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Abstract

TableQA is the task of answering questions
over tables of structured information, returning
individual cells or tables as output. TableQA re-
search has focused primarily on high-resource
languages, leaving medium- and low-resource
languages with little progress due to scarcity
of annotated data and neural models. We ad-
dress this gap by introducing a fully automatic
large-scale table question answering (tableQA)
data generation process for low-resource lan-
guages with limited budget. We incorporate our
data generation method on two Indic languages,
Bengali and Hindi, which have no tableQA
datasets or models. TableQA models trained
on our large-scale datasets outperform state-
of-the-art LLMs. We further study the trained
models on different aspects, including math-
ematical reasoning capabilities and zero-shot
cross-lingual transfer. Our work is the first
on low-resource tableQA focusing on scalable
data generation and evaluation procedures. Our
proposed data generation method can be ap-
plied to any low-resource language with a web
presence. We release datasets, models, and
code.!

1 Introduction

Tables are ubiquitous for storing information
across domains and data sources such as rela-
tional databases, web articles, Wikipedia pages,
etc. (Deldjoo et al., 2021). Tables introduce new
challenges in machine comprehension not present
in text as they are are not well-formed sentences
but a semi-structured collection of facts (numbers,
long-tail named entities, etc.) (Iyyer et al., 2017;
Jauhar et al., 2016; Jin et al., 2022; Katsis et al.,
2022; Liu et al., 2021; Nan et al., 2022; Pal et al.,
2022; Zhu et al., 2021). Additionally, tables make
position (rows/columns) bias (Lin et al., 2023)
and entity popularity bias (Gupta et al., 2023) se-
vere. The tableQA task introduces novel challenges

"https://github.com/kolk/
Low-Resource-TableQA-Indic-languages
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compared to text-based question answering (text-
QA) (Herzig et al., 2020; Liu et al., 2021; Ye et al.,
2023; Yu et al., 2018; Zhao et al., 2022). In ad-
dition to the semi-structured nature of tables, a
tabular context leads to a high frequency of fact-
based questions, mathematical and logical oper-
ations such as arithmetic (Zhu et al., 2021), set,
relational (Jiang et al., 2022; Liu et al., 2021),
and table operations such as table joins (Pal et al.,
2023). Effective tableQA systems not only have
machine comprehension skills, but also numeracy
understanding (Cheng et al., 2022; Liu et al., 2021;
Zhao et al., 2022; Zhu et al., 2021), table reasoning
(Liu et al., 2021; Yu et al., 2018), table summariza-
tion (Zhang et al., 2024; Zhao et al., 2023a) and
answer table generation ability (Pal et al., 2023).

Low-resource tableQA aims to answer questions
over semi-structured tables storing cultural and
region-specific facts in a low-resource language.
Joshi et al. (2020) show that most languages strug-
gle to be represented and are deprived of advances
in NLP research. As manual data collection is slow
and expensive, low-resource languages struggle
with large-scale, annotated data for effective trans-
fer learning solutions. The low-resource setting
(Hedderich et al., 2021; Ruder, 2019) exacerbates
the challenges of tableQA with challenges of data
sparsity, annotated data costs, and lack of trained
models. In contrast to textQA, syntactico-semantic
variations such as agreement and morphology are
not exhibited in tables, but high presence of cultur-
ally significant yet long-tail entities makes adapting
existing high resource datasets and trained mod-
els challenging. Research on low-resource table
inference (Minhas et al., 2022) shows that stan-
dard approaches of translating English datasets for
low-resource data creation are infeasible for tables
due to high translation error as tables are not well-
formed sentences.

Challenges. Our work focuses on studying the fol-
lowing core challenges of low-resource tableQA:

Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 75-92
November 12-16, 2024 ©2024 Association for Computational Linguistics


https://github.com/kolk/Low-Resource-TableQA-Indic-languages
https://github.com/kolk/Low-Resource-TableQA-Indic-languages

(1) low-resource tableQA data scarcity and
under-representation of cultural facts.

(2) Existing neural models’ poor alignment in
low-resource languages and a lack of under-
standing of table structure.

This motivates us to explore low-resource tableQA

by designing a low-cost and large-scale automatic

data generation and quality estimation pipeline. We
discuss the process in detail with a low-resource

Indic language, Bengali (spoken extensively in

Bangladesh and India, with over 230 million na-

tive speakers (Karim et al., 2021)), and explore

generalizability with Hindi (570 million speakers).
Our main contributions are as follows:

(1) We introduce low-resource tableQA task.

(2) We design a method for automatically gener-
ating low-resource tableQA data in a scalable
budget-constrained manner.

(3) We release resources to support low-resource
tableQA: Large-scale tableQA datasets and
models for 2 Indic languages, Bengali (Bengali
Table Question Answering (BanglaTabQA))
and Hindi (Hindi Table Question Answering
(HindiTabQA)). BanglaTabQA contains 19K
Wikipedia tables, 2M training, 2K validation
and 165 test samples. HindiTabQA contains
2K Wikipedia tables, 643K training, 645 vali-
dation and 125 test samples.

2 Related Work

TableQA aims to answer a user question from semi-
structured input tables. Prior work on tableQA in
English can be classified as extractive (Herzig et al.,
2020; Yin et al., 2020) or abstractive (Nan et al.,
2022; Pal et al., 2022; Ye et al., 2023; Zhao et al.,
2023b). While extractive tableQA focuses on row
and cell selection (Herzig et al., 2020), abstrac-
tive tableQA generates various types of answers
such as factoid answers (Liu et al., 2021), sum-
maries (Zhang et al., 2024; Zhao et al., 2023b), or
answer tables (Pal et al., 2023). Low-resource set-
ting poses challenges for various NLP tasks. The
low-resource corpus creation (Bhattacharjee et al.,
2022; Das and Saha, 2022; Hasan et al., 2020)
has used automatic annotation efforts by synthe-
sizing a large-scale dataset. Das and Saha (2022)
train a Bengali QA system by developing a syn-
thetic dataset translated from standard English QA
datasets. Bhattacharjee et al. (2022); Hasan et al.
(2020) create low-resource datasets by translating
English datasets to Bengali using neural models.
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However, these methods are unsuitable due to the
semi-structured ungrammatical sequential repre-
sentation of tables.

