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Abstract

Intermediate task transfer learning can greatly
improve model performance. If, for example,
one has little training data for emotion detec-
tion, first fine-tuning a language model on a
sentiment classification dataset may improve
performance strongly. But which task to choose
for transfer learning? Prior methods produc-
ing useful task rankings are infeasible for large
source pools, as they require forward passes
through all source language models. We over-
come this by introducing Embedding Space
Maps (ESMs), light-weight neural networks
that approximate the effect of fine-tuning a lan-
guage model. We conduct the largest study on
NLP task transferability and task selection with
12k source-target pairs. We find that apply-
ing ESMs on a prior method reduces execution
time and disk space usage by factors of 10 and
278, respectively, while retaining high selection
performance (avg. regret@5 score of 2.95).

1 Introduction

The current default approach for supervised learn-
ing in NLP involves directly fine-tuning a pre-
trained transformer using labeled data of the target
task. However, prior work showed that in some
cases it is beneficial to perform two consecutive
fine-tunings in a row: first, on an intermediate task,
and then on the target task (Phang et al., 2018; Vu
et al., 2020). This may be particularly effective
when little training data exists for the target task,
while much exists for the intermediate task.

However, whether and how much performance
is gained with intermediate task transfer learning
heavily depends on the chosen intermediate task.
Worse, finding the best intermediate task for a
given target task is a non-trivial problem given the
large amount of labeled datasets that exist for NLP.
For instance, the HuggingFace Hub alone contains
more than 160k datasets and 700k models. This
renders an exhaustive search for the best possible

intermediary task infeasible. The problem of find-
ing promising intermediate tasks for a target task
is called intermediate task selection.1

Prior work investigates approaches for finding
suitable intermediate tasks given a source trans-
former LM and a target task (Achille et al., 2019;
Bassignana et al., 2022; Li et al., 2020; Nguyen
et al., 2020; Tran et al., 2019; Vu et al., 2020).
These approaches rely on the local availability of
(large) source models or a space-intense represen-
tation of source datasets. Methods also require
resource-intensive computation for each source-
target pair (Poth et al., 2021; You et al., 2021b).
Thus, most approaches are infeasible in real-world
scenarios, i.e., with large source pools and con-
strained resources. While the large pool of avail-
able models and datasets is a valuable resource,
user cannot optimally utilize it (You et al., 2021b).

This paper makes two contributions. First, we
propose Embedding Space Maps (ESMs), linear
transformations of the embedding space, to be used
in combination with LogME (You et al., 2021a), a
source selection method that achieves high selec-
tion performance but suffers from its dependency
on forward passes through each source model. We
overcome this by approximating the embeddings of
fine-tuned language models with ESMs. The result-
ing source selection method ESM-LogME reduces
execution time by a factor of 10 and disk space
usage by a factor of 278, and thus enables efficient
source selection also on large source pools.

Second, we compare the performance of ESM-
LogME to prior methods in the to date largest study
on transferability across NLP tasks with more than
1.5k source datasets from HuggingFace Hub and
8 target datasets across several task types and lan-
guages. The results show that ESM-LogME is the

1In contrast, source selection includes ranking source mod-
els of any kind, e.g., not only intermediate tasks (already
fine-tuned language models), but also only pre-trained mod-
els.
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best-performing source selection method that is
feasible in real-world scenarios. We release source
code and all resources under the Apache 2 license.
Our Python package also allows to share and find
ESMs to facilitate efficient source selection among
researchers and practitioners. The repository is
available at: https://github.com/davidschulte/hf-
dataset-selector

2 Related Work

Transfer learning is a common paradigm in NLP.
With BERT, Devlin et al. (2019) propose encoders
that are trained on a large corpus and then fine-
tuned on individual target tasks. Phang et al. (2018)
show that language models can benefit from adding
an intermediate fine-tuning step. This procedure is
called intermediate task transfer learning. One of
its challenges is finding the right intermediate task.

Source selection methods determine transfer suit-
ability of source tasks for a given target task. The
resulting rankings enable users to pick the poten-
tially best sources, e.g., to perform transfer learning
using these top picks to find the actual best source.
Methods typically consist of two resource-intense
phases. In a one-time process, for each source a
target-independent representation is created (P1).
Then, for a given target task, a ranking is produced
using these representations (P2).

