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Abstract
Multilingual large language models are de-
signed, claimed, and expected to cater to speak-
ers of varied languages. We hypothesise that
the current practices of fine-tuning and eval-
uating these models may not perfectly align
with this objective owing to a heavy reliance
on translation, which cannot cover language-
specific knowledge but can introduce transla-
tion defects. It remains unknown whether the
nature of the instruction data has an impact on
the model output; conversely, it is questionable
whether translated test sets can capture such
nuances. Due to the often coupled practices of
using translated data in both stages, such im-
perfections could have been overlooked. This
work investigates these issues using controlled
native or translated data during the instruction
tuning and evaluation stages. We show that
native or generation benchmarks reveal a no-
table difference between native and translated
instruction data especially when model perfor-
mance is high, whereas other types of test sets
cannot. The comparison between round-trip
and single-pass translations reflects the impor-
tance of knowledge from language-native re-
sources. Finally, we demonstrate that regu-
larization is beneficial to bridging this gap on
structured but not generative tasks.1

1 Introduction

Instruction tuning, or supervised fine-tuning, can
prepare a large language model (LLM) for bet-
ter task generalization and natural interactions in
downstream applications (Mishra et al., 2022; Wei
et al., 2022; Sanh et al., 2022; Ouyang et al., 2022).
Major efforts of building instruction datasets cen-
tre on English (Wei et al., 2022; Taori et al., 2023;
Conover et al., 2023; Ivison et al., 2023), whereas
the multilingual counterparts remain modest in
size, variety, and coverage. Many multilingual in-
struction datasets have been seeded from English

1Our code and data will be made public at https://
github.com/PinzhenChen/good-data-or-bad-eval.

data and developed using translation as part of the
pipeline (Li et al., 2023a; Chen et al., 2023b, 2024;
Lai et al., 2023). A notable exception is Aya, a
year-long project that invited volunteers around the
globe to write and edit prompt-response examples
in their native language (Singh et al., 2024), mak-
ing it a language-native dataset.2

Although the Aya dataset was contributed by
volunteers, it still carries a high social utility cost
considering the personnel hours devoted. In con-
trast, translating existing resources by machine,
or even by human, is a more convenient option.
Nonetheless, translated data carry imperfections
(Clark et al., 2020; Artetxe et al., 2020a): 1) it rep-
resents the culture and knowledge specific to the
original language; 2) the translation process intro-
duces translationese, an unnatural language style
(Gellerstam, 1986; Baker, 1996), as well as errors
since certain content or tasks can be corrupted, e.g.
grammatical error correction. On the other hand,
recent research discovered that instruction tuning
is “superficial” where an LLM mainly learns the
response format (Zhou et al., 2023), and it can-
not enhance knowledge at the current scale (Ghosh
et al., 2024). These insights imply that the short-
comings of translated data might not propagate into
an instruction-tuned model. Hence, when widening
language support, an important question arises: Is
translated data sufficient for instruction tuning?

We regard “sufficiency” as the fact that, when
used to fine-tune an LLM, translated instructions
should lead to output quality similar to that of na-
tive data. Yet, examining this training data factor
cannot be separated from carefully considering the
evaluation protocol, because many existing multi-
lingual benchmarks have been created via transla-
tion. This translation bias, if present in both train-
ing and test sets, could hinder a meaningful con-

2 “Aya Dataset” but not “Aya Collection” which comprises
many translated components.
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clusion. We thus put forward our second research
question: If translated and native instruction data
make a difference, would a translated benchmark
capture it? Subsequently, we use round-trip trans-
lated data to answer: Which is the cause of the gap,
translation defects or missing language-specific
knowledge in instructions? Finally, when trans-
lated data is hardly avoidable: What techniques
can we adopt to bridge the performance gap?

This work systematically investigates native and
translated data used during instruction tuning and
evaluation. We experiment with eight models of
varying sizes and data distributions and evaluate
these models on nine benchmarks of different na-
tures: translated versus native as well as classifica-
tion versus generation. Empirical results suggest
that a prudent choice in multilingual LLM evalua-
tion is crucial. Foreshadowing the answers to the
research questions raised earlier:

1. Native and translated data can lead to a perfor-
mance gap on several benchmarks, especially
when the model performance is strong.

2. Such a difference is more pronounced on
benchmarks that are natively created (TyDi
QA, CMMLU, C-Eval) or generative in na-
ture (XQuAD, open-ended QA) compared to
translated structured tests (MT/HT-MMLU).

3. Round-trip translation from native data out-
performs single-pass translation from English
data, implying that missing language-specific
knowledge could be more detrimental than
having translation defects.

4. Regularization during instruction tuning time,
e.g. using a lower learning rate or multilin-
gual instruction tuning, can be beneficial if
translated data has to be used. It can close the
native-translated performance gap on struc-
tured tasks but not generative tasks.

These insights mean that opposite conclusions can
be made when different combinations of instruction
and test sets are adopted. Based on the findings,
we recommend multilingual LLMs be evaluated on
a range of benchmarks to include language-native
and generative tasks.

2 Related Work

2.1 Instruction tuning data
Instruction data can be created by writing ques-
tions and responses from scratch (Conover et al.,

2023; Singh et al., 2024), collecting user-system
interactions (Köpf et al., 2023), or templating struc-
tured data instances into natural texts (Mishra et al.,
2022; Sanh et al., 2022). It is also feasible to distil
large language models by feeding existing exam-
ples (Taori et al., 2023; Wei et al., 2023). Stemming
from English data, many multilingual instruction
datasets, especially open-ended question-response
pairs, have been created via machine translation
(Muennighoff et al., 2023; Chen et al., 2023a,b,
2024; Chai et al., 2024; Lai and Nissim, 2024).
Slightly differently, Li et al. (2023a) translated En-
glish questions into multiple languages but used
GPT to generate responses to avoid translationese.
These options are more affordable than creating
language-native data directly, but they are not flaw-
less since they can introduce generation errors and
knowledge-language mismatches.

In recent research progress on LLM instruc-
tion tuning, the “superficial alignment hypothesis”
(Zhou et al., 2023) might offer some relief to these
concerns. It claims that a strong foundation model
mostly learns the response template from instruc-
tion tuning—therefore the translation artefacts or
language-specific knowledge would not be overly
consumed (Ghosh et al., 2024). To our knowledge,
there is no prior work that systematically compared
native and translated instruction data.

2.2 Multilingual LLM evaluation
Machine translation has been used to extend several
benchmarks to more languages (Conneau et al.,
2018; Artetxe et al., 2020b; Dumitrescu et al., 2021;
Bandarkar et al., 2024, and the list is growing).
Many studies exploring multilingualism in LLMs
yielded findings based on translated instruction data
and/or translated evaluation sets, from the earlier
mT5 to the concurrent Llama 3.1 (Xue et al., 2020;
Cañete et al., 2023; Ahuja et al., 2023; Cui et al.,
2023; Puduppully et al., 2023; Yang et al., 2023;
Lai et al., 2023; Kew et al., 2023; Chen et al., 2024;
Singh et al., 2024; Ji and Chen, 2024; Liu et al.,
2024; Shaham et al., 2024; Dubey et al., 2024).
While these works have significantly pushed the
boundary of multilingualism in LLMs, we attempt
to revisit the effect of using translated data.

Clark et al. (2020) discussed the disadvantages
of using translated tests: they incorporate transla-
tionese and represent the source language’s knowl-
edge; Artetxe et al. (2020a) revealed how minor
translation artefacts can significantly impact evalu-
ation outcomes. It has been shown and argued that,
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albeit intuitively, translated training data improves
scores on test data created via translation (Singh
et al., 2019; Artetxe et al., 2020a). The machine
translation community found that translated test
input “can have a detrimental effect on the accu-
racy of evaluation” (Läubli et al., 2020; Graham
et al., 2020; Farhad et al., 2021). This paper demon-
strates that by altering the nature of the instruction
or evaluation data, evaluation can lead to different
conclusions for LLM instruction tuning.

Our comparative analysis of native and trans-
lated data also relates to understanding the in-
tegrity of LLM evaluation and the representa-
tion of language-specific knowledge from a meta-
evaluation perspective. It is the expectation of the
users that an LLM should not merely exhibit lin-
guistic fluency but also embed the culture tied to
the languages. We believe this to be a crucial and
timely topic in the current LLM landscape. Earlier,
Lyu et al. (2024) examined various mechanisms
of obtaining LLM responses. Concurrently, Gema
et al. (2024) found correctness issues in a specific
benchmark; Etxaniz et al. (2024) showed that mod-
els can have distinct behaviours on local and global
knowledge; Gu et al. (2024) called for transparency
in choosing formatting and configurations. In com-
parison, our work looks at multilingual evaluation
from the dimension of data characteristics.

3 Experiment Design

3.1 Instruction data

The focus of our study is to answer the research
questions on the nature of instruction data and eval-
uation data as well as their impact on a trustwor-
thy evaluation. We experiment with non-English
training and test data created through distinct pro-
cedures: created natively and translated. We run
monolingual instruction tuning: an LLM is fine-
tuned in a single language every time to prevent
potential cross-lingual influences.