3 Task Definition

We formulate low-resource tableQA as a se-
quence generation task. Given a question @
of k tokens q1,qo,...,qx, and table T" compris-
ing of m rows and n columns {hy,..., hy,, t11,
t172, Ce 7tl,n7 . ,tm71, tm72, . ’tm,n} where tiJ
is value of the cell at the ¢-th row and j-th col-
umn and h; is the j-th column header; the low-
resource tableQA model generates an answer table
Tout- The input sequence is the concatenated ques-
tion @, and linearized input table T" separated by
special sentinel tokens. The answer, T, is also a
linearized sequence. Henceforth, for concreteness,
we will use Bengali as the example low-resource
language. The input to such a model is:

QG q...q <IAN> h;...h, <& >
t1,1...t1,n <€ > tl‘,j...ti,n... <l m>

tm,1 .- -tm,n.

The answer table, T}, is a linearized sequence:
<FEMN> H; ... Hy <& 5> 01,1 ...01,4 <M i>
0ij.--0iq...<M>0p1...0pq

where o; ; is value at the i-th row and j-th column

and Hj is the j-th column header of T5,,;.

4 Methodology for Dataset Generation

Effective training of low-resourced tableQA re-
quires creation of large-scale datasets of questions,
input and answers tables, to align a language model
to the low-resource language and adapt it to semi-
structured tables and QA task. We address Chal-
lenge 1 by designing an automatic data genera-
tion process to generate a large-scale low resource
tableQA corpus of training and validation samples.
We follow a 3-step pipeline as follows: (i) table
extraction, (ii) question generation, and (iii) an-
swer table extraction. This pipeline applied on
Bengali, as depicted in Figure 1, generates the
BanglaTabQA dataset.

4.1 Table Extraction

English Wikipedia with 6,751,000+ articles is
used for English tableQA datasets (Pasupat and
Liang, 2015), but is insufficient for non-Latin lan-
guages with many cultural topics missing. The
standard process (Bhattacharjee et al., 2022; Das
and Saha, 2022) of translating English datasets to
low-resource languages is biased due to lack of cul-
tural topic/fact representation in English tableQA



Step 2: Natural Language Question Generation

SQL keyword Translation Dictionary
FROM: ([,
WHERE: (J41(H, ....

Bengali-English Code-Mixed SQL
) (Translation)
E select count('road section’) from "9 no. state road
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Step 1: Wikipedia Table Extraction

SQL template
select count( column_1) from table where
column_1 = value_column_1
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Step 3: Answer Extraction
NN(TGF |, count (road
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Relational  ppgwer Table (Translation)

Database

Figure 1: BanglaTabQA Dataset generation: The SQL elements and table elements are color-coordinated to
represent a single SQL/table element. Dotted rectangles represent translations for accessibility to non-native readers.

datasets. For example, the named-entity Sfarer
st=fe1 (Adhiraj Ganguly), exists only in Bengali
Wikipedia,” and not in English. Further, translat-
ing English tables with machine translation models
is error-prone (Minhas et al., 2022) as tables are
not well-formed sentences but collections of facts.
To mitigate these issues, we extract tables from
Wikipedia dump of the low-resource language.

4.2 Natural Language Question Generation

The question generation is a 2-step process:

Code-mixed SQL query generation. We auto-
matically generate SQL queries over the extracted
low-resourced tables with SQL templates from the
SQUALL dataset (Shi et al., 2020). These tem-
plates have placeholders of table components such
as table name, column names, etc. which are ran-
domly assigned with values from a Wikipedia table.
For example, the template “
from w where cl = value’ is instantiated by as-
signing a Bengali table name “> =R e ATF (6%
3%1)” to w, column header ‘&= to c1, and “JfFer
@ to value. This results in an executable code-
mixed query “select count ((&eM) from & =R -
J AT (6T I9) where ‘(&N = "JFYr (GEr"”,
where the SQL keywords are in English but all
table information is in the low-resource language
(Bengali). This leads to 13,345,000 executable
Bengali code-mixed queries.

select count (cl)

Natural language question generation. We
formulate question generation as a sequence-to-
sequence task by transforming a code-mixed SQL
query into a natural language question (NQ). To
the best of our knowledge, there exists no sequence
generation models which translates code-mixed

*hitps://bn.wikipedia.org/wiki/S=Ter_a#fet
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SQL queries to low-resource natural language ques-
tions. To train a model for this conversion, we
first transform the code-mixed SQL to a mono-
lingual SQL-like query in the low-resource lan-
guage. As the only linguistic variation exhibited
in the SQL templates is polysemy i.e. a dearth of
one-to-one correspondence between English SQL
keywords and the corresponding low-resource lan-
guage translations, we employ native speakers well-
versed in SQL to manually create one-to-one map-
pings of 27 SQL keywords for linguistic trans-
fer of SQL keywords to the corresponding low-
resource language. All table-specific words are
directly copied into the monolingual query. We dis-
card FroM keyword and table name from the query
as it is associated with a single input table. This
leads to a SQL-like monolingual query in the low-
resource language which is a well-formed sentence.
For example, code-mixed Bengali query “select

( @) from & K ar’aj o (sAfow o)
where ‘(GO = "J[FY G ’, results in a mono-
lingual Bengali query ‘T &6 Fge ( ‘TEeT)
T “TereT = "<I=ur @er"”. In contrast to tables

which are invalid sentences, queries and NQ are
well-formed sequences and effectively transformed
(SQL to question) with existing encoder-decoder
models. We train a SQL-to-NQ (SQL2NQ) model
(mbart-50-1large (Liu et al., 2020) backbone) by
translating 68,512 training and 9, 996 validation
samples from semantic parsing datasets: Spider
(Yu et al., 2018), WikiSQL (Zhong et al., 2017),
Atis (Dahl et al., 1994; Price, 1990), and Geoquery
(Zelle and Mooney, 1996) to the low-resource lan-
guage. We use this SQL2NQ model to transform
the queries to NQ. For example, Bengali SQL2NQ
model transforms the aforementioned query to the
NQ “ (oL ERCE-EAS [


https://bn.wikipedia.org/s/er3k

4.3 Answer Table Extraction

We dump low-resource Wikipedia tables in a re-
lation database. The code-mixed SQL queries
are executed with an SQL compiler over a rela-
tional database comprising of the low-resourced
Wikipedia tables to extract the answer tables.
We execute the 13, 345,000 Bengali code-mixed
queries to extract the corresponding answer tables.

4.4 Automatic Quality Control

We employ automatic quality control steps to en-
sure quality of the synthetic tableQA data.

Code-mixed query and answer quality control.
We discard all code-mixed queries which execute
to an error with an SQL compiler. This process
follows the quality control in (Pal et al., 2023) and
discards invalid and erroneous queries and samples.