TextEmb (Vu et al., 2020) and TaskEmb (Achille
et al., 2019) embed datasets into a vector space
and compute the distance of their representations.
TaskEmb shows good performance in the literature,
but its vector representation is in general as large
as the language model itself. The vectors produced
by TextEmb are small, but describe only the task
domain and not the relation of inputs and labels.

NCE (Tran et al., 2019), LEEP (Nguyen et al.,
2020), and LogME (You et al., 2021a) rank source
models by evaluating pseudo-labels, their distribu-
tions, and target embeddings. These methods show
state-of-the-art performance in source selection,
but require forward passes through each source
model. For scenarios with many source models,
such approaches may thus be infeasible.

Prior studies evaluate the effect of intermedi-
ate task transfer learning and the performance of
source selection methods on NLP tasks (Bassig-
nana et al., 2022; Poth et al., 2021; Vu et al., 2020).
But these studies do not represent real-world sce-
narios. Employed source pools are small (n < 50),
whereas users can and have to choose from a very

large pool of source datasets and models. Also,
studies largely do not evaluate execution time and
disk space usage. We argue that efficiency is crucial
for practical use of source selection methods.

In sum, prior work can achieve high ranking
accuracy, but does not explore source selection
in real-world scenarios. Studies largely neglect
efficiency and use benchmarks that do not resemble
source pools available on popular model hubs.

3 Embedding Space Maps

Fine-tuning a base language model f0 on a task T
using dataset DT results in a fine-tuned language
model fT , which embeds texts differently than the
base language model. We describe this effect as a
function h0→T on the embedding space and approx-
imate this function using a neural network, which
we call ESM, ϕ0→T . Specifically, an ESM’s inputs
are embeddings produced by the base model f0 and
its outputs are d-dimensional approximations of the
embeddings produced by the fine-tuned model fT .
Attaching this network to a base model allows us to
approximate how the respective fine-tuned model
embeds a given text x.

ϕ0→T (f0(x)) ≈ h0→T (f0(x)) = fT (x) (1)

Input text
x

Effect of fine-tuning

Base LM
f0

f0(x) fT(x)

Fine-tuned LM
fT

ESM
ɸ0→T

ɸ0→T(f0(x))

≈

Figure 1: Embedding Space Maps approximate how a
fine-tuned language model embeds an input text x by
transforming embeddings produced by the base model.

For phase P1 (cf. Section 2), i.e., to train an
ESM, we embed each text x of a dataset D with
both f0 and fT . We train the ESM ϕ0→T by using
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Figure 2: We use T-SNE to visualize embeddings of inputs of the SNLI validation split using BERT (l.), BERT
fine-tuned on SNLI (m.), and BERT and an ESM that was trained using the fine-tuned model (r.). The ESM-
transformed embeddings are clearly arranged with regard to their classes. While classes are not as distinguished as
when embedded by the fine-tuned model, a clear gradient is visible (albeit having applied dimension reduction).

the resulting embeddings (f0(x), fT (x)) as train
examples. Although any dataset could be used in
this step, we choose to embed DT (the dataset that
f0 was fine-tuned on to obtain fT ), as its input
texts describe task T and its effect on the language
model best. 2

For P2, we once compute embeddings for the
inputs of a target task using the base model and
transform them using an ESM for each intermedi-
ate task. Following this, we rank sources by the
LogME score of their ESM-transformed embed-
dings and target labels. We call this workflow ESM-
LogME. Since ESMs approximate the embeddings
produced by the intermediate model, ESM-LogME
can be viewed as an approximation of LogME.

We design ESMs as a single forward layer to
minimize their size and computational complex-
ity. Therefore, ESMs are linear transformations.
This design choice greatly reduces the amount of
parameters needed to describe fine-tuning f0 on a
task, e.g., from 110M to less than 0.6M for BERT.
Thus, ESMs drastically reduce compute cost and
disk space usage of source representations.

Since h0→T is the result of changing (many) pa-
rameters inside the language model, ϕ0→T under-
fits this function. Our evaluation shows that—albeit
their simplicity—ESMs can encode abstract char-
acteristics of their corresponding task. For a more
intuitive understanding of the concept of ESMs, we
visualize how well they approximate the effect of
fine-tuning in an experiment (see Figure 2).

