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Abstract

Although pre-trained language models (PLMs)
have been widely used in natural language un-
derstandings (NLU), they are still exposed to
fairness issues. Most existing extrinsic debi-
asing methods rely on manually curated word
lists for each sensitive groups to modify train-
ing data or to add regular constraints. However,
these word lists are often limited by length
and scope, resulting in the degradation per-
formance of extrinsic bias mitigation. To ad-
dress the aforementioned issues, we propose
a Continuous Prompts Adjustment Debiasing
method (CPAD), which generates continuous
token lists from the entire vocabulary space and
uses them to bridge the gap between outputs
and targets in fairness learning process. Specifi-
cally, CPAD encapsulates fine-tuning objective
and debiasing objectives into several indepen-
dent prompts. To avoid the limitation of manual
word lists, in fairness learning phase, we ex-
tract outputs from the entire vocabulary space
via fine-tuned PLM. Then, we aggregate the
outputs from the same sensitive group as con-
tinuous token lists to map the outputs into pro-
tected attribute labels. Finally, after we learn
the debiasing prompts in the perspective of ad-
versarial learning, we improve fairness by ad-
justing continuous prompts at model inference
time. Through extensive experiments on three
NLU tasks, we evaluate the debiasing perfor-
mance from the perspectives of group fairness
and fairness through unawareness. The experi-
mental results show that CPAD outperforms all
baselines in term of single and two-attributes
debiasing performance.

1 Introduction

Pre-trained language models (PLMs), such
as BERT (Kenton and Toutanova, 2019),
RoBERTa (Liu et al., 2019) and Albert (Lan, 2019),
have been widely adopted in natural language
understandings (NLU) due to their outstanding
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capacities of learning linguistic and factual
information. However, recent studies (Meade
et al., 2022) have demonstrated that PLMs often
encode undesirable social biases and harmful
stereotypes, which may lead to an unfair allocation
of social resources. Prior methods of intrinsic
bias mitigation (Guo et al., 2022; Lu et al., 2020)
focus on removing demographic information
in representations of PLMs. However, existing
work (Zhou et al., 2023) has shown that even
removing certain stereotypes in PLMs before
they are applied into downstream tasks, unwanted
bias will re-enter in the fine-tuned language
models. Therefore, we are interested in removing
extrinsic social bias, which improves fairness in a
task-specific way.

Existing extrinsic debiasing methods rely on
manually curated word lists (e.g., "he" or "she"
for gender). For example, Causal-debias (Zhou
et al., 2023) replaces sensitive tokens in manu-
ally word lists to construct environments and re-
moves spurious correlation via causal invariant
learning. CLP (Garg et al., 2019) substitutes sen-
sitive tokens in word list and uses counterfactual
logit pairing to satisfy counterfactual token fairness.
Gender-tuning (Ghanbarzadeh et al., 2023) gen-
erates gender-perturbed examples using manually
word lists and integrates Masked Language Model-
ing (MLM) training objectives into the fine-tuning
process. However, word lists are often limited by
length and scope. For some protective attributes
like race, it is difficult to design representative vo-
cabularies intuitively due to the semantic constaints
of words. Prior word lists (Manzini et al., 2019) of-
ten use name as proxy of race, which tend to occur
less frequently in downstream tasks. Therefore, the
diversity of sensitive groups covered by these word
lists may be insufficient, resulting in the degrada-
tion performance of extrinsic bias mitigation.

In this works, we propose a Continuous Prompts
Adjustment Debiasing method (CPAD), which gen-
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erates continuous token lists from the entire vocab-
ulary space and uses them as the mapping of targets
in fairness learning process. The proposed CPAD
can be deemed a form of prompt-tuning, where
we encapsulate NLU tasks into prompt templates
to lead PLMs in generating outputs at mask posi-
tions, and then use verbalizers to bridge the gap
between the outputs and the target labels. Specif-
ically, we employ various prompts as additional
inputs to steer the PLM towards generating out-
puts related to downstream tasks or outputs that
can remove demographic information. Given that
discrete prompts are insufficient for fairness learn-
ing, following P-tuning (Liu et al., 2023), we learn
continuous prompts to circumvent the limitations
of them. To avoid the use of manual word list in
verbalizers, we first extract outputs from the entire
vocabulary space via fine-tuned PLM. Then, we
aggregate the outputs of the same sensitive group
based on protected attribute labels as a continu-
ous token list for that group. Third, we employ
adversarial optimization objectives to update the
continuous debiasing prompts. Finally, to improve
generation abilities to meet different social groups,
we incorporate several prompts to make a trade-off
between fairness and modeling ability at the infer-
ence time. Our contributions can be summarized
as follows:

• We introduce CPAD, a novel extrinsic debias-
ing method that generates continuous token
lists from the entire vocabulary space and uses
them as the mapping of targets in fairness
learning process. Notably, our method demon-
strates flexible and extensible capabilities to
mitigate multiple social biases.

• We introduce a novel metric of fairness
through unawareness that avoids the introduc-
tion of additional training parameters and uti-
lizes only the continuous word list to measure
the leakage of protected attribute.

• We assess our proposed method across three
NLU tasks. The experimental results demon-
strate that our method simultaneously im-
proves group fairness and fairness through
unawareness, while maintaining model perfor-
mance in downstream tasks.

2 Problem Statement

Let D be a training dataset composed of texts
{x0, x1, ..., xn} and task labels {y0, y1, ..., yn}.

We denote A = {A0, A1, .., Am} as the cate-
gories of protected attributes. PLMs might mis-
takenly capture the stereotypical associations be-
tween protected attributes and labels, leading to
biased predictions. We focus on the scenario where
a protected attribute Aj involves only two sensi-
tive groups {G0

j , G
1
j}. Each text xi is also asso-

ciated with a series of protected attribute labels
{z0i , z1i , ..., zmi }, where zji ∈ {0, 1} denotes a sen-
sitive group Gk

j ∈ {G0
j , G

1
j} of text xi related to

protected attribute Aj . The purpose of bias miti-
gation is to make PLMs exhibit no preference for
any sensitive group, while preventing them from
leaking demographic information in the outputs.

In order to fit downstream tasks, we adjust con-
tinuous prompts to the original text xi linearly as
the input of pre-trained language models (PLMs)
Mθ. In this work, we first obtain continuous
prompts through pseudo tokens and prompt en-
coders, as explained in P-tuning (Liu et al., 2023).
Next, we update several continuous prompts using
gradient descent to achieve different objectives.