Natural Language Question quality control.
We evaluate the quality of the generated NQ with a
sentence similarity model to discard questions that
have low similarity score with the corresponding
monolingual queries. We found the standard
method of quality evaluation in low-resource
languages (Bhattacharjee et al., 2022; Ramesh
et al., 2022) using the sentence similarity model,
LaBse (Feng et al., 2022), incompatible for
code-mixed SQL-NQ due to low discriminating
ability (0.55 mean similarity score and 0.13
standard deviation for Bengali SQL-NQ). For
example, LaBse assigns low score (0.43) for
positive SQL-NQ pair corresponding to the Ben-
gali query “SELECT title ORDER BY year DESC
rimMiT 1" and Bengali NQ “Return the most
recent title corresponding to the most

recent year" (translated for non-native readers),
while it assigns a high score (0.8) to negative
pair “SELECT count (*) WHERE ‘work‘' = The
World of Saudamini" and the unrelated NQ “How
many games scored a total of 42", Table 10
in Appendix A.8 shows more examples. This
necessitates fine-tuning LaBse on low-resourced
SQL-NQ samples. First, we use the translated
semantic parsing samples (68,512 training and
9,996 SQL-NQ pairs), described in Section 4.2,
as positive pairs and in-batch negatives with
multiple-negatives ranking loss. We call this the
SQL2NQSim model. We select the best checkpoint
by evaluating SQL2NQSim on 1,000 randomly
selected  hard-negatives  (unrelated/negative
SQL-negative question pairs for which pre-trained
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Positive Samples (SQL-NQ)
Hard Negatives

Frequency

0.2 0.4 0.6 0.8 1.0

Similarity Score

-0.2 0.0

Figure 2: Histogram of similarity scores from fine-tuned
Bengali SQL2NQSim model of 1,000 random samples

LaBse assigns a high similarity score (> 0.5)).
We use that checkpoint to obtain similarity scores
of the low-resourced tableQA SQL-NQ pairs and
discard samples with a similarity score lower than
a threshold. We select a good threshold by plotting
a histogram of scores assigned by the SQL2NQSim
model on 10,000 randomly selected positives
and hard-negatives and selecting the inflection
point as the threshold. Figure 2 shows the scores’
histogram for BanglaTabQA. We select a strict
threshold of 0.74 (hard-negatives scores taper-off
around 0.7). The final BanglaTabQA dataset, after
quality control, comprises of 2,050, 296 training
and 2, 053 validation samples.

4.5 Dataset Analysis

In contrast to textQA, tableQA focuses on mathe-
matical questions (Liu et al., 2021; Pal et al., 2023;
Zhu et al., 2021). Following (Liu et al., 2021),
we analyse BanglaTabQA dataset on question com-
plexity, which estimates the difficulty of a ques-
tion based on the corresponding SQL query. As
tableQA enforces mathematical, logical and table
reasoning questions, we further classify tableQA
queries into different classes of table operations
determined by the SQL operators present.

Question complexity. Recent work on tableQA
(Liu et al., 2021) categorizes SQL queries into diffi-
culty levels based on the number of SQL keywords.
We follow this approach and count the number of
keywords for each query. Figure 3 shows that most
of BanglaTabQA queries have 4 SQL keywords.
The longest SQL queries are comprised of 10 key-
words, and the shortest ones of 3 SQL keywords.

Mathematical operations. We further catego-
rize each sample based on the operators present in
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Figure 3: Number of SQL keywords per query his-
togram in the BanglaTabQA dataset.
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Figure 4: Histogram of operator classes in the
BanglaTabQA dataset.

the question. We utilize the SQL query associated
with a question to extract all keywords for classifi-
cation. We categorize data samples into 6 operator
classes: arithmetic, sorting, group by, filtering, set
operators, and logical operators. Arithmetic oper-
ators comprises of SQL numeric operations such
as sum, count, min, etc. Sorting refers to ordering
of the answer values in an ascending or descending
order. Group by is the SQL operator of grouping
rows based on a criterion. Filtering corresponds to
SQL operators such as where and having used to
filter the input table. Set operators involve union,
intersect, and except. Finally, we classify logi-
cal operators to be conjunction (and) and disjunc-
tion (or) to combine filtering conditions. It also
includes membership operators (in, between, etc.)
and string matching operator (1ike). The classifi-
cation of the operators is shown in Table 3. Figure
4 shows the distribution of the 6 operator classes
for the BanglaTabQA dataset.

4.6 Test Set

We manually annotate test samples for evaluat-
ing low-resource tableQA models on clean data.
We select unique tables not present in the train-
ing and validation set to avoid data leakage. To
ensure question diversity, we select code-mixed
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SQL representing each of the 6 operator classes
(discussed in Section 4.5) and distinct from the
training and validation data. Three native anno-
tators well-versed in SQL were employed for an-
notation. One annotator was tasked with question
generation and given the synthetic SQL query, in-
put tables and the answer table, and asked to rewrite
the code-mixed query to a natural language ques-
tion. The remaining two were tasked with evalu-
ation of the question generated by the first anno-
tator. The evaluator-annotators were provided the
code-mixed query, input table, answer table, and
the annotated question and asked to rate the ques-
tion based on fluency. We estimate the annotated
question fluency with a 5-point Likert scale (1-5),
where a higher score indicates a better fluency. The
final score for each question was computed by av-
eraging the scores of the evaluator-annotators. For
BanglaTabQA, we manually annotate 165 test sam-
ples. We estimate an inter-annotator agreement
with Fliess’s Kappa score (Fleiss, 1971) of 0.82,
indicating strong agreement among the annotators.
The average fluency score across test set questions
was 4.3, indicating high fluency.

4.7 Generalizability of Dataset Methodology

We study the generalizability of the dataset gener-
ation method by repeating the process on another
Indic language: Hindi (Hi) with more than 602
million speakers. To the best of our knowledge,
there is no existing tableQA data for Indic lan-
guages. Hindi text is in Devanagari script which
is different from Bengali written in Eastern-Nagari
(Bengali-Assamese) script. This requires tableQA
models to be trained on large-scale Hindi datasets
for good alignment. Following the dataset creation
process in Section 4, we extract 1,921 Hindi ta-
bles from the respective Wikipedia dumps. We
generate 82, 00, 000 Hindi code-mixed queries au-
tomatically to extract answer tables and generate
the Hindi natural language questions. The final Hin-
diTabQA dataset comprises of 643, 434 synthetic
training, 645 synthetic validation samples and 121
manually annotated test samples.

