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Abstract

Large language models (LLMs) have revolu-
tionized natural language processing and broad-
ened their applicability across diverse commer-
cial applications. However, the deployment of
these models is constrained by high inference
time in multilingual settings. To mitigate this
challenge, this paper explores a training recipe
of an assistant model in speculative decoding,
which is leveraged to draft and-then its future
tokens are verified by the target LLM. We show
that language-specific draft models, optimized
through a targeted pretrain-and-finetune strat-
egy, substantially brings a speedup in inference
time compared to the previous methods. We
validate these models across various languages
in inference time, out-of-domain speedup, and
GPT-4o evaluation.

1 Introduction

Large language models (LLMs) such as Gem-
ini (Team et al., 2023), GPT (Achiam et al., 2023),
and Llama (Touvron et al., 2023a) have remarkable
success across various natural language processing
tasks. Their deployment in commercial settings
has expanded to include applications such as cod-
ing assistance, writing support, conversational in-
terfaces, and tools for search (Reid et al., 2024).
Despite their potential, the practical deployment
of these models is often limited by prohibitively
high inference time, particularly in multilingual
contexts (Ahia et al., 2023). For example, character-
level and byte-level models exhibit encoding length
discrepancies exceeding fourfold for certain lan-
guage pairs, resulting in significant disparities in
cost and inference time available to different lan-
guage communities (Petrov et al., 2024). These
challenges present substantial hurdles to scalable
and cost-efficient applications of LLMs.

Speculative decoding, utilizing assistant mod-
els, has emerged as a promising strategy to im-
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Figure 1: Speedup ratio1 relative to the standard au-
toregressive greedy decoding on various multilingual
datasets. Target model is Vicuna 7B v1.3 and the drafter
is Vicuna 68M. Speculative greedy sampling is imple-
mented with the drafter by Yang et al. (2024) (green)
and our specialized drafter (pretrain-and-finetune) (red).

prove LLM inference efficiency (Leviathan et al.,
2023; Chen et al., 2023; Xia et al., 2024), inspired
by speculative execution (Burton, 1985). This
method drafts potential future tokens by leverag-
ing a smaller model for the initial predictions. In
parallel, these tokens are verified by the target
LLM, ensuring only outputs aligned with the target
LLM’s predictions are accepted. Recent efforts are
focused on aligning these initial predictions with
the target LLM’s outputs (Liu et al., 2023; Zhou
et al., 2023). This involves advancing the training
methods and modifying the architectural design of
drafters (Miao et al., 2024; Li et al., 2024).

Although speculative decoding has garnered con-
siderable hype recently, the adaptation of this ap-
proach to multilingual scenarios common in real-
world applications remains largely unexplored. Pre-
vailing methods (Cai et al., 2024; Li et al., 2024;
Yang et al., 2024) use small drafters simply trained
on datasets such as ShareGPT (ShareGPT, 2023)
which is often used for instruction tuning of LLMs
to learn a pattern of target LLM’s language model-
ing. However, our investigations reveal that such
approaches are insufficient for multilingual transla-

1Evaluated on a single RTX3090 GPU with a batch size 1.
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Figure 2: Speedup comparison of various speculative
decoding methods on WMT16 De-En dataset (Bojar
et al., 2016) with greedy settings (T=0.0) across various
hardwares. Target model is Vicuna-7B.

tion (Figure 1). This research also raises concerns
regarding the capacity of such small drafters with
simple tuning to comprehend the nuances of all
target languages, thus questioning the feasibility of
employing such models for universal speculative
decoding. This paper aims to shed light on the be-
haviors of drafters in speculative decoding within
multilingual tasks and to explore their efficacy. Our
contributions are as follows:

• We demonstrate that the strategy of pretrain-
and-finetune significantly improves the align-
ment of drafter models, achieving the highest
speedup ratio among the baselines (Figure 2).

• We find that the speedup ratio increases as the
number of tokens specific to the target task
used in training increases. This speedup is
logarithmically proportional to the scale of
token count in drafter training.

• In multilingual translation, we observe that
input languages consistent with the training
set result in notable speedup, whereas outputs
aligned with the training domain do not nec-
essarily lead to improved performance. Addi-
tionally, our results are corroborated by GPT-
4o judgment scores and qualitative analyses.

2 Method

2.1 Preliminaries: speculative decoding
Speculative decoding employs a draft-verify-accept
paradigm for fast inference. This method leverages
a simpler assistant model (Mp) to predict easy to-
kens, thereby addressing memory bandwidth con-
straints in LLM inference (Shazeer, 2019):

1. Draft: An assistant model Mp, which is less
computationally intensive than the target LLM
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Figure 3: Speedup2 comparison across categories
containing multi-turn conversation (MT-Bench) (Zheng
et al., 2024), math reasoning (GSM8K) (Cobbe et al.,
2021), and translation (WMT16 De-En). Target model
is Vicuna-7B with speculative greedy sampling.

Mq, drafts the future tokens {xt1 , . . . , xtK}
based on the input sequence x1, . . . , xt.

2. Verify: The target LLM Mq assesses
each token xti regarding whether it is
aligned with its own predictions: pi =
Mp(xti |x1, . . . , xt, xt1 , . . . , xti−1), qi =
Mq(xti |x1, . . . , xt, xt1 , . . . , xti−1).

3. Accept: Tokens meeting the validation cri-
teria (e.g., rejection sampling) aligned with
Mq’s outputs are retained. Tokens failing ver-
ification are either discarded or corrected, and
the draft-verify cycle is repeated.

In this paper, the verification process employs
rejection sampling (Leviathan et al., 2023; Li et al.,
2024) when the temperature parameter is above
zero to accept only tokens that closely match Mq’s
predictions. For greedy decoding with a tempera-
ture of zero, tokens are accepted if they are identi-
cal to Mq’s predictions.