Specifically, in task-specific learning phase, we
learn the task-specific prompts [ht0:u], where u
denotes the length of the continuous prompts.
Then, in debiasing learning phases, we train
a set of debiasing learning prompts H =
{[h00:u], [h10:u], ..., [hm0:u]}, where [hj0:u] is the con-
tinuous prompt of protected attribute Aj . Finally,
we encapsulate debiasing concept into several con-
tinuous prompts, and apply them with the task-
specific prompt at inference time.

For simplicity, we define a classifier F as a PLM
Mθ with all continuous prompts. Our goal is to
train the classifier F that accurately predicts the
task labels yi for a text xi without the leakage of
protected attributes A. That is,

F(xi) = Mθ(Ω(h
t
0:u,H) : xi\A) → yi (1)

where Ω represents the adjustment operation intro-
duced in Section 3.3 at model inference time.

3 Methodology

In this section, we aim to present CPAD to mitigate
social bias in a task-specific way, which can be
divided into three phases: 1) the task-specific learn-
ing phase, aiming to learn a task-specific prompt
and fine-tune the PLM to enhance the performance
on downstream task; 2) the debiasing learning
phase, which generating continuous token lists as
verbalizers and encoding the protected attribute

11069



Debiasing Learning
Prompt Encoder � �����

�

Task-specific
Prompt Encoder  �����

Debiasing Learning
Prompt Encoder � �����

�

Debiasing Learning
Prompt Encoder � �����

�

Task-specific
Prompt Encoder  �����

PLM ℳ� 

Task-specific Learning Phase
(Protected Attribute 0)

ℒ����

PLM ℳ� PLM ℳ� 

Debiasing PhaseFine-grained

Task-specific
Prompt Encoder  �����

Debiasing Learning
Prompt Encoder  �����

�

PLM ℳ� 
PLM ℳ� 

Text

Text Text

⋯

[ℎ1
(�), ℎ2

(�), . . . , ℎ�
(�)]

[ℎ1
(�), ℎ2

(�), . . . , ℎ�
(�)]

[ℎ1, ℎ2, . . . , ℎ�]

⋮

Text Text

Debiasing Learning Phase 
(Protected Attribute m)

ℒ������ ℒdebias

Task-specific
Prompt Encoder  �����

⋮
Debiasing Learning

Prompt Encoder � �����
�

Debiasing Learning
Prompt Encoder � �����

�

Task-specific
Prompt Encoder  �����

⋮
Debiasing Learning

Prompt Encoder � �����
�

Debiasing Learning
Prompt Encoder � �����

�

Coarse-grained

Figure 1: Illustration of CPAD: The color orange indicates the trainable parameters in each phase, while the color
blue shows the frozen ones.

noise into independent debiasing learning prompts;
3) the debiasing phase, focusing on removing social
biases by incorporating task-specific prompt and
debiasing learning prompts at the inference time.
The framework of CPAD is shown in Figure 1.

3.1 Task-specific Learning Phase

The purpose of task-specific learning is to transfer
task-specific knowledge of PLM into downstream
tasks by feeding different prompts. Liu et al. (Liu
et al., 2023) have shown that concatenating contin-
uous prompts with discrete prompts can achieve
better results in different cases. Following this line,
we generate the task-specific templates by concate-
nating trainable continuous prompts and discrete
prompts at the end of the original text xi:

T = {xi : [P t
0:u] : [D

t
0:v] : [MASK]} (2)

where [P t
0:u] and [Dt

0:v] are the sequences of pseudo
tokens and discrete tokens, respectively. [MASK]
is the predictable cloze.

To model the dependency between different
prompts, we further map pseudo tokens P t

0:u into
input embedding space via a task-specific prompt
encoder (TPE):

ht0:u = TPEτt([P
t
0:u]) (3)

where ht0:u ∈ Ru×d. d is the size of hidden em-
beddings. u is the number of pseudo tokens. τt is
the trainable parameters of TPEτt . Through the
pre-trained embedding layer e and prompt encoder

TPEτt mentioned above, we replace the model
input Ii of original text xi as follows:

Ii = {e(xi) : [ht0:v], e(Dt
0:v) : [MASK]} (4)

After that, we feed the input Ii into the PLM Mθ

and obtain the output Oi = Mθ(Ii) of the masked
language token [MASK] to the entire vocabulary
V. Given a manual verbalizer Vy of downstream
task, we map the original output Oi to a set of label
words. The output probability p(v|Mθ, Ii) of the
token v ∈ Vy is computed as follows:

p(v|Oi) =
exp(Oi[v])∑

u′∈Vy
exp(Oi[u])

(5)

Then, we can obtain the fixed size expression ŷi
that explicitly provides the probability distribution
for all its candidate label words v ∈ Vy:

ŷi = g(p(v|Oi)|v ∈ Vy) (6)

where g is the aggregation process of each v ∈ Vy.
In this phase, our training objective is to improve

the performance of PLM Mθ by stimulating the
task-specific knowledge via continuous prompts
[ht0:u]. The task-specific training objective can be
formulated as follows:

Ltask = −
∑n

i=1
yilogŷi (7)

3.2 Debiasing Learning Phase
In this phase, we aim to learn the noise that disturbs
PLM Mθ in predicting the correct sensitive groups.
Inspired by sub-network (Guo et al., 2021), we
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encapsulate the noise of each protected attribute Aj

into independent continuous prompt [hj0:u], which
is also encoded by a debiasing learning prompt
encoder DPEj

τj from noise pseudo tokens [P j
0:u].

Each parameter in τm corresponds to a parameter
in τt so that we can adjust them for a fair prediction
at the inference time. Noise pseudo tokens [P j

0:u]
are related to task pseudo tokens [P t

0:u] as well.
First, we wrap the original text xi in a template

by Eq. (2). After that, we replace the model in-
put Ii obtained by Eq. (4) with continuous debi-
asing learning prompts [hj0:u] via the debiasing
prompt encoder DPEm

τm by Eq. (3). Then, we
feed the input Ii into the frozen PLM Mθ, which
is trained in previous phase. Finally, we get the
model output Oi ∈ R|V| of the masked language
token [MASK] by Eq. (5) and Eq. (6).