Languages We study model performance in three
languages—Spanish (es), Russian (ru), and Chi-
nese (zh)—with the following considerations: 1)
these languages cover a combination of different
language families and writing scripts; 2) they are
medium-to-high resourced, where the quality of
the data, native or translated instructions, is satis-
factory; 3) their presence in LLM pre-training data
is significant, so we can expect reasonable output
quality.

Native data We use the training split in the Aya
dataset (Singh et al., 2024), which was written from
scratch and then edited by human annotators in
their native language. The Spanish, Russian, and
Chinese training sets have a size of 3854, 423, and
3944 each.

Translated data We generate translated data
equivalent in volume to the native data. This is
done by sampling Aya’s English split to match
the size of native data in each language and trans-
lating the sample to that language. We always
translate the instructions and responses separately.
Two distinct versions of translated data are ob-
tained via Google Translate and Cohere Command
R3. Google Translate is a well-known commercial
translation engine, whereas Command R, a large
language model, is capable of adhering to more
customised guidelines. Technically, we prompt
Command R to maintain the original data format-
ting while translating, as illustrated Appendix A.1.

3.2 Close-ended evaluation

We perform automatic evaluations on close-ended
tasks, where a model is expected to generate a pre-
defined response given a question. The evaluation
covers multilingual understanding and reasoning
tasks commonly used to benchmark LLMs. These
test sets come from various sources such as na-
tive annotation, human translation, and machine
translation. All evaluations are conducted using
lm-evaluation-harness (Gao et al., 2023) with
default settings unless stated below.

Native benchmarks We first evaluate our
instruction-tuned models on test sets that have been
constructed from scratch by native speakers, on
which we hypothesize a performance gap between
native and translated instruction fine-tuning.

• TyDi QA: created by inviting native speak-
ers to write down questions related to articles
shown to them (Clark et al., 2020). We use its
Russian split. We run 1-shot prompting and
measure models’ F1 scores.

• CMMLU (Li et al., 2023b) and C-Eval
(Huang et al., 2024): both are multi-
disciplinary tests containing questions on the
Chinese culture and domain, made from re-
sources in Chinese. We prompt with 5-shot
examples and use accuracy as the metric.

3https://docs.cohere.com/docs/command-r
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Unfortunately, we could not identify a native bench-
mark that assesses general knowledge in Spanish.

Translated benchmarks We use four translated
benchmarks including both human-translated and
machine-translated test sets. Most of these cover
the three languages we study.

• XQuAD: a question answering task requiring
text extraction from a given context (Artetxe
et al., 2020b), human-translated from the En-
glish SQuAD (Rajpurkar et al., 2016). Evalua-
tion is done in a 0-shot setting. We adopt two
metrics: a strict string-level exact match (EM)
and a lenient “include” checking whether the
reference is a substring of the model genera-
tion.

• MGSM: grade school mathematics questions
human-translated from the English GSM8K
(Cobbe et al., 2021; Shi et al., 2023). We pro-
vide 5-shot examples with chain-of-thought
and measure exact token match.

• MT-MMLU: Lai et al. (2023)’s ChatGPT-
translated multilingual MMLU (Hendrycks
et al., 2021), designated as MT-MMLU in our
work. We use 5-shot prompting and accuracy
as the metric.

• HT-MMLU: a professionally human-
translated (HT) edition4 of MMLU released
when our camera-ready paper is being
prepared. Section 4.4 offers a preliminary
study of model behaviours on HT-MMLU
and MT-MMLU to understand the impact of
human and machine translation.

3.3 Open-ended generation

We then evaluate models with open-ended question
answering (QA) under controlled translated and
native settings:

• Translated: 50 English questions from Ope-
nAssistant (OASST1; Köpf et al., 2023) and
then human-translated by Chen et al. (2024).
We use the translated questions in Spanish,
Russian, and Chinese.

• Native: 50 questions in Spanish, Russian, and
Chinese, directly sampled from OASST1. We
only use the first-round queries in multi-turn
conversations.

4https://huggingface.co/datasets/openai/MMMLU

Given the open-ended nature, there is no gold re-
sponse to compare a model generation against. To
avoid expensive human evaluation at scale, we use
LLM-as-a-judge, which has shown a strong corre-
lation with human judgement (Zheng et al., 2024).
We use two LLM judges other than the translators
to avoid LLM preference bias: GPT-4-Turbo and
Command R+.5 The judges directly score each
instruction-response pair according to a 5-point
Likert scale (1 to 5), which can avoid position bias
in response comparison. The total score for a model
therefore ranges between 50 to 250. The exact
wording of the judging prompt is the same for both
LLMs and is attached in Appendix A.2 Figure 7.

4 Experiments and Analysis

4.1 Technical setup

Base models We fine-tune base models of dif-
ferent sizes from three sources: 1) Llama 2 at
7B, trained on 2T tokens with a 32K vocabulary
and released in Jul 2023 (Touvron et al., 2023);
2) Gemma at 2B and 7B (circa 8.54B parame-
ters), trained on 3T and 6T tokens respectively
with a 256K vocabulary and released in Feb 2024
(Gemma Team et al., 2024); 3) Qwen 1.5 at 0.5B,
1.8B, 4B, 7B, and 14B released in Feb 2024 (Qwen
Team, 2024).6

Instruction tuning Let I represent an instruc-
tion and Y = y1, y2, ..., y|Y | a sequence of out-
put tokens. The instruction is first templated
into a pre-defined format, denoted as T (I). We
fine-tune an LLM parameterised by θ by optimis-
ing the log-likelihood on the output tokens only:
L(Y, T (I); θ) = − logP (Y |T (I); θ).

We apply low-rank adaptation where the base
model is loaded in 8-bit and frozen during training
(Hu et al., 2022; Dettmers et al., 2023). We attach
to all key, query, and value matrices a low-rank
adapter with a rank of 8, an alpha of 16, and a
dropout of 0.05. The learning rate is set to 10−4

and the effective batch size to 64. All models are
given a training budget of 10 epochs and we val-
idate perplexity on held-out instruction data after
each epoch to keep the best checkpoint. We used
a combination of NVIDIA 3090-24G, A100-40G,
and A100-80G GPUs. Fine-tuning took 1 to 7
hours depending on the model and data size.

5Both accessed via API in Apr 2024.
6All models were up-to-date when the experiments were

conducted in Apr 2024 but became one generation behind by
the time the paper was accepted in Sep 2024.
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Figure 1: Results on native close-ended test sets: native
instruction-tuned models have an edge.

4.2 Is there a gap, and on what?

We display results for the native tests, TyDi QA,
C-Eval, and CMMLU, in Figure 1. It shows that
models fine-tuned with native instructions surpass
those fine-tuned with translated data in most cases
with consistent patterns across the two languages.

In terms of translated multilingual benchmarks,
Figure 2 exhibits diverging trends. On the XQuAD
benchmark, using native instruction data consis-
tently and significantly outperforms translated data
under both metrics, however, it loses the advantage
on MGSM and MT-MMLU.

For open-ended QA, we show different combi-
nations of the test data (native or human-translated)
and judges (GPT-4-Turbo or Command R+) in Fig-
ure 3. The largest native-translated discrepancy
occurs when models are tested on translated ques-
tions and judged by GPT-4-Turbo. When testing
on translated questions and judged by Command
R+, native data is slightly ahead when the model
size is big. In other cases, native data is not bet-
ter than translated data. These results also suggest
that the LLM-as-a-judge metric affects empirical
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Figure 2: Results on translated close-ended test sets: na-
tive instruction-tuned models are superior on XQuAD,
but all data conditions have comparable results on
MGSM and MT-MMLU.

results too. However, it is difficult to arrive at a
clear conclusion since we do not have transpar-
ent access to the data used in GPT or Command
models—it might be the case that these models
have been instruction-tuned with translated data.

Overall, we see that in terms of model perfor-
mance, native data can surpass translated data un-
der some evaluations, which suggests that trans-
lated instruction data is not always sufficient.
While these observations have been made from the
aspect of data/model performance, they cannot be
decoupled from the potential test set imperfections.
Assuming native data should lead to better metric
numbers, it has been revealed that two types of eval-
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Figure 3: Results on native and translated open-ended
question answering: native instruction-tuned models
are superior for translated questions when judged by
GPT-4-Turbo, but all data conditions result in similar
numbers in other cases.

uation benchmarks are more effective in reflecting
this: 1) those that originate in the test language it-
self (TyDi QA, C-Eval, and CMMLU) and 2) those
that are generative in nature (XQuAD and open-
ended questions) even though they could have been
translated from English.