5 Experimental Setup

We address Challenge 2 by studying the effec-
tiveness of state-of-the-art models (baselines) in
Bengali table QA. Experimental results (Section
6) show the need for a large-scale BanglaTabQA
dataset and model training. We analyze several



models’ effectiveness in Bengali language, mathe-
matical/table operations and generalizability, thus
providing a measure of the dataset quality and con-
sequently the dataset creation methodology.

Baselines. We perform 2-shot in-context learn-
ing (ICL) to adapt large language model (LLM)s
to BanglaTabQA task. We further fine-tune an
encoder-decoder model. The demonstrations are
the concatenated question and flattened input ta-
ble with the flattened answer table. We use the
following models as baselines:

(1) En2Bn: We fine-tune an encoder-decoder
model, mbart-50-1arge, with 25, 000 random
samples from MultiTabQA’s (Pal et al., 2023)
pre-training data translated to Bengali using
Google translate. MultiTabQA used SQUALL
templates to generate their queries and have
the same distribution as BanglaTabQA queries.
However, the input tables of MultiTabQA are
English wiki-tables from WikiTableQuestions
dataset (Pasupat and Liang, 2015) and are not
representative of Bengali cultural topics/facts.
OdiaG (Parida et al., 2023) is Llama-7b (Tou-
vron et al., 2023) adapter-tuned (LoRA (Hu
et al., 2022)) on 252k Bengali instruction set.?
GPT: cpr-3.5 (Brown et al.,, 2020) per-
forms well on English tableQA (Zha et al.,
2023). cpT-4 (OpenAl et al.,, 2023) out-
performs other LLMs (Chinchilla (Hoffmann
et al., 2022), PaLM (Chowdhery et al., 2022))
in low-resource languages, including Bengali
and Hindi, on various tasks (14, 000 multiple-
choice problems on 57 subjects in a translated
MMLU benchmark (Hendrycks et al., 2021)).

(@)

3

BanglaTabQA models. Bengali tableQA mod-
els must understand both Bengali script and nu-
merals, crucial for mathematical operations. How-
ever, Bengali numbers are not present in many state-
of-the-art Indic models’ (Dabre et al., 2022; Gala
et al., 2023)* vocabulary. To the best of our knowl-
edge, there is no open-access generative model
which understands both table structure and Bengali.
We train the following models on BanglaTabQA as
they support Bengali and Hindi numbers and text:
(1) BnTQA-mBart: mbart-50-1arge (Liu et al.,
2020) is a multi-lingual encoder-decoder
model with support for 50 languages.
(2) Bn'TQA-M2M: m2m100_418M (Fan et al.,

30diaGenAl/odiagenAl-bengali-lora-model-v1
*ai4bharat/IndicBART
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2021) is a multi-lingual encoder-decoder
model with support for 100 languages.

(3) BnTQA-llama: We train Llama-7B, on
BanglaTabQA dataset with parameter-efficient
fine-tuning (PEFT) on LoRA adapters.

We train BnTQA-mBart and BnTQA-M2M with 128

batch size and BnToa-11ama with 16 batch size

and 4-bit quantization. All models are trained with
le-4 learning rate on a single A6000 48GB GPU
for 5 epochs with 1024 maximum sequence length.

5.1 HindiTabQA

We assess the generalizabiltiy of our data gen-
eration process by training and evaluating Hin-
diTabQA models. All hyper-parameters and ex-
perimental setup are the same as Bengali.

Baselines. We use the following baselines:

(1) En2Hi: Similar to En2Bn, we fine-tune
mbart-50-large with 25,000 random sam-
ples from MultiTabQA, translated to Hindi.

(2) GPT: We perform 2-shot ICL on the best
LLMs on Bengali, cpT-3.5 and GpT-4.

(3) OpHathi: We perform 2-shot ICL on
OpenHathi-7B-Hi-v0.1l-Base, an  open-
source LLM based on 11ama-7b and trained
on Hindi, English, and Hinglish text.

HindiTabQA models. We train the following

models on the HindiTabQA dataset:

(1) HiITQA-llama: Similar to Bengali, we fine-
tune Llama-7b on HindiTabQA dataset.

(2) HITQA-M2M: Similar to Bengali, we fine-
tune m2m100_418M on HindiTabQA dataset.

(3) HITQA-mBart: Similar to Bengali, we fine-
tune mbart-50-large, on HindiTabQA.

(4) HITQA-BnTQA: BnTOA-mBart, trained on
BanglaTabQA provides a warm start. We fine-
tune it on HindiTabQA for better convergence.

5.2 Evaluation Metrics

The answer table requires both table structure and
content evaluation rendering standard text simi-
larity metrics (Rouge, BLEU, etc.) inappropriate.
We instead evaluate with tableQA evaluation met-
rics (Pal et al., 2023). Henceforth, F1 scores are the
harmonic mean of the precision and recall scores.
(1) Table Exact Match Accuracy (Tab) measures
the percentage of generated answer which
match exactly to the target answer tables.
(2) Row Exact Match F1 (Row): Row EM pre-
cision is the percentage of correctly predicted
rows among all predicted rows. Row EM recall



Bengali Hindi
Model Validation Set scores (%) Test Set scores (%) Validation Set scores (%) Test Set scores (%)

Tab Row Col Cell Tab Row Col Cell \ Tab Row Col Cell Tab Row Col Cell
En2(Bn/Hi) 0.05 3.06 0.20 3.07 0.00 4.73 0.00 4.73| 0.00 3.37 0.47 3.43 0.00 5.03 8&8.26 5.03
0OdiaG 0.00 3.89 0.00 3.89 0.69 1.77 0.69 1.42| -— — — — — — — —
OpHathi — — — — — — — — 0.00 0.00 0.00 0.00 0.00 0.11 0.37 0.74
GPT-3.5 1.14 4.81 1.67 5.14 6.04 10.06 9.12 9.84| 4.81 894 4.99 9.71 8.20 10.29 7.10 9.81
GPT-4 0.00 13.57 5.43 14.65 26.83 38.67 26.74 36.51| 15.53 22.60 16.02 22.25 11.11 21.49 11.76 20.84

BnTQA HiTQA
-llama 60.08 68.30 60.47 68.30 9.41 12.35 9.85 11.87| 14.76 9.92 14.13 7.29 13.11 9.71 11.11 7.66
-mBart 56.63 64.10 56.79 64.31 35.88 33.16 35.88 33.16| 92.09 87.97 92.02 87.97 33.06 43.35 33.88 43.35
-M2M 45.31 58.07 45.29 58.04 28.05 34.55 28.05 34.55| 89.55 85.32 89.34 85.15 28.93 33.11 28.92 33.10
-BnTQA — — — — — — — - 92.40 88.10 92.42 88.12 41.32 47.26 41.32 47.26

Table 1: Baseline, BnTQA-X and HITQA-X models’ scores. -X represents the backbone architecture of a fine-tuned
model and — entries are for incompatible models in a low-resourced language (Bengali or Hindi).

is the percentage of correctly predicted rows
among all target rows.

