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Abstract

Nested Named Entity Recognition (NER) poses
a significant challenge in Natural Language
Processing (NLP), demanding sophisticated
techniques to identify entities within entities.
This research investigates the application of
Large Language Models (LLMs) to nested
NER, exploring methodologies from prior work
and introducing specific reasoning techniques
and instructions to improve LLM efficacy.
Through experiments conducted on the ACE
2004, ACE 2005, and GENIA datasets, we eval-
uate the impact of these approaches on nested
NER performance. Results indicate that output
format critically influences nested NER perfor-
mance, methodologies from previous works are
less effective, and our nested NER-tailored in-
structions significantly enhance performance.
Additionally, we find that label information and
descriptions of nested cases are crucial in elic-
iting the capabilities of LLMs for nested NER,
especially in specific domains (i.e., the GENIA
dataset). However, these methods still do not
outperform BERT-based models, highlighting
the ongoing need for innovative approaches in
nested NER with LLMs.

1 Introduction

Named entity recognition (NER) is a prominent
task in information extraction (IE) that entails de-
tecting entities within the text and classifying them
into predefined categories, such as person, location,
and organization. A notable challenge within NER
is nested NER, where named entities are embedded
within other entities. This complexity introduces
an additional dimension of difficulty to the task,
making it a fertile area for research.

Recent advancements in large language models
(LLMs) have demonstrated their exceptional capa-
bilities across a variety of natural language process-
ing (NLP) tasks, showcasing notable zero-shot and
few-shot generalization abilities (Xie et al., 2023).
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Among these models, ChatGPT (OpenAI, 2023)
has emerged as a prominent example, significantly
influencing the NLP research landscape. It has been
observed that, in the context of generated text eval-
uation, ChatGPT may surpass human evaluators
in terms of consistency and fairness, according to
some studies. However, when it comes to IE tasks
such as NER or relation extraction (RE), the per-
formance of LLMs has been a subject of investiga-
tion. Despite their general ability, LLMs, including
ChatGPT, have not consistently outperformed hu-
mans or even BERT-based fine-tuned models in
NER tasks. For instance, empirical studies (Xie
et al., 2023) involving zero-shot NER with Chat-
GPT have reported performance levels significantly
below those of BERT-based models that have un-
dergone fine-tuning. Although adopting a few-shot
approach can enhance performance, results remain
substantially lower compared to fully-supervised
models. These findings suggest that the application
of LLMs to NER, particularly nested NER, needs
to be further explored.

Nested NER has yet to be extensively explored
within the context of LLMs. Addressing this gap,
our study aims to empirically evaluate the capa-
bilities of various LLMs in handling nested NER,
by using zero-shot, one-shot, and few-shot ap-
proaches, and instruction tuning. In this work, we
explore methods to enhance the reasoning capa-
bilities of LLMs on nested NER. Initially, we ap-
plied reasoning techniques from previous studies,
observing that while these methods could effec-
tively boost performance on flat NER, they signifi-
cantly degraded performance on nested NER. Sub-
sequently, we incorporated prompts that integrate
concepts from prior nested NER research, specifi-
cally those designed for tuning BERT-based mod-
els. This approach demonstrated an improvement
in nested NER performance. To further augment
the capability of LLMs in handling nested NER,
we investigated various prompting approaches, in-
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cluding zero-shot, one-shot, and few-shot, with a
particular focus on task-specific reasoning tech-
niques. Notably, our task-specific reasoning tech-
niques markedly enhanced the LLMs’ performance
on nested NER compared to previous methods.
Among these techniques, providing descriptions of
named entity (NE) categories and detailed explana-
tions of the nested phenomenon proved especially
effective in eliciting the in-context learning (ICL)
capability of LLMs for nested NER. However, it is
important to note that these results still fall short of
those achieved by BERT-based fine-tuned models,
i.e., fully-supervised models. We argue that despite
LLMs possessing billions of parameters and being
trained on trillions of tokens, they require specific
tuning for nested NER tasks. To address this gap,
we explored instruction tuning methods aimed at
enhancing LLMs’ performance on nested NER. We
utilized instructions from our reasoning prompts to
tune open LLMs. Our findings align with the ini-
tial observations, indicating that descriptions of NE
categories and detailed explanations of the nested
phenomenon are crucial, while techniques from
prior work may impede nested NER performance.
Through this research, we provide guidance for
users seeking to employ open or closed LLMs for
nested NER—a relatively unexplored application
of LLMs. Our main contributions are summarized
as follows:

1. We conduct a comprehensive analysis of
LLMs’ performance on nested NER, revealing
their capabilities and limitations in handling
complex entity structures.

