Larger models do not necessarily
show advanced performance in question relevance.
However, GPT-4 demonstrates the highest answer
consistency, though there is still significant room
for improvement. The dataset emphasizes the im-
portance of interactive and conversational reason-
ing in commonsense understanding.

PuzzTe (Szomiu and Groza, 2021), with its array
of comparison, knights and knaves, and zebra puz-
zles, represents a potentially rich resource for LLM
testing. Despite not yet being applied to LLMs, its
generated puzzle answers by Mace4 model finder
and Prover9 theorem prover3 indicate its potential
for future LLM evaluations.

The datasets under investigation demonstrate a
variety of methods for evaluating commonsense
reasoning in LLMs, ranging from detective-style
puzzles to interactive story solving. Although
larger models generally exhibit better performance,
the complexity of these tasks poses significant chal-
lenges. Techniques such as sharing additional in-
formation through hints show effectiveness in im-
proving outcomes, yet there remains a considerable
gap between the performance of models and hu-
mans. It is important to note that in this work, we
specifically focus on puzzle-oriented benchmarks,
excluding general commonsense reasoning datasets
e.g. CommonsenseQA, PIQA (Bisk et al., 2019) or
StrategyQA (Geva et al., 2021).

5 Discussion and Future Directions

Applied Methods and Dataset Gaps: Across
our puzzle taxonomy, methods such as few-shot
prompting, CoT, use of introductions and fine-
tuning are commonly employed across most cat-
egories. Rule-based deterministic and rule-less
commonsense puzzles show the greatest method-
ological variety, while riddles are also see diverse
approaches. In contrast, rule-based stochastic and

3https://www.cs.unm.edu/ mccune/prover9/
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rule-less programming puzzles exhibit less variety,
likely due to fewer studies in these areas. Figure
2 reveals that a substantial number of datasets are
available for rule-based deterministic puzzles, such
as Sudoku and Rubik’s Cube, as well as a variety
of rule-less riddles. This indicates a strong research
interest and resource availability in these domains.
However, there appears to be a scarcity of datasets
for rule-based stochastic puzzles and rule-less pro-
gramming puzzles. This gap highlights an oppor-
tunity for further research and dataset creation to
introduce more diverse challenges for advancing
the problem-solving capabilities of LLMs. The
lack of benchmarks for stochastic puzzles led us to
include tasks like card and social deduction games,
which share core characteristics with traditional
puzzles involving incomplete information. Addi-
tionally, neuro-symbolic techniques that translate
natural language into code remain notably underuti-
lized in puzzle benchmarks, suggesting a potential
area for future exploration.

Comparatively, prompting methods like CoT and
ToT enhance complex reasoning abilities without
altering the underlying model parameters, yet their
effectiveness on smaller LLMs requires further ex-
ploration. Moreover, methods such as ToT or GoT
necessitate a greater number of model invocations
compared to CoT and XoT, which could impact
their efficiency and scalability (Ding et al., 2023).
Fine-tuning, while fundamentally enhances reason-
ing by altering model parameters, is constrained by
its specificity to particular tasks. For instance, mod-
els fine-tuned on CSQA have been observed to per-
form worst on the RiddleSense dataset than mod-
els fine-tuned directly on RiddleSense (Lin et al.,
2021), and a model fine-tuned on Poker games may
not perform well on tasks like solving a Rubik’s
cube. Finally, puzzle translation methods primarily
test the model’s ability to interpret and rephrase
problems rather than directly solve them, which
tends to have a more limited impact on complex
reasoning compared to the other two categories of
methods.

Performance Analysis:
Rule-based / Deterministic: Methods such as

ToT and XoT (§ 3), typically enhance model rea-
soning abilities as the complexity of the struc-
ture increases (Ding et al., 2023). Yet, studies in
BoardgameQA and crossword puzzles show gener-
ally poor model performance.
Rule-based/Stochastic: Fine-tuning is prevalent
here, enabling LLMs to grasp basic rules and sim-

pler scenarios. However, they falter in complex
settings that require extensive multi-step reasoning
(Li et al., 2023).
Rule-less/Riddles & Commonsense: There is a no-
table performance gap between LLMs and human
levels, with methods like CoT improving accuracy
but still not matching human evaluation outcomes.
Rule-less/Programming: LLMs find programming
puzzles challenging, paralleling human difficulties
(Schuster et al., 2021). Tasks involving code analy-
sis and reasoning in multiple-choice formats prove
particularly tough (Savelka et al., 2023).