4.3 When is the gap obvious?

We hypothesise that the output quality difference
between using native and translated data would
be more noticeable when a model’s overall per-
formance is better—namely, the subtle translation
bias might not be pivotal if a model’s capability

TyDi QA
CMMLU

C-Eval
XQuAD

QA-GPT4
QA-CmdR+

0.2

0.4

0.6

0.8

1

0.25
0.34

0.44

0.70

0.81

0.67

Figure 4: Pearson’s correlation between native data per-
formance and native-translated performance difference
for various benchmarks: weaker correlation for struc-
tured tasks and stronger correlation for generative tasks.

is low enough that many instances are incorrectly
predicted in the first place. Hence, for each pre-
vious benchmark where native data outperforms
translated data, we run a post hoc analysis on the
correlation between the native data performance
and the native-translated performance gap.

We average the Cohere-translated and Google-
translated scores to represent the final score for
translated data. The score difference between
models instruction-tuned on native data and trans-
lated data can then be defined as ∆S = Snative −
1
2(Scohere + Sgoogle), where Snative, Scohere, and
Sgoogle stand for model scores on native, Cohere-
translated, and Google-translated data respectively.
Then, we compute the Pearson correlation coef-
ficient r∆S,Snative between ∆S and Snative for each
test set. It is worth noting that we consider all in-
dividual languages’ scores instead of the averaged
number across languages where applicable.

We cover all benchmarks where a clear native-
translated difference has been observed earlier.
Open-ended question answering is abbreviated as
QA-GPT4 and QA-CmdR+ depending on the LLM
judge used. The outcome is shown in Figure 4:
the correlation between ∆S and Snative is weak for
structured tasks like TyDi QA, C-MMLU, and C-
Eval, but very strong for tasks involving generation
like XQuAD and open-ended QA. This pattern in-
dicates that 1) concerning the instruction data, the
nature of being native or translated shines through
as the model performance gets higher; 2) on the
evaluation end, such data difference leaves a more
pronounced gap on generative benchmarks. On
a related note, in Kew et al. (2023)’s study, it is
shown that cross-lingual transfer is more promi-
nent in generative tasks but less in classification
tasks. Altogether, it might be conjectured that the
instruction data quality plays a more crucial role
when a model is evaluated by generative tasks as
opposed to classification tasks.
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Figure 5: Round-trip translation (via English) produces
translated data sharing the same origin as native data.

4.4 What potentially causes the gap?

Knowledge mismatch vs translation defects in
instructions Translating instruction data intro-
duces these imperfections. To understand which
accounts more for model degradation, we disentan-
gle the two elements in instructions using round-
trip translation (RTT): we translate native data from
one language into another and then translate it back
to the original language, as illustrated in Figure 5.
By doing so, we can have a “translated” dataset
that preserves the same knowledge and domain as
the original data but contains translation defects.

We construct the RTT version of Russian and
Chinese instruction data from their native data
with Cohere or Google translation pivoting via En-
glish. This follows the same procedure used to
obtain translated instruction data in Section 3.1,
except that the translation workflow is now done
twice: X→English followed by English→X. We
then compare models trained on RTT data with
those trained on data translated from English on
native benchmarks (TyDi QA and CMMLU).

Regarding TyDi QA in Table 1, we notice mixed
results for Cohere translation but a relative advan-
tage in RTT with Google translation. For CMMLU
in Table 2, models with RTT (test language-origin)
are uniformly better than those with data trans-
lated from English. RTT’s strong performance—
despite having undergone the translation process
twice which likely leaves more translationese and
errors—signifies the importance of incorporating
native knowledge when widening language support
in multilingual language models.

Human vs machine translated test sets Com-
paring MT-MMLU and HT-MMLU results can re-
veal the impact of human and machine translation
on the evaluation end. This comparison is care-
fully controlled where both test sets have the same
questions originating in English and testing the
same knowledge. During testing, the same set of
demonstrations is prepared for the same question
across the two tests. We list Spanish and Chinese
results in Table 3 which are very similar on the two

Base Model

Cohere Google

RTT
ru-origin

translated
en-origin

RTT
ru-origin

translated
en-origin

Llama2-7B 25.9 28.8 25.7 25.5
Gemma-7B 29.4 34.4 33.3 30.7
Qwen1.5-4B 23.0 20.0 22.4 20.1
Qwen1.5-7B 35.5 34.2 34.9 27.2
Qwen1.5-14B 30.4 33.0 30.7 32.1

Table 1: Results for models trained on RTT data (ru-
origin) or translated data (en-origin) on TyDi QA (ru).

Base Model

Cohere Google

RTT
zh-origin

translated
en-origin

RTT
zh-origin

translated
en-origin

Llama2-7B 31.6 30.2 32.2 31.2
Gemma-7B 48.6 48.3 48.4 46.4
Qwen1.5-4B 63.7 59.3 64.6 59.8
Qwen1.5-7B 68.9 68.4 70.5 67.6
Qwen1.5-14B 77.5 76.2 77.4 75.8

Table 2: Results for models trained on RTT data (zh-
origin) or translated data (en-origin) on CMMLU (zh).

Base Model Data

Spanish Chinese

MT-
MMLU

HT-
MMLU

MT-
MMLU

HT-
MMLU

Llama2-7B
native 38.4 37.6 34.4 33.8
cohere 38.0 37.2 27.6 27.8
google 36.4 35.9 30.4 29.5

Gemma-7B
native 55.9 54.9 48.7 48.0
cohere 58.4 57.5 50.8 50.3
google 56.1 55.6 49.7 48.8

Qwen1.5-4B
native 40.9 40.2 49.3 49.0
cohere 39.9 39.0 44.5 45.2
google 39.6 39.0 44.2 45.0

Qwen1.5-7B
native 50.3 49.6 52.9 53.0
cohere 49.6 48.4 52.6 51.8
google 50.4 49.3 51.8 51.3

Qwen1.5-14B
native 58.1 57.8 61.3 60.7
cohere 55.8 55.1 57.9 57.7
google 54.9 54.2 58.0 57.3

Table 3: Results for models trained on different data on
MT-MMLU and HT-MMLU.

benchmarks and the native-translated gap is smaller
compared with those on native or generative tasks.
As shown in Appendix B Tables 19 and 21, the
gaps even disappear under a lower learning rate.

Interestingly, gap patterns are consistent across
the two translated MMLU tests: Llama2-7B on
Chinese, Qwen1.4-4B on Chinese, and Qwen1.5-
14B on both languages. These observations imply
that both test sets are homogeneous and that (good)
MT can match professional HT in expanding test

9712



set language coverage. This also corroborates our
early finding that missing language-specific knowl-
edge can be a more differentiating factor.

4.5 Can we bridge the gap?

Despite Section 4.4 suggesting that it is more crit-
ical to have the domain and the knowledge of the
native language in instructions, it is an unrealis-
tic setting since it employs native data. This is
difficult to obtain especially for under-served lan-
guages, so it is hard to avoid machine-translated
data. We, therefore, investigate techniques that can
apply better regularization during instruction tun-
ing to reduce the negative impact of the translated
data. This also represents an effort to pursue a more
generalizable finding.

A lower learning rate Our first inspiration is
drawn from Chirkova and Nikoulina (2024), whose
experiments showed that English instruction-tuned
models display remarkably different levels of cross-
lingual transfer when only changing the learning
rate—a smaller one leads to better instruction fol-
lowing in zero-shot languages. This means that it is
possible to teach a base model a desired instruction-
response style without even touching on the content
or language. In this case, the undesirable properties
in translated data could be mitigated. Following
this, we run another set of experiments with the
learning rate reduced from 10−4 to 10−6.

Multilingualism Another exploration is multi-
lingual instruction tuning, which could prevent a
model from overfitting to a single language. In
addition to Spanish, Russian, and Chinese which
we evaluate, we also add another five languages—
Arabic (ar), German (de), Finnish (fi), Irish (ga),
and Hindi (hi)—into the multilingual pot. For the
native multilingual data, we simply down-sample
all languages in the Aya dataset to a size of 241
(the size of the German split in Aya, which is the
smallest among the eight languages), leading to
a total size of 1928. For the translated data in
each language, we randomly select 241 instances
from English and translate them (different data in-
stances for different languages). This simulates a
multilingual instruction set derived from translating
English resources.

Setup For each of our previous data-model com-
binations, we now have two variants. Due to
the space constraint, we only display results from
larger models in the main text for the follow-

Base Model Data 10−6← 10−4 10−4

Mono Mono →Multi

native 33.4 28.3 25.1
Llama2-7B cohere 33.3 28.8 23.4

google 33.3 25.5 22.9

native 37.7 33.6 31.5
Gemma-7B cohere 38.1 34.4 31.4

google 37.9 30.7 30.9

native 22.4 37.0 37.0
Qwen1.5-7B cohere 22.9 34.2 33.0

google 22.7 27.2 27.1

native 24.8 34.4 32.8
Qwen1.5-14B cohere 24.6 33.0 29.3

google 24.9 32.1 35.2

Table 4: Sometimes the gap can be closed on TyDi QA.

