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Abstract

The objective of the research we present is to
remedy the problem of the low quality of lan-
guage models for low-resource languages. We
introduce an algorithm, the Token Embedding
Mapping Algorithm (TEMA), that maps the to-
ken embeddings of a richly pre-trained model
L1 to a poorly trained model L2, thus creating
a richer L2’ model. Our experiments show that
the L2’ model reduces perplexity with respect
to the original monolingual model L2, and that
for downstream tasks, including SuperGLUE,
the results are state-of-the-art or better for the
most semantic tasks. The models obtained with
TEMA are also competitive or better than mul-
tilingual or extended models proposed as solu-
tions for mitigating the low-resource language
problems.

1 Introduction

At the forefront of artificial intelligence, large lan-
guage models have achieved extraordinary levels of
performance in most natural language processing
tasks. These advancements, driven by deep learn-
ing techniques, highlight the ability of these mod-
els to process complex linguistic contexts. How-
ever, their effectiveness seems to be intrinsically
linked to the enormous amount of data required
for pre-training, thus raising concern about how
low-resource languages could benefit from them.
Low-resource languages, that is, languages that do
not have a massive amount of text, risk being al-
most excluded from the possibility of having good
NLP applications. For coping with the problems
of low-resource languages in large language mod-
els, there have been different proposals, mainly:
building multilingual models and applying transfer
learning techniques and the so-called data augmen-
tation methods.

Augmentation methods for language modelling
are those that automatize the production of new
texts by different means: template-based scripts

(Wei and Zou, 2019), machine translation (Sen-
nrich et al., 2016), and delexicalized seq2seq mod-
els (Hou et al., 2018; Zevallos et al., 2022a), for
instance. However, it is costly to guarantee the
semantic correctness of the produced texts. Mul-
tilingual models are models trained with texts in
different languages (Devlin et al., 2019; Conneau
and Lample, 2019; Conneau et al., 2020a). In ad-
dition to accepting different languages, they can
then be fine-tuned on a downstream task using la-
belled data in only one language and it is expected
to generalize in order to handle samples of the other
languages it has been pre-trained with. However,
low-resource languages are still under-represented
in the vocabulary impairing proper modelling.

In this context, we propose to remedy the low
quality of language models due to poor pre-training
data by translating (i.e. mapping) token embed-
dings of a richly trained model L1, to the position
of the translation equivalent token embedding in a
poorly pre-trained model L2, thus creating a richer
L2’ model. Our Token Embedding Mapping Al-
gorithm (TEMA) works as if the learned lexical
parameters of L1 were transferred to L2, so that
even tokens of L2 for which only one example is
available get a rich representation. We assessed the
efficacy and the impact of TEMA with different ex-
periments with Quechua, which is a low-resource
language and, in addition, it is a polysynthetic
language with more than 100 inflectional suffixes.
Languages with inflectional or synthetic morphol-
ogy have a larger number of different tokens than
other languages such as Chinese or English and are
harder to model (Mielke et al., 2019; Zevallos and
Bel, 2023). In addition, and in order to be able to
evaluate the impact of using TEMA with standard
benchmarks, we provide the results of working
with English, German and French for which evalu-
ation datasets are available and for which we have
reproduced poor pre-training conditions. Finally,
we compare the results of our approach with other
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cross-lingual transfer methods and with standard
multilingual models, which are standard proposed
solutions for having models for low-resource lan-
guages.

2 Related Work

Multilingual models and data augmentation
methods have been proposed as solutions for
transformer-based language models to satisfacto-
rily process low-resource languages.

For instance, the multilingual mBERT (Devlin
et al., 2019) was trained with data belonging to
104 different languages and no special supervision
like parallel corpora or bilingual dictionaries. The
resulting multilingual representations were said to
be shared tokens, mostly subwords, for many dif-
ferent languages. These results encouraged the
research on transfer learning techniques (Alyafeai
et al., 2020) under the assumption that pre-training
a very large model with many languages is to get
representations with general-purpose “knowledge”
that would improve the performance on down-
stream tasks for many different languages. How-
ever, Conneau et al. (2020a) already show that per-
formance degraded across all languages and that
low-resource languages are under-represented in
the vocabulary, which mostly contains the tokens
of the largest languages. The common tokens that
multilingual models use as crosslingual token em-
beddings to transfer information from one language
to another are at the end subwords made of small
groups of characters for which the model cannot
learn good representations.