Furthermore, the format of questions sig-
nificantly affects puzzle-solving effectiveness.
Multiple-choice setups simplify tasks for LLMs
by narrowing the solution search space, while free-
text formats increase the difficulty level.

Puzzle Generation research is currently limited,
likely because the ability to understand and solve
puzzles is a prerequisite for generating them. In
our survey, we primarily focused on puzzle-solving.
The few works we found in puzzle generation re-
veal mixed results. For instance, GPT-3.5’s at-
tempts to generate puzzles with answers showed
poor outcomes (Zhao and Anderson, 2023). Con-
versely, the introduction of ACES, an autotelic gen-
eration method for diverse programming puzzles,
demonstrates how semantic descriptors produced
by LLMs can be leveraged for creative puzzle cre-
ation (Pourcel et al., 2023). Lastly, there are recent
works that have studied the generation of crossword
puzzles of different languages, utilizing LLMs (Zu-
garini et al., 2024; Zeinalipour et al., 2023b,a).

6 Conclusion

In this survey, we propose a taxonomy of puzzles
for evaluating LLMs, categorizing them into rule-
based (deterministic and stochastic) and rule-less
puzzles (riddles, programming, and commonsense
reasoning puzzles). We explore a spectrum of meth-
ods for LLM-based puzzle solving, ranging from
prompting techniques to neuro-symbolic strategies
and fine-tuning. By collating existing datasets in
this domain, we provide a comprehensive overview
of the resources available for such evaluations. Our
analysis identifies current challenges, revealing a
difficulty of most methods to successfully solve
puzzles, while we outline future directions, empha-
sizing the need for advanced methodologies and
diverse datasets to enhance LLMs’ proficiency in
puzzle solving.
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Limitations

In this study, we provide a survey of puzzle solv-
ing using reasoning of Large Language Models.
Despite our best efforts, there may be still some
limitations that remain in this paper. Firstly, due to
the rapidly evolving nature of this field, we continu-
ously add related approaches and analyses, but it is
possible that some recent developments may not be
included. Also, due to page constraints, we cannot
extensively present all the methods nor provide all
the technical details. This might limit the depth of
understanding for some readers. Our review only
includes methods within 4 years, primarily from
sources such as ACL, EMNLP, NAACL, NeurIPS,
ICLR, and arXiv. We plan to continue following
these sources and adding new methods and datasets.
Additionally, all our conclusions §6 are based on
empirical analysis. While this provides robust ev-
idence, it may not capture all aspects of the prob-
lem. Lastly, as with any survey, our interpretations
and conclusions §5 are influenced by our own per-
spectives and understanding of the field. Other
researchers might interpret the same studies differ-
ently. Despite these limitations, we believe this
study provides a valuable overview of the current
state of puzzle-solving using reasoning of Large
Language Models.
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A Appendix

A.1 Prompting Topologies
The chain-of-thought (CoT) paradigm involves
step-wise explanatory reasoning chains, bolstering
capabilities even in zero-shot settings with instruc-
tions such as "Let’s think step-by-step" (Wei et al.,
2022; Kojima et al., 2022). Complementing this,
self-consistency generates multiple solution paths,
selecting the most coherent one (Wang et al., 2022).

Exploring automated feedback, Pan et al.
(2023b) examined self-correction within LLMs,
noting its varied impact on logical reasoning.
While instances of performance enhancement exist
(Weng et al., 2022; Madaan et al., 2023), broader
gains are often elusive, with some strategies even
detracting from overall reasoning accuracy (Huang
et al., 2023a). However, Tyen et al. (2023) high-
light the potential of backtracking methods, which,
when informed about the specific location of errors,
significantly boost the model’s correction abilities.

The Tree-of-Uncertain-Thought (TouT)
prompting method structures problem-solving into
a tree where each branch explores different uncer-
tain reasoning pathways, allowing for multiple
potential solutions (Mo and Xin, 2023). In contrast,
the Tree-of-Thought(s)(ToT) method (Yao et al.,
2023; Long, 2023) focuses on a more linear and
deterministic approach, systematically breaking
down problems into a single coherent pathway
towards a solution. The Graph-of-Thought(s)
(GoT) method (Besta et al., 2023; Lei et al.,
2023) structures problem-solving by mapping
out various interconnected reasoning pathways,
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allowing language models to explore and evaluate
multiple solutions simultaneously within a flexible,
network-like framework.