To avoid use manual word lists in verbalizers, in-
spired by ProtoVerb (Cui et al., 2022), we generate
prototypes directly from training instances as con-
tinuous token lists and use them as verbalizers for
sensitive group prediction. Then, we design a con-
trastive objective by maximizing the distance with
positive prototype, while minimizing the negative
one in the protected attribute embedding space.

3.2.1 Prototype Generation
We encapsulate different discrete tokens into tem-
plates to extract prototypes from various embed-
ding spaces. We observe that a template, which is
the same as the task-specific learning phase, typ-
ically leads to fairer predictions but results in a
greater decline in model performance. However,
the template into which we inject the protected
attribute information usually makes a trade-off be-
tween fairness and performance.

Formally, given a piece of training text xi
wrapped with a template in Eq. (2), we first get
the model output Oi of [MASK] token to the en-
tire vocabulary V by Eq. (6). Next, we cluster the
output Oi based on the sensitive group labels zji of
the training instances. Then, we calculate the clus-
ter centers as the prototype of each sensitive group.
Considering a protected attribute Aj only involves
two sensitive groups, we simplify a set of proto-
types of a protected attribute Aj as Cj = {c0j , c1j}.
The prototype c0j and c1j are computed as follows:

ckj =
1

|Dk
j |

∑

i∈Dk
j

Oi (8)

where Dk
j = {i|zji = k} denotes the set of indices

for training texts xi belonging to the sensitive group
k for the protected attributes Aj , with k ∈ {0, 1}.

However, training dataset in the real world may
be imbalanced across sensitive groups. This im-
balance can lead to prototypes encoding spurious
associations between task labels and protected at-
tributes. To ensure the independence of prototypes
while preserving task performance, we adjust the
distribution of proportions by oversampling the
model output Oi of training instances before ob-
taining the prototypes.

3.2.2 Debiasing Learning Objective
With the instance embedding Oi and the prototype
set Cj, we discuss how to define our training objec-
tive. Intuitively, our goal is to lead the frozen PLM
Mθ make mistakes when predicting the sensitive
group of a training instance. To realize this goal,
we define a distance-based constrasive learning ob-
jective as follows:

Ldebias =
∑n

i
max(||Oi−cj−||−||Oi−cj+||+1, 0)

(9)
where cj+ is the positive prototype of xi, while cj−
denotes the negative prototype of xi. The positive
prototype cj+ is denoted as cjk ∈ Cj, where zji =

k. Similarly, we denote negative prototype oj− as
cjk ∈ Cj, when zji ̸= k ∈ {0, 1}. The loss function
Ldebias mentioned above maximizes the Euclidean
distance between instance embedding Oi and its
positive prototype, while minimizing the distance
between it and its negative prototype.

3.3 Debiasing Phase

The purpose of debiasing phase is to remove the
demographic information and enable fair predic-
tions at the inference time. In previous sections,
we have fine-tuned the PLM Mθ and developed a
series of continuous prompts. We combine the task-
specific prompt [ht0:u] and the debiasing learning
prompts H = {[h00:u], [h10:u], ..., [hm0:u]} to stimu-
late the fine-tuned PLM Mθ for fair predictions
at the inference time. We both design a coarse-
grained method and a fine-grained method, which
are applied at different stages of encoding continu-
ous prompts.

Fine-grained Adjustment The fine-grained
method generates fairness-oriented continuous
prompts by adjusting the pseudo tokens and all
parameters of the prompt encoders. To create a
trade-off between performance and fairness, we
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introduce a set of hyper-parameters to balance task-
specific knowledge and protected attribute noise.
For simplicity, a two-attribute adjustment process
can be formulated as follows:

Pu = (1− α− β) ∗ P t
u + α ∗ P 0

u + β ∗ P 1
u

(10)

τ = (1− α− β) ∗ τt + α ∗ τ0 + β ∗ τ1 (11)

where τt is the parameter of TPE and τj is the
parameter of DPE. Pu represents a single token
from the fairness pseudo tokens [P0:u]. τ is the
parameter of fairness prompt encoders. α and β
are both hyper-parameters. Finally, we can encode
fairness continuous prompts [h0:u] based on them.

Coarse-grained Adjustment The coarse-
grained adjustment directly adds task-specific
prompts [ht0:u] and debiasing learning prompts
H = {[h00:u], [h10:u], ..., [hm0:u]} together. For
simplicity, a two-attributes adjustment process can
be formulated as follows:

hu = (1− α− β) ∗ htu + α ∗ h0u + β ∗ h1u (12)

where hu is a parameter in fairness prompts [h0:u].
α and β are both hyper-parameters.

4 Experiment

4.1 Datasets and Tasks
In this section, we conduct our experiments on
three public datasets across several NLU tasks: (1)
Hate Speech Detection. (2) Sentiment Analysis.
(3) Psychometric Dimension Prediction.

Hate Speech Detection We use the
DWMW (Davidson et al., 2017) dataset which
contains 25k tweets. The authors annotate each
tweet as hateful, offensive or none. We similarly
identify disparities using the classifier they
provided, focusing on the African American and
the White categories. Finally, we use the subset
which contains almost 20K data. The protected
attribute is race.

Sentiment Analysis We conduct experiments on
a subset of TwitterAAE corpus (Blodgett et al.,
2016), where the sensitive attributes are "American
Africa English (AAE)" and "White-aligned (WA)".
In this study, we follow the task construction in
(Elazar and Goldberg, 2018). They construct a

binary sentiment label by identifying a subset of
emojis which are associated with positive and neg-
ative sentiments. Similarly, we select a sentiment
balance subset which contains 200K texts. 70%
texts of the positive category and 30% texts of the
negative category are from AAE, while others are
from WA.

Psychometric Dimension Prediction We use
psychometric dataset (Abbasi et al., 2021) which
consists of free-text responses on four psychome-
tric dimensions. Following previous studies re-
ported, we only focus on numeracy classification,
which is the most significant biased dimension.
Limited by privacy policies, not all data are as-
sociated with protected attributes. We use 8K data
labeled with demographic information and mitigate
bias on race and age.