Column Exact Match F1 (Col): Column
EM precision is the percentage of correctly
predicted columns and corresponding headers
among all predicted columns. Column EM
recall is the percentage of correctly predicted
columns among all target columns.

Cell Exact Match F1 (Cell) is the most relaxed
metric. Cell EM precision is the percentage of
correctly generated cells among all predicted
cells. Cell EM recall is the percentage of cor-
rectly predicted cells among all target cells.

3)

“

6 Results

Baselines. As reported in Table 1, cpT-4 performs
the best on our test set with a table EM accuracy
of 26.83%. cpT-3.5 under-performs GpT-4 but
is better than open-sourced LLMs. Open-source
LLMs, odiaG is pre-trained on Bengali text data
but not on structured table data. The low accuracy
of odiaG (0.69%) can be attributed to the mod-
els’ lack of table understanding and table specific
question which differs significantly from text-based
tasks on which it has been pre-trained on as shown
in examples in Appendix A.6. Baseline encoder-
decoder model, En2Bn, fine-tuned on translated
tableQA data, correctly generates 4.73% of rows
and cells and under-performs odiag, but is better
than TableLlama. Although fine-tuning improves
Bengali understanding, the low scores can be at-
tributed to the erroneous translations of English
tables in the MultiTabQA dataset which corrobo-
rate with (Minhas et al., 2022) that table translation
leads to error-propagation to down-stream QA task.
Further, a lack of culture-specific tables in the Mul-
tiTabQA pre-training dataset leads to downgraded
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performance on topics in the BanglaTabQA test
set. In conclusion, GpT-4 is able to perform table
reasoning in low-resourced Bengali, but is very
expensive and closed-source, limiting it’s accessi-
bility and utility. cpT-3.5’s and all open-access
baseline models’ low scores demonstrates the need
for both task and language adaptation with a large-
scale dataset for training accessible open-source
language models for low-resourced tableQA.

BanglaTabQA models. Parameter-efficient fine-
tuned Llama models, BnTQA-11ama, achieves com-
parable results to cpT-3.5. Table 1 shows that
fine-tuned encode-decoder models, BnTOA-mBart
and BnTQOA-M2M, outperforms GPT-4 on table exact
match accuracy (EM) and column EM F1, but not
for row and cell EM F1. This can be attributed to
incorrect header generation of cpT-4 reflecting in
column and subsequently table EM scores. Apart
from GpT-4, all other baseline models underper-
form BanglaTabQA encoder-decoder models by a
large margin on all metrics. BnTQA-11ama overfits
to the validation set, and does not generalize well to
the test set. The low scores of PEFT compared to
full fine-tuning (FT) can be attributed to insufficient
alignment of the frozen parameters of the backbone
Llama model and sub-optimal tokenization of Ben-
gali which has been observed in SentencePiece
tokenizers in non-Latin languages (Banerjee and
Bhattacharyya, 2018; Cui et al., 2023). The results
establishes the quality of the BanglaTabQA dataset
and its effectiveness in adapting neural models to
both language and table understanding.

HindiTabQA models. We follow a similar ex-
perimental setup as discussed in Section 5. We
report the results in Table 1. We observe that
HiTQA-BnTOQA, initialized with with BnToA-mbart,
outperforms all HindiTabQA models and achieves



Model With post-processing
BnTQA Tab Row Col Cell Tab Row Col Cell

-llama  0.00 0.00 0.00 0.26 5.74 17.59 5.69 15.49
-mBart 0.00 8.70 10.74 8.70 19.01 20.74 19.01 20.74
-M2M  0.00 0.00 0.00 0.00 18.18 35.80 18.18 35.80

No post-processing

Table 2: Zero-shot cross-lingual transfer scores of Bn-
TQA models on Hindi test data.

a test score of 41.32%. Similar to BanglaTabQA,
HiTQA-mBart outperforms HiToA-M2M with a ta-
ble EM test score of 33.06% and 28.93% respec-
tively. HiTQA-11ama underperforms compared to
the encoder-decoder models. All models trained on
the HindiTabQA dataset outperform the two-shot
in-context learning baseline models. The results
follow a similar trend to BanglaTabQA models and
prove that our data generation process is general-
izable and the HindiTabQA dataset is able to align
neural models for tableQA task in Hindi.

6.1 Zero-shot Cross-lingual Transfer

We further study generalizability, by selecting the
best performing language, Bengali, and evaluat-
ing the BanglaTabQA models on Hindi test set in
a zero-shot setting without training on Hindi data.
This setup allows us to study the cross-lingual trans-
fer of BanglaTabQA models to Hindi with a dif-
ferent script, and evaluate how well the models
generalize to new out-of-distribution input tables.
BanglaTabQA models are able to perform table
reasoning in Hindi indicating semantic informa-
tion transfer across languages. We demonstrate
some examples in the Appendix A.7. Table head-
ers and numbers generated from math operations
are often in Bengali instead of Hindi (Example 7).
Extractive questions are generated correctly (Ex-
ample 8). Table 2 lists the zero-shot cross-lingual
scores using the original predictions (named “No
Post-Processing”) of the BanglaTabQA models on
the Hindi test set defined in Section 4.7. Addition-
ally, we perform post-processing of the predictions
to translate the predicted tables’ values to Hindi.
As translating tables, composed of numbers and
entities, with machine translation systems is unreli-
able (Minhas et al., 2022), we follow an automatic
post-processing pipeline to transform predicted an-
swer tables to Hindi. First, all lexical occurrence
of Bengali digits in predictions are replaced with
Hindi digits using a dictionary. Next, all lexical
occurrence of SQL keyword in Bengali in the pre-
diction headers are replaced with a Bengali-to-SQL
keyword mapping and subsequently with a SQL-
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to-Hindi mapping described in Section 4. This
fixes most of the Bengali presence in the predic-
tions. Finally, we translate the predicted column
names/values in Bengali to Hindi with Google
translate. Table 2 shows that post-processing in-
creases the scores, demonstrating the generaliz-
ability of BanglaTabQA models’ table reasoning
capabilities on out-of-domain Hindi tables with un-
seen cultural entities. This further demonstrates the
quality and utility of the BanglaTabQA dataset and
our proposed data generation method and quality
of the trained models.