2.2 Motivation

Our evaluation of various speculative models, in-
cluding SpS (Chen et al., 2023), Medusa (Cai et al.,
2024), Eagle (Li et al., 2024), as shown in Figure 3,
demonstrates that speedup ratios significantly dif-
fer by task domain. While these models excel in
English tasks such as multi-turn conversations and
mathematical reasoning, where they achieve no-
table speed improvements, they underperform in
translation tasks (red dotted box in Figure 3). This
result confirms that the effectiveness of these mod-
els is not universal but may be highly language-
specific. The consistent underperformance in trans-

2Evaluated on a single RTX3090 GPU with a batch size 1.
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Figure 4: Speedup with speculative greedy sampling
on the WMT16 De-En dataset as the training token for
finetune (F) count varies, displayed on a logarithmic
x-axis. ‘P-F’ represents our strategy and ‘F’ involves
training solely on De-En without pretrain step (P).

lation tasks highlights a key weakness and drives
our study towards developing specialized drafters.

2.3 Training specialized assistant models

At the core of our approach is the recognition that
smaller models, due to their inherent limited capac-
ity, struggle to capture the diverse token distribu-
tions across languages. To address this challenge,
we present specialized drafter models tailored to
each language. Our strategy consists of:

1. Pretrain (P): Assistant models are pretrained
on a part of C4 (Raffel et al., 2019) and
ShareGPT dataset (ShareGPT, 2023) for lan-
guage modeling.

2. Finetune (F): The models are finetuned on the
target lingual task with instructions to refine
their responses to non-English inputs.

While the practices of pretraining and finetuning
are well-established paradigms in language model
training, applying these steps to drafter models
represents a novel adaptation within the field. Tra-
ditionally, assistant models have been trained from
scratch with little strategic rationale or clear justifi-
cation for dataset selection.

Figure 4 shows that the pretrain-and-finetune
strategy significantly the speedup ratio as the num-
ber of training tokens increases. Our ‘P-F’ ap-
proach outperforms models that are only finetuned
(F), and even surpasses the speedup rates by Yang
et al. (2024), which stood at 1.12.

Dataset with self-distillation The training
dataset for our assistant models is generated
through self-distillation from the target LLM, en-
suring alignment with its outputs (Kim and Rush,
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Figure 5: Speedup with speculative greedy sampling on
various out-of-domain dataset as the drafters for ‘Ours
(P-F)’ and ‘F’ are trained on WMT16 De-En dataset.

2016; Zhou et al., 2023; Cai et al., 2024). To cap-
ture the full range of the target’s output variability,
we generate multiple responses at a range of tem-
peratures—{0.0, 0.3, 0.7, 1.0}.

3 Experiment

3.1 Experimental setup

Models We utilize Vicuna 7B (Chiang et al.,
2023), Gemma-Instruct 7B (Team et al., 2024),
and Llama2-chat (Touvron et al., 2023b) as target
LLMs. The drafter models employed include Vi-
cuna 68M (Yang et al., 2024), a custom Gemma
250M drafter and Llama 68M (Miao et al., 2024).
Training configurations are outlined in Appendix F.

Number of drafts For speculative sampling
(SpS), we use a single draft candidate (Chen et al.,
2023). In contrast, Medusa and Eagle models are
evaluated using multiple drafts via tree-attention
mechanism by following their original settings.

Training and evaluation Training datasets
for each target model are generated via self-
distillation and comprise five datasets: Ger-
man (De)→English (En), French (Fr)→En, Rus-
sian (Ru)→En, Japanese (Ja)→En and Chinese
(Zh)→En, each with 4 million (M) conversations
(∼ 1.3 billion (B) tokens) sourced from WMT14
Fr-En (Bojar et al., 2014), WMT16 De-En, and Ru-
En (Bojar et al., 2016), and JParaCrawl-v3.0 (Mor-
ishita et al., 2022). Evaluations are conducted using
a single NVIDIA 3090 GPU, under both greedy set-
tings (T=0.0) and for diversity at T=1.0 with three
different seeds. The details are in Appendix F.

3.2 Main result

Overall Table 1 shows that our specialized
drafter (pretrain-and-finetune) for targeted lan-
guages demonstrates superior performance across
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Table 1: Speedup comparison of different methods for Vicuna 7B v1.3. Results are provided for T=0.0 and T=1.0
across various translation tasks. For our approach, each drafter is finetuned with the corresponding dataset.

Method
T=0.0 T=1.0

De→En Fr→En Ru→En Ja→En Zh→En Avg De→En Fr→En Ru→En Ja→En Zh→En Avg

Sps - Yang et al. (2024) 1.19±0.06 1.14±0.05 1.11±0.04 1.23±0.03 1.22±0.00 1.18±0.04 1.07±0.03 1.06±0.02 1.04±0.01 1.15±0.02 1.11±0.02 1.09±0.02

Lookahead (Fu et al., 2024) 1.03±0.01 1.01±0.02 0.98±0.01 1.00±0.01 0.96±0.00 1.00±0.01 1.03±0.03 1.04±0.03 0.99±0.00 0.98±0.05 0.98±0.00 1.01±0.02

PLD (Saxena, 2023) 1.13±0.06 1.05±0.04 1.03±0.00 1.09±0.05 0.99±0.07 1.06±0.05 - - - - - -
Medusa (Cai et al., 2024) 1.58±0.05 1.57±0.01 1.52±0.01 1.55±0.01 1.43±0.00 1.53±0.02 1.61±0.03 1.69±0.01 1.62±0.00 1.72±0.01 1.60±0.01 1.65±0.01

Eagle (Li et al., 2024) 1.90±0.05 1.88±0.00 1.67±0.05 1.88±0.01 1.75±0.01 1.81±0.02 1.57±0.00 1.61±0.01 1.45±0.02 1.63±0.01 1.51±0.03 1.55±0.01

Sps - pretrain-and-finetune (Ours) 2.42±0.02 2.05±0.04 1.74±0.02 1.71±0.01 1.52±0.01 1.89±0.02 1.99±0.01 1.86±0.03 1.58±0.00 1.67±0.01 1.44±0.00 1.71±0.01

Table 2: Examples of speculative decoding on WMT16
De-En dataset. Black indicates standard decoded output
and magenta indicates accepted draft tokens.