Artetxe et al. (2020) demonstrated that cross-
lingual learning transfer to get a shared vocabulary
could be done without joint training. Their method
transferred a monolingual model L1 to a new lan-
guage L2 by only substituting token embeddings
of L1 with the new token embeddings learnt by
further training the monolingual model with data
of the new language L2, while freezing the trans-
former. To evaluate the impact of transferring the
model from one language to another, among oth-
ers, these authors used the WiC dataset (Word in
Context, (Pilehvar and Camacho-Collados, 2019))
delivering competitive results. Dobler and de Melo
(2023) and Minixhofer et al. (2021) propose to use
token embeddings from a model trained with abun-
dant resources as initialization embeddings for a
low-resource model. Our method keeps the idea of
working only at the lexical level, but instead of fur-

ther training with L2 data, transferring the lexical
knowledge, i.e. projecting the token embeddings,
from a richly trained L1 to a poorly pre-trained
monolingual model of L2.

In the method we are presenting, the transfer is
done by a mapping function inspired by other pre-
viously proposed methods. Mikolov et al. (2013)
and Lample et al. (2018) worked under the hypoth-
esis that words from different languages get similar
static embedding representations. Therefore, to
align the monolingual spaces should be possible
with minimal supervision, for instance, common
tokens, to create bilingual dictionaries automati-
cally with a mapping function (Artetxe et al., 2017;
Zhang et al., 2017; Conneau et al., 2017).

The idea of automatically producing texts, or
data augmentation, was first used to improve sys-
tem robustness. Jia and Liang (2017) or Ribeiro
et al. (2018) proposed to evaluate the understand-
ing capacities of systems by creating synthetic
data, following the idea from computational vi-
sion, where, in order to test a learner’s oversen-
sitivity, a bit of noise is added to the test sample
to evaluate whether the system changes the deci-
sion taken for the original test input. On the same
basis, there were different proposals to automati-
cally generate semantically equivalent sentences us-
ing, for instance, paraphrase generation techniques.
Mallinson et al. (2017) method was based on Neu-
ral Machine Translation back-translation methods.
Once paraphrases were found, a number of heuris-
tic pattern-matching rules were induced, and later
filtered to produce a set of rules to automatically
produce new sentences from any given reference
dataset. Other methods for creating new sentences
are based on: word-level modifications of origi-
nal sentences based on synonym replacement (Wei
and Zou, 2019), using LSTM language models
(Kobayashi, 2018), Multilingual Language Mod-
elling (Conneau et al., 2020b) and auto-regressive
pre-trained Language Models (Kumar et al., 2020).
However, these methods suffer from generating
semantically unrealistic sentences that have to be
manually revised in most cases. Proposals of meth-
ods to preserve semantics are Hou et al. (2018),
Zhou et al. (2019), or Zevallos et al. (2022a) that
used a delexicalized seq2seq model for generating
some similar sentences each with different words
of the same semantic field as found in resources
like Wordnet (Fellbaum, 1998; Melgarejo et al.,
2022). Eventually, this method allows for increas-
ing the vocabulary of the model, a side effect that
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has proved to be beneficial in all the scenarios.
Enhancing vocabulary is one of the benefits high-

lighted in eB-BERT (Wang et al., 2020). eB-BERT
consists of a bilingual model, B-BERT, which has
an extended vocabulary and is fine-tuned with data
from the target low-resource language. The vocab-
ulary extension involves adding the 10,000 most
frequent tokens from the low-resource language to
the original B-BERT vocabulary. The fine-tuning
process uses only the masked language modeling
objective with the L2 data. This method was pro-
posed to avoid training a multilingual model from
scratch with a new language, addressing the issue
that in a multilingual model, there is often limited
space in the vocabulary for tokens from languages
with smaller training datasets. Hangya et al. (2022)
proposed to fine-tune a cross-lingual model with
mined translation word pairs extracted from two
monolingual language models, and confirmed that
extending the vocabulary was one of the keys for
improving the coverage of low-resource languages.

Also close to our approach is the line of research
inspired by the word replacement strategies by
Zhou et al. (2021), which proposed a virtual data
augmentation method for fine-tuning pre-trained
monolingual language models. In embedding aug-
mentation, the original token embeddings are re-
placed by ones which are derived by a probabilistic
mixture of the embeddings of the vocabulary terms
that are predicted by the masked language model
conditioned on the input. Our approach also sub-
stitutes specific tokens created in a monolingual
language model but with the embeddings created
in another monolingual model that however was
trained with a larger amount of data.

3 Token Embedding Mapping

We propose to remedy the low quality of a language
model poorly pre-trained L2 by mapping its token
embeddings to the position of its translation equiv-
alents in a richly pre-trained model L1. The Token
Embedding Mapping Algorithm (TEMA) we pro-
pose works as if the learned lexical parameters of
L1 were transferred to L2, so that even tokens of
L2 for which only one example is available get a
rich representation.