6.2 Mathematical Operator classes

We study how BanglaTabQA and HindiTabQA
datasets aid in Bengali and Hindi numeracy and
math understanding by evaluating BnTOA-mBart
and HiTQA-mBart on 6 categories of operator
classes (Section 4.5). We observe in Table 4 that
BnTQA-mbart performs best on groupBy (G) op-
erators with a table EM accuracy of 50.00% and
HiTOA-mBart on Sorting (So) operators with a ta-
ble EM accuracy of 39.05%. Both models are able
to generalize to unseen tables in the respective lan-
guages’ test sets. This affirms that BanglaTabQA
and HindiTabQA dataset aids mathematics reason-
ing of the trained models and enhances numeracy
understanding in the low-resourced language.

7 Conclusion

Our work introduces tableQA for the low-resource
languages. We propose a methodology for large-
scale dataset development on limited budget and
automatic quality control which can be applied over
any low-resource language with a web-presence.
We discuss in detail the application of the method-
ology with an Indic Language, Bengali, for which
we release a large-scale dataset, BanglaTabQA.
We further demonstrate generalizability of the pro-
cess with another language, Hindi. We assess the
datasets’ quality by effectively training different
Bengali and Hindi tableQA models and conducting
various experiments on model efficacy. Our studies
on different operator classes and zero-shot cross-
lingual transfer demonstrate that models trained
with our dataset generalize well to unseen tables.
Our proposed methodology can promote further re-
search in low-resource tableQA, while our released
dataset and models can be used to further explore
tableQA for Bengali and Hindi.



Operator class  Operations Bengali Hindi

arithmetic (A) ~ count, sum, average, max, min Op Tab Row Col Cell | Tab Row Col Cell

sorting (So) ascending, descending

groupBy (G) table column/row grouping A 39.66 55.64 39.67 55.64| 35.06 41.71 35.07 41.71

filtering (F) where, having So 25.00 25.00 25.00 25.00| 39.05 42.74 39.05 42.74

set (Se) union, intersect, except G 50.00 76.92 50.00 76.92| 33.33 35.96 33.33 35.96

logical (L) and, or, not, in, not in, between F 37.78 35.86 37.77 35.86| 23.23 26.35 23.23 21.67
3 ) 3 Se 36.11 49.10 36.11 49.10f 5.00 11.11 5.00 11.11

Table 3: Classification of tableQA operations. |~ 3438 1393 34.38 13.23| 25.58 27.38 25.58 27.38

Table 4: XTQA-mBart test set scores (%) on Operator Class
(Op); X is a low-resourced language (Bn or Hi).

Limitations

We design a scalable automatic tableQA data gen-
eration method and apply it on with two low-
resourced languages: Bengali and Hindi. We re-
lease two tableQA datasets: BanglaTabQA and
HindiTabQA and several models as outcome. Our
main results in Table 1 demonstrate successful
adaptation of neural models to low-resourced
tableQA task. Our extensive experimentation on
generalizability in Section 6.1 and 6.2 shows that
models trained on the BanglaTabQA dataset per-
forms well across all operator classes and general-
ize to unseen languages and tables, proving gener-
alizability of the datasets and methodology.

Our dataset methodology is generalizable, but
it is limited to languages for which unlabelled ta-
bles are available online. For very-low resource
languages with low web presence, our method has
only limited impact. Also, we used SQUALL tem-
plates for query generation, which do not support
multi-table operations or complex queries. We
leave addressing these challenges to future work.

Ethical Considerations

The task and models proposed in the paper is
aimed at closing the gap of resource scarcity in
low-resource languages. To do so, we have used
existing open-source resources publicly available
in the web under MIT, CC-BY-SA-3.0 and MIT,
CC-BY-SA-4.0 licenses. Our dataset is generated
synthetically data and will be released under MIT,
CC-BY-SA-4.0 license. Our synthetic samples use
templates from the SQUALL dataset also released
under MIT, CC-BY-SA-4.0 license. Our test data
splits are manually annotated. We pay each an-
notator €13.27/hour for their efforts. Further, we
have utilized Wikipedia tables from Huggingface
Wikipedia dataset. Wikipedia tables contain infor-
mation about named-entities, facts and events in
the public domain. We do not use any user-specific
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or sensitive data and information. Our models are
built over open-source encoder-decoder models and
closed-source GPT-3.5. Our work did not explicitly
handle any bias which exists in the aforementioned
pre-trained models or Wikipedia.
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A Appendix

A.1 Bengali SQL2NQSim (LaBse fine-tuning)
Results

We evaluate semantic similarity of the LaBse model
trained on the translated semantic parsing datasets
comprising of Bengali SQL and it corresponding
Bengali question (Section 4.4) and report the valida-
tion set results in Table 5. Both datasets show high
semantic similarity among query-question pairs.
However, BanglaTabQA have a higher semantic
similarity on various distance metrics indicating
higher similarity of the query-question pairs com-
pared to HindiTabQA. HindiTabQA lower seman-
tic scores can be attributed to the lower recall scores
among query-question pairs leading to lower F1
similarity scores.

Scores Bengali Hindi
Accuracy with Cosine-Similarity 91.99 98.67
F1 with Cosine-Similarity 9230 72.16
Precision with Cosine-Similarity 94.55 77.68
Recall with Cosine-Similarity 90.15 67.36
Avg Precision with Cosine-Similarity 9179 7532
Accuracy with Manhattan-Distance 9197 98.62
F1 with Manhattan-Distance 9231 70.96
Precision with Manhattan-Distance 93.73  77.15
Recall with Manhattan-Distance 90.94  65.69
Avg Precision with Manhattan-Distance 97.80  74.41
Accuracy with Euclidean-Distance 91.99  98.67
F1 with Euclidean-Distance 9230 72.16
Precision with Euclidean-Distance 94.55 77.68
Recall with Euclidean-Distance 90.15 67.36
Avg Precision with Euclidean-Distance  97.79  75.32
Accuracy with Dot-Product 91.99 98.67
F1 with Dot-Product 9230 72.16
Precision with Dot-Product 94.55 77.68
Recall with Dot-Product 90.15 67.36
Avg Precision with Dot-Product 97.79 7532

Table 5: Bengali SQL2NQSim validation scores (%)

A.2 Bengali SQL2NQ model Results

We report the validation scores of the SQL2NQ
models in Table 6. The Bengali SQL2NQ model
scores are lower than the Hindi SQL2NQ model.
Manual inspection of the generated dataset reveals
that the Hindi questions and query have higher
lexical overlap compared to the Bengali questions-
query pairs where the questions are more natural
leading to lower lexical overlap with the corre-
sponding SQL query.