4.2 Baselines

We compare CPAD with 6 baselines: (1) Finetune:
finetuning PLM and a classifier on the task. (2)
Adapter: injecting additional adapter layers into
the frozen PLM. (3) P-tuning (Liu et al., 2023): an
intuitive baseline learns the same model as ours in
task-specific learning phase. (4) Auto-Debias (Guo
et al., 2022) and (5) Causal-Debias (Zhou et al.,
2023): learning the same model as Finetune, but
mitigating bias on the different training stages. (6)
ConGater (Masoudian et al., 2024): introducing
a modular gating mechanism with adjustable sen-
sitivity parameters, which can reduce bias contin-
uously during inference. Specifically, we append
ConGater to the last layer of the PLM and update
parameters via parallel training strategy. Proto-
types and templates utilized are in Appendix A.
Additional implementation details can be found in
Appendix B.

4.3 Evaluation Metric

We evaluate each method from the perspective of
performance and fairness. For performance, we
report classification accuracy to evaluate the lan-
guage abilities of a model. For the fairness metric,
we focus on two aspects: (1) group fairness and (2)
fairness through unawareness.

4.3.1 Group Fairness
Group fairness reflects the fairness between two
sensitive groups with different protected attributes.
Following group fairness desiderata of equality of
odds, we first calculate the True Positive Rates

11072



Model Hate Speech Detection Sentiment Analysis

ACC(%) ACC0(%) ACC1(%) GAPTPR(%) GAPTNR(%) Overall(%) ACC(%) ACC0(%) ACC1(%) GAPTPR(%) GAPTNR(%) Overall(%)

Finetune 87.68 91.06 81.39 9.67 4.83 14.50 77.63 74.59 80.72 16.57 34.96 51.53
Adapter 89.43 92.35 83.98 8.37 4.18 12.55 79.52 77.17 81.92 18.14 35.22 53.36
P-tuning 87.62 90.71 81.85 8.86 4.43 13.29 79.82 77.31 82.37 19.75 36.28 56.03

Auto-debias 88.26 91.31 82.59 8.71 4.36 13.07 75.43 73.46 77.44 14.89 34.48 49.37
Casual-debias 88.23 91.70 81.76 9.94 4.97 14.91 77.27 73.73 80.89 16.20 34.28 50.48

ConGater 88.39 91.60 82.41 9.20 4.60 13.80 75.67 72.70 78.70 14.37 32.17 46.54

CPAD 86.29 88.67 81.85 6.82 3.41 10.23 72.6 73.61 71.57 8.20 33.09 41.29

Table 1: Group fairness results in hate speech detection and sentiment analysis: The first and second best results are
indicated in bold and underline, respectively. We report the results with template No.3 for hate speech detection and
No.2 for sentiment analysis. Higher accuracy, lower gap and lower overall are better.

Model ACC(%) Race Age
Overall(%)

ACC0(%) ACC1(%) GAPTPR(%) GAPTNR(%) Overallrace(%) ACC0 ACC1(%) GAPTPR(%) GAPTNR(%) Overallage(%)

Finetune 70.24 76.46 67.01 9.62 11.86 21.48 70.28 69.71 5.80 2.98 8.79 30.27
Adapter 71.73 75.93 69.52 8.76 11.36 20.12 69.98 72.19 6.92 1.17 8.09 28.21
P-tuning 70.69 76.47 67.64 13.29 12.41 25.70 68.98 71.13 9.71 0.28 9.99 35.69

Auto-debias 69.87 71.85 67.09 12.31 12.15 24.46 66.87 70.64 11.30 3.61 14.91 39.37
Casual-debias 70.23 75.70 67.86 8.67 8.70 17.37 67.57 71.33 7.39 2.98 10.37 27.74
ConGater-race 69.77 75.58 66.70 11.48 11.95 23.43 70.48 69.43 1.98 1.12 3.10 26.53
ConGater-age 69.64 75.40 66.60 11.91 11.77 23.68 70.48 69.43 1.79 0.98 2.77 26.45

ConGater 69.58 75.58 66.42 10.73 11.28 22.01 70.48 69.34 0.63 0.34 0.97 22.98

CPAD-race 70.32 76.83 66.83 12.49 8.31 20.8 70.18 70.36 7.63 0.8 8.43 29.23
CPAD-age 69.15 78.25 64.35 10.65 8.57 19.22 70.78 68.73 3.37 0.68 4.05 23.27

CPAD 70.87 78.61 66.79 10.32 8.78 19.10 71.69 70.67 3.32 0.03 3.35 22.45

Table 2: Group fairness results in psychometric dimension prediction: The first and second best results are indicated
in bold and underline, respectively. We report the results with template No.2 for psychometric dimension prediction.
Higher accuracy, lower gap and lower overall are better.

(TPR) and True Negative Rates (TNR) across dif-
ferent sensitive groups for single attribute evalua-
tion. Then, we measure the difference (GAP) of
TPR and TNR, respectively. Additionally, the prin-
ciple requires equal TPR and TNR across different
sensitive groups, so we also report the overall score
as follows:

OverallAi = GAPTPR +GAPTNR (13)

where Ai ∈ A is a specific protected attribute. For
multiple factors evaluation, we sum up all overall
score to reflect an overview of bias across multiple
protected attributes. A PLM satisfies group fairness
if it shows no preference for each sensitive group,
so that the ideal GAP and overall score are 0.

4.3.2 Fairness through Unawareness
Following Elazar et al. (Elazar and Goldberg,
2018), we measure the leakage of protected at-
tributes to evaluate fairness through unawareness
in PLMs. Existing methods (Hauzenberger et al.,
2023) leverage several auxiliary classifiers condi-
tioned on hidden representations to predict sen-
sitive groups. However, for prompt-based meth-
ods (Yang et al., 2023), predictions based on rep-
resentations may lead to a divergence between the
evaluation process and model inference. They di-
rectly map the outputs into the entire vocabulary
space to obtain the predict probability distributions,
rather than utilizing representations for inference.
As a result, to eliminate the divergence, we propose
to detect the leakage of protected attributes in the

output probability distributions of PLMs. Specifi-
cally, we calculate the Euclidean distance between
a query output and prototypes. The probability
score for class i is:

p(yi|x) =
exp(−d(O, ci))∑

j∈{0,1} exp(−d(O, cj))
(14)

where d is Euclidean Distance between the output
O and the prototype vector ci. Then we allocate the
same label as nearest prototype to the query output:

ỹ = argmax
i

p(yi|x) (15)

where i ∈ {0, 1}. A PLM satisfies fairness through
unawareness if the social group is not explicitly
used, so that the ideal score for binary sensitive
group prediction is 50%.