Input

Translate German to English: So wie er gestartet ist , wird es nicht lange dauern
, bis er auf der „ Pferd des Jahres “ -Schau ist – und ich bin mir sicher , dass er
gut abschneiden wird.

SpS with a drafter by Yang et al. (2024)

As he started, it won’t take long until he’s on the "Horse of the Year" show, and
I’m sure he’ll do well.

Eagle (Li et al., 2024)

As he started, it won’t take long until he’s on the "Horse of the Year" show, and
I’m sure he’ll do well.

SpS with our specialized drafter (pretrain-and-finetune)

As he started, it won’t take long until he’s on the "Horse of the Year" show, and
I’m sure he’ll do well.

multiple translation tasks, recording the highest
speedup in both deterministic (T=0.0) and diverse
(T=1.0) settings. At T=0.0, our model outperforms
all competitors with an average speedup ratio of
1.89. Similarly, at T=1.0, it maintains robust per-
formance with an overall speedup ratio of 1.71.

Speedup on out-of-domain translation tasks
As Figure 5 shows, our analysis reveals variability
when applying the drafter, trained on the WMT16
De-En dataset, across diverse translation pairs.
Speedups are consistently higher when translating
from German to other languages, highlighting the
importance of input domain consistency with the
training data. Conversely, translations involving
non-German languages with English and English-
German pairings show limited gains. This result
emphasizes that effective speculation depends more
on matching the input domain of the translation task
with the training data than on the output domain.

Qualitative analysis on responses Table 2 pro-
vides examples of speculative inference on the
WMT16 De-En dataset. Both Eagle and our
method incorporate a significant number of ac-
cepted tokens from drafts. However, our model
achieves this with ∼ 75% fewer parameters, lead-

De-En Fr-En Ru-En Ja-En Zh-En
Dataset
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es Target
Yang et al. (2024)
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Figure 6: GPT-4o judgment scores following the Zheng
et al. (2024) on various multilingual translation dataset.
The score is evaluated random sampling with T=1.0.

Table 3: Ablations with speedup as the training stages
continue on WMT19 Zh→En.

Target LLM - Drafter P + F

Gemma-Instruct 7B - Gemma 250M 0.92±0.01 1.04±0.02

Llama2-chat 7B - Llama 68M 1.47±0.00 1.95±0.01

ing to reduced latency and faster inference time
(Table 1). Similar to the findings in Kim et al.
(2024), Speculation typically takes place at criti-
cal junctions of the sentence such as transitions
between clauses and phrases.

GPT-4o judgment analysis Figure 6 depicts the
GPT-4o judgment scores (Zheng et al., 2024) gener-
ated using a temperature of 1.0. Our drafter closely
matches the target Vicuna LLM across multiple
datasets. The setup and further results are in Ap-
pendix F and Appendix G.

Ablation study Table 3 presents the ablation
results, illustrating the progressive impact of the
pretrain-and-finetune approach on the performance
of Gemma and Llama2-chat models.

4 Discussion

4.1 Why is pretrain-and-finetune better in
small-size LM drafter?

Drafting in speculative decoding has been treated
akin to n-gram prediction (Bhendawade et al.,
2024), often relying on straightforward pretrain-
ing using datasets designed to replicate target LLM
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behaviors, such as the ShareGPT dataset (Yang
et al., 2024). This approach posits that generat-
ing a limited sequence of future tokens suffices for
speculative inference.

Contrary to this belief, our empirical result
presents a different narrative. Figure 5 illustrates
that even in seemingly straightforward translation
tasks, such as from German to English, outcomes
are not as effective. This suggests that drafting
requires a broader array of language modeling ca-
pabilities to manage complex linguistic structures
and context variations effectively.

Drafters, therefore, benefit significantly from a
robust pretrain-and-finetune approach, where they
are first exposed to a wide array of linguistic con-
texts and then finely tuned to specific tasks. This
training regimen transforms them into compact, yet
comprehensive, language models capable of han-
dling diverse and challenging speculative decoding
scenarios with better alignment.

4.2 Number of drafts

This study primarily explores the speculative decod-
ing process utilizing a single draft. In contrast, ad-
vanced baseline methods such as Eagle and Medusa
deploy multiple drafts, leveraging tree-attention
mechanisms to enrich draft selection. This tech-
nique allows for a broader exploration of multiple
draft candidates at each decoding step, potentially
increasing the rate and quality of accepted drafts.

Adapting our approach to incorporate multiple
drafts with tree-attention could significantly en-
hance performance, suggesting an untapped poten-
tial in our method. Experimenting with this ex-
panded setup could lead to notable improvements
in the speculative sampling’s effectiveness, particu-
larly in increasing the mean number of high-quality
tokens accepted per sequence. This prospect opens
a critical path for future research, where deeper
explorations could elevate the capabilities of our
specialized drafters.

Further discussions are in Appendix G.

5 Conclusion

This paper has demonstrated that the pretrain-and-
finetune strategy for training drafters significantly
enhances speedup ratio relative to standard autore-
gressive decoding in multilingual translation tasks.
This gain grows logarithmically with the increase
in the number of training tokens. Supported by
qualitative analysis, out-of-domain analysis, and

GPT-4o evaluation, this strategy substantially out-
performs the state-of-the-art methods in various
language pairs. Our study uncovers approaches to
maximize the benefits from drafter models, thereby
setting a new benchmark in this area.