Figure 1 illustrates how mapping token embed-
dings is done by translating token embeddings of a
poorly trained model L2 (un) to the position of the
translation equivalent token embedding in a richly
pre-trained model L1 (wm), thus creating a richer

Figure 1: Being Sr the vector space of the richly pre-
trained model L1, and Sp the one of the poorly pre-
trained model L2, TEMA translates token embeddings
like un to u′

n, that is the projection of un equivalent
token in L1, wm, taking as references the token embed-
dings vx and vy , that correspond to the token ’1’ in each
models

L2’ model. To do this, we employed the affine
transformation method (Yang et al., 2021) using as
references the tokens of the number ’1’ (vx and vy)
which exists in the two models, a method proposed
in research on inducing bilingual word embeddings
(Artetxe et al., 2017).

In equation 1, u′n represents the enriched version
of un, and projSp

(vx − wm) is the projection of
the vector vx − wm in the L2 vector space Sp.The
projection projSp

(vx − wm) onto Sp using vy as a
reference is obtained with equation 2:

u′n = un + projSp
(vx − wm) (1)

projSp
(vx−wm) =

vy(vx − wm)

||vx − wm||2 (vx−wm) (2)

3.1 TEMA
In this section, we describe TEMA (Token Embed-
ding Mapping Algorithm). The algorithm takes
the reference token embeddings vx and vy as input
from L1 and L2, respectively, as well as two lists
of tuples Dx and Dy. These tuples contain the in-
dex of two translation-equivalent tokens (im and
jn, respectively), where each index is associated
with a word in the corresponding language, along
with their respective embeddings (wm and un).

The algorithm utilizes the function T that iden-
tifies token pairs between L1 and L2 translation
equivalents as found in a bilingual dictionary.
TEMA begins by using T , and in case it returns
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un = ∅, we add the target token (tgt_token) using
the index jn from Dy to the list V , which contains
all tokens missing in the model L2. We repeat this
process until we traverse all of Dx. If V ̸= ∅ then
for each token in V , we add a sentence (which can
be an example phrase from the dictionary or other
sources) to the file named tgt_sent. After adding
all the phrases, we fine-tune the model L2 with the
tgt_sent file, resulting in the model L2’.

Finally, we iterate again through each im and
wm in Dx. In each iteration, we use T , and if T
returns un ̸= ∅ , we calculate the projection using
equations 1 and 2. Once we obtain u′n, we update
Dy with it. When the iteration finishes, we update
the model L2’ (or L2 if V = ∅) with Dy.

3.1.1 Model L2 update

To update the model L2 with the modified token
embeddings from TEMA, we perform fine-tuning
of the model by adding an embedding layer. In
this way, the parameters of the pre-training model
are retained while incorporating the modified em-
beddings. The process is similar to fine-tuning
for a downstream task, so we have decided to use
the same hyperparameters as those employed in a
Part-of-Speech tagging task. Importantly, by in-
troducing an embedding layer during fine-tuning,
we can effectively update the L2 model to utilize
the token embeddings that have been modified by
TEMA. This approach maintains the pre-trained
weights of the model’s core layers, enabling effi-
cient adaptation to the new embedding space.

This step is included in the code that we will
provide regarding TEMA and our experiments.

4 Experimental Setup

Our main target was the use of TEMA for mod-
elling Quechua, which is a low-resource language.
Additionally, as already mentioned, in order to ac-
curately evaluate its impact with standard bench-
marks and compare with other methods, we de-
signed different experiments involving another
three L2-languages, for which we reproduced low-
resource conditions. For the methods that involve
two languages, we paired them as follows: L1-
Spanish and L2-English (es-en), L1-English and
L2-German (en-de), L1-English and L2-French (en-
fr), and L1-Spanish for the L2-Quechua (es-qu). In
the subsections 4.1 and 4.2, we describe the re-
sources used: bilingual dictionaries and training
corpora, in subsection 4.4 we describe the different

language models that have been trained for the ex-
periments and in subsection 4.3 the used tokenizers:
BPE and DeepSpine.

As for the evaluation, we provide results of in-
trinsic evaluation in terms of pseudo-perplexity
(Salazar et al., 2019), and of different downstream
tasks as extrinsic evaluation.

4.1 Bilingual Dictionaries
For our experiments involving the translation equiv-
alents for Quechua, we used the Quechua-Spanish
Bilingual Dictionary (Calvo-Pérez, 2022). This
dictionary is one of the most comprehensive and
up-to-date, available for both varieties of Quechua
(Chanka and Collao) and it comprises 74,395 Span-
ish entries and 51,233 Quechua entries.