4.4 Comparison Results

4.4.1 Group Fairness
Single-attribute Evaluation Table 1 shows the
comparison results on race for hate speech de-
tection and sentiment analysis, respectively. Our
method demonstrates competitive fairness perfor-
mance. Specifically, for hate speech detection, we
achieve a decline of 3.06% in overall score com-
pared to P-tuning. For sentiment analysis, our
method outperforms the intuitive baseline P-tuning
by 14.74% on overall score. We also observe that
our method slightly degrades performance. One
possible reason may be the PLM making decisions
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based on spurious correlations associated with pro-
tected attributes, which are widely present in test
sets. Note that the balance of fairness and per-
formance can be adjusted by trade-off factors in
our method. Another important observation is that
Adapter is more fair than Finetune. This may be
because it updates fewer parameters, thus avoiding
the overfitting to the spurious correlations.

Two-attributes Evaluation Table 2 summarizes
the comparison results on both race and age for
psychometric dimension prediction. We conduct
a comparison among vanilla baselines, debiasing
baselines focusing on a single protected attribute,
and debiasing baselines working at two protected
attributes. We notice that our method distinguishes
itself in both two protected attributes for fairness,
while preserving model performance. Moreover,
our method exceeds intuitive baselines by 13.24%
in overall fairness score. We also notice that some
debiasing baselines focusing on one protected at-
tribute may inadvertently increase bias in other
attributes. This may due to they mitigate bias by
taking a shortcut at the inference time. The other
observation is that CPAD-age mitigates bias on
both age and race simultaneously. This may be-
cause there are some relations between two pro-
tected attributes in prompt-tuning. We still observe
that for intrinsic debiasing method, bias re-enters
in the fine-tuned PLM.

Model Hate Speech Detection Sentiment Analysis

ACC(%) Leakage(%) ACC(%) Leakage(%)
Biased. 87.62 77.79 79.82 82.78
CPAD 86.29 76.72 72.60 73.89

Table 3: Fairness through unawareness results in hate
speech detection and sentiment analysis: The best re-
sults are indicated in bold. We report the results with
template No.3 for hate speech detection and No.2 for
sentiment analysis. Higher accuracy and closer to 50%
Leakage are better.

Model ACC(%) Leakagerace(%) Leakageage(%)
Biased. 70.69 63.05 59.36

CPAD-race 70.32 62.50 51.54
CPAD-age 69.15 60.53 49.26

CPAD 70.87 61.21 51.23

Table 4: Fairness through unawareness results in psy-
chometric dimension prediction: The best results are
indicated in bold. We report the results with template
No.2 for psychometric dimension prediction. Higher
accuracy and closer to 50% Leakage are better.

4.4.2 Fairness through Unawareness
For fairness through unawareness, we exclude fine-
tune-based and adapter-based baselines due to their
incompatibility to the current settings. Table 3 and
Table 4 present the results on accuracy and fair-
ness across three tasks. For fairness, it can be ob-
served that our model achieves 1.07%, 8.9%, 8.13%
declines on the leakage of protected attributes in
hate speech detection, sentiment analysis and psy-
chometric dimension prediction, respectively. Our
method is not only effective for single attribute, but
also capable of satisfying various fairness require-
ments across multiple attributes.

5 Model Analysis

5.1 Prototype Evaluation

To qualify the effect of prototypes, we conduct
experiments on there types of templates in Ap-
pendix A to generate four prototype vectors. We
report the experimental results for Numeracy in
Table 5, while the complete results for sentiment
classification and hate detection are presented in
Appendix C. We observe that the task-based and
demographic-based templates are both effective in
bias mitigation. We still notice that the task-based
template achieves better results on fairness for sen-
timent analysis and psychometric dimension pre-
diction. However, demographic-based templates
usually have slight negative impact on performance.
This may because demographic-based templates
preserve less spurious correlations on task-specific
knowledge and protected attributes. We acknowl-
edge that although we have explored the impact of
different templates on model performance, it is by
no means exhaustive. There is still potential for
further improvement in stability in future work.

5.2 Adjustment Evaluation

Table 6 shows the results using fine-grained and
coarse-grained adjustment methods in debiasing
phase on Numeracy. The complete results for sen-
timent classification and hate detection are shown
in the Appendix D. In most cases, two adjustment
methods have positive impacts on fairness. Fine-
grained method has a slight impact on model per-
formance, while coarse-grained method has a better
improvement on the fairness. This may be due to
fine-grained method editing continuous prompts
during the encoding process, which has a wider so-
lution space and therefore has a smaller impact at
the inference time. Coarse-grained method directly
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Temp.
Protected

ACC(%)
Race Age

Overall(%)
Attribute GAPTPR(%) GAPTNR(%) Overallrace(%) GAPTPR(%) GAPTNR(%) Overallage(%)

No.1
race 70.87 11.24 12.97 24.21 11.25 1.77 13.02 37.23
age 69.77 15.24 8.58 23.82 6.41 0.42 6.83 30.65
all 70.26 13.51 9.30 22.81 7.63 0.93 8.56 31.37

No.2
race 70.32 12.49 8.31 20.80 7.63 0.80 8.43 29.23
age 69.15 10.65 8.57 19.22 3.37 0.68 4.05 23.27
all 70.87 10.32 8.78 19.10 3.32 0.03 3.35 22.45

No.3
race 71.06 11.66 9.99 21.65 4.54 0.03 4.57 26.22
age 70.44 13.93 8.84 22.77 0.93 0.29 1.22 23.99
all 71.18 9.45 9.37 18.82 4.48 0.48 4.96 23.78

No.4
race 70.32 12.05 8.85 20.90 8.21 1.77 9.98 30.88
age 70.57 12.65 8.67 21.32 7.70 1.64 8.34 29.66
all 70.07 12.88 8.98 21.86 8.02 1.58 9.60 31.46

Biased. 70.69 13.29 12.41 25.70 9.71 0.28 9.99 35.69

Table 5: Prototype evaluation results in hate speech detection and sentiment analysis: The first and second best
results are indicated in bold and underline, respectively. We report the results with template No.2 for psychometric
dimension prediction. Higher accuracy, lower gap and lower overall are better.