2. Our introduction of novel task-specific reason-
ing techniques significantly improves LLMs’
understanding and processing of nested enti-
ties, marking a departure from conventional
methods.

3. We demonstrate the effectiveness of refining
LLMs for nested NER, showcasing substantial
improvements with instruction tuning.

2 Related Work

2.1 LLMs on Flat NER
Wang et al. (2023) proposed GPT-NER, which
transforms sequence labeling into a generation task,
enabling LLMs to identify entities through spe-
cial token marking (e.g., “@@Columbus##”). Sim-
ilarly, Xie et al. (2023) investigated the applica-
tion of LLMs to flat NER, employing strategies

such as decomposed question answering (QA),
syntactic augmentation, tool augmentation, and
self-consistency to improve zero-shot NER per-
formance. However, the application of LLMs to
nested NER remains less explored. To address this
gap, our work investigates various reasoning meth-
ods for enhancing the performance of LLMs on
nested NER tasks. Detailed differences between
GPT-NER and our work are provided in Appendix
A.

2.2 Nested NER

In this section, we explore prior nested NER re-
search, focusing on sequence labeling-based and
span-based approaches, with further methodologies
detailed in Appendix B.

2.2.1 Sequence labeling-based
Ju et al. (2018) introduced a novel neural archi-
tecture for identifying nested NEs, employing dy-
namically stacked and shared LSTM-CRF layers.
This approach, which we classify as recursive, uti-
lizes an inside-to-outside method that leverages the
output from identifying inner NEs to extract outer
NEs at a higher level. In contrast, Rojas et al. (2022)
highlighted the limitations of traditional NER sys-
tems in recognizing nested entities and revisited the
multiple LSTM-CRFs (MLC) model. This model,
distinguished by its simplicity and effectiveness,
involves training independent sequence labeling
models for each entity type and comes with an
open-source library for computing nested NER-
specific metrics. Their findings offer fresh insights
into the performance of existing models on nested
NER. However, a critical limitation of the MLC
approach is its requirement for constructing a sepa-
rate model for each entity type, hindering its ability
to recognize nested entities of the same type.

2.2.2 Span-based
Span-based models have significantly advanced
nested NER. Sohrab and Miwa (2018) proposed
treating all text regions as potential entity mentions
for classification. Fei et al. (2020) introduced a
model combining LSTM with an attention mecha-
nism for nested mentions, further enhanced by con-
textualized embeddings like BERT (Devlin et al.,
2019), RoBERTa (Liu et al., 2019), and ELECTRA
(Clark et al., 2019). Li et al. (2020b) transformed
nested NER into a machine-reading comprehension
task, while Yu et al. (2020) used a biaffine approach
for precise span prediction. Yan et al. (2023) ad-
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Figure 1: Examples of prevalent reasoning techniques, our proposed structure-based decomposed-QA technique,
and our proposed nested NER-tailored instruction.

dressed overlapping spans with a CNN for spatial
relation modeling. However, these models often
face high computational demands and struggle with
partially matching spans. To overcome this, Shen
et al. (2021) developed the Locate and Label model,
focusing on identifying entity boundaries before
classification, leveraging both boundary informa-
tion and partially matched spans.

We apply concepts from sequence labeling-
based and span-based methodologies indepen-
dently to probe the capabilities of LLMs in nested
NER. Additionally, we introduce reasoning tech-
niques tailored specifically for nested NER, de-
signed to enhance the LLMs’ understanding of and
performance on complex entity structures.

3 Method

Initially, we examine the impact of various output
formats on the task’s performance. After selecting
the optimal output format, we independently ap-
ply concepts derived from prior nested NER stud-
ies and reasoning techniques previously utilized
with LLMs on NER. Subsequently, we develop rea-
soning techniques specifically tailored for nested
NER to enhance the LLMs’ capability to under-
stand complex entity hierarchies.