The data for the Spanish-English, English-
German, and English-French pairs comes from the
respective bilingual digital dictionaries in "wik-
tionary.org". "Wiktextract" tool (Ylonen, 2022)
facilitated the extraction of all entries for the lan-
guage pairs used in our experiments in a rather easy
and quick manner.

4.2 Corpora
For our experiments, we trained different models
(BERT, RoBERTa, B-BERT) with datasets of two
different sizes: 1B for the L1 Spanish and English
richly trained models and 10M for the L2 mono-
lingual poorly trained models. As training data
for the Spanish 1B model, we created a 1 billion-
word corpus from the MarIA model training corpus
(Gutiérrez-Fandiño et al., 2021), which comprises
133B tokens from texts crawled from .es domains
by the National Library of Spain. Similarly, to
train the 1B English models, we utilized a 1 billion-
word portion of the BERT training corpus from
Devlin et al. (2019), which includes the English
Wikipedia (2.5B tokens) and BookCorpus (800M
tokens) (Zhu et al., 2015).

The 10M models trained for English, German,
French, and Quechua used the following resources.
The L2 English models used the same corpus
source as the L1 models of the same language
but only with 10M words. For both German and
French, we used the OSCAR corpora extracted
from Common Crawl (Ortiz Suárez et al., 2019),
which consist of 21B and 32.7B words, respectively.
Finally, for Quechua, we used the latest version of
the Monolingual-Quechua-iic corpus1, which com-

1https://huggingface.co/datasets/Llamacha/
monolingual-quechua-iic
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Model P V-B V-D
BERT 110M 30k 30k
RoBERTa 125M 50k 36k
RoBERTa + TEMA 125M 50k 36k
eB-BERT 110M 120k 63k
eB-BERT + lus 110M 120k 63k

Table 1: Hyperparameters for all types of language
models used in our experiments are consistent across
all languages. Each type of language model shares the
same configuration: featuring 12 layers and attention
heads, and a feed-forward network dimension of 3072.
Additionally, P denotes the number of parameters; V-B
represents the number of BPE vocabulary items; V-D
represents the number of DeepSpin vocabulary items.

prises 10M words and was employed by Zevallos
et al. (2022b) to develop Quechua language models.
This Quechua corpus draws from diverse sources,
including Wikipedia (approximately 1M tokens),
other online resources, educational materials, and
legal documents.

4.3 Tokenizers

TEMA is based on translation-equivalent words as
found in a bilingual dictionary, and therefore, tok-
enization becomes a critical point. Because Byte
Pair Encoding (BPE) (Sennrich et al., 2015), the
most used tokenizer, looks for frequent character
sequences, it creates many subwords that cannot be
found in a standard bilingual dictionary, and this
problem gets worse when dealing with a limited
number of texts. Thus, for our experiments, we
compared the results of using BPE and of using a
supervised tokenizer, DeepSpin (Peters and Mar-
tins, 2022), that produces linguistically motivated
subwords and delivers stem-like tokens that are
more likely to match entries in a bilingual dictio-
nary. For Quechua, we used DeepSpin modules as
described in (Zevallos and Bel, 2023).

4.4 Baseline Models

We trained several language models from scratch
for both L1 and L2 languages (with data as de-
scribed in Section 4.2) using two types of lan-
guage models: BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019), and two other meth-
ods aiming at language modeling for low-resource
languages: the extended B-BERT (eB-BERT) by
Wang et al. (2020) and the "linear_unsup" (lus)
model by Hangya et al. (2022). Finally, we also
compared TEMA’s results on downstream tasks

with off-the-shelf multilingual base models such
as mBERT (Devlin et al., 2019) and XLM-R (Con-
neau et al., 2020a) fine-tuned for Quechua with the
data just described.

4.4.1 Monolingual Base Models
We pre-trained all our L1 and L2 language models
from scratch using BPE and DeepSpin tokenizers
and following the recipes of the bert-base-cased2

and roberta-base3 available on Hugging Face.
In total, we pretrained 16 models, compris-

ing four BERT-BPE, four BERT-DeepSpin, four
RoBERTa-BPE, and four RoBERTa-DeepSpin. De-
tails of the size and hyperparameters used in the
BERT and RoBERTa model types are given in Ta-
ble 1 and Table 5 (in the appendix).

4.4.2 RoBERTa + TEMA
TEMA was used with RoBERTa models for L1 and
L2, and the resulting models are named RoBERTa
+ TEMA for each language pair utilizing both BPE
and DeepSpin.

4.4.3 Bilingual fine-tuned models
In order to compare TEMA results with the ones
obtained by other methods that are proposed to
improve the performance of language models for
low-resource languages, we used eB-BERT (Wang
et al., 2020) and eB-BERT + linear_unsup (Hangya
et al., 2022).