Base Model Data 10−6← 10−4 10−4

Mono Mono →Multi

native 31.8 32.7 32.6
Llama2-7B cohere 32.0 30.2 32.7

google 32.0 31.2 32.1

native 49.9 48.7 50.1
Gemma-7B cohere 49.7 48.3 50.4

google 49.8 46.4 50.7

native 72.0 72.3 72.6
Qwen1.5-7B cohere 71.9 68.4 71.4

google 71.9 67.6 71.4

native 77.7 78.2 78.2
Qwen1.5-14B cohere 77.8 76.2 77.6

google 77.8 75.8 77.2

Table 5: Sometimes the gap can be closed on CMMLU.

ing benchmarks: TyDi QA, CMMLU, XQuAD,
MSGM, MT-MMLU, and open-ended question an-
swering. We bold the best native results and under-
line translated results if they are close to native—
meaning that the gap can be closed. Moreover,
exhaustive results for all models and all languages
on all benchmarks are enclosed in Tables 10 to 25
in Appendix B.

Native, structured benchmarks We make bold
those scores that are higher than the rest for each
model under all hyperparameter settings. We find
that the pattern seems to be affected by the base
model and the task. It can be seen that Llama2-7B
and Gemma-7B enjoy a performance leap in two
scenarios: 1) on TyDi QA with a lower learning
rate; and 2) on CMMLU with multilingual instruc-
tion tuning. In both cases, the performance gap be-
tween native and translated data can be overcome.
However, for Qwen1.5, while the results change as
the training configuration changes, native data still
is the best data condition to go with.
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Base Model Data 10−6← 10−4 10−4

Mono Mono →Multi

native 18.5 30.3 31.0
Llama2-7B cohere 18.0 20.8 21.6

google 17.8 21.1 24.1

native 17.8 17.4 16.8
Gemma-7B cohere 17.3 14.8 16.3

google 17.2 14.5 15.3

native 30.7 34.9 42.6
Qwen1.5-7B cohere 30.2 24.9 31.5

google 29.9 22.0 27.7

native 33.4 36.5 45.6
Qwen1.5-14B cohere 33.6 28.5 30.8

google 33.5 26.4 32.2

Table 6: There is always a large gap on XQuAD (EM).

Base Model Data 10−6← 10−4 10−4

Mono Mono →Multi

native 9.5 9.3 10.8
Llama2-7B cohere 9.8 9.1 10.8

google 9.7 8.1 12.0

native 38.9 32.5 37.1
Gemma-7B cohere 38.8 33.6 37.2

google 39.5 36.8 36.4

native 42.1 40.9 41.2
Qwen1.5-7B cohere 41.5 38.1 40.8

google 43.3 40.8 44.5

native 55.9 52.8 55.2
Qwen1.5-14B cohere 55.7 49.1 53.5

google 55.7 52.1 56.4

Table 7: There is always no gap on MGSM

Translated, structured benchmarks Moving on
to the translated test set results listed in Tables 6
to 8, we find that our previous findings still apply
even when the learning rate is lowered or multilin-
gual instruction tuning is applied. It can be seen
that for the generative XQuAD, most of the time
native instruction data maintains a huge advantage
over the other two translated versions. Nonethe-
less, for MGSM and MT-MMLU, the difference
between using translated and native data is not clear
under most conditions. These also indicate that the
stability of our results on translated structured tasks
is not affected by the two hyperparameters.

Open-ended question answering with translated
questions Finally, we compare monolingual and
multilingual training on open-ended generation in
Table 9. Despite some fluctuations, the native-
translated gap cannot be mitigated when evaluated
on open-ended generation with translated questions.
This is consistent with patterns on XQuAD that
generative benchmarks can more effectively differ-
entiate the instruction tuning data source.

Base Model Data 10−6← 10−4 10−4

Mono Mono →Multi

native 35.8 35.6 36.3
Llama2-7B cohere 35.8 33.4 34.1

google 35.8 33.7 34.3

native 53.7 52.5 53.7
Gemma-7B cohere 53.8 54.4 55.6

google 54.0 53.1 55.6

native 50.3 50.2 50.6
Qwen1.5-7B cohere 50.2 49.6 51.2

google 50.1 49.8 50.9

native 58.2 58.3 58.3
Qwen1.5-14B cohere 58.3 56.3 58.5

google 58.3 56.1 58.2

Table 8: There is always no gap on MT-MMLU.

Base Model Data Mono Multi

native 171.5 121.7
Llama2-7B cohere 126.3 126.3

google 125.7 131.0

native 216.5 164.7
Gemma-7B cohere 150.0 146.3

google 157.3 147.3

native 187.5 189.3
Qwen1.5-7B cohere 137.2 138.0

google 132.7 133.7

native 204.2 210.2
Qwen1.5-14B cohere 152.7 145.7

google 140.0 140.7

Table 9: There is always a large gap on open-ended
question answering (translated, GPT-4-Turbo judged).

5 Conclusion and Future Work

This work systematically analysed the effects of
native and translated data on both the LLM instruc-
tion tuning and evaluation ends. The difference
in data leads to result gaps on native test sets and
generative benchmarks. We showed that knowl-
edge mismatch is more likely to cause performance
degradation rather than translation errors. With
regularization, translated instruction data can po-
tentially catch up with native data on structured
benchmarks but not generative tasks.

Given our findings, we would like to call for pru-
dent choices in multilingual LLM benchmarking.
While the current work provides comprehensive
empirical results and extrinsic evaluation, future
work can consider investigating the knowledge in
data intrinsically. More broadly, it is meaningful
to coordinate efforts to develop large-scale native
test sets that more accurately assess the breadth of
languages and cultures LLMs aim to serve.
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Limitations

This paper focused on providing empirical results
as an extrinsic evaluation of data characteristics.
It can benefit from having an intrinsic understand-
ing of the distinction between native and translated
data, e.g. the knowledge or language features miss-
ing in the translated data and how this is associated
with errors in specific test questions.

Also, our work centred around instruction tun-
ing, but we have very limited knowledge of the
pre-training data for the LLMs we study. This
work assumes that the base models are described
accurately by respective makers and that the LLM
pre-training data would not prevent us from making
meaningful scientific conclusions.

Ethical Considerations

We consider our work to have minimal ethical risks.
Like most papers on LLMs, it is difficult to make
sure that the fine-tuned model is safe in all cases,
but our models are not intended for the public. In
terms of LLM evaluation, we believe this paper
makes a positive contribution towards trustworthy
and tailored evaluation for languages covered in
large language models.
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A Prompts

A.1 Command R translation prompt
We list the translation prompt we use to query Com-
mand R in Figure 6, which asks the LLM to trans-
late a given text while preserving the formatting.
The source language, target language, and text vari-
ables are replaced by their string values during
prompting.

Please translate from ${source_lang} to
${target_lang}. Do your best to preserve the
formatting. The following content should and
should only be translated.

${text}

Figure 6: Prompt template for requesting a translation
from Command R.

A.2 LLM-as-a-judge prompt
We list the LLM-as-a-judge prompt we use to query
GPT-4-Turbo and Command-R+ in Figure 7, which
requires the judge to give a brief explanation before
scoring. The instruction and response variables are
replaced by their string values during prompting.

Please act as an impartial judge and evaluate
the quality of a response to a user instruction
displayed below. Your evaluation should
consider factors such as helpfulness, relevance,
accuracy, depth, creativity, and level of detail.
Begin your evaluation with a brief explanation.
After that, please rate the response on a scale
of 1 to 5 by strictly following this format:
“[[rating]]”. The rating must be enclosed by two
square brackets, for example: “Rating: [[2]]”.

[User Instruction]
${instruction}

[Response]
${response}

Figure 7: Prompt template for requesting a model re-
sponse evaluation from GPT-4-Turbo or Command-R+.