3.1 Designing Output Format

The performance of nested NER tasks can be no-
tably affected by the output format, especially since
LLMs such as ChatGPT and Llama operate as
generative models. Motivated by existing research,
we devise a variety of output formats for evalua-
tion. These formats include span extraction, entity-
category dictionaries, the insertion of distinguish-
able tokens, and a novel nested level BIO (i.e.,
Begin-Inner-Outer) tagging approach. Following
the results of our various experiments, we chose
the entity-category dictionary for the output format.
The explanation of other formats and the results are
in the Appendix C.

3.2 Entity-Category Dictionary

In this output format, we instruct LLMs to gener-
ate responses structured as {‘Entity’: ‘Category’}.
Given a sentence, "nuclear NF - kappa B", the antic-
ipated output is {‘nuclear NF - kappa B’: ‘protein’,
‘NF - kappa B’: ‘protein’}. Description of other
formats, please see the Appendix C.
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3.3 Concepts & Reasoning Techniques for
Nested NER

Figure 1 shows the examples of various instructions
for our study.

3.3.1 Recursive Technique
Drawing inspiration from the recursive approaches
(Ju et al., 2018; Kim and Kim, 2024), we explore
whether directing LLMs to sequentially recognize
NEs, starting with the innermost NEs and pro-
gressing to the outermost (or vice versa), enhances
nested NER performance. Initially, we instruct the
LLMs to identify either the innermost or outermost
NEs. Following this, a subsequent request is made
to identify the NEs at the next level of nesting based
on the initial results. This process is iterated until
the LLMs no longer extract any new NEs, at which
point the recursive extraction is deemed complete.
For instance, consider the sentence S, "nuclear NF
- kappa B". When we instruct LLMs to initially
recognize the outermost NEs, the expected output
is {‘nuclear NF - kappa B’: ‘protein’}. In the sub-
sequent step, targeting the next level of nesting, the
anticipated output becomes {‘NF - kappa B’: ‘pro-
tein’}, assuming the output format is structured as
an entity-category dictionary.

3.3.2 Extract-then-Classify
Drawing inspiration from (Shen et al., 2021), we
investigate a two-stage approach where LLMs
are first instructed to identify all NEs, regardless
of whether they are flat or nested. Subsequently,
LLMs are directed to classify the categories of
these extracted NEs. This method aims to elicit
a chain of thought (COT) from LLMs by progres-
sively refining the answer. For example, given the
sentence, S, "nuclear NF - kappa B", the initial
instruction for LLMs to identify NEs would yield
the expected output [‘nuclear NF - kappa B’, ‘NF
- kappa B’]. Following this extraction phase, the
next step of classification is anticipated to produce
{‘nuclear NF - kappa B’: ‘protein’, ‘NF - kappa B’:
‘protein’}, with the output format assumed to be an
entity-category dictionary.

3.3.3 Decomposed-QA
The extract-then-classify technique aims to sim-
plify the answer derivation process, while the
decomposed-QA technique targets the simplifica-
tion of the problem itself. This latter approach has
been effectively employed to address the challenges
of nested NER even before the advent of LLMs.

For example, Li et al. (2020b) introduced an MRC
framework tailored for nested NER, which treats
the identification of each NE category as a separate
question-answering task. In a similar vein, Rojas
et al. (2022) developed the MLC model, which
is designed to extract each NE category indepen-
dently through training multiple models. Building
upon these methodologies, Xie et al. (2023) applied
the decomposed-QA technique to NER tasks us-
ing LLMs, demonstrating its capability to improve
zero-shot performance in flat NER. Inspired by
these precedents, we explore the decomposed-QA
technique’s effectiveness and applicability specifi-
cally within the realm of nested NER.

Structure-based Decomposed-QA In an exten-
sion of this approach, we introduce a variant specif-
ically for nested NER, which we term structure-
based decomposed-QA. This technique strategi-
cally breaks down the task based on the structural
complexity of NEs. We direct LLMs to differenti-
ate between flat and nested NEs through separate
inquiries: one set of queries prompts the identifica-
tion of solely flat NEs, while another set focuses
exclusively on nested NEs.