For eB-BERT training, we followed Wang et al.
(2020) only adding more vocabulary when retrain-
ing BERT with data of a low-resource language.
In case of eB-BERT + linear_unsup, we used it
with our languages following the steps described
in Hangya et al. (2022). In total, we trained 16
models: eight eB-BERT models (four BPE and
four DeepSpin) and eight eB-BERT + linear_unsup
models (four BPE and four DeepSpin) thus cov-
ering the following language pairs: es-en, en-de,
en-fr and es-qu. Details of the size and hyperparam-
eters used in the bilingual fine-tuned model types
are given in Table 1 and Table 6 (in the appendix).

4.4.4 Multilingual models
In addition to comparing RoBERTa + TEMA with
the monolingual and bilingual models described
above, we also compared with two off-the-shelf

2https://huggingface.co/google-bert/
bert-base-cased

3https://huggingface.co/nyu-mll/
roberta-base-1B-3
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Tokenizer BPE DeepSpin
Monolingual base models / L2 en de fr qu en de fr qu
BERT 10M 51.2 83.4 98.6 391.2 17.8 36.1 49.5 141.3
RoBERTa 10M 10.8 13.8 17.1 245.1 8.1 10.3 12.4 85.1
TEMA / L1 → L2 es-en en-de en-fr es-qu es-en en-de en-fr es-qu
RoBERTa 1B & RoBERTa 10M 4.8 9.7 10.6 58.3 4.5 7.9 8.5 21.1
Bilingual fine-tuned models / L1 + L2 es-en en-de en-fr es-qu es-en en-de en-fr es-qu
eB-BERT 1B + 10M 9.6 13.6 19.4 155.9 9.0 10.5 14.8 69.3
eB-BERT 1B + 10M + linear_unsup 8.3 10.7 15.1 96.7 8.2 9.9 11.7 58.7

Table 2: Pseudo-perplexity results of monolingual, bilingual and TEMA models on different languages and
tokenizers.

multilingual models: mBERT4 (Devlin et al., 2019)
and XLM-RoBERTa5 (Conneau et al., 2020a). In
the case of Quechua, we had to fine-tuned mBERT
and XLM-RoBERTa with Quechua-L2 because
these two models were not pre-trained with a
Quechua corpus.

4.5 Evaluation: pseudo-perplexity and
downstream tasks

We first evaluated the different models in terms of
perplexity. Additionally, we used two widely used
datasets in language model evaluation: Xtreme (Hu
et al., 2020) and SuperGLUE (Wang et al., 2019).

We evaluated all models through fine-tuning
across the following Xtreme tasks: (1) Classifi-
cation (XNLI and PAWS-X), (2) Structure predic-
tion (POS and NER), and (3) Question answer-
ing (XQuAD). For the experiments, we adhered
to the recipes6 provided by Xtreme for fine-tuning
each task for every language (see Table 7 in the
appendix).

As for SuperGLUE, due to the lack of multilin-
gual data, the fine-tuning was only with the English
models and we selected five representative tasks
from SuperGLUE: BoolQ, CB, Copa, RTE, and
WiC, following the methodology outlined by Wang
et al. (2019). We fine-tune using an epoch of 5 and
a batch_size of 16 in all cases.

5 Results

5.1 Pseudo-perplexity

We present the pseudo-perplexity results in Table 2.
RoBERTa + TEMA are the models that achieved

4https://github.com/google-research/bert/blob/
master/multilingual.md

5https://huggingface.co/FacebookAI/
xlm-roberta-base

6https://github.com/google-research/xtreme

Models BoolQ CB Copa RTE WiC
Monolingual base models / L2
BERT 0.65 0.65 0.61 0.55 0.52
RoBERTa 0.68 0.74 0.78 0.69 0.57
TEMA / L1 → L2
R+TEMA 0.77 0.78 0.80 0.74 0.63
Bilingual fine-tuned models / L1 + L2
eB-BERT 0.72 0.73 0.66 0.63 0.57
eB-BERT+lus 0.74 0.75 0.67 0.66 0.60

Table 3: Results (accuracy) on the SuperGLUE
dataset for English among monolingual and bilin-
gual and RoBERTa + TEMA models. R+TEMA =
RoBERTa+TEMA.

the best performance across all language when us-
ing BPE and DeepSpin. In the particular case of
Quechua, the reduction is significant, decreasing
from 391.2 to 21.1, when using RoBERTa + TEMA
and DeepSpin.