ESMs are parameter-efficient representations of
transfer learning that are attached to a base lan-
guage model. This modular design of ESMs resem-
bles that of adapters (Houlsby et al., 2019; Pfeiffer

2We train ESMs for 10 epochs with a learning rate of 0.001
and weight decay of 0.01.

et al., 2020). While adapter blocks are inserted
between transformer layers of a language model,
ESMs are placed solely on top. Using adapters for
source selection requires a forward pass through
the entire language model for each source. This
also holds for state-of-the-art methods such as Log-
ME. In contrast, with ESMs, only a single forward
pass through the base language model is required
to compute the base embeddings of the target task.
These can then quickly be transformed using an
ESM for each intermediate task. In turn, ESMs
significantly decrease computational effort in P2.

4 Experimental Setup

In contrast to prior studies, we aim to evaluate rank-
ing performance in a real-world scenario. We parse
datasets from the HuggingFace Hub and heuristi-
cally determine their input and label columns to
gather as many intermediate tasks as possible. This
process includes searching for common column
names, analyzing column types and contents3. The
resulting pool consists of 1553 datasets (1496 clas-
sification and 57 regression tasks).

We manually curate a selection of target datasets
that is diverse as to task type, domain, and lan-
guage. It consists of datasets or subsets from
IMDB (Maas et al., 2011), TweetEval with Emo-
tion and Sentiment subsets (TES, TSS) (Barbieri
et al., 2020), J-STS (Kurihara et al., 2022), Multi-
Dimensional Gender Bias Classification (MDGB)
(Dinan et al., 2020), the English subset of PAWS-X
(Yang et al., 2019), Query Wellformedness (GQW)
(Faruqui and Das, 2018), and Civil Comments
(GCC) (Borkan et al., 2019).4 We artificially re-

3Cf. Appendix B.2.
4Cf. Appendix B.1.
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Classification Regression Runtime Memory
NDCG R@1 R@3 R@5 NDCG R@1 R@3 R@5 (ms) (MB)

ESM-LogME 57 6.85 3.83 1.91 61 10.53 7.41 4.69 423 2
LogME 82 2.89 0.12 0.12 86 1.64 1.64 1.64 4,501 639
Vocabulary Overlap 59 4.45 2.37 1.80 60 22.07 12.25 11.24 8,579 5
TaskEmb 46 15.28 13.62 13.08 80 7.38 3.02 3.02 2,767 639
TextEmb 54 7.97 7.26 6.73 54 7.32 11.52 11.10 0.01 0.01
Frozen Transfer 46 6.91 3.79 3.00 66 8.53 1.76 1.76 10,541 639

NCE 74 4.47 2.70 0.12 - - - - 3,857 639
LEEP 82 1.90 0.12 0.12 - - - - 3,893 639

Table 1: Overview of Ranking Performances and Efficiency

duce the train size of target datasets to 1k rows to
simulate data scarcity and of source datasets to 10k
rows for evaluation efficiency.

We use BERT (bert-base-multilingual-uncased),
perform transfer learning for all source-target
pairs5, and evaluate the rankings of several source
selection methods using the realized performance
gains on a validation dataset as ground truth.6

We calculate source rankings using ESM-LogME,
LogME, NCE, LEEP, TextEmb, TaskEmb, vocabu-
lary overlap (Jacard Index of the sets of tokenized
inputs), and fine-tuning source models while freez-
ing the parameters of the language model. Model
performance is measured in accuracy for classifica-
tion tasks and as mean of Pearson correlation and
Spearman’s rank corr. coefficient for regression.

We follow prior work (Vu et al., 2020; Poth et al.,
2021) and measure the quality of source rankings
using NDCG (Järvelin and Kekäläinen, 2002) and
regret@k (Renggli et al., 2020) with k = 1, 3, 5
(all reported as pp.). Effectively, R@k expresses
how well the best task in the selected k tasks per-
forms compared to using the best task from the
entire pool. The metric assumes that users employ
transfer learning on all k selected tasks to find the
actual best from those. We use R@5 as the primary
metric.

5 Results

5.1 Transfer Results

Figure 3 shows the performance for each target task
distributed over all source tasks. With one excep-
tion, target tasks benefit from the majority of inter-
mediate tasks, albeit to a different extent. Though,
depending on the chosen intermediate task, transfer
learning may also degrade performance compared

5We train the model for 3 epochs with a learning rate of
2e− 5 and a weight decay of 0.01.