Protected
Adjustment ACC(%)

Race Age
Overall(%)

Attribute Leakage(%) GAPTPR(%) GAPTNR(%) Overallrace(%) Leakage(%) GAPTPR(%) GAPTNR(%) Overallage(%)

Race
Fine-grained 70.32 62.50 12.49 8.31 20.80 51.54 7.63 0.80 8.43 29.23

Coarse-grained 68.47 60.53 13.11 5.95 19.06 43.29 2.89 1.98 4.87 23.93

Age
Fine-grained 70.89 62.07 10.60 8.99 19.59 52.83 5.51 0.16 5.67 25.26

Coarse-grained 69.15 60.53 10.65 8.57 19.22 49.26 3.37 0.68 4.05 23.27

All
Fine-grained 70.87 61.21 10.32 8.78 19.10 51.23 3.32 0.03 3.35 22.45

Coarse-grained 69.77 56.59 15.22 8.59 23.81 48.83 0.72 0.68 1.40 25.21
Biased. 70.69 63.05 13.29 12.41 25.70 59.36 9.71 0.28 9.99 35.69

Table 6: Adjustment evaluation results in psychometric dimension prediction: The best results are indicated in bold.
We report the results with template No.2 for psychometric dimension prediction. Higher accuracy, lower gap, lower
overall and closer to 50% Leakage are better.

edits the encoded continuous prompts, which has a
significant impact on model prediction.

5.3 Trade-off Factor Evaluation

We explore the effect of trade-off factors α and
β. The search range of them are both set to be
{0.1, 0.2, .., 0.9}, where α+β ≤ 1. By comparing
the results with different α and β, we can analyze
the tendency of performance and fairness.

Single-attribute Evaluation Appendix E shows
the results of performance and fairness across three
tasks. We observe that, in most cases, as α in-
creases, CPAD improves the fairness, but sacrifices
model performance. We also notice that when α
approaches 0.9, some models exhibit negative re-
sults for fairness. We noticed that the model per-
formance significantly decreased in this situation.
We believe this is because the model has already
crashed, leading to unreliable results. That is to
say we should keep a balance between fairness
and performance, rather than simply increasing the
proportion of debiasing learning prompts.

Two-attribute Evaluation Figure 2 shows the
results on psychometric dimension prediction.
Overall, with the increase of α and β, our proposed
method improves the fairness on both two protected
attributes, yet slightly declines the accuracy. We

still notice that the improvement of fairness is not
smooth. This may because the correlation between
protected attributes is no-leaner. Notwithstanding,
experiment results indicate that such simplification
adjustment method is practical in bias mitigation.

6 Related work

6.1 Prompt-based Tuning

Prompt-based tuning has achieved impressive suc-
cess in many applications (Gao et al., 2021; Chen
et al., 2022). Typically, prompt-based tuning in-
volves two important components: template and
verbalizer. (1) Templates are used to wrap the input
text into a cloze question. Early prompts (Brown
et al., 2020; Schick and Schütze, 2021b) were de-
signed in the manual way. Existing works (Liu
et al., 2023, 2022) have shown that manual prompts
can lead to unstable performance. Following P-
tuning (Liu et al., 2023), we utilize continuous
prompt embeddings and optimizing them in the
training step. (2) Verbalizers map the output into
the target answer. Depending on task-specific prior
knowledge, manual verbalizers have been shown
to be effective in many applications (Schick and
Schütze, 2021a). However, prior knowledge may
be difficult to acquire or would be expensive. To
alleviate these issues, some recent works (Schick
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(a) Fine-grained adjustment

(b) Coarse-grained adjustment

Figure 2: Trade-off factors α and β evaluation results in psychometric dimension prediction with template No.2.
Higher accuracy, lower gap, lower overall and lower deviation leakage are better.

et al., 2020; Shin et al., 2020; Gao et al., 2021) be-
gan to search the verbalizers automatically. Other
works (Hambardzumyan et al., 2021; Zhang et al.,
2021a) focus on training continuous verbalizers
which can be optimized with the PLMs. Inspired
by ProtoVerb (Cui et al., 2022), we generate contin-
uous token lists from the entire vocabulary space
as verbalizers to mitigate social bias.

6.2 Fairness in Pretrained Language Models

PLMs trained in large data have inherent social bias
and cause severe ethical issues in sociotechnical
deployment scenarios (Zhao et al., 2019; Blodgett
et al., 2020; Rekabsaz and Schedl, 2020). Several
existing methods have been proposed to alleviate
social bias in PLMs. Counterfactual data augmen-
tation (CDA) (Lu et al., 2020; Webster et al., 2020)
replaces protected attribute words to create counter-
factual sentences for further training. Follow this
line, some works (Zhou et al., 2023; Lauscher et al.,
2021) update PLMs with bias mitigation objec-
tive on a counterfactual augmented corpus. Oh et
al. (Oh et al., 2022) disentangled the original input
into two separate representations in the latent space.
Mask-based methods (Zhang et al., 2021b; Meiss-
ner et al., 2022) incorporate trainable binary mask
with the original parameters of PLMs to uncover bi-
ased features. Other works (Masoudian et al., 2024;
Zhang et al., 2018; Han et al., 2021; Jin et al., 2021;
Hauzenberger et al., 2023) present framework for
bias mitigation from adversarial view.

6.3 Auto-prompting in Fairness

Auto-prompting methods aim to guide lan-
guage models in debiasing through automatically
searched prompts. Existing automated prompting

debiasing methods can be classified into two cate-
gories: discrete prompts and continuous prompts.
(1) Discrete prompts: Auto-debias (Guo et al.,
2022) is an intrinsic debiasing method that con-
structs a search space using manual word lists and
then employs beam search to automatically find de-
biasing discrete prompts. (2) Continuous prompts:
PEFTDebias (Agarwal et al., 2023), another in-
trinsic debiasing method, applies CDA to train a
debiasing PEFT, which is then frozen during fine-
tuning process. ADEPT (Yang et al., 2023) is also
an intrinsic debiasing method that minimizes the
distance between attribute words and neutral words
in the representation space.

Apart from not relying on manual word lists,
CPAD is an external debiasing method that directly
focuses on the downstream task to effectively avoid
bias transfer. Additionally, during the debiasing
process, we do not introduce external corpora, pre-
venting the language model from learning biased
knowledge from these sources. Furthermore, our
debiasing components are modular, allowing for
the mitigation of multiple social biases and offering
high extensibility.