Limitations

Despite the improvement, our approach, requir-
ing separate drafters for each language, introduces
complexities in deployment, especially in multilin-
gual settings. For instance, in environments where
multiple languages are frequently interchanged,
such as multinational corporations or global cus-
tomer service platforms, the lack of an automated
drafter selection system could hinder operational
efficiency. Currently, our study focuses on inde-
pendent drafters; however, examining systems that
utilize interdependent models, similar to Eagle and
Medusa, might offer insights into more interest-
ing strategies. Additionally, while our findings
are promising for translation tasks, expanding this
methodology to other multilingual applications,
like real-time multilingual generation or summa-
rization, is essential to understand its broader ap-
plicability and uncover additional constraints.

This work primarily presents no direct ethical
concerns. Further discussions are detailed in Ap-
pendix B and Appendix H.
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Ondřej Bojar, Christian Buck, Christian Federmann,
Barry Haddow, Philipp Koehn, Johannes Leveling,
Christof Monz, Pavel Pecina, Matt Post, Herve Saint-
Amand, et al. 2014. Findings of the 2014 workshop
on statistical machine translation. In Proceedings of
the ninth workshop on statistical machine translation,
pages 12–58.

Ondrej Bojar, Rajen Chatterjee, Christian Federmann,
Yvette Graham, Barry Haddow, Matthias Huck, An-
tonio Jimeno Yepes, Philipp Koehn, Varvara Lo-
gacheva, Christof Monz, et al. 2016. Findings of
the 2016 conference on machine translation (wmt16).
In First conference on machine translation, pages
131–198. Association for Computational Linguistics.

F Warren Burton. 1985. Speculative computation, par-
allelism, and functional programming. IEEE Trans-
actions on Computers, 100(12):1190–1193.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng,
Jason D Lee, Deming Chen, and Tri Dao. 2024.
Medusa: Simple llm inference acceleration frame-
work with multiple decoding heads. arXiv preprint
arXiv:2401.10774.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving,
Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. 2023. Accelerating large language model
decoding with speculative sampling. arXiv preprint
arXiv:2302.01318.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich,
Basil Hosmer, Bram Wasti, Liangzhen Lai, Anas
Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed
Roman, et al. 2024. Layer skip: Enabling early
exit inference and self-speculative decoding. arXiv
preprint arXiv:2404.16710.

Yimin Fan, Yaobo Liang, Alexandre Muzio, Hany Has-
san, Houqiang Li, Ming Zhou, and Nan Duan. 2021.
Discovering representation sprachbund for multilin-
gual pre-training. arXiv preprint arXiv:2109.00271.

Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang.
2024. Break the sequential dependency of llm in-
ference using lookahead decoding. arXiv preprint
arXiv:2402.02057.

Fabian Gloeckle, Badr Youbi Idrissi, Baptiste Rozière,
David Lopez-Paz, and Gabriel Synnaeve. 2024. Bet-
ter & faster large language models via multi-token
prediction. arXiv preprint arXiv:2404.19737.

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. 2023.
Minillm: Knowledge distillation of large language
models. In The Twelfth International Conference on
Learning Representations.

Dan Hendrycks and Kevin Gimpel. 2016. Gaus-
sian error linear units (gelus). arXiv preprint
arXiv:1606.08415.

Taehyeon Kim, Ananda Theertha Suresh, Kishore A Pa-
pineni, Michael Riley, Sanjiv Kumar, and Adrian
Benton. 2024. Exploring and improving drafts
in blockwise parallel decoding. In Workshop
on Efficient Systems for Foundation Models II @
ICML2024.

Yoon Kim and Alexander M Rush. 2016. Sequence-
level knowledge distillation. arXiv preprint
arXiv:1606.07947.

Jongwoo Ko, Sungnyun Kim, Tianyi Chen, and Se-
Young Yun. 2024. Distillm: Towards streamlined
distillation for large language models. arXiv preprint
arXiv:2402.03898.

Yaniv Leviathan, Matan Kalman, and Yossi Matias.
2023. Fast inference from transformers via spec-
ulative decoding. In International Conference on
Machine Learning, pages 19274–19286. PMLR.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang
Zhang. 2024. Eagle: Speculative sampling re-
quires rethinking feature uncertainty. arXiv preprint
arXiv:2401.15077.

Zhuohan Li, Eric Wallace, Sheng Shen, Kevin Lin, Kurt
Keutzer, Dan Klein, and Joey Gonzalez. 2020. Train

10794

https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://openreview.net/forum?id=KtnUTS1f91
https://openreview.net/forum?id=KtnUTS1f91


big, then compress: Rethinking model size for effi-
cient training and inference of transformers. In In-
ternational Conference on machine learning, pages
5958–5968. PMLR.

Xiaoxuan Liu, Lanxiang Hu, Peter Bailis, Ion Sto-
ica, Zhijie Deng, Alvin Cheung, and Hao Zhang.
2023. Online speculative decoding. arXiv preprint
arXiv:2310.07177.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao
Cheng, Zeyu Wang, Zhengxin Zhang, Rae Ying Yee
Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, et al.
2024. Specinfer: Accelerating large language model
serving with tree-based speculative inference and
verification. In Proceedings of the 29th ACM Interna-
tional Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Vol-
ume 3, pages 932–949.

Makoto Morishita, Katsuki Chousa, Jun Suzuki, and
Masaaki Nagata. 2022. Jparacrawl v3. 0: A large-
scale english-japanese parallel corpus. arXiv preprint
arXiv:2202.12607.

OpenAI. 2024. Hello GPT-4o. Accessed: Insert the
current date.

Jiayi Pan. 2023. Tiny-vicuna 1b. https://
huggingface.co/Jiayi-Pan/Tiny-Vicuna-1B.

David A Patterson. 2004. Latency lags bandwith. Com-
munications of the ACM, 47(10):71–75.