6Computations were run on a single Nvidia RTX 600 GPU.
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Figure 3: The baseline performance indicates the perfor-
mance resulting from fine-tuning the base model with-
out any intermediary task. Marks indicate the sources
ranked highest by ESM-LogME and LogME.

to the base model.7 The findings highlight the ef-
fectiveness of intermediate task transfer learning,
but also the importance of proper task selection.

5.2 Source Ranking Evaluation

Model-based methods perform better than dataset-
based approaches (Table 1). In particular, LogME,
NCE, and LEEP produce the best rankings (R@5
of 0.12 for classification and 1.64 for regression).8

ESM-LogME performs better than most remaining
methods on classification target tasks (1.91). Its
performance slightly worsens on regression targets
(4.69). However, in 4 target tasks, the best source
task is contained in the top 5 rankings of ESM-
LogME (0). Averaged over all tasks, ESM-LogME
yields R@5 of 2.95, i.e., transferring from the best
of the top 5 picks leads to 97.05% of the best pos-
sible performance of the entire source pool.9

7The best sources generally are of the same task type, e.g.,
sentiment classification, as the target (cf. Appendix A.1).

8NCE and LEEP have to be treated separately: as they do
not apply to regression tasks, we evaluate them on a source
pool that contains only classification tasks.

9For detailed results per target task, cf. Appendix A.2.
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Figure 3 shows the source tasks ranked highest
by ESM-LogME and LogME. While for 3 target
tasks the top 1 picks of ESM-LogME lead to no
significant transfer gains (or even a slight transfer
loss), it also finds the best source for 2 of the tar-
get tasks (for 2 tasks, it even picks a better source
task than LogME, likely due to a positive approxi-
mation error). This highlights that the rankings of
ESM-LogME and other methods should be used to
determine a small candidate set for transfer learn-
ing, rather than solely relying on the top pick.

5.3 Efficiency

Results from P1 are target-independent and can
be shared publicly. We measure efficiency in P2,
which needs to be performed by users for interme-
diate task selection.

Table 1 shows that ESM-LogME is by far the
fastest and also most storage efficient selection
method (aside from TextEmb, which yields infe-
rior rankings). It is ≈10x faster than LogME, NCE,
and LEEP and scales well across source tasks, since
ESMs can quickly transform base embeddings. It
is 278x more storage-efficient than model-based
methods, which require trained source models.

6 Conclusion

We show that a linear transformation of the em-
bedding space suffices to describe a source task
well enough for source selection. Although ESM-
LogME yields less accurate rankings than LogME,
our results show that the ESM-LogME workflow
performs well on most target tasks (avg. re-
gret@5 score of 2.95). At the same time, ESM-
LogME is substantially more efficient than all well-
performing state-of-the-art methods. This makes it
the best-performing source selection method that
is feasible in a real-world scenario.

7 Limitations

This study has the following limitations that re-
sult either from weaknesses of ESM-LogME or
resource scarcity during the evaluation.

7.1 Specificity to a language model

One drawback of ESMs is that they are specific to
a base language model. In practice, a user might
not care which base model they use, but may care
only about the performance on the target task. In
this case, the user would have to compute target
embeddings with several base language models and

then apply ESM-LogME using ESMs specific to
the corresponding language models.

7.2 ESM Architectures

We designed ESMs as single linear layers for sim-
plicity and efficiency. However, other architectures
are also worth exploring. We expect non-linear
transformations to better approximate the effect of
fine-tuning. On the downside, they are larger and
have a higher risk of overfitting.

7.3 Results across language models

In this study, we evaluated ESM-LogME solely
on a single base language model. As mentioned
previously, users might want to consider several
base models. Furthermore, we did not study how
well the rankings of ESM-LogME specific to lan-
guage model A could be transferred to intermediate
task transfer learning using language model B. Poth
et al. (2021) show a strong correlation of the perfor-
mance of source-target pairs using the base models
BERT and RoBERTa. This result indicates that
intermediate task selection across language models
may be viable.

7.4 Dataset sizes

To enable an evaluation across many source tasks,
we considered only one configuration of dataset
sizes, i.e., 10k source rows (or less) and 1k tar-
get rows. Prior work shows that the size of target
datasets significantly affects transfer gains (Poth
et al., 2021; Vu et al., 2020). We did not research
the effect of dataset sizes on task transferability and
source selection accuracy.