5.2 Downstream Tasks

Table 8 (in the appendix) shows that the RoBERTa
+ TEMA models obtained improvements over the
monolingual and bilingual models in all languages
for all the Xtreme tasks. The effectiveness of
TEMA algorithm is best appreciated in the results
for Quechua in PoS and NER, managing to out-
perform all models (including mBERT and XLM-
RoBERTa).

Table 3 illustrates that RoBERTa + TEMA sig-
nificantly7 outperforms both monolingual and bilin-
gual models; Specifically, in the WiC task, which
involves semantics and the distribution of token
embeddings in a vector space, RoBERTa + TEMA
increases the average accuracy by approximately
0.11 compared to baseline monolingual models and
by about 0.03 compared to bilingual models.

7Improvements are statistically significant at p < 0.05 as
assessed with a sign test
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Figure 2: The left graph plots the vector space of the Quechua RoBERTa model. The right one plots the Quechua
RoBERTa + TEMA one showing that, after translating the embeddings, the extra information results in a more
semantic vector space. The coloured points belong to different semantic groups: locations, animals, food and
agriculture, and they appear to be better represented after applying TEMA.

6 Discussion

Results in all the experiments show that the affine
transformations on the vector space of the model
are not causing trouble. On the contrary, the ex-
periments we have carried out validate that TEMA
indeed mitigates the issues due to the low quality
of the representations of low-resource languages.

First, low-resource languages have problems
finding enough training data in terms of the total
amount of tokens, that is, the vocabulary, but also
in the number of samples of each token. Token
frequency has proved to be critical in transformer-
based language modelling. For instance, Kassner
et al. (2020) demonstrated that when a token ap-
pears fewer than 15 times in the training data, a
BERT model will disregard it, while a token that
appears 100 times or more will be predicted more
accurately. Wei et al. (2021) found evidence too
that BERT models cannot correctly predict tokens
that occur less than 10 times in the corpus. There-
fore, for low-resource languages, many of the to-
kens occurring in the corpus do not achieve the
frequency required for the model to represent them
correctly.

In the results shown in Table 2, we can see an
improvement in the perplexity score when using
TEMA for all the languages trained with only 10M,
and crucially with few sentences per vocabulary
token. For instance, for the Quechua RoBERTa
+ TEMA model, 375 new words were added with
375 single samples, while for English 2.573 new
words were added. Note that eB-BERT could be
said to be, in spirit, similar to our TEMA. Both
add vocabulary of the low-resource language. eB-
BERT adds 10k new tokens. The difference is

that TEMA also improves its representation when
projecting the word embedding of the translation
equivalent token that has been obtained with many
more examples.

Perplexity reduction is notable for all languages.
Note that, as expected, a tokenization that delivers
subwords that are more similar to word stems im-
proves TEMA results for all the languages. These
modelling improvements can be further appreciated
with the fill-mask tests for the es-qu RoBERTa +
TEMA model compared to the Quechua RoBERTa
10M model. Table 4 shows that the word prob-
abilities produced by RoBERTa + TEMA makes
more sense in each of its sentences than the ones
delivered by RoBERTa.

Second, the semantic quality of the token rep-
resentations is improved using TEMA. Figure 2
shows a sample of the vector space of Quechua
models with tokens related to different semantic
groups: locations, animals, food and agriculture-
related words. The improvement after TEMA is
applied is that the distance between related words
is reduced, showing a better-structured space that
should better support semantic tasks.

Indeed, the results of the more semantic Super-
GLUE downstream tasks validated this hypothesis.
Results in Table 3 show accuracy improvements
in SuperGLUE tasks when using TEMA. In par-
ticular, WiC task is very sensitive to lexical and
contextual information, as it is deciding whether
a token has been used with the same sense in two
different sentences. The improvements achieved
for the WiC task are evidence of TEMA creating a
better vector space.

The improvement in the semantic quality of the
embeddings is also evident from the examples from
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Sentence RoBERTa RoBERTa + TEMA
Word Score Word Score

<mask> tutamanta laq’akun.
(<mask> barks at night.)

Wawaqa
(the boy) 0.4471 Allquqa

(the dog) 0.8731

Runaq
(the man) 0.2511 Atoqqa

(the wolf) 0.1103

Allquqa
(the dog) 0.2281 Misiqa

(the cat) 0.0165

Carlosqa tiendamanta t’antata <mask>.
(Carlos <mask> bread from the store.)