B Comprehensive Results

We list a breakdown of the results for each model
and each language on various benchmarks in this
appendix section. These are:

• Table 10: TyDi QA Russian, F1

• Table 11: CMMLU, accuracy

• Table 12: XQuAD, 10−4, exact match

• Table 13: XQuAD, 10−6, exact match

• Table 14: XQuAD, 10−4, “include”

• Table 15: XQuAD, 10−6, “include”

• Table 16: MGSM, 10−4, exact token match

• Table 17: MGSM, 10−6, exact token match

• Table 18: MT-MMLU, 10−4, accuracy

• Table 19: MT-MMLU, 10−6, accuracy

• Table 20: HT-MMLU, 10−4, accuracy

• Table 21: HT-MMLU, 10−6, accuracy

• Table 22: translated questions, GPT-4 judge

• Table 23: translated questions, Cmd R+ judge

• Table 24: native questions, GPT-4 judge

• Table 25: native questions, Cmd R+ judge
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Base Model Data 1e−4 1e−6
Mono Multi RTT Mono Multi

native 28.3 25.1 – 33.4 33.4
Llama2-7B cohere 28.8 23.4 25.9 33.3 33.4

google 25.5 22.9 25.7 33.3 33.4

native 28.5 24.9 – 27.7 27.6
Gemma-2B cohere 28.2 28.8 27.7 27.7 27.8

google 28.3 28.8 28.1 28.0 27.5

native 33.6 31.5 – 37.7 38.1
Gemma-7B cohere 34.4 31.4 29.4 38.1 39.0

google 30.7 30.9 33.3 37.9 38.7

native 22.5 23.9 – 16.6 17.1
Qwen1.5-0.5B cohere 19.8 20.0 23.9 16.9 17.7

google 17.5 19.8 23.0 16.8 17.1

native 20.1 27.6 – 19.5 19.7
Qwen1.5-1.8B cohere 20.2 18.1 26.4 19.7 19.6

google 18.1 19.3 23.6 19.8 19.8

native 21.9 28.3 – 18.1 18.2
Qwen1.5-4B cohere 20.0 22.5 23.0 17.9 18.2

google 20.1 22.5 22.4 17.9 18.2

native 37.0 37.0 – 22.4 23.8
Qwen1.5-7B cohere 34.2 33.0 35.5 22.9 23.9

google 27.2 27.1 34.9 22.7 23.9

native 34.4 32.8 – 24.8 25.1
Qwen1.5-14B cohere 33.0 29.3 30.4 24.6 25.1

google 32.1 35.2 30.7 24.9 25.9

Table 10: Results for each model on TyDiQA Russian (F1, %).

Base Model Data 1e−4 1e−6
Mono Multi RTT Mono Multi

native 32.7 32.6 - 31.8 31.9
Llama2-7B cohere 30.2 32.7 31.6 32.0 31.6

google 31.2 32.1 32.2 32.0 31.8

native 31.8 31.5 - 31.2 31.0
Gemma-2B cohere 29.4 31.2 30.4 31.2 31.0

google 30.7 31.8 30.2 31.3 31.2

native 48.7 50.1 - 49.9 49.7
Gemma-7B cohere 48.3 50.4 48.6 49.7 49.9

google 46.4 50.7 48.4 49.8 50.1

native 44.1 43.9 - 42.2 42.1
Qwen1.5-0.5B cohere 41.6 42.3 41.0 42.1 42.2

google 42.8 42.7 43.0 42.0 42.2

native 55.9 56.6 - 56.7 56.7
Qwen1.5-1.8B cohere 53.8 56.6 54.7 56.6 56.4

google 52.9 57.0 55.3 56.9 56.6

native 65.3 66.4 - 66.0 65.8
Qwen1.5-4B cohere 59.3 65.2 63.7 65.7 65.7

google 59.8 65.2 64.6 66.0 65.8

native 72.3 72.6 - 72.0 71.9
Qwen1.5-7B cohere 68.4 71.4 68.9 71.9 71.8

google 67.6 71.4 70.5 71.9 72.0

native 78.2 78.2 - 77.7 77.6
Qwen1.5-14B cohere 76.2 77.6 77.5 77.8 77.7

google 75.8 77.2 77.4 77.8 77.7

Table 11: Results for each model on CMMLU (accuracy, %).
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Base model Data
Monolingual Multilingual

es ru zh average es ru zh average

Llama2-7B
native 30.7 18.7 41.3 30.3 28.0 21.8 43.0 31.0
cohere 17.2 15.3 29.8 20.8 18.4 7.6 38.8 21.6
google 20.8 14.3 28.2 21.1 22.9 10.3 39.2 24.1

Gemma-2B
native 11.3 5.9 15.0 10.7 11.1 6.0 14.1 10.4
cohere 10.8 6.0 11.6 9.5 11.2 5.0 9.2 8.5
google 10.4 5.8 13.4 9.9 9.9 4.8 5.4 6.7

Gemma-7B
native 12.4 10.3 29.4 17.4 13.0 10.8 26.7 16.8
cohere 12.7 10.1 21.5 14.8 12.9 9.0 27.1 16.3
google 12.4 8.8 22.3 14.5 13.2 8.5 24.1 15.3

Qwen1.5-0.5B
native 26.5 7.6 20.6 18.2 18.1 10.2 21.7 16.6
cohere 9.8 6.6 16.1 10.8 11.3 7.4 15.5 11.4
google 10.8 6.5 17.2 11.5 12.7 7.7 16.1 12.2

Qwen1.5-1.8B
native 28.7 10.9 23.3 21.0 28.7 20.7 31.9 27.1
cohere 11.7 5.9 14.7 10.8 14.3 5.5 21.9 13.9
google 10.3 5.8 11.6 9.2 15.9 6.3 25.5 15.9

Qwen1.5-4B
native 33.1 24.9 37.7 31.9 36.5 31.4 52.6 40.2
cohere 29.6 19.3 25.4 24.8 31.9 18.4 39.4 29.9
google 19.7 18.7 23.9 20.8 35.1 20.3 40.2 31.8

Qwen1.5-7B
native 43.9 30.4 30.3 34.9 39.9 35.4 52.5 42.6
cohere 27.6 25.5 21.6 24.9 36.3 22.9 35.4 31.5
google 23.6 21.0 21.5 22.0 32.1 19.9 31.0 27.7

Qwen1.5-14B
native 44.7 34.2 30.7 36.5 49.7 38.7 48.3 45.6
cohere 35.3 28.4 21.9 28.5 39.9 24.0 28.6 30.8
google 28.3 26.8 24.2 26.4 42.1 26.6 27.7 32.2

Table 12: All model and all language results on XQuAD (10−4, exact match, %).

Base model Data
Monolingual Multilingual

es ru zh average es ru zh average

Llama2-7B
native 12.9 7.3 35.3 18.5 12.4 7.1 31.9 17.1
cohere 12.9 7.1 33.9 18.0 12.4 7.3 32.3 17.3
google 12.9 7.1 33.3 17.8 12.4 7.2 32.2 17.3

Gemma-2B
native 10.0 6.1 4.8 7.0 10.0 6.2 4.9 7.0
cohere 10.0 5.9 4.6 6.8 9.9 6.1 4.8 6.9
google 10.0 6.1 4.7 6.9 10.0 6.0 4.9 6.9

Gemma-7B
native 12.5 9.1 31.7 17.8 12.5 9.1 31.2 17.6
cohere 12.4 9.1 30.6 17.3 12.4 9.3 30.3 17.3
google 12.3 9.1 30.3 17.2 12.9 9.1 30.3 17.4

Qwen1.5-0.5B
native 12.1 6.2 12.8 10.4 10.5 6.5 11.2 9.4
cohere 10.8 6.2 11.8 9.6 10.2 6.5 10.6 9.1
google 11.1 6.2 12.0 9.8 9.9 6.2 11.0 9.0

Qwen1.5-1.8B
native 15.6 5.1 20.4 13.7 14.1 5.1 16.0 11.7
cohere 15.0 5.2 18.7 13.0 14.1 5.0 16.3 11.8
google 14.9 5.0 18.2 12.7 14.0 5.0 16.5 11.8

Qwen1.5-4B
native 24.4 14.3 44.9 27.8 21.0 14.9 37.8 24.6
cohere 23.3 14.2 43.4 26.9 20.9 14.7 37.6 24.4
google 22.7 14.3 43.5 26.8 20.8 15.0 37.6 24.5

Qwen1.5-7B
native 31.3 19.0 41.8 30.7 23.4 19.9 33.2 25.5
cohere 32.8 18.8 39.0 30.2 23.2 19.4 33.3 25.3
google 31.9 19.1 38.7 29.9 22.8 19.6 32.9 25.1

Qwen1.5-14B
native 37.7 26.9 35.7 33.4 37.2 27.6 28.1 31.0
cohere 38.3 27.1 35.3 33.6 36.7 27.5 27.3 30.5
google 37.6 27.0 35.9 33.5 36.8 27.3 27.4 30.5

Table 13: Results for each model and each language on XQuAD (10−6, exact match, %).
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Base model Data
Monolingual Multilingual

es ru zh average es ru zh average

Llama2-7B
native 51.7 31.8 66.0 49.8 55.6 30.8 61.9 49.4
cohere 23.5 26.3 43.4 31.1 30.3 16.9 55.3 34.2
google 43.7 27.1 43.8 38.2 46.1 28.4 58.7 44.4

Gemma-2B
native 17.2 18.8 50.3 28.8 19.6 13.9 44.7 26.1
cohere 26.3 20.3 36.6 27.7 36.1 17.8 47.1 33.7
google 33.7 22.6 39.7 32.0 39.2 22.8 52.8 38.3

Gemma-7B
native 14.7 24.7 61.8 33.7 15.7 17.5 67.2 33.5
cohere 13.9 20.3 37.5 23.9 13.4 12.3 44.6 23.4
google 16.5 29.0 48.5 31.3 23.7 19.3 48.2 30.4

Qwen1.5-0.5B
native 35.7 19.7 54.5 36.6 29.7 20.4 46.1 32.1
cohere 19.7 23.8 33.3 25.6 25.5 16.7 45.2 29.1
google 26.9 24.5 37.9 29.8 28.8 16.9 46.2 30.6

Qwen1.5-1.8B
native 44.9 25.8 64.4 45.0 45.0 30.6 56.4 44.0
cohere 24.0 20.8 40.6 28.5 34.2 20.0 56.2 36.8
google 35.5 19.5 46.8 33.9 35.4 23.2 59.1 39.2

Qwen1.5-4B
native 57.8 35.5 69.0 54.1 57.2 41.8 72.3 57.1
cohere 40.7 34.4 49.7 41.6 51.6 28.1 63.9 47.8
google 38.9 33.4 58.5 43.6 51.9 31.5 67.5 50.3

Qwen1.5-7B
native 58.6 44.0 68.4 57.0 65.0 45.5 72.6 61.0
cohere 48.9 33.5 44.6 42.4 43.5 31.7 61.6 45.6
google 44.2 37.4 54.7 45.4 44.9 33.9 62.5 47.1

Qwen1.5-14B
native 61.1 43.5 69.6 58.1 65.0 51.0 69.7 61.9
cohere 48.3 35.6 43.3 42.4 43.1 30.1 56.7 43.3
google 48.9 34.0 55.2 46.1 48.5 30.8 57.8 45.7

Table 14: Results for each model and each language on XQuAD (10−4, “include”, %).