7 Conclusion

In this work, we introduce CPAD, which generates
continuous token lists from the entire vocabulary
space and uses them as the mapping of targets in
fairness learning process. We also present a new
fairness metric in term of fairness through unaware-
ness. Notably, our proposed method and metric
are compatible with many prompt-based methods.
Results across three NLU tasks show that CPAD is
effective on multiple categories of bias mitigation.
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Limitations

A primary limitation of CPAD is its focus on sce-
narios where a protected attribute involves only two
sensitive groups. In reality, sensitive groups can be
more complex and diverse. We aim to generalize
our proposed method to accommodate cases with
multiple sensitive groups in future work. Addi-
tionally, we recognize that prompt-tuning has been
widely used in various natural language generation
(NLG) tasks, and we plan to extend our proposed
method to address fairness objectives in NLG ap-
plications in subsequent research. Lastly, the time
cost of CPAD during the debiasing learning phase
increases with the size of the training dataset. To
mitigate this issue, we will explore the possibility
of selecting representative samples to reduce the
time cost of CPAD in a few-shot setting.

Ethics Statement

Regarding ethical considerations, our method re-
lies on demographic attribute labels for debiasing.
However, one ethical concern is the potential inac-
curacy of these labels, which could compromise
the effectiveness of our approach. For this rea-
son, practitioners should exercise caution and thor-
oughly check and pre-process their datasets before
applying our method in real-world scenarios.
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Number. template category
No.1 Text. Continuous Prompt [MASK]. (1)
No.2 Text. Continuous Prompt It is [MASK]. (2)
No.3 Text. Continuous Prompt $ProtectedAttribute is [MASK]. (3)
No.4 Text. Continuous Prompt $ProtectedAttribute: [MASK]. (3)

Table 7: Templates used in experiments:(1) Vanilla. (2)
Task-based. and (3) Demographic-based
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in pretrained language models and fine-tuning via
causal invariant learning. In Proceedings of the 61st
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 4227–
4241.

A Prototypes and Templates

Table 7 shows four templates that can be divided
into three categories: (1) Vanilla. (2) Task-based.
and (3) Demographic-based. For both the task-
specific learning phase and the debiasing learning
phase, we use the task-based templates on three
tasks. For hate speech detection and sentiment anal-
ysis, we conduct oversampling as Section 3.2.1. In
prototype generation, we repeat our experiments
on four different templates and report the best tem-
plate in main results. More results and analysis on
templates are shown in Section 5.1.

B Implementation Detials

For Hate speech detection and sentiment analysis,
we set the verbalizer associated with their labels
in task-specific learning phase. Specifically, in
hate speech detection, we set the task verbalizer
as "hate","offensive" and "neither". In sentiment
analysis, we set the task verbalizer as "sad" and
"happy", respectively. For psychometric dimension
prediction, there are simply set to be "yes" or "no".

For hate speech detection and sentiment analysis,
we randomly split train:val:test sets as 70:10:20 and
pre-process the text length as 40 tokens. For psy-
chometric dimension prediction, train:val:test sets
are divided into 80:5:15 and the maximum length
is 100 tokens. We train all the methods on NVIDIA
A40 GPUs with 48GB memory. For fair compar-
isons, all our baselines and proposed methods are
built on Albert-xxlarge-v2 (Lan, 2019). For both
phases, we set the batch size at 64 for psychomet-
ric dimension prediction and 32 for others. Follow
P-tuning (Liu et al., 2023), we choose bidirectional
long-short-term memory networks (LSTMs) for all
prompt encoders and optimize the loss function
in both stages with Adam Optimizers. We set the
length of pseudo tokens to 3 and search for the soft
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prompts from (1,2,3). In the task-specific learn-
ing phase, we train the model in 5 epochs and set
the initial learning rate at 1e-4. In the debiasing
learning phase, we tune a model for 10 epochs and
set the initial learning rate at 1e-5. In both phases,
we adopt an early stop strategy if the accuracy on
validation set does not improve in 10 steps. For
single factor evaluation, the trade-off rate α is set
to 0.5. For multiple factors evaluation, the trade-off
factors α and β are set to be 0.2 and 0.4, respec-
tively. We conduct fine-grained and coarse-grained
adjustment and report the best results in main exper-
iments. More details about hyper-parameters and
adjustment methods are shown in model analysis.

C Prototype Evaluation Results on Hate
Speech Detection and Sentiment
Analysis

In this section, we provide the complete results of
the prototype evaluation referenced, focusing on
hate detection and sentiment classification on Table
8. The experiments were conducted following the
template outlined in Appendix A. Our findings
indicate that the conclusions for these two tasks
align closely with those from the psychometric di-
mension prediction mentioned in Section 5.1. The
demographic-based template effectively maintains
the model abilities, whereas the task-based tem-
plate shows a more pronounced debiasing effect.

D Adjustment Evaluation Results on
Hate Speech Detection and Sentiment
Analysis

In this section, we present the complete results
of the adjustment evaluation mentioned in Sec-
tion 5.2, focusing on hate detection and senti-
ment classification, as shown in Table 9. We
found that the conclusions for these two tasks are
largely consistent with those drawn from the psy-
chometric dimension prediction discussed in Sec-
tion 5.2. The coarse-grained adjustment method
demonstrates better debiasing performance, while
the fine-grained method has a smaller impact on
model abilities.

E Trade-off Factor Evaluation Results for
Single-attribute

In this section, we provide an analysis of the single-
attribute debiasing results referenced in Section 5.3.
Figure 3 presents the experimental results for the

hate detection task, Figure 4 showcases the findings
for sentiment classification, and Figure 5 displays
the results for the Psychometric Dimension Predic-
tion task. A more detailed analysis is available in
Section 5.3. In line with the two-attribute debiasing
results, we aim to strategically adjust the propor-
tion of hyper-parameter in practical applications
to achieve a balance between fairness and model
abilities.

F Continuous Token List Evaluation

To further verify the limitations of manual word
lists in external debiasing, we conducted supple-
mentary experiments using manual word lists on
Numeracy. The word lists we use in bias mitiga-
tion are the same as Auto-debias (Guo et al., 2022).
Due to the difficulty of obtaining manual word lists
on age, we mitigate bias on race. The search range
of trade-off factor α is set to be {0.1, 0.2, .., 0.9}.
We conduct two adjustments on CPAD-manual as
CPAD and we report the best results on race. The
results are shown in Table 10. First, we acknowl-
edge that manual word lists are effective for exter-
nal debiasing. However, CPAD consistently outper-
forms CPAD-manual in both adjustment methods.
This observation further verifies the effectiveness of
continuous verbalizers in external debiasing. Sec-
ondly, we observed that CPAD-manual has a more
significant negative impact on age after debiasing
for race compared to CPAD.