7.5 Dataset Selection

Our heuristic parsing of the source datasets yields
non-sensical datasets resulting from wrong assign-
ments of input or label columns. It also forgoes
many datasets whose columns it cannot assign.
Additionally, it considers only one input-label-
combination, whereas certain datasets have mul-
tiple combinations describing different tasks. Al-
though the target datasets are curated to be as di-
verse as possible, they only contain a single non-
English-language dataset, i.e., J-STS. Thus, the
dataset selection does not allow us to analyze the ef-
fect of transfer learning across languages. Though,
our results on J-STS imply that language may have
a significant affect on transferability, since the mag-
nitude of transfer gains are low, and the best sources
are largly defined by language and not task type.
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7.6 Real-world applicability

The assumption behind the efficiency of ESM-
LogME is that users do not have to train the ESM
for each source themselves. ESM-LogME is useful
only if users can access ESMs specific to their cho-
sen base language model and the source datasets in
their source pool. This can be facilitated by either
storing them on model hubs, such as HuggingFace,
or by creating a model hub specific to ESMs, simi-
lar to Adapter Hub (Pfeiffer et al., 2020). We plan
to initially publish ESMs created for the paper at
hand and currently investigate both options.
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A Detailed Results

A.1 Top 10 Source Tasks and ESM-LogME Picks

Source Task Perf. ESM-LM Rank

1 rotten_tomatoes:default 81.0 9
2 amazon_polarity:amazon_polarity 80.5 6
3 sst:dictionary 80.4 1
4 yelp_polarity:plain_text 80.3 17
5 senti_lex:hi 80.3 823
6 BDas/EnglishNLPDataset:EnglishData 80.2 43
7 senti_lex:bg 80.2 204
8 KBLab/overlim:sst_da 80.1 83
9 tweet_eval:emotion 80.0 161
10 silicone:sem 80.0 679

Table 2: Ground Truth Ranking: IMDB

Source Task Perf. True Rank

1 sst:dictionary 80.4 3
2 sst:default 78.6 65
3 kuroneko5943/snap21:CDs_and_Vinyl_5 78.6 63
4 kuroneko5943/snap21:Video_Games_5 77.4 172
5 kuroneko5943/snap21:Movies_and_TV_5 79.3 30
6 amazon_polarity:amazon_polarity 80.5 2
7 glue:sst2 79.9 16
8 Patt/ReCoRD_TH_drop:default 72.2 1035
9 rotten_tomatoes:default 81.0 1
10 evaluate/glue-ci:sst2 79.9 15

Table 3: ESM-LogME Ranking: IMDB

Source Task Perf. ESM-LM Rank

1 emo:emo2019 72.73 287
2 tasksource/crowdflower:text_emotion 71.39 173
3 silicone:meld_s 71.39 1109
4 tyqiangz/multilingual-sentiments:ind. . . 70.86 1054
5 Deysi/sentences-and-emotions:default 69.79 357
6 Sharathhebbar24/app_reviews_modded. . . 69.79 674
7 scaredmeow/shopee-reviews-tl-bin. . . 69.52 1156
8 tyqiangz/multilingual-sentiments. . . 69.25 985
9 tyqiangz/multilingual-sentiments:all 68.98 1277
10 tweet_eval:sentiment 68.98 128

Table 4: Ground Truth Ranking: TEE

Source Task Perf. True Rank

1 sst:dictionary 55.35 643
2 philschmid/emotion:split 66.31 52
3 Patt/ReCoRD_TH_drop:default 42.78 1323
4 sst:default 54.28 690
5 dair-ai/emotion:split 66.31 45
6 google/civil_comments:default 63.64 148
7 dair-ai/emotion:unsplit 66.58 40
8 ttxy/emotion:default 66.31 47
9 d0rj/rudetoxifier_data:default 59.63 372
10 sst2:default 63.37 160

Table 5: ESM-LogME Ranking: TEE

Source Task Perf. ESM-LM Rank

1 cardiffnlp/tweet_sentiment_multilingual:all 70.9 4
2 cardiffnlp/tweet_sentiment_multilingual:e. . . 68.2 51
3 tyqiangz/multilingual-sentiments:eng. . . 66.8 36
4 BDas/EnglishNLPDataset:EnglishData 65.8 29
5 MichiganNLP/TID-8:goemotions-ann 65.3 44
6 Areeb123/drug_reviews:default 64.2 22
7 sst:default 64.1 3
8 tasksource/crowdflower:airline-sent. . . 64.1 1
9 MichiganNLP/TID-8:sentiment-atr 63.8 14
10 MichiganNLP/TID-8:goemotions-atr 63.6 16