A.3 Open-Source Backbone Model Size

We used the following open-source models as back-
bone to low-resource tableQA task. As observed in
Table 7, m2M_418 is the smallest backbone model

Bengali Hindi
Rouge-1 14.63 53.20
Rouge-2 5.83 24.98
Rouge-L 14.28 51.58

Table 6: Bengali SQL2NQ model’s validation scores
(%)

Model Number of Parameters
mbart-large-50 0.680 billion
m2m100_418M 0.418 billion
Llama-7B 7 billion

Table 7: Backbone model sizes

among all models and L.1ama-7b is the largest.

A4 GPT Prompts

The 2-shot in-context learning prompt with de-
mostrations to GPT is shown in Prompt A.1:

Prompt A.1: 2-Shot ICL Prompt for GPT-3.5/4

ATl QFT FLAF AL 1] AT A TSI
e G (A AT TBF 61991 toIF & | m AN
QR n IR @I GREA RIS oI @
TE: <FA> (1R @OR <@ 5> WM 5,5 | T 5,8
[ W 5,0 <@ > 2,5 | .. <E@Tm> N m,5 |
W m,R | ... | M4 m,n

Turee:

S) 2Pl BT TR FIOTOS ? <FeTN> - | T*I1-

A | SRR <@ 5> 2006 | BT 1 8941 | (@ 7%

TE <@ $9>2016 | IITHCI | (713 W@Ielel <7

$8> 2016 | ITCLOIGA | (&3 [l <& Se> 2016 |
NGF

TER: <FET> AT TRE) <@ 5> 0

%) 2P T I TR H o Toe 7 <For> IR |
P | SIS <C&T 5> 2006 | B1 (o7 294 | (&9
TS 6 <T@ >2006 | BT (7 T9a | (@77 T 126
<@ 9>2006 | BT 71 89 | (&9 T L0 ..

TER: <> FA(‘TRI) <TAT 5> ©

The English translation of the 2-shot prompt for
in-context learning (ICL) of GPT-3.5/4 is shown in



Prompt A.2:
Prompt A.2: 2-Shot ICL Prompt for GPT-3.5/4

(English translation)

You are a helpful assistant who answers Bengali questions
from Bengali tables by generating an answer table. A table
of m rows and n columns is written in the following pattern:
<column> table header <row 1> value 1,1 | value 1,2 | ...
value 1,n <row 2> value 2,1 | ... <row m> value m,1 | value
m,2 | ... | value m,n

Examples:

1) Question: How many titles are Countdown? <column>
year | Title | Role <row 1> 2006 | See No Evil | Jacob Go ...
<row 13> 2016 | Countdown | Le Trunin <row 14> 2016 |
Countdown | Le Trunin <row 15> 2016 | Countdown | Le
Trunin

Answer: <column> count(‘Title‘) <row 1> 3

2) Question: How many years have See no Evil as titles?
<column> year | Title | Role <row 1> 2006 | See No Evil
| Jacob Good Night <row 2> 2006 | See No Evil | Jacob
Good Night | <row 3> 2006 | See No Evil | Jacob Good
Night ...

Answer: <column> count(‘year‘) <row 1> 3
" J

A.5 LLama-based model Model Prompt

The 2-shot in-context learning prompt with de-
mostrations to Llama-7B based model, OdiaG, is
shown in Prompt A.3:

Prompt A.3: 2-Shot ICL Prompt for odiagenAl-

bn

### Instruction:

oAl OFTA TRAF TR R e
GRa oR @ e greE Se" o |
Twre:

###Input:

FOT THIETTS FIOTOICA?  <FoTN> 2 |
MR | SRR <@ oS> 2014 | F T
Qe ¢ | (EFF T8 %0 <@l &> 2016
| FIGOOE | &2 o <& 9> 2016 |
FCHUIC | (&3 [GTie]

### Response:

<TE> NIRRT < 5> &
###End

###Input:

o7 IgF M S o @©ET & 7 <Fo>
IR | TR | SR <@ > 2014 | A
T Q97 | (@] TS 26 <@ &> 2016
| FIGHOE | (&2 G <& 9> 2016 |
FTHUIC | (&1 [Tl

### Response:
<RI VTN (PRCATATN) <G 5> S
###End

###Input:
{input}

#i## Response:

The English translation of the 2-shot in-context
learning prompt with demostrations to Llama-7B
based model, OdiaG, is shown in Prompt A.4:

Prompt A.4: 2-Shot ICL Prompt for odiagenAl-

bn (English translation)

### Instruction:

You are a helpful assistant who generates an-
swers Bengali table to answer Bengali ques-
tions. Examples:

###Input:

How many titles are Countdown? <column>
year | Title | Role <row 1>2014 | See No Evil 2
| Jacob Goodnight <row 2> 2016 | Countdown
| Le Trunin <row 3> 2016 | Countdown | Le
Trunin

###Response:

<column> count(Title) <row 1> 2
### End

###Input:

How many years have See no Evil as titles?
<column> year | Title | Role <row 1> 2014
| See No Evil 2 | Jacob Goodnight <row 2>
2016 | Countdown | Le Trunin <row 3> 2016 |
Countdown | Le Trunin

### Response:

<column> count(year) <row 1> 1

#i##Input:
{input}

###Response:

A.6 BnTabQA Models Qualitative analysis

We analyze the output of each model with an ex-
ample to identify error patterns and factors that
impact model predictions. The test set question FT9
TN FHIE ATIRIE S-T AYETS AROIeNTA S
9mz? (Who has the position of Futsal Coordina-
tor or Technical Director?), involves logical oper-
ator or after extracting values for o3 FF=HIaI
(Fulsal Coordinator) and 2g[%e =6rea4 (Techni-
cal Director) from the column P19 (Position).
The input table is shown in Table 8 (translation of
each table cell is italicized and in parenthesis for
non-native readers) with target (English translation
italicized and in parenthesis):

= (Name))

&S AT (Michael Skubala)
= 5% (Les Reed)

Example 1. Baseline encoder-decoder model,
En2Bn, fine-tuned on the translated MultiTabQA
dataset, correctly extracts N&<e e (Michael



S[PAT (Position) TS (Name)