Aleksandar Petrov, Emanuele La Malfa, Philip Torr,
and Adel Bibi. 2024. Language model tokenizers
introduce unfairness between languages. Advances
in Neural Information Processing Systems, 36.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv e-prints.

Machel Reid, Nikolay Savinov, Denis Teplyashin,
Dmitry Lepikhin, Timothy Lillicrap, Jean-baptiste
Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Fi-
rat, Julian Schrittwieser, et al. 2024. Gemini 1.5: Un-
locking multimodal understanding across millions of
tokens of context. arXiv preprint arXiv:2403.05530.

Apoorv Saxena. 2023. Prompt lookup decoding.

Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani,
Dara Bahri, Vinh Tran, Yi Tay, and Donald Metzler.
2022. Confident adaptive language modeling. Ad-
vances in Neural Information Processing Systems,
35:17456–17472.

ShareGPT. 2023. Sharegpt: Vicuna unfiltered
dataset. https://huggingface.co/datasets/
Aeala/ShareGPT_Vicuna_unfiltered. Accessed:
2024.

Noam Shazeer. 2019. Fast transformer decoding:
One write-head is all you need. arXiv preprint
arXiv:1911.02150.

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit.
2018. Blockwise parallel decoding for deep autore-
gressive models. Advances in Neural Information
Processing Systems, 31.

Gemini Team, Rohan Anil, Sebastian Borgeaud,
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai,
Anja Hauth, et al. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Gemma Team, Thomas Mesnard, Cassidy Hardin,
Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale,
Juliette Love, et al. 2024. Gemma: Open models
based on gemini research and technology. arXiv
preprint arXiv:2403.08295.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023a. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023b. Llama 2: Open foundation and
fine-tuned chat models. Preprint, arXiv:2307.09288.

Neeraj Varshney, Agneet Chatterjee, Mihir Parmar, and
Chitta Baral. 2023. Accelerating llama inference by
enabling intermediate layer decoding via instruction
tuning with lite. arXiv e-prints, pages arXiv–2310.

Heming Xia, Zhe Yang, Qingxiu Dong, Peiyi Wang,
Yongqi Li, Tao Ge, Tianyu Liu, Wenjie Li, and
Zhifang Sui. 2024. Unlocking efficiency in large
language model inference: A comprehensive sur-
vey of speculative decoding. arXiv preprint
arXiv:2401.07851.

10795

https://openai.com/index/hello-gpt-4o/
https://huggingface.co/Jiayi-Pan/Tiny-Vicuna-1B
https://huggingface.co/Jiayi-Pan/Tiny-Vicuna-1B
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://github.com/apoorvumang/prompt-lookup-decoding/
https://huggingface.co/datasets/Aeala/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/Aeala/ShareGPT_Vicuna_unfiltered
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288


Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu,
Julien Demouth, and Song Han. 2023. Smoothquant:
Accurate and efficient post-training quantization for
large language models. In International Conference
on Machine Learning, pages 38087–38099. PMLR.

Nan Yang, Tao Ge, Liang Wang, Binxing Jiao, Daxin
Jiang, Linjun Yang, Rangan Majumder, and Furu
Wei. 2023. Inference with reference: Lossless ac-
celeration of large language models. arXiv preprint
arXiv:2304.04487.

Sen Yang, Shujian Huang, Xinyu Dai, and Jiajun Chen.
2024. Multi-candidate speculative decoding. arXiv
preprint arXiv:2401.06706.

Jun Zhang, Jue Wang, Huan Li, Lidan Shou, Ke Chen,
Gang Chen, and Sharad Mehrotra. 2023. Draft
& verify: Lossless large language model accelera-
tion via self-speculative decoding. arXiv preprint
arXiv:2309.08168.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2024.
Judging llm-as-a-judge with mt-bench and chatbot
arena. Advances in Neural Information Processing
Systems, 36.

Yongchao Zhou, Kaifeng Lyu, Ankit Singh Rawat,
Aditya Krishna Menon, Afshin Rostamizadeh, San-
jiv Kumar, Jean-François Kagy, and Rishabh Agar-
wal. 2023. Distillspec: Improving speculative de-
coding via knowledge distillation. arXiv preprint
arXiv:2310.08461.

10796



A Overview of appendix

This appendix provides supplementary material
that expands on the main contents. Each section is
designed to complement the research presented:

• Appendix B: Broader impact - Examines the
wider implications of our findings on specula-
tive decoding.

• Appendix C: Future work - Outlines possible
directions for future research, building upon
the current study’s findings to explore new
avenues and improvements.

• Appendix D: Related works - Provides a
comprehensive review of literature and pre-
vious research that relate to the speculative
decoding techniques discussed in the paper.

• Appendix E: Algorithm - Details the algo-
rithms used in the speculative decoding pro-
cesses, providing pseudocode and explana-
tions to support reproducibility.

• Appendix F: Implementation details - Offers
an in-depth look at the practical implemen-
tation of the speculative decoding methods,
including baselines, self-distillation, training,
and GPT-4o evaluation.

• Appendix G: Additional experimental re-
sults - Presents extra experimental data and
analyses that were not included in the main
sections due to space constraints.

• Appendix H: Discussions - Engages in discus-
sions on results, such as foundational beliefs
that underpin our research approach, the num-
ber of drafts used, and drafter size.

Each appendix is intended to provide clarity and
additional context to the research.

B Broader impact

Implementing language-specific drafters signifi-
cantly enhances the speed of large language models
tailored to diverse linguistic environments. For in-
stance, a system could leverage heuristic analysis
of input prompt token distributions to automatically
select an optimal drafter, streamlining processing
efficiency. Moreover, if a user interface allows indi-
viduals to choose their preferred language, the sys-
tem can instantly apply the corresponding drafter,
thereby accelerating response times considerably.