Table 6: Ground Truth Ranking: TES

Source Task Perf. True Rank

1 tasksource/crowdflower:airline-sent. . . 64.1 8
2 sst:dictionary 62.5 32
3 sst:default 64.1 7
4 cardiffnlp/tweet_sentiment_multilingual:all 70.9 1
5 tasksource/crowdflower:text_emotion 62.6 29
6 yelp_polarity:plain_text 62.6 26
7 tweet_eval:offensive 61.5 53
8 MichiganNLP/TID-8:sentiment-ann 62.8 22
9 claritylab/utcd:out-of-domain 55.7 1199
10 glue:sst2 62.9 19

Table 7: ESM-LogME Ranking: TES

Source Task Perf. ESM-LM Rank

1 llm-book/JGLUE:JNLI 80.76 653
2 shunk031/JGLUE:JNLI 80.76 1006
3 clue:cmnli 79.38 665
4 shunk031/jsnli:without-filtering 79.27 888
5 shunk031/jsnli:with-filtering 79.14 998
6 xtreme:XNLI 78.99 1060
7 PNLPhub/FarsTail:FarsTail 78.99 939
8 paws:labeled_final 78.86 364
9 csebuetnlp/xnli_bn:xnli_bn 78.77 910
10 stsb_multi_mt:zh 78.67 664

Table 8: Ground Truth Ranking: J-STS

Source Task Perf. True Rank

1 kejian/codeparrot-train-more-filter. . . 76.1 1188
2 Patt/ReCoRD_TH_drop:default 77.0 640
3 lex_glue:case_hold 76.64 876
4 sileod/probability_words_nli:reasoning_2. . . 75.94 1258
5 sst:dictionary 76.15 1162
6 RussianNLP/russian_super_glue:muserc 74.97 1463
7 go_emotions:raw 71.16 1551
8 ltg/norec:default 74.57 1497
9 metaeval/defeasible-nli:snli 74.7 1489
10 claudios/cubert_ETHPy150Open:variable. . . 76.72 814

Table 9: ESM-LogME Ranking: J-STS
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Source Task Perf. ESM-LM Rank

1 kuroneko5943/amz20:Baby 65.56 448
2 journalists_questions:plain_text 64.65 1075
3 humicroedit:subtask-1 64.24 969
4 joelniklaus/lextreme:swiss_criticality_pr. . . 64.03 92
5 evaluate/glue-ci:cola 64.02 257
6 glue:cola 64.02 389
7 sbx/superlim-2:dalaj-ged 63.88 241
8 strombergnlp/nordic_langid:10k 63.72 1080
9 kuroneko5943/amz20:CableModem 63.61 54
10 hpprc/janli:base 63.49 511

Table 10: Ground Truth Ranking: GWQ

Source Task Perf. True Rank

1 pragmeval:persuasiveness-eloquence 56.49 1144
2 TheBritishLibrary/blbooksgenre:annotate. . . 50.76 1475
3 Patt/ReCoRD_TH_drop:default 57.91 942
4 xtreme:PAWS-X.en 55.41 1259
5 ScandEval/scala-is:default 59.39 596
6 akhtet/myXNLI:default 51.83 1444
7 indic_glue:wstp.mr 58.54 828
8 sileod/probability_words_nli:reasoning_1. . . 60.55 279
9 tasksource/mmlu:high_school_macroecon. . . 56.9 1082
10 davebulaval/CSMD:meaning_holdout_ide. . . 58.56 821

Table 11: ESM-LogME Ranking: GWQ

Source Task Perf. ESM-LM Rank

1 paws:labeled_final 87.4 1
2 xtreme:PAWS-X.en 87.0 234
3 paws-x:es 85.7 666
4 paws:unlabeled_final 85.4 257
5 paws-x:fr 85.2 317
6 xtreme:PAWS-X.es 84.3 790
7 paws-x:de 84.2 812
8 xtreme:PAWS-X.de 83.1 561
9 xtreme:PAWS-X.zh 82.5 869
10 paws-x:zh 82.5 833