Garcia 0.3219 rantisq
(bought) 0.1682

wayk’un
(bakes) 0.1814 rantin

(buy) 0.1104

qhawan
(looks) 0.0836 ruwan

(makes) 0.0918

Chay waynaqa Lima llaqtamanmi <mask>
estudiananpaq.
(The boy <mask> to Lima to study.)

ripun
(goes) 0.1528 ripun

(goes) 0.3581

purin
(travels) 0.1011 hamun

(comes) 0.1810

wicharin
(goes up) 0.08131 rirqa

(went) 0.1555

Table 4: Exploring Word Probability (Fill-Mask) in RoBERTa 10M (Quechua L2) vs RoBERTa + TEMA (L1 and
L2).

the fill-mask test shown in Table 4. In all cases,
applying TEMA improves the results by assessing
as more probable the more semantically related
words given the sentence context.

Finally, for low-resource languages, the use of
massive multilingual models has been proposed to
be the solution. However, the criticism of general
underperformance is confirmed by the results in
Table 8. Results for the Xtreme tasks are in line
with the resources of each particular language used
for pre-training. English achieved best results with
XLM-R after using more than 55B tokens training
corpus. German and French, with training corpora
around 10B each, also showed better results than
other models trained only with 10M, but not as
good as one could expect for tasks such as PoS tag-
ging reaching 0.88 F1. For a new language which
is not among the 100 languages in the multilin-
gual training data, TEMA is by far the best choice,
even better that a multilingual model. Note that for
Quechua, XLM-R achieved only 0.72 F1 for PoS,
while RoBERTa + TEMA achieved 0.84 F1, and
similar better results for NER are also shown in
Table 8.

7 Conclusions

We have introduced TEMA: Token Embedding
Mapping Algorithm, a method for mapping the
token embeddings of a richly pre-trained language
model to a poorly pre-trained model. In this paper,
we have provided experimental evidence that the
language models resulting from using TEMA for
four different languages showed reduced perplexity

and very competitive performance in Xtreme and
SuperGlue tasks compared to other systems based
on transfer techniques and lexicon expansion meth-
ods. Another contribution of our experiments is
the confirmation that the amount of lexical items of
a language in the vocabulary is directly affecting
the results. However, our experiments demonstrate
that TEMA crucially transfers adequately the lex-
ical parameters learned with larger data, getting
better results by overcoming the problem of the
amount of data available for each token in a small
corpus, or after just enlarging the lexicon. There-
fore, TEMA contributes to the research on NLP
methods for low-resource languages by proposing
a method that only requires a bilingual dictionary
and a rather small monolingual corpus of 10M to-
kens to deliver state-of-the art results or even bet-
ter for basic NLP tasks such as PoS tagging and
NER. Resources and code are available at https:
//github.com/IULATERM-TRL-UPF/TEMA

8 Limitations

Although our results demonstrate improvements
in both pseudo-perplexity and downstream tasks,
the most notable limitations of our work revolve
around the availability of bilingual dictionaries be-
tween a language with rich resources and one with-
out. Despite the mentioned difficulty, acquiring
a bilingual dictionary is easier than obtaining a
parallel corpus to work with.

On the other hand, given the limitations of BPE
for handling morphologically complex languages,
such as Quechua, pre-training large models (L1 in
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our case) with linguistically motivated tokenizers is
needed to fully leverage the use of TEMA. Further-
more, this requirement comes with computational
limitations, as training an L1-model from scratch
with all its resources is practically impossible for
many researchers.

Finally, another significant limitation to mention
is the amount of vocabulary in the training corpus,
as the more vocabulary the corpus has, the better
the use of TEMA. However, this can be mitigated
with a bilingual dictionary that provides a large
number of entries for the low-resource language.

9 Ethical considerations

We could not identify any specific ethical issue
in this paper or potential danger. However, it is
crucial to emphasize the significant importance of
working with low-resource languages, which might
entail ethical complexities that need to be carefully
addressed in natural language processing (NLP).
These languages, often marginalized or underrep-
resented, pose unique challenges in terms of data
availability, tools, and linguistic resources. Tack-
ling these complexities ethically and equitably is es-
sential to ensure the proper inclusion and represen-
tation of these languages. To delve deeper into the
complexities of Quechua, we recommend further
reading (Camacho Caballero and Zevallos Salazar,
2020).
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A Appendix

A.1 Model and training procedure: details
A.1.1 Pre-trained Language Models
We pre-trained all language models (1B and 10M)
on 5 server equipped with an Intel Xeon E5-2650
v4 CPU (12 cores, 2.2GHz 30MB Cache 2400MHz
105W) and a Gigabyte Geforce GTX 1080 Ti
TURBO 11.72GB GPU. We pre-trained the L2
(10M) models for 10k steps. The training time was
over 4 days for models. On the other hand, the L1
(1B) models were pre-trained using 100k steps and
took 14 days for models. The entire experiment
took approximately 32 days. Table 5 and Table 6
are described all hyperparameters.