Such advancements not only reduce computational
load but also enrich the user experience by pro-
viding rapid and culturally relevant responses in
multilingual contexts.

C Future work

Future projects will explore broadening the scope
of our speculative decoding framework to cover
general multi-task environments, extending beyond
multilingual translation to include varied domains
such as legal and medical text processing. A sig-
nificant challenge lies in developing an efficient
method for selecting the appropriate drafter among
multiple options when direct user input is unavail-
able or when inputs consist of mixed languages.
This issue becomes more complex as the ambigu-
ity of language indicators increases. To alleviate
this, designing an advanced router capable of intel-
ligently assigning tasks to the most suitable drafter
based on the nature of the input presents a promis-
ing direction. Training such a router involves lever-
aging advanced techniques to understand and pre-
dict the optimal drafter based on contextual rep-
resentations. This approach aims to improve the
overall efficiency and accuracy of language model
applications across diverse and dynamically chang-
ing content landscapes.

D Related works

D.1 Speculative decoding
Speculative decoding, advancing from blockwise
parallel decoding introduced by Stern et al. (2018),
adopts a draft-then-verify paradigm to enhance
LLM inference efficiency. This method addresses
latency issues in autoregressive decoding, which
stem from the extensive memory transfers required
for each token generation, leading to computational
underutilization (Xia et al., 2024; Patterson, 2004).
To further advance this paradigm, Leviathan et al.
(2023) and Chen et al. (2023) introduced specu-
lative decoding and sampling, which includes the
lossless acceleration of various sampling methods.
These methods utilize smaller models from the
same series, such as T5-small, to accelerate infer-
ence for larger counterparts like T5-XXL without
additional training.

Recent advancements in speculative decoding,
exemplified by models like EAGLE (Li et al.,
2024) and Medusa (Cai et al., 2024), have sig-
nificantly refined the efficiency of LLMs by in-
tegrating lightweight feedforward neural network

10797



Algorithm 1: Speculative sampling
input : Target LLMMq, a small assistant modelMp, initial prompt sequence x1, . . . , xt and target

sequence length T .
1: Initialize t← 1
2: while t < T do
3: for k ← 1, . . . ,K do
4: xtk ∼Mp(x|x1, . . . , xt, xt1 , . . . , xtk−1

)
5: end for
6: In parallel, compute K + 1 sets of logits drafts xt1 , . . . , xtK with the target LLMMq:

Mq(x|x1, . . . , xt),Mq(x|x1, . . . , xt, xt1), . . . ,Mq(x|x1, . . . , xt, xt1 , . . . , xtK )
7: for j ← 1, . . . ,K do
8: Sample r ∼ U [0, 1] from a uniform distribution
9: if r < min(1,

Mq(x|x1,...,xt+j−1)
Mp(x|x1,...,xt+j−1)

) then
10: Set xt+j ← xtj and t← t+ 1
11: else
12: Sample xt+j ∼ (Mq(x|x1, . . . , xt+j−1)−Mp(x|x1, . . . , xt+j−1))+ and exit for loop.
13: end if
14: end for
15: If all tokens xt+1, . . . , xt+K are accepted, sample extra token

xt+K+1 ∼Mq(x|x1, . . . , xt, xt+K) and set t← t+ 1
16: end while

(FFN) heads directly into their architecture. These
FFN heads facilitate the early drafting of token
sequences, enhancing throughput and reducing
latency. Similarly, approaches such as the self-
speculative model (Zhang et al., 2023) and El-
houshi et al. (2024) incorporate early exiting and
layer skipping strategies, allowing for a reduction
in computational load by prematurely terminating
decoding processes or bypassing less impactful
neural layers. Another line of research explores the
blockwise parallel language models with multiple
softmax heads pretrained from scratch presented by
Stern et al. (2018) by either refining its drafts (Kim
et al., 2024) or scaling up the model size (Gloeckle
et al., 2024).

D.2 Inference acceleration of LLM

As LLMs continue to evolve rapidly, enhancing
their inference speed has become a focal area of
research. Traditional techniques such as knowl-
edge distillation (Gu et al., 2023; Ko et al., 2024),
model compression (Li et al., 2020), and quantiza-
tion (Xiao et al., 2023) aim to optimize these mod-
els but often require extensive training adjustments
or significant architectural modifications. More re-
cent strategies have shifted towards applying early
exiting mechanisms, particularly within series like
T5 (Schuster et al., 2022; Bae et al., 2023) and

decoder-only architectures (Varshney et al., 2023),
to streamline inference processes. Although early
exiting can significantly hasten model responses by
truncating computational sequences, this method
typically introduces a trade-off with performance
degradation (Schuster et al., 2022).

E Algorithm: speculative sampling

By referring to Chen et al. (2023), Algorithm 1
demonstrates the speculative sampling process. Ini-
tiating with an initial prompt, an assistant model is
utilized to generate multiple prospective continua-
tions at each step, which are concurrently verified
against the target LLM’s predictions.

Each candidate token’s acceptance probability is
calculated based on the target LLM’s relative con-
fidence compared to the assistant model’s sugges-
tion (i.e., rejection sampling). If a value, randomly
drawn from a uniform distribution, falls below this
threshold, the token is accepted and incorporated
into the ongoing sequence. If not, the algorithm
recalibrates, adjusting the speculative path by di-
rectly sampling from the differences in predictions,
enhancing accuracy and contextual relevance.
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F Implementation details

F.1 Baselines
Following the Spec-Bench settings (Xia et al.,
2024), we have selected 5 speculative decoding
methods, all open-source and rigorously tested for
reliability. Each method represents a unique ap-
proach to improving LLM inference speeds:

1. SpS (Chen et al., 2023): SpS employs a
smaller LM from the same model series as
the drafter. In the verification, this method
corrects the last token with residual probabil-
ity if the token is rejected.