Table 12: Ground Truth Ranking: PAWS-X

Source Task Perf. True Rank

1 paws:labeled_final 87.4 1
2 claritylab/utcd:out-of-domain 55.4 491
3 tasksource/zero-shot-label-nli:default 53.8 1234
4 turkish_product_reviews:default 55.3 550
5 swag:full 53.8 1250
6 go_emotions:raw 55.2 594
7 seara/ru_go_emotions:raw 55.2 582
8 davebulaval/CSMD:meaning 55.6 420
9 metaeval/defeasible-nli:social 55.5 462
10 TheBritishLibrary/blbooksgenre:annotated. . . 52.9 1470

Table 13: ESM-LogME Ranking: PAWS-X

Source Task Perf. ESM-LM Rank

1 md_gender_bias:opensubtitles_inferred 83.0 1
2 md_gender_bias:yelp_inferred 82.7 28
3 klue:re 82.5 1244
4 AmazonScience/massive:sw-KE 82.2 1539
5 AI-Sweden/SuperLim:sweana 81.7 1455
6 md_gender_bias:light_inferred 81.6 3
7 DBQ/Mr.Porter.Product.prices.Hungary:de. . . 81.5 1353
8 conv_ai_3:conv_ai_3 81.4 1461
9 sagteam/author_profiling:main 81.3 5
10 DBQ/Gucci.Product.prices.Romania:default 81.2 1336

Table 14: Ground Truth Ranking: MDGB

Source Task Perf. True Rank

1 md_gender_bias:opensubtitles_inferred 83.0 1
2 Patt/ReCoRD_TH_drop:default 69.7 1468
3 md_gender_bias:light_inferred 81.6 6
4 md_gender_bias:wizard 77.9 430
5 sagteam/author_profiling:main 81.3 9
6 art:anli 73.7 1252
7 md_gender_bias:funpedia 78.1 381
8 omp:posts_unlabeled 75.9 922
9 swag:full 71.2 1424
10 metaeval/defeasible-nli:social 75.8 945

Table 15: ESM-LogME Ranking: MDGB

Source Task Perf. ESM-LM Rank

1 tweet_eval:offensive 61.83 5
2 OxAISH-AL-LLM/wiki_toxic:default 58.73 4
3 pietrolesci/wikitoxic:default 58.18 3
4 classla/FRENK-hate-en:multiclass 56.82 8
5 classla/FRENK-hate-en:binary 56.18 6
6 hate_speech_filipino:default 56.08 106
7 MichiganNLP/TID-8:md-agreement-atr 55.47 2
8 MichiganNLP/TID-8:md-agreement-

ann
54.42 1

9 tweet_eval:emotion 54.38 198
10 tasksource/crowdflower:text_emotion 53.88 412

Table 16: Ground Truth Ranking: GCC

Source Task Perf. True Rank

1 MichiganNLP/TID-8:md-agreement-
ann

54.42 8

2 MichiganNLP/TID-8:md-agreement-atr 55.47 7
3 pietrolesci/wikitoxic:default 58.18 3
4 OxAISH-AL-LLM/wiki_toxic:default 58.73 2
5 tweet_eval:offensive 61.83 1
6 classla/FRENK-hate-en:binary 56.18 5
7 sst:dictionary 50.74 30
8 classla/FRENK-hate-en:multiclass 56.82 4
9 clue:csl 47.98 88
10 d0rj/rudetoxifier_data:default 49.04 59

Table 17: ESM-LogME Ranking: GCC

9439



A.2 Detailed Source Ranking Evaluation

NDCG Regret@1 Regret@3 Regret@5

IMDB 78 0.74 0.74 0.74
TEE 25 23.9 8.82 8.82
TES 45 9.59 9.59 0
PAWS-X 63 0 0 0
MDGB 72 0 0 0
J-STS 80 5.77 4.65 4.65
GWQ 59 13.83 11.66 9.41
QCC 45 11.99 5.91 0

avg 58 8.23 5.17 2.95

Table 18: ESM-LogME Results

NDCG Regret@1 Regret@3 Regret@5

IMDB 88 0.62 0.62 0.62
TEE 77 1.84 0 0
TES 65 10.3 0 0
PAWS-X 99 0 0 0
MDGB 81 1.69 0 0
J-STS 87 2.58 2.58 2.58
GWQ 70 2.35 2.35 2.35
QCC 100 0 0 0