Base model Data
Monolingual Multilingual

es ru zh average es ru zh average

Llama2-7B
native 15.3 11.7 53.0 26.7 14.2 11.8 52.6 26.2
cohere 15.0 11.6 53.4 26.7 14.0 11.8 53.2 26.4
google 15.0 11.6 53.1 26.6 14.3 11.8 52.7 26.2

Gemma-2B
native 37.6 19.2 45.5 34.1 36.5 19.3 45.2 33.7
cohere 37.8 19.7 45.4 34.3 36.8 19.2 45.0 33.7
google 38.4 19.6 45.0 34.3 36.5 19.2 45.5 33.7

Gemma-7B
native 14.2 11.8 50.7 25.6 15.9 11.6 52.4 26.6
cohere 13.5 11.0 45.4 23.3 16.0 10.3 51.3 25.9
google 12.4 11.3 45.7 23.1 16.6 10.4 50.9 26.0

Qwen1.5-0.5B
native 41.1 31.1 53.9 42.0 43.9 30.8 55.4 43.4
cohere 43.2 32.2 54.9 43.4 44.5 31.9 55.7 44.1
google 42.8 31.8 55.5 43.3 44.1 31.6 55.7 43.8

Qwen1.5-1.8B
native 39.4 24.4 59.5 41.1 42.4 24.4 60.4 42.4
cohere 41.1 24.8 59.8 41.9 42.6 24.3 61.0 42.6
google 40.6 24.4 59.7 41.6 42.2 24.5 60.8 42.5

Qwen1.5-4B
native 59.4 37.7 70.5 55.9 62.1 37.3 71.0 56.8
cohere 59.7 37.2 70.7 55.9 62.4 37.4 71.3 57.0
google 60.3 36.6 70.6 55.8 62.4 37.8 70.8 57.0

Qwen1.5-7B
native 63.4 44.9 70.6 59.6 64.9 43.8 72.9 60.5
cohere 62.4 45.2 70.3 59.3 65.8 44.0 73.6 61.1
google 63.4 45.1 70.3 59.6 65.2 44.5 73.0 60.9

Qwen1.5-14B
native 57.1 43.4 70.8 57.1 59.7 43.3 72.6 58.5
cohere 56.1 43.8 70.3 56.7 59.8 43.4 72.9 58.7
google 56.6 43.4 70.2 56.8 59.0 43.1 72.4 58.2

Table 15: Results for each model and each language on XQuAD (10−6, “include”, %).
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Base model Data
Monolingual Multilingual

es ru zh average es ru zh average

Llama2-7B
native 8.4 10.0 9.6 9.3 12.0 10.4 10.0 10.8
cohere 5.2 11.2 10.8 9.1 10.0 12.4 10.0 10.8
google 8.4 9.2 6.8 8.1 12.0 10.8 13.2 12.0

Gemma-2B
native 11.6 12.8 8.8 11.1 13.2 10.8 9.2 11.1
cohere 11.6 12.4 15.6 13.2 11.6 10.8 10.8 11.1
google 12.8 11.2 8.8 10.9 10.0 9.2 11.2 10.1

Gemma-7B
native 30.0 48.8 18.8 32.5 36.4 47.2 27.6 37.1
cohere 34.4 46.8 19.6 33.6 36.4 44.0 31.2 37.2
google 30.0 48.8 31.6 36.8 37.6 42.8 28.8 36.4

Qwen1.5-0.5B
native 2.8 2.0 4.8 3.2 2.0 1.6 10.4 4.7
cohere 1.6 2.4 8.0 4.0 3.6 2.4 8.8 4.9
google 2.0 2.0 9.2 4.4 2.4 3.6 7.6 4.5

Qwen1.5-1.8B
native 6.0 6.4 15.6 9.3 9.6 6.0 19.6 11.7
cohere 8.4 5.6 14.8 9.6 6.8 7.6 15.6 10.0
google 6.4 5.6 14.8 8.9 6.0 5.2 21.2 10.8

Qwen1.5-4B
native 18.0 24.0 34.4 25.5 22.0 26.0 40.4 29.5
cohere 20.0 21.6 16.0 19.2 21.6 24.8 42.0 29.5
google 17.6 22.4 35.6 25.2 21.2 21.6 38.0 26.9

Qwen1.5-7B
native 40.4 40.8 41.6 40.9 34.8 40.0 48.8 41.2
cohere 37.2 40.4 36.8 38.1 37.2 39.6 45.6 40.8
google 42.4 40.8 39.2 40.8 42.8 42.4 48.4 44.5

Qwen1.5-14B
native 44.8 60.0 53.6 52.8 49.2 59.6 56.8 55.2
cohere 32.8 63.6 50.8 49.1 49.2 59.6 51.6 53.5
google 42.4 60.0 54.0 52.1 50.4 63.2 55.6 56.4

Table 16: Results for each model and each language on MGSM (10−4, exact token match, %).

Base model Data
Monolingual Multilingual

es ru zh average es ru zh average

Llama2-7B
native 9.6 10.0 8.8 9.5 10.0 9.6 8.8 9.5
cohere 10.4 11.2 8.0 9.9 10.0 10.4 9.2 9.9
google 9.6 9.6 10.0 9.7 10.4 9.6 9.2 9.7

Gemma-2B
native 13.2 10.8 10.4 11.5 12.4 11.2 12.4 12.0
cohere 12.4 10.4 12.0 11.6 12.4 11.6 12.8 12.3
google 13.6 11.6 13.2 12.8 14.4 11.6 11.6 12.5

Gemma-7B
native 34.8 44.8 37.2 38.9 36.8 46.4 36.4 39.9
cohere 35.6 44.4 36.4 38.8 34.8 45.2 38.0 39.3
google 35.2 46.8 36.4 39.5 37.2 44.0 36.8 39.3

Qwen1.5-0.5B
native 2.4 2.8 8.8 4.7 2.4 2.4 8.4 4.4
cohere 2.8 2.0 10.8 5.2 3.2 2.4 8.8 4.8
google 2.8 1.6 6.8 3.7 2.4 2.4 8.8 4.5

Qwen1.5-1.8B
native 7.2 6.0 20.8 11.3 7.2 6.8 24.4 12.8
cohere 8.0 6.8 20.4 11.7 5.6 6.0 23.2 11.6
google 6.0 5.6 20.8 10.8 6.8 6.0 24.4 12.4

Qwen1.5-4B
native 21.6 28.0 40.0 29.9 20.8 28.0 40.0 29.6
cohere 21.2 27.6 40.0 29.6 22.0 28.8 38.8 29.9
google 22.8 28.8 41.6 31.1 21.2 28.0 38.0 29.1

Qwen1.5-7B
native 38.0 41.6 46.8 42.1 35.2 42.4 53.2 43.6
cohere 36.0 41.2 47.2 41.5 34.8 40.0 48.8 41.2
google 38.4 43.2 48.4 43.3 34.0 43.6 50.8 42.8

Qwen1.5-14B
native 46.0 63.6 58.0 55.9 47.2 62.8 58.0 56.0
cohere 47.6 61.6 58.0 55.7 46.8 63.6 57.6 56.0
google 46.8 62.4 58.0 55.7 48.0 61.6 57.6 55.7

Table 17: Results for each model and each language on MGSM (10−6, exact token match, %).
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Base model Data
Monolingual Multilingual

es ru zh average es ru zh average

Llama2-7B
native 38.4 33.9 34.4 35.6 39.6 35.3 33.9 36.3
cohere 38.0 34.6 27.6 33.4 37.8 31.6 32.9 34.1
google 36.4 34.4 30.4 33.7 37.6 31.9 33.5 34.3