G Intersectional Bias Mitigation
Evaluation

To further explore the application of CPAD in ad-
dressing intersecting biases, we conducted addi-
tional experiments on the Numeracy. We miti-
gate social biases related to race and age across
four 2x2 binary subgroups. We apply two adjust-
ment methods on CPAD and report the results
of CPAD on group fairness. The search range
of trade-off factors α and β are both set to be
{0.0, 0.1, 0.2, ..., 0.9}, where α+ β ≤ 1.

Following group fairness desiderata of equal-
ity of odds, we first calculate the True Positive
Rates(TPR) and True Negative Rates (TNR) across
different sub-groups as follows:

TPRgap =

∑
gi∈G

∑
gj∈G,i ̸=j

∣∣TPRgi − TPRgj

∣∣
|G| × |G|

(16)
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Temp.
Hate Speech Dectection Sentiment Analysis

ACC(%) GAPTPR(%) GAPTNR(%) Overall(%) ACC(%) GAPTPR(%) GAPTNR(%) Overall(%)
No.1 87.75 7.92 3.96 11.88 79.70 19.54 38.32 57.86
No.2 87.33 7.84 3.92 11.76 72.60 8.2 33.09 41.29
No.3 86.29 6.82 3.41 10.23 75.99 22.30 26.67 48.97
No.4 87.65 8.77 4.38 13.15 75.44 10.75 35.43 46.18

Biased. 87.62 8.86 4.43 13.29 79.82 19.75 36.28 56.03

Table 8: Prototype evaluation results in hate speech detection and sentiment analysis: The first and second best
results are indicated in bold and underline, respectively. We report the results with template No.3 for hate speech
detection and No.2 for sentiment analysis. Higher accuracy, lower gap and lower overall are better.

Adjustment
Hate Speech Detection Sentiment Analysis

ACC(%) Leakage(%) GAPTPR(%) GAPTNR(%) Overall(%) ACC(%) Leakage(%) GAPTPR(%) GAPTNR(%) Overall(%)
Fine-grained 87.36 77.82 7.75 3.87 11.62 79.6 78.71 20.39 36.01 56.40

Coarse-grained 86.29 76.72 6.82 3.41 10.23 72.60 73.89 8.20 33.09 41.29
Biased. 87.62 77.79 8.86 4.43 13.27 79.82 82.78 19.75 36.28 56.03

Table 9: Adjustment evaluation results in hate speech detection and sentiment analysis: The best results are indicated
in bold. We report the results with template No.3 for hate speech detection and No.2 for sentiment analysis. Higher
accuracy, lower gap, lower overall and closer to 50% Leakage are better.

(a) Fine-grained adjustment

(b) Coarse-grained adjustment

Figure 3: Trade-off factor α evaluation results in hate speech detection with template No.3. Higher accuracy, lower
gap, lower overall and closer to 50% Leakage are better.

Model ACC(%) Race Age
Overall(%)

ACC0(%) ACC1(%) GAPTPR(%) GAPTNR(%) Overallrace(%) ACC0 ACC1(%) GAPTPR(%) GAPTNR(%) Overallage(%)

P-tuning 70.69 76.47 67.64 13.29 12.41 25.70 68.98 71.13 9.71 0.28 9.99 35.69
CPAD-manual 70.75 76.29 67.83 13.10 11.65 24.75 69.29 71.13 10.61 1.18 11.79 36.54

CPAD-race 70.32 76.83 66.83 12.49 8.31 20.8 70.18 70.36 7.63 0.80 8.43 29.23
CPAD-age 69.15 78.25 64.35 10.65 8.57 19.22 70.78 68.73 3.37 0.68 4.05 23.27

CPAD 70.87 78.61 66.79 10.32 8.78 19.10 71.69 70.67 3.32 0.03 3.35 22.45

Table 10: Continuous token list evaluation results: The best results are indicated in bold. Higher accuracy, lower
gap and lower overall are better.
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(a) Fine-grained adjustment

(b) Coarse-grained adjustment

Figure 4: Trade-off factor α evaluation results in sentiment analysis with template No.2. Higher accuracy, lower
gap, lower overall and closer to 50% Leakage are better.

TNRgap =

∑
gi∈G

∑
gj∈G,i ̸=j

∣∣TNRgi − TNRgj

∣∣
|G| × |G|

(17)
where |G| is the number of subgroups. The we
sum up TPRgap and TNRgap to report the overall
score as follows:

overallgap = TPRgap + TNRgap (18)

Considering the changes in task performance de-
scribed in section 5.3, values of a > 0.5 or b > 0.5
have a significantly negative impact on the task per-
formance. Therefore, We suggest focusing on the
cases where a ≤ 0.5 and b ≤ 0.5. The experimen-
tal results are shown in Figure 6.

Bias Examination we quantified the intersecting
biases present in the native language model, where
α and β are both set to be 0.

Single-attribute debiasing We observed that
CPAD-age and CPAD-race demonstrated contin-
uous debiasing results in single-attribute debias-
ing. This finding reveals the significant potential of
CPAD in addressing intersecting biases.

Two-attributes debiasing We find that the com-
bined of CPAD-age and CPAD-race achieves better
results in addressing intersecting biases compared
to single-attribute debiasing. We believe this is
because mitigating multiple biases simultaneously

can balance the negative impacts between single-
attribute debiasings. We believe that researching
the simultaneous debiasing of multiple attributes is
of significant importance.

(a) Results on fine-grained adjustment

(b) Results on coarse-grained adjustment

Figure 6: Intersectional bias mitigation results in psy-
chometric dimension prediction with template No.2.
Lower overall is better.
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(a) Fine-grained adjustment on race

(b) Coarse-grained adjustment on race

(c) Fine-grained adjustment on age

(d) Coarse-grained adjustment on age

Figure 5: Trade-off factor α evaluation results in psychometric dimension prediction with template No.2. Higher
accuracy, lower gap, lower overall and closer to 50 Leakage are better.
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