2. Medusa (Cai et al., 2024) and Eagle (Li
et al., 2024): Both methods enhance the tar-
get LLM by integrating additional lightweight
FFN heads. These heads are designed to ef-
ficiently draft potential token sequences de-
pending on the penultimate representations
from the target LLM.

3. Lookahead (Fu et al., 2024): This method
appends multiple special tokens to the end
of the input prompt. These tokens are used
for parallel drafting, with the resultant drafts
transformed into n-gram candidates for effi-
cient prediction.

4. PLD (Saxena, 2023): Serving as the practical
code implementation of Yang et al. (2023),
PLD selects text spans directly from the input
to serve as drafts, optimizing the relevance
and accuracy of the initial predictions.

F.2 Self-distillation
We follow the self-distillation pipeline as described
by Cai et al. (2024). Initially, a public dataset,
such as WMT 16 De-En, is selected as the train-
ing dataset. The target model’s responses are then
generated using the OpenAI API server, with input
prompts derived directly from the training dataset.

Install prerequisites For software dependencies,
CUDA 12.1 and PyTorch 2.1.2 are required. To
start the server, install the necessary dependencies:

vllm==0.4.0, openai==0.28.0

Use of vLLM We utilize the vLLM library for
self-distillation, executing the following command:

python -m
vllm.entrypoints.openai.api_server

Table 4: Custom Gemma 250M model configuration.

Configuration Value

Activation function GeLU (Hendrycks and Gimpel, 2016)
Hidden size 768

Intermediate size 6144
Number of attention heads 16
Number of hidden layers 2

Number of key-value heads 2
RMS epsilon 1e-06

Vocabulary size 256000

--model lmsys/vicuna-7b-v1.3
--port 8000 --max-model-len 2048

Input prompt For instance, when self-
distillation the WMT14 Fr-En dataset using the
Vicuna7b v1.3 model, the input prompt consists
of a system prompt and a user prompt. In the user
prompt, we prepend "Translate French to English:
".

A chat between a curious user and an arti-
ficial intelligence assistant. The assistant
gives helpful, detailed, and polite answers
to the user’s questions. USER: Translate
French to English: Madame la Présidente,
c’est une motion de procédure. ASSIS-
TANT:

F.3 Details on training setup

For the shared settings across all training drafters,
we employ the Fastchat3 framework. We utilize a
cosine learning rate scheduler with a warmup ratio
of 0.03 and the AdamW (Loshchilov and Hutter,
2017) optimizer. The drafter is trained using the
‘P-F’ strategy (ours) for 3 epochs, and using the
‘F’ strategy (without the pretraining step ‘P’) for 5
epochs to ensure sufficient learning. The model’s
maximum length is set to 2048 tokens. The training
is conducted using 4 GPUs with a batch size of 2
per GPU.

For finetuning the Vicuna 68M drafter (Yang
et al., 2024), the learning rate is set to 2e-5. Simi-
larly, for finetuning the Llama 68M model (Miao
et al., 2024), the learning rate is set to 3e-5.

As a drafter for Gemma-Instruct 7B model, we
newly design a Gemma 250M model as a drafter
(Table 4). We use the same training recipe with
Vicuna 68M and Llama 68M.

3https://github.com/lm-sys/FastChat/tree/main

10799

https://github.com/lm-sys/FastChat/tree/main


F.4 Details on GPT-4o evaluation

We follow LLM-as-a-Judge framework (Zheng
et al., 2024) to evaluate the model’s answers. The
GPT-4o model is utilized as a judge, which has
greater performance on both English and non-
English than GPT-4 Turbo (OpenAI, 2024). For
Single answer grading, used prompt is followed:

[System]
You are a helpful assistant. Please act as an
impartial judge and evaluate the quality of
the response provided by an AI assistant to
the user question displayed below. Your
evaluation should consider factors such as
the helpfulness, relevance, accuracy, depth,
creativity, and level of detail of the response.
Begin your evaluation by providing a short
explanation. Be as objective as possible.
After providing your explanation, you must
rate the response on a scale of 1 to 10 by
strictly following this format: "[[rating]]",
for example: "Rating: [[5]]".

[Question]
{question}

[The Start of Assistant’s Answer]
{answer}
[The End of Assistant’s Answer]

The detail implementation of LLM-as-a-judge is
in the following GitHub repository4.

G Additional experimental results

G.1 Average acceptance length comparison

Building on the main findings, we further explore
average acceptance length, a hardware-agnostic
metric that measures the number of tokens accepted
from a draft or generated per drafting-verification
cycle. The key advantage of average acceptance
length is its independence from hardware and run-
time environments. However, its limitation lies
in its inability to account for the overhead intro-
duced by the draft model.Table 5 shows average
acceptance length for different methods on De-En
translation tasks across T = 0.0 and T = 1.0.

Our method, Sps with pretrain-and-finetune,
achieved 3.03 at T = 0.0 and 2.50 at T = 1.0,

4https://github.com/lm-sys/FastChat/tree/main/
fastchat/llm_judge

Table 5: Average acceptance length comparison of dif-
ferent methods for Vicuna 7B v1.3. Results are provided
for T=0.0 and T=1.0 across De→En translation tasks.

Method T=0.0 T=1.0

Sps - Yang et al. (2024) 1.47 1.35
Lookahead (Fu et al., 2024) 1.23 1.23

PLD (Saxena, 2023) 1.15 -
Medusa (Cai et al., 2024) 2.22 2.29

Eagle (Li et al., 2024) 3.04 2.70
Sps - pretrain-and-finetune (Ours) 3.03 2.50

outperforming traditional methods like Sps ((Yang
et al., 2024)) and Lookahead, which reached 1.47
and 1.23, respectively. Even compared to self-
drafting methods like Medusa and Eagle, our ap-
proach remained competitive, demonstrating the
effectiveness of our strategy in improving block
acceptance rates.