Gemma-2B
native 33.3 30.8 30.5 31.5 32.4 30.4 30.7 31.2
cohere 30.8 30.3 29.6 30.2 33.7 31.9 32.8 32.8
google 31.8 30.0 32.0 31.3 34.0 31.0 32.8 32.6

Gemma-7B
native 55.9 53.0 48.7 52.5 57.3 53.0 50.7 53.7
cohere 58.4 53.8 50.8 54.4 58.7 55.3 52.9 55.6
google 56.1 53.6 49.7 53.1 58.8 55.5 52.5 55.6

Qwen1.5-0.5B
native 30.2 27.1 35.3 30.9 29.4 26.5 35.2 30.4
cohere 30.1 26.5 35.5 30.7 28.7 26.8 34.8 30.1
google 32.4 26.2 36.9 31.8 29.5 26.6 34.6 30.2

Qwen1.5-1.8B
native 34.0 33.5 40.8 36.1 36.0 32.9 42.1 37.0
cohere 35.4 32.2 40.9 36.2 36.3 32.2 42.0 36.8
google 36.7 31.9 39.9 36.2 36.8 32.8 42.0 37.2

Qwen1.5-4B
native 40.9 38.2 49.3 42.8 45.5 38.7 49.6 44.6
cohere 39.9 39.4 44.5 41.3 43.9 37.8 49.4 43.7
google 39.6 38.9 44.2 40.9 43.3 36.2 49.0 42.8

Qwen1.5-7B
native 50.3 47.2 52.9 50.2 51.0 46.7 54.0 50.6
cohere 49.6 46.7 52.6 49.6 52.0 47.3 54.3 51.2
google 50.4 47.2 51.8 49.8 51.9 46.7 54.0 50.9

Qwen1.5-14B
native 58.1 55.4 61.3 58.3 58.6 54.9 61.5 58.3
cohere 55.8 55.2 57.9 56.3 59.3 55.3 61.1 58.5
google 54.9 55.5 58.0 56.1 59.1 55.2 60.4 58.2

Table 18: Results for each model and each language on MT-MMLU (10−4, accuracy, %).

Base model Data
Monolingual Multilingual

es ru zh average es ru zh average

Llama2-7B
native 39.1 34.5 33.9 35.8 38.9 34.7 33.7 35.8
cohere 39.1 34.5 33.7 35.8 39.0 34.5 33.5 35.7
google 39.1 34.5 33.9 35.8 38.9 34.3 33.6 35.6

Gemma-2B
native 31.8 30.8 31.7 31.4 31.7 30.6 31.6 31.3
cohere 31.8 30.8 31.7 31.4 32.0 30.6 31.6 31.4
google 32.0 30.8 31.7 31.5 31.8 30.7 31.7 31.4

Gemma-7B
native 56.5 53.6 51.0 53.7 56.7 53.7 51.5 54.0
cohere 56.5 53.6 51.2 53.8 56.8 54.1 51.3 54.1
google 56.2 53.9 51.7 54.0 57.3 54.0 51.2 54.1

Qwen1.5-0.5B
native 28.0 25.7 34.8 29.5 27.9 25.8 34.6 29.4
cohere 27.9 25.9 34.5 29.5 28.2 25.9 34.5 29.5
google 28.0 25.9 34.5 29.5 28.1 25.8 34.6 29.5

Qwen1.5-1.8B
native 36.1 31.8 41.4 36.4 35.9 31.8 41.6 36.5
cohere 36.0 31.7 41.5 36.4 36.0 31.7 41.5 36.4
google 36.2 31.8 41.3 36.4 36.1 31.7 41.3 36.4

Qwen1.5-4B
native 45.1 39.0 49.3 44.5 44.9 39.0 49.4 44.4
cohere 45.0 38.9 49.3 44.4 44.7 39.1 49.3 44.4
google 45.1 38.9 49.4 44.5 44.8 38.8 49.4 44.3

Qwen1.5-7B
native 51.3 46.4 53.3 50.3 51.0 46.3 53.1 50.1
cohere 51.2 46.4 53.1 50.2 51.1 46.4 53.2 50.2
google 51.2 46.3 52.9 50.1 51.0 46.2 53.2 50.2

Qwen1.5-14B
native 58.7 55.1 60.8 58.2 58.6 55.2 61.0 58.3
cohere 58.7 55.1 61.1 58.3 58.6 55.1 61.0 58.2
google 58.7 55.1 61.0 58.3 58.7 55.1 61.1 58.3

Table 19: Results for each model and each language on MT-MMLU (10−6, accuracy, %).
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Base Model Data
Monolingual Multilingual

es zh average es zh average

Llama2-7B
native 37.6 33.8 35.7 39.0 33.5 36.3
cohere 37.2 27.8 32.5 36.9 32.1 34.5
google 35.9 29.5 32.7 37.1 32.5 34.8

Gemma-2B
native 33.3 31.1 32.2 32.3 31.0 31.7
cohere 30.2 29.4 29.8 33.3 32.4 32.9
google 31.1 31.8 31.4 33.6 33.0 33.3

Gemma-7B
native 54.9 48.0 51.5 56.2 50.4 53.3
cohere 57.5 50.3 53.9 57.8 53.1 55.4
google 55.6 48.8 52.2 57.7 52.7 55.2

Qwen1.5-0.5B
native 30.4 35.6 33.0 29.4 35.2 32.3
cohere 29.7 34.7 32.2 29.0 34.4 31.7
google 31.5 36.8 34.1 29.3 34.4 31.8

Qwen1.5-1.8B
native 33.2 40.7 37.0 35.8 42.6 39.2
cohere 35.2 40.7 38.0 36.7 42.0 39.3
google 36.3 40.0 38.1 37.1 42.3 39.7

Qwen1.5-4B
native 40.2 49.0 44.6 44.4 49.9 47.2
cohere 39.0 45.2 42.1 43.2 49.2 46.2
google 39.0 45.0 42.0 42.2 49.2 45.7

Qwen1.5-7B
native 49.6 53.0 51.3 50.4 53.4 51.9
cohere 48.4 51.8 50.1 50.5 54.3 52.4
google 49.3 51.3 50.3 50.5 53.3 51.9

Qwen1.5-14B
native 57.8 60.7 59.2 58.6 61.4 60.0
cohere 55.1 57.7 56.4 58.7 61.3 60.0
google 54.2 57.3 55.7 58.3 61.2 59.7

Table 20: Results for each model and each language on HT-MMLU (10−4, accuracy, %).

Base Model Data
Monolingual Multilingual

es zh average es zh average

Llama-2-7B
native 38.3 33.3 35.8 38.1 33.4 35.8
cohere 38.2 33.1 35.6 38.1 33.5 35.8
google 38.1 33.4 35.8 38.2 33.3 35.8

Gemma-2B
native 31.1 31.0 31.0 30.8 31.2 31.0
cohere 31.2 31.3 31.2 31.2 31.4 31.3
google 31.2 31.0 31.1 31.2 31.2 31.2

Gemma-7B
native 56.0 49.9 53.0 55.9 50.0 52.9
cohere 55.5 50.3 52.9 55.8 49.6 52.7
google 55.5 50.6 53.1 55.8 50.1 53.0

Qwen1.5-0.5B
native 28.5 34.6 31.5 28.4 34.6 31.5
cohere 28.5 34.7 31.6 28.4 34.7 31.5
google 28.4 34.5 31.4 28.4 34.6 31.5

Qwen1.5-1.8B
native 35.7 41.6 38.7 35.7 41.5 38.6
cohere 35.7 41.2 38.4 35.7 41.2 38.5
google 35.7 41.2 38.5 35.5 41.2 38.4

Qwen1.5-4B
native 43.7 49.6 46.7 43.9 49.5 46.7
cohere 43.9 49.4 46.6 43.7 49.4 46.5
google 43.8 49.6 46.7 43.7 49.4 46.5

Qwen1.5-7B
native 50.4 52.7 51.6 50.5 52.7 51.6
cohere 50.5 52.7 51.6 50.5 52.8 51.6
google 50.6 52.8 51.7 50.4 52.7 51.6

Qwen1.5-14B
native 58.3 61.0 59.6 58.5 61.1 59.8
cohere 58.5 61.2 59.9 58.6 61.3 59.9
google 58.4 61.1 59.8 58.5 61.2 59.9