A.2 Conventional Methods

AI and Machine Learning methods have long been
applied to puzzles and games, with algorithms like
Deep Blue (Campbell et al., 2002) and AlphaZero
(Silver et al., 2017) for Chess and Go, renowned
for their exceptional results. This section contrasts
“traditional” methods used to solve various puz-
zles with those derived from large language mod-
els (LLMs). Note that the aim of this paper isn’t
to determine the superior method for each puzzle,
but to highlight the distinctive reasoning abilities
of LLMs within diverse puzzle contexts. We par-
ticularly focus on rule-based puzzles, extensively
addressed using conventional methods due to their
structured, well-defined environments which re-
quire systematic strategies to achieve a solution.
Conversely, rule-less puzzles such as riddles pri-
marily test the logical, commonsense reasoning
and creativity of models, without a clear path of
steps to follow in order to find the solution, so we
do not analyze this category.

Chi and Lange (2013) utilized three techniques
to solve Sudoku: backtracking, simulated anneal-
ing, and alternating projections. The backtrack-
ing method, a brute-force depth-first search, con-
sistently resolves puzzles across all difficulty lev-
els, albeit slowly. Constraint programming trans-
forms Sudoku into a constraint satisfaction prob-
lem, swiftly enforcing constraints to deduce solu-
tions, often within milliseconds (Simonis, 2005).
These methods always find a solution for Su-
doku puzzle, in contrast with LLMs that have not
achieved results better than 80% for 5x5 puzzles
(Long, 2023).

In their study on Rubik’s Cube, Chen (2022)
employed several traditional methods including
Korf’s algorithm (Korf, 1997), which combines
Iterative-Deepening Depth-First Search (IDDFS)
with the A* algorithm and a heuristic search
database. Both Thistlethwaite’s 4 and Kociemba’s
5 algorithms utilize group theory and similar search
techniques to streamline the solving process, with
Kociemba’s version enhancing efficiency by sim-
plifying the group structure. While all these algo-
rithms effectively solve the Rubik’s Cube—a task

4https://www.jaapsch.net/puzzles/thistle.htm
5https://kociemba.org/

challenging for LLMs—Korf’s method is partic-
ularly noted for its efficiency. Additionally, the
study explored a machine learning strategy that in-
tegrates Monte-Carlo Tree Search (MCTS) with
breadth-first search, yielding more optimized so-
lutions, albeit at a lower efficiency. There have
also been various attemts to solve Rubik’s Cube us-
ing Reinforcement Learning (RL) like DeepCubeA
(McAleer et al., 2018; Agostinelli et al., 2019) and
others (Takano, 2023), which although find a so-
lution in relatively few steps are time-consuming,
with duration varying from 38.7 to 75.6 seconds
(Takano, 2023).

Mazes are puzzles that can be solved by apply-
ing simple algorithms like depth-first search, A* or
Trémaux’s algorithm. However these problems are
good for testing the spatial reasoning of LLMs. RL
has also been utilized to solve mazes with (Barj and
Sautory, 2024) leveraging LLM feedback during
training.

In Ding et al. (2023) MCTS has been used to
solve Game of 24, 8-Puzzle and Pocket Cube,
achieving surpassing many LLM techniques, in-
cluding CoT, CoT-SC, ToT and GoT. Addition-
ally, Rozner et al. (2021) besides fine-tuning T5
for solving cryptic crosswords, have also used non-
neural baselines including a WordNet-based heuris-
tic model, a K-Nearest Neighbours bag of words
model and a rule-based model, showing that the
fine-tuning of T5 had the best results among them.

Finally, Studholme (2001) proposed a method
for solving Minesweeper by considering it as a
constraint satisfaction problem (CSP). The core
strategy involves transforming the game’s chal-
lenges into a set of logical constraints that must
be satisfied to avoid mines effectively.

In conclusion, most conventional methods used
to solve rule-based puzzles employ deterministic
approaches that reliably produce solutions, in stark
contrast to the unpredictable nature of LLMs. An-
other advantage of these traditional methods is their
explainability and interpretability, crucial attributes
for thoroughly evaluating algorithms and under-
standing their decision-making processes. How-
ever, as demonstrated in the study by Takano
(2023), these methods can sometimes exhibit in-
creased time complexity, indicating a potential
trade-off between reliability and efficiency.