10M 1B
B R R+T B R R+T

L 12 6 6 12 12 12
H 512 512 512 768 768 768
AH 12 8 8 12 12 12
Dropout 0.1 0.1 0.1 0.1 0.1 0.1
Warmup
Steps 10k 6k 6k 10k 6k 6k

Learning
Rates 5e-5 5e-4 5e-4 5e-5 5e-4 5e-4

Batch 256 512 512 256 1024 1024
Weight
Decay 0.1 0.1 0.1 0.1 0.1 0.1

Max
Steps 10k 10k 10k 10k 31k 31k

Adam e 1e-4 1e-6 1e-6 1e-4 1e-6 1e-6
Adam B1 0.9 0.98 0.98 0.9 0.98 0.98
Adam B2 0.999 0.98 0.98 0.999 0.98 0.98

Table 5: Hyperparameters for pretraining monolingual
models.

Hyper-parameter eB-BERT eB-BERT_lus
Number of Layer 12 12
Hidden size 512 512
Attention Heads 12 12
Dropout 0.1 0.1
Warmup steps 10k 10k
Learning Rates 2e-5 2e-5
Batch Size 32 32
Weight Decay 0.1 0.1
Max Steps 500k 500k
Adam e 1e-4 1e-4
Adam B1 0.9 0.9
Adam B2 0.999 0.999

Table 6: Hyperparameters for pretraining bilingual mod-
els.

A.1.2 Downstream Task
Similar to pre-trained language models, we used
5 server equipped with an Intel Xeon E5-2650 v4
CPU (12 cores, 2.2GHz, 30MB Cache, 2400MHz,
105W) and a Gigabyte GeForce GTX 1080 Ti
TURBO 11.72GB GPU to train all these models.
The training time was approximately 5 hours per
task (Xtreme and SuperGLUE). In total, we trained
models over a period of approximately 8 days.

Task B E LR G_ACC
XNLI 16 5 2e-5 4
PAWS-X 16 5 2e-5 4
POS 8 20 2e-5 4
NER 8 20 2e-5 4
XQuAD 16 3 3e-5 8

Table 7: Hyperparameters used in the tasks of Xtreme
for all languages. Batch-size=B, Epoch=B, Learning-
rate=LR, Gradient_accumulation_step=G_ACC.

A.2 Experiment results
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Languages
(L1-L2)

Pair Sentence
(Hu et al., 2020)

Structured prediction
(Hu et al., 2020)

(Zevallos et al., 2022b)

QA
(Hu et al., 2020)

XNLI PAWS-X POS NER XQuAD
Metrics Acc. Acc. F1 F1 F1
Monolingual base models / L2 (10M)

BERT
en 0.72 0.78 0.88 0.74 0.69
de 0.64 0.67 0.80 0.65 0.61
fr 0.61 0.68 0.75 0.67 0.66
qu - - 0.66 0.62 -

RoBERTa
en 0.73 0.80 0.89 0.76 0.70
de 0.65 0.67 0.81 0.65 0.62
fr 0.63 0.69 0.76 0.68 0.67
qu - - 0.66 0.63 -
TEMA / L2 → L1

RoBERTa + TEMA
es-en 0.78 0.84 0.92 0.80 0.76
en-de 0.70 0.73 0.83 0.71 0.68
en-fr 0.67 0.73 0.80 0.70 0.71
es-qu - - 0.84 0.75 -
Bilingual fine-tuned models / L1 + L2

eB-BERT
es-en 0.74 0.80 0.89 0.75 0.70
en-de 0.65 0.68 0.81 0.66 0.62
en-fr 0.63 0.68 0.76 0.67 0.68
es-qu - - 0.71 0.65 -

eB-BERT + lus
es-en 0.77 0.82 0.92 0.79 0.73
en-de 0.68 0.70 0.83 0.69 0.65
en-fr 0.65 0.71 0.79 0.69 0.70
es-qu - - 0.76 0.70 -
Multilingual full models

mBERT
multi-en 0.80 0.93 0.95 0.84 0.82
multi-de 0.71 0.85 0.85 0.78 0.75
multi-fr 0.73 0.87 0.83 0.79 0.79
multi-qu - - 0.70 0.64 -

XLM-R
multi-en 0.87 0.95 0.96 0.84 0.84
multi-de 0.81 0.90 0.88 0.78 0.77
multi-fr 0.82 0.90 0.88 0.79 0.82
multi-qu - - 0.72 0.64 -

Table 8: Results of NLP tasks for different models trained on four language pairs, each evaluated on Pair Sentence,
Structured prediction, and QA tasks.
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