These results highlight the efficiency of our
method in accepting more tokens per draft, leading
to faster, more efficient processing across diverse
datasets.

G.2 Out-of-domain speedup

Building on the findings discussed in the main body,
this subsection further explores the speedup vari-
ations achieved by employing a drafter trained on
each dataset across a range of translation tasks. Fig-
ure 8 depicts the speedup results using speculative
greedy sampling for drafters trained on different
datasets: Ru-En, Ja-En, and Zh-En.

Most observations align with those discussed
in Section 3. Notably, drafters trained on the Ja-
En (Figure 8 (b)) and Zh-En (Figure 8 (c)) datasets
consistently outperform Yang et al. (2024)’s drafter,
even on out-of-domain tasks. We hypothesize these
into two folds. Firstly, this suggests that certain
intrinsic properties of the Japanese and Chinese
languages may improve the efficacy of speculative
decoding when applied to unrelated language pairs,
possibly due to specific syntactic or lexical features
that are effectively captured during training. In an-
other scenario, the target LLM does not work well
on those tasks, and thus drafters are easier to catch
the target token distribution. More precisely, for
instance, in Zh-Ru task, Vicuna 7B should translate
the Chinese to Russian, but to English, and thus
the speedup seems to happen for us due to English
generation.

In the case of the Ru-En (Figure 8 (a)) trained
drafter, translations from Russian to other lan-
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Figure 7: GPT-4o evaluation scores following the Zheng et al. (2024) on various multilingual translation dataset.
Each figure denotes the score of random sampling with different temperature on the output whose target LLM is
Vicuna 7B v1.3.
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(c) Drafter trained on Zh-En

Figure 8: Speedup with speculative greedy sampling with the same settings in Figure 5.

guages generally surpass Yang et al. (2024)’s re-
sults. Interestingly, translations from French to
English and German to English exhibit unexpect-
edly high speedups. This could hint at underlying
linguistic similarities or shared grammatical struc-
tures between Russian, French, and German that
the Ru-En drafter is particularly adept at handling,
thereby facilitating more efficient speculative de-
coding. While Fan et al. (2021) demonstrates that
Russian belongs to another cluster from En / Fr /
De, perhaps our results provide a different perspec-
tive in lens of speculative decoding.

G.3 GPT-4o judgments

Figure 7 show additional GPT-4o evaluation scores
for various multilingual translation datasets. The
graphs display the comparative performance across
different language pairs under two sampling con-
ditions, at temperatures T=0.8 and T=0.9, respec-
tively. Each data point reflects the quality of trans-
lations produced by the target model (orange cir-
cle), SpS with the instruction tuned model using
ShareGPT (Yang et al., 2024) (green pentagon),
and SpS with our specialized drafter (pretrain-and-
finetune) (red square). For the red points, each
drafter is trained with the corresponding dataset.
For instance, when the red point specify De-En, it
indicates that the drafter has been fine-tuned with
the De-En dataset.

The results demonstrate negligible differences
in quality among the three methods, underscoring

the efficacy of speculative decoding in delivering
translations with lossless quality. Both tempera-
ture settings show that our speculative decoding
strategy closely matches the performance of the
established target model across various language
pairs. This consistent performance across different
settings and language pairs illustrates that specu-
lative decoding effectively maintains high-quality
outputs without compromising accuracy due to in-
creased randomness in sampling.

H Discussion

H.1 Is scaling up drafter size better for SpS?

Evaluating the efficacy of increasing drafter size
reveals nuanced insights into speculative decoding
performance. Table 6 compares three versions of
drafters: the Vicuna 68M by Yang et al. (2024),
our pretrain-and-finetune Vicuna 68M, and Tiny-
Vicuna 1B (Pan, 2023)—a larger model with 1B
parameters that has been instruction-tuned.

Despite Tiny-Vicuna 1B’s substantial parameter
count, it achieves a lower speedup of 0.75 com-
pared to 2.34 by our optimized Vicuna 68M. Both
models show similar mean accepted tokens, sug-
gesting that increasing size does not proportion-
ally enhance computational efficiency. This is due
to speculative decoding’s reliance on minimizing
memory bottlenecks to exploit parallel computa-
tion effectively. Larger models like Tiny-Vicuna
1B exacerbate these bottlenecks, diminishing the
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Table 6: Speedup comparison of speculative greedy sampling across different drafter sizes on WMT16 De-En
dataset.

Drafter Vicuna 68M (Yang et al., 2024) Vicuna 68M (pretrain-and-finetune; Ours) Tiny-Vicuna 1B (Pan, 2023)

Speedup 1.19 2.42 0.75
Mean of accepted tokens 1.47 3.03 3.06

Table 7: Speedup results for same language pairs, different datasets.

Model Speedup (WMT16 De-En fine-tune, WMT16 De-En eval) Speedup (WMT16 De-En fine-tune, IWSLT14 De-En eval)

Sps-(Yang et al., 2024) 1.19 1.23
Sps - pretrain-and-finetune (Ours) 2.42 2.51

potential speed gains from increased parallelism.
Conversely, our pretrain-and-finetune Vicuna

68M demonstrates that strategic training and opti-
mization of a smaller model can achieve high effi-
ciency and speed, highlighting the importance of
model configuration over mere size increase. This
balance between model size and computational dy-
namics is crucial for optimizing speculative decod-
ing, suggesting that enhancing model capabilities
through targeted training may be more effective
than scaling size.

H.2 Evaluating generalization across datasets
We fine-tune the model on WMT16 De-En and
evaluated it on IWSLT14 De-En. As presented
in Table 7, our specialized drafter demonstrate a
speedup ratio of 2.51, surpassing the baseline Sps-
(Yang et al., 2024), which achieves a speedup ratio
of 1.23. These results highlight the robustness and
generalization capability of our approach in evalua-
tion of held-out in-distribution dataset.
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