AT (Chairman) % ¥eT<F (Greg Clark)
372-1%TS (Co-Chairman) oS 4 (David Gil)

AR ™M (General Secretary) qNF R2JN (Mark Bullingham)
(M) (Treasurer) AF A (Mark Burroughs)
ST @<L A ARG (Media and Communications Director) ?135” Tt (Louisa Fiennes)
ﬁ‘{%ﬁ AT=oTTT (Technical Director) (GBI (Les Reed)

FOE STNRAIS! (Futsal Coordinator) AP AT (Michael Skubala)
Qo WEd (6 ( g ) (National Team Coach (Male)) SR ATSACH (Gareth Southgate)
GO WA 0 (E% (National Team Coach (Female)) e taree (Phil Neville)

@HIE ANASIN (Referee Coordinator) il Q]T%(Neil Barry)

Table 8: Example: BnTabQA Input Table. (English translation of each cell is italicized and in parenthesis)

Skubala) as the o= sTw=z=1a! (Fulsal Coordina-
tor), but wrongly assigns it as the table header in-
stead of 9% (name). Moreover, it generates the
same entity twice instead of generating =™ &%
(Les Reed):
goora Aw=wIat (Futsal Coordinator)
WE@e FAGAe (Michael Skubala)
W& JEAT (Michael Skubala)
Example 2. odiac also overfits to the demonstra-
tions with 941 (count) operator to generate incor-
rect value and header:
F=(“A) (count(Name))
s ()
Example 3. cpT-3.5 with 2-shot in-context learn-
ing (ICL) extracts N1&= 31T (Michael Skubala)
correctly but generates an incorrect table header
over-fitting to the demonstrations:

SF=(“AN) (count(Name))

W& JAreT (Michael Skubala)
Example 4. cpT-4 with 2-shot in-context learning
(ICL) correctly generates the answer table:

a9 (Name)

W& JAreT (Michael Skubala)

@ 5% (Les Reed)

Example 5. Both encoder-decoder models,
BnTOA-mBart and BnTOA-M2M, fine-tuned on
BanglaTabQA dataset, correctly generates both an-
swer table headers and values:

a9 (Name)
A& ZAem (Michael Skubala)
@™ & (Les Reed)
Example 6. BnTQA-Llama, fine-tuned on

BanglaTabQA dataset, is partially correct in its
predictions by generating gb3e Fx=¥<T4! (Fulsal
Coordinator) in the first row, but incorrectly repeats
the same entity instead of & = (Les Reed) in the
second row:

N (Name)

oore sN=ETdt (Fulsal Coordinator)

oo st (Fulsal Coordinator)

90

We observe from the examples that all baselines
except GPT-4 generate wrong table headers and
overfits and mimics the demonstrations, showing
a lack of understanding of table structure and rea-
soning. The BanglaTabQA models perform table
reasoning, reflecting the utility and quality of the
large-scale BanglaTabQA dataset.

A.7 Zero-Shot Cross-Lingual Transfer
Examples

Example 7. The Hindi question, ¥ 2011 &
ICERRIAED %"? (How many titles are there in
year 2011?), with Hindi input table, Table 9 (En-
glish translation is italicized and in parenthesis)
and target table:
AT (9 ) (count(Title))

¥ (4)
BnTOA-mBart correctly performs table reasoning
but generates the answer in Bengali script instead
of Devnagari (Hindi) script:

sen(reET)  (count(Title))

8 (4)
Example 8. However, for Hindi extractive ques-
tions like HIFE FTHHAT ATTHAHT T AT
&7 (Which recipient occurs the maximum number
of times?), with Hindi input table:

qTeT (year) WTH&AT (Recipient)

2016 faqr Wz (Vinod Bhatt)

2016 fas® wg (Vinod Bhatt)

2017 aqTed "edT [ 1] (Tarak Mehta[1])
and target table:

T e r (Recipient)
ERIE ¥g (Vinod Bhatt)

BnTQA-mBart correctly generates the answer in
Hindi:

TR (Recipient)
a2 g (Vinod Bhatt)




¥ (year) IS (Title)

f&¥=TT (Character)

2005 FATSC AT (Flight Plan)

2011 g STsH (In Time)

2011 g ETsH (In Time)

2011 g1 STsH (In Time)

2011 g STsH (In Time)

2014 T 9T 76 (Space Station 76)

2014 faeg T (Winter’s Tale)

uf¥a (Eric)
2_'1'{:1' %‘F’:IR_'F (Henry Hamilton)

L %‘FHWT{ (Henry Hamilton)
94T 2fHee (Henry Hamilton)
g %ﬁm (Henry Hamilton)

ET%" (Ted)
‘ﬁ?'{' A& & {9aT (Peter Lake’s Father)

Table 9: Example: HiTabQA Input Table (English translation of each cell is italicized and in parenthesis)

A.8 Comparison of scores of LaBSE and
SQL2NQ models

We qualitatively compare the sentence similarity
models LaBse and SQL2NQ with examples shown
in Table 10. We observe that LaBse scores are low
for positive samples of Bengali SQL queries and
the corresponding Bengali question. Further, neg-
ative samples, i.e., Bengali SQL query and an un-
related Bengali question has high similarity scores.
This trend is not observed for the sentence simi-
larity model, SQL2NQ, trained on Bengali SQL
queries and corresponding Bengali natural ques-
tions.
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LaBse SQL2NQ
Bengali SQL Bengali Question Scores Scores
T_o Fg @ wE FA /@R AE @
fel(“werrwer) A S (T R O P T AR ? 0.45 0.94
(SELECT years GROUP BY years ORDER BY (Which year has the least number of results?) ’ ’
+ve COUNT(resul)) LIMIT 1)
6 g RN AT (@ TR SRR AW Y FffoToN IR AN Falfow P o | 0.98
(SELECT ‘title* ORDER BY ‘year* DESC LIMIT 1) (Return the most recent title of the most recent year?) : :
. _ @1 T2 (3050, 203b) FBH ([0 *KIYF F-
Forioe g STRT(oTer) =1 fererg 7 0.51 0.31
(SELECT min(‘year*)) (In which year (2010, 2016) were the most number of : :
e awards received?)
TorRBe ST SIel(¥) TR TS =TT TR WH 8 SR AN O (W6 *RT e T | 0.80 0.07

(SELECT count(*) WHERE ‘work ‘="The World of Saudamini")

(How many games scored a total of 47)

Table 10: Comparison of sentence similarity scores between LaBse and our trained SQL2NQ models.
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