A.3 Tables
Table 1 delineates the various methods leveraged
for puzzle-solving based on the datasets we have
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collected, illustrating the landscape of current LLM
research in this domain. It particularly highlights
the extensive methods applied to rule-based deter-
ministic and rule-less commonsense puzzles. The
absence of neuro-symbolic techniques and selec-
tion inference prompting indicates potential areas
for expansion, especially considering their prospec-
tive benefits for LLMs grounded in logical reason-
ing datasets. The table further reflects the adapt-
ability of certain methods like Chain-of-Thought,
few-shot learning and fine-tuning, which are uti-
lized across multiple puzzle types, hinting at their
effectiveness. Based on this information, we not
only catalogue the current state of method applica-
tions in puzzle-solving with LLMs but also high-
light opportunities for innovative research in areas
yet to be explored.

Table 2 summarizes the curated datasets and
tasks associated with each category within our tax-
onomy of puzzles. A detailed examination reveals
a substantial number of datasets for rule-based de-
terministic puzzles, such as Sudoku and Rubik’s
Cube, and a variety of rule-less riddles, indicating
a strong research interest and resource availabil-
ity in these areas. However, there appears to be a
scarcity in the collection of rule-based stochastic
puzzles and rule-less programming puzzles. This
gap points to an opportunity for further research

and dataset creation that could provide more di-
verse challenges for advancing the problem-solving
capabilities of Large Language Models. Address-
ing this gap could lead to a more balanced and com-
prehensive set of benchmarks that reflect a wider
spectrum of puzzle-solving scenarios, potentially
catalyzing advancements in LLMs’ abilities to han-
dle uncertainty and complex logic-based problem-
solving.

Methods Rule-based Puzzles Rule-less Puzzles
Deterministic Stochastic Riddles Programming Commonsense

Prompting - - - - -
Few-shot ✓ ✓ ✓ ✓ ✓
Chain-of-Thought ✓ ✓ ✓ ✓ ✓
Self-refine ✓
Auto-CoT ✓
Complexity CoT ✓
Plan & Solve ✓
Detective Thinking ✓
Self-Consistency ✓ ✓
Tree-of-Thoughts ✓
Tree-of-uncertain-Thoughts ✓
Inferential Exclusion Prompting ✓ ✓
Graph-of-Thoughts ✓
Everything-of-thoughts ✓
Hints ✓ ✓
Introduction/Summarization ✓ ✓ ✓ ✓ ✓

Puzzle Translation - - - - -
Logic ✓
Code

Fine-Tuning ✓ ✓ ✓ ✓ ✓

Table 1: Methods used by each category of our taxonomy based on the puzzle benchmarks we collected
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Category Type Datasets

Rule-based

Deterministic BoardgameQA (Kazemi et al., 2023), Sudoku (Noever and Bur-
dick, 2021; Long, 2023; Ishay et al., 2023), Rubik’s Cube (Noever
and Burdick, 2021; Ding et al., 2023), Maze (Noever and Bur-
dick, 2021), Crossword (Yao et al., 2023; Rozner et al., 2021;
Efrat et al., 2021; Kulshreshtha et al., 2022), 8-puzzle (Ding et al.,
2023), Game of 24 (Ding et al., 2023; Yao et al., 2023), Chess
(Ishay et al., 2023; Feng et al., 2023b)

Stochastic Minesweeper (Li et al., 2023), BoardgameQA (Kazemi et al.,
2023), Card Games (Huang et al., 2024; Gupta, 2023), Social
Deduction Games (Wang et al., 2023b; Xu et al., 2023b; Lan et al.,
2023)

Rule-less

Riddles BrainTeaser (Jiang et al., 2023), RiddleSense (Lin et al., 2021),
BiRdQA (Zhang and Wan, 2021), CC-Riddle (Xu et al., 2022),
PUZZLEQA (Zhao and Anderson, 2023), MARB (Tong et al.,
2023)

Programming P3 (Schuster et al., 2021), (Savelka et al., 2023)
Commonsense LatEval (Huang et al., 2023b), True Detective (Del and Fishel,

2022), DetectBench (Gu et al., 2023), MARB (Tong et al., 2023)

Table 2: Collected Datasets and Tasks for each Category
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