avg 83 2.42 0.69 0.69

Table 19: LogME Results

NDCG Regret@1 Regret@3 Regret@5

IMDB 73 2.96 2.1 0
TEE 48 6.62 1.84 1.84
TES 30 5.78 3.81 3.81
PAWS-X 84 0 0 0
MDGB 59 6.87 4.1 3.37
J-STS 90 0 0 0
GWQ 57 11.74 11.74 11.74
QCC 33 54.46 25.01 21.98

avg 59 11.05 6.07 5.34

Table 20: Vocabulary Overlap Results

NDCG Regret@1 Regret@3 Regret@5

IMDB 69 6.54 4.32 2.96
TEE 39 16.18 12.5 12.5
TES 27 16.5 16.5 16.5
PAWS-X 20 35.47 33.07 33.07
MDGB 74 1.69 1.69 0.36
J-STS 85 3.36 3.36 3.36
GWQ 57 18.79 5.69 5.69
QCC 98 0 0 0

avg 59 12.32 9.64 9.31

Table 21: TaskEmb Results

NDCG Regret@1 Regret@3 Regret@5

IMDB 59 14.2 11.11 10.12
TEE 31 18.01 18.01 18.01
TES 30 3.81 3.81 3.81
PAWS-X 83 0.46 0 0
MDGB 64 3.37 3.37 1.69
J-STS 89 0 0 0
GWQ 56 21.75 4.37 4.37
QCC 18 30.21 30.21 28.94

avg 54 11.48 8.86 8.37

Table 22: TextEmb Results

NDCG Regret@1 Regret@3 Regret@5

IMDB 66 3.46 0.74 0.74
TEE 65 0 0 0
TES 15 11.42 10.01 10.01
PAWS-X 28 1.95 1.95 1.95
MDGB 58 17.71 6.27 2.29
J-STS 82 5.79 2.93 2.93
GWQ 65 2.35 2.35 2.35
QCC 51 17.44 0 0

avg 54 7.51 3.03 2.53

Table 23: Frozen Transfer Results

NDCG Regret@1 Regret@3 Regret@5

IMDB 86 0.62 0.62 0.62
TEE 52 12.87 12.87 0
TES 55 7.19 0 0
PAWS-X 99 0 0 0
MDGB 78 1.69 0 0
J-STS - - - -
GWQ - - - -
QCC - - - -

avg 74 4.47 2.7 0.12

Table 24: NCE Results

NDCG Regret@1 Regret@3 Regret@5

IMDB 87 0.62 0.62 0.62
TEE 79 0 0 0
TES 66 7.19 0 0
PAWS-X 99 0 0 0
MDGB 77 1.69 0 0
J-STS - - - -
GWQ - - - -
QCC - - - -

avg 82 1.9 0.12 0.12

Table 25: LEEP Results
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B Datasets

B.1 Target Datasets

Description # Classes Language Config Input columns Label column

IMDB Sentiment analysis 2 en plain_text text label
TES Sentiment analysis 3 en sentiment text label
TEE Emotion recognition 4 en emotion text label
PAWS-X Paraphrase identification 2 en en text label
MDGB Gender bias analysis 2 en convai2_inferred text binary_label
J-STS Semantical similarity R ja JSTS sentence1, sentence2 label
GWQ Query quality analysis R en default content rating
GCC Hate speech detection R en default text toxicity

Table 26: Target Datasets

B.2 Source Datasets
The source datasets were heuristically parsed from the Huggingface Hub. We remove source datasets that
are exact duplicates of any of the target datasets. We do not control for duplicates between source datasets.

Yes

No

Is there a single text
column? Select column

No

Yes

Is there a column
with the name

sentence, input,
inputs, or text?

Select column

Yes

No

Is there a pair of columns 
with the names

sentence1 & sentence2,
premise & hypothesis,

or question1 & question2?

Select columns

Take a random sample of 1000 rows of the
dataset

Find the text column that has the longest
average length in the sample

Select column

Start

Filter for columns that
contain text

Figure 4: Input Column Assigment
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Yes

No

Is there a column called
label or target?

No

Yes
Is there only a single column

with the data type Classlabel? Select column

Select column

No

Yes
Are there any columns with
the data type Classlabel?

Select column with the
least unique values

Take a random sample of 1000 rows of the
dataset

Select all columns with type string that have
more than one unique value

No

YesDoes the string column have
less than 60 different values?

Select column

No

YesDoes the dataset contain
columns with data type float?

Select the first float
column

No label found

Start

Figure 5: Label Column Assigment
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