Table 21: Results for each model and each language on HT-MMLU (10−6, accuracy, %).
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Base model Data
Monolingual Multilingual

es ru zh average es ru zh average

native 203.0 180.0 131.5 171.5 134.0 129.0 102.0 121.7
Llama2-7B cohere 144.0 131.0 104.0 126.3 134.0 130.0 115.0 126.3

google 140.0 122.0 115.0 125.7 148.0 125.0 120.0 131.0

native 161.5 151.0 125.0 145.8 122.0 112.0 109.0 114.3
Gemma-2B cohere 125.0 110.0 115.0 116.7 155.5 138.0 115.0 136.2

google 110.0 118.0 119.0 115.7 126.0 116.0 130.0 124.0

native 224.5 230.0 195.0 216.5 172.0 161.0 161.0 164.7
Gemma-7B cohere 146.0 156.0 148.0 150.0 146.0 144.0 149.0 146.3

google 168.0 157.0 147.0 157.3 151.0 144.0 147.0 147.3

native 89.0 76.0 141.0 102.0 93.5 77.0 133.0 101.2
Qwen1.5-0.5B cohere 70.0 60.0 99.0 76.3 78.0 61.0 107.0 82.0

google 75.0 61.0 109.0 81.7 72.0 58.0 88.0 72.7

native 119.5 112.0 148.0 126.5 105.0 104.0 162.0 123.7
Qwen1.5-1.8B cohere 88.0 88.0 126.0 100.7 86.0 87.0 123.0 98.7

google 87.0 80.0 108.0 91.7 101.5 82.0 115.0 99.5

native 187.0 149.5 190.0 175.5 186.5 151.0 199.0 178.8
Qwen1.5-4B cohere 107.0 108.0 137.0 117.3 123.0 109.0 156.0 129.3

google 113.0 116.0 119.0 116.0 121.0 108.0 145.0 124.7

native 196.0 180.5 186.0 187.5 188.0 178.0 202.0 189.3
Qwen1.5-7B cohere 150.5 118.0 143.0 137.2 139.0 116.0 159.0 138.0

google 134.0 121.0 143.0 132.7 132.0 111.0 158.0 133.7

native 204.0 205.5 203.0 204.2 205.0 209.5 216.0 210.2
Qwen1.5-14B cohere 142.0 151.0 165.0 152.7 150.0 129.0 158.0 145.7

google 137.0 132.0 151.0 140.0 141.0 134.0 147.0 140.7

Table 22: Results for each model and each language on open-ended translated questions (GPT-4-Turbo judged).

Base model Data
Monolingual Multilingual

es ru zh average es ru zh average

native 184.0 167.0 129.0 160.0 180.0 168.0 138.0 162.0
Llama2-7B cohere 174.5 162.0 147.0 161.2 183.0 166.0 150.0 166.3

google 179.0 165.0 148.0 164.0 178.0 162.0 137.0 159.0

native 168.0 155.0 126.0 149.7 170.0 150.0 149.0 156.3
Gemma-2B cohere 166.0 154.0 152.0 157.3 166.0 160.0 151.0 159.0

google 162.0 159.0 144.0 155.0 168.0 153.0 157.0 159.3

native 194.0 190.0 152.0 178.7 190.0 181.0 166.0 179.0
Gemma-7B cohere 171.0 174.0 168.0 171.0 178.0 161.0 161.0 166.7

google 186.0 172.0 170.0 176.0 181.0 172.0 164.0 172.3

native 131.0 96.0 131.0 119.3 121.0 99.0 138.0 119.3
Qwen1.5-0.5B cohere 117.0 98.0 143.0 119.3 126.0 98.0 145.0 123.0

google 133.0 104.0 133.0 123.3 127.0 102.0 129.0 119.3

native 143.0 131.0 140.0 138.0 133.0 115.0 135.0 127.7
Qwen1.5-1.8B cohere 147.0 128.0 152.0 142.3 145.0 121.0 159.0 141.7

google 163.0 125.0 145.0 144.3 148.0 124.0 152.0 141.3

native 179.0 160.0 155.0 164.7 169.0 149.0 170.0 162.7
Qwen1.5-4B cohere 156.0 156.0 165.0 159.0 171.0 153.0 167.0 163.7

google 168.0 155.0 151.0 158.0 157.0 147.0 158.0 154.0

native 181.0 158.0 144.0 161.0 177.0 156.0 166.0 166.3
Qwen1.5-7B cohere 178.0 159.0 154.0 163.7 183.0 148.0 160.0 163.7

google 174.0 153.0 161.0 162.7 172.0 141.0 168.0 160.3

native 183.0 172.0 156.0 170.3 182.0 173.0 169.0 174.7
Qwen1.5-14B cohere 172.0 163.0 149.0 161.3 179.0 158.0 155.0 164.0

google 172.0 159.0 155.0 162.0 172.0 155.0 160.0 162.3

Table 23: Results for each model and each language on open-ended translated questions (Command R+ judged).
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Base model Data
Monolingual Multilingual

es ru zh average es ru zh average

native 195.0 172.5 140.0 169.2 175.0 181.0 140.0 165.3
Llama2-7B cohere 173.0 172.0 149.0 164.7 158.0 152.0 135.0 148.3

google 176.5 163.5 150.5 163.5 173.0 164.0 161.0 166.0

native 156.0 129.5 130.0 138.5 174.0 149.0 136.5 153.2
Gemma-2B cohere 175.0 144.0 160.0 159.7 160.0 152.5 155.0 155.8

google 157.0 129.5 140.0 142.2 166.0 148.5 141.0 151.8

native 220.0 222.0 177.0 206.3 208.0 199.0 180.0 195.7
Gemma-7B cohere 197.0 209.5 207.0 204.5 206.0 175.5 194.0 191.8

google 204.0 190.5 200.0 198.2 187.5 198.0 211.0 198.8

native 88.0 88.0 157.0 111.0 91.0 76.0 162.0 109.7
Qwen1.5-0.5B cohere 91.5 91.0 145.5 109.3 78.0 70.0 156.0 101.3

google 93.0 66.0 142.0 100.3 91.0 72.0 157.0 106.7

native 121.0 107.0 174.0 134.0 118.0 88.0 156.0 120.7
Qwen1.5-1.8B cohere 116.0 102.0 177.0 131.7 121.0 108.0 193.5 140.8

google 114.0 96.0 153.0 121.0 136.5 101.0 196.5 144.7

native 162.0 126.0 186.0 158.0 163.0 129.0 208.0 166.7
Qwen1.5-4B cohere 152.0 141.0 173.0 155.3 168.5 140.5 208.0 172.3

google 146.0 137.0 191.0 158.0 161.0 133.0 213.0 169.0

native 191.0 179.0 176.0 182.0 201.0 139.0 186.0 175.3
Qwen1.5-7B cohere 194.0 175.5 205.5 191.7 185.0 165.0 213.0 187.7

google 178.0 164.0 183.0 175.0 188.0 153.0 184.0 175.0

native 206.0 144.0 197.0 182.3 204.5 184.0 219.0 202.5
Qwen1.5-14B cohere 194.0 206.5 216.0 205.5 211.0 187.5 236.0 211.5

google 177.0 167.0 222.5 188.8 197.0 182.0 212.0 197.0

Table 24: Results for each model and each language on open-ended native questions (GPT-4-Turbo judged).

Base model Data
Monolingual Multilingual

es ru zh average es ru zh average

native 194.0 165.0 131.0 163.3 184.0 172.0 144.0 166.7
Llama2-7B cohere 173.0 160.0 145.0 159.3 184.0 163.0 149.0 165.3

google 184.0 161.0 153.0 166.0 179.0 158.0 142.0 159.7

native 168.0 151.0 128.0 149.0 179.0 152.0 155.0 162.0
Gemma-2B cohere 176.0 152.0 155.0 161.0 178.0 155.0 151.0 161.3

google 178.0 153.0 140.0 157.0 179.0 162.0 151.0 164.0

native 201.5 187.0 148.0 178.8 202.0 181.0 169.0 184.0
Gemma-7B cohere 183.0 172.0 162.0 172.3 180.0 162.0 168.0 170.0

google 190.0 180.0 174.0 181.3 182.0 175.0 170.0 175.7

native 133.0 103.0 153.0 129.7 136.0 96.0 150.0 127.3
Qwen1.5-0.5B cohere 136.0 98.0 145.0 126.3 129.0 99.0 151.0 126.3

google 130.0 97.0 145.0 124.0 125.0 102.0 157.0 128.0

native 160.0 138.0 155.0 151.0 152.0 112.0 145.0 136.3
Qwen1.5-1.8B cohere 151.0 121.0 170.0 147.3 149.0 118.0 167.0 144.7

google 156.0 128.0 166.0 150.0 161.0 125.0 163.0 149.7

native 180.0 152.0 161.0 164.3 181.0 149.0 171.0 167.0
Qwen1.5-4B cohere 173.0 154.0 180.0 169.0 173.0 154.0 176.0 167.7

google 168.0 149.0 171.0 162.7 182.0 147.0 177.0 168.7

native 184.0 164.0 154.0 167.3 193.0 153.0 159.0 168.3
Qwen1.5-7B cohere 184.0 154.0 160.0 166.0 184.0 146.0 173.0 167.7

google 181.0 155.0 166.0 167.3 182.0 149.0 164.0 165.0

native 191.0 160.0 152.0 167.7 192.0 167.0 169.0 176.0
Qwen1.5-14B cohere 189.0 173.0 172.0 178.0 190.0 164.0 173.0 175.7

google 184.0 163.0 178.0 175.0 188.0 160.0 165.0 171.0

Table 25: Results for each model and each language on open-ended native questions (Command R+ judged).
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