3.3.4 Nested NER-Tailored Instruction

Yin et al. (2023) investigated to determine the most
critical component in instruction for model per-
formance, finding a significant drop when task-
specific label information was omitted. This un-
derscores the importance of NE label information
in facilitating LLMs’ comprehension of the NER
task. Drawing on this insight, we introduce a nested
NER-tailored instruction technique that incorpo-
rates detailed NE label information into the instruc-
tions for LLMs. To provide comprehensive label in-
formation, we adopt a twofold approach: firstly, by
retrieving label definitions from Wikipedia based
on each label’s title, and secondly, by generating
label descriptions via ChatGPT to ensure the in-
structions are tailored to the NER task’s specifics.
While Wikipedia definitions offer a general under-
standing, they may not fully convey the intricacies
of nested NER tasks due to their dictionary-like
nature. Therefore, ChatGPT-generated descriptions
are also utilized to bridge this gap. Furthermore,
to enhance LLMs’ grasp of nested NER tasks, we
include descriptions of nested cases within our in-
structions, focusing on two scenarios: nested dif-
ferent type (NDT), where an entity encompasses a
shorter entity of a different type, and nested same
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type (NST), involving entities represented by a hier-
archical structure. By integrating these tailored in-
structions, we aim to significantly improve LLMs’
performance on nested NER tasks. Full of nested
NER-tailored instructions are in the Appendix G.

3.4 Instruction Tuning with PEFT

To assess the effectiveness of instruction-tuned
LLMs on nested NER, we implement instruc-
tion tuning using parameter efficient fine-tuning
(PEFT), especially QLoRa (Dettmers et al., 2024).
In the interest of time and cost efficiency, we se-
lectively employ the most effective reasoning tech-
niques identified from few-shot approaches dur-
ing the instruction tuning process. Our objective is
to determine whether these reasoning techniques,
proven effective in preliminary settings, also en-
hance LLM performance when applied through
instruction tuning.
Let P = {p0, p1, ..., pn} be the instruction, where
n denotes the number of tokens in the instruction.
Let X = {x0, x1, ..., xm} and Y = {y0, y1, ..., yl}
represent the input text and output answer, where
m and l denote the number of tokens in the input
text and output answer, respectively. We define our
Input as the concatenation of the instruction and
input text, I = [P ;X]. Our goal is to generate the
output answer Y , given a instruction, and input text
I as follows:

Y =

|Y |∏

i=1

Pw(yi|yi<, [P ;X]) (1)

Here P (·|·) refers to the probability of generating
the next token. W are the parameters of P (·|·), and
yi< = {y1, y2, ..., yi−1}.
The loss function we aim to minimize is defined as
follows:

L =
1

D

∑

d∈D
L(d,Φ0,∆Φ) (2)

where D is the dataset and d is each data instance,
L is the cross entropy loss function employed
to LLMs, Φ0 denotes the original weights of the
LLMs that are kept frozen, and ∆Φ refers to the ad-
ditional parameters used by the QLoRA (Dettmers
et al., 2024). QLoRA employs low-rank matrices
B ∈ Rd×r and A ∈ Rr×k with r << min(d, k).
The low rank matrices A and B are trainable:

h = W0x+BAx = (W0 +BA)x (3)

We fine-tune LLMs to learn the complex structure
of nested NEs using different reasoning techniques.
Unlike in-context learning, such as the few-shot
approach, instruction tuning enables LLMs to align
with nested NER consistently across all samples
in the dataset, rather than being exposed to only
a few examples. Through instruction tuning, we
anticipate further performance improvements in
nested NER tasks. Moreover, QLoRA prevents the
LLMs from becoming over-fitted to the nested NER
task, as their original weights are not extensively
tuned.

4 Experiments

4.1 Experimental Setups

For our experiments, we utilized ChatGPT 3.5 and
ChatGPT 4.0 APIs for closed LLMs and Llama2
13B1, Llama3 8B2, Mistral 7B3 (Jiang et al., 2023),
and Qwen2 7B 4 (Bai et al., 2023) for open LLMs.
For detailed information on the implementation,
please refer to Appendix D.

4.1.1 Datasets

In our experiments on nested NER, we evaluated
LLMs using the widely used ACE 2004, ACE 2005,
and GENIA datasets. In our investigation of zero-
shot, one-shot, and few-shot approaches, we uti-
lized the entire test portion of each dataset for as-
sessment. Moreover, in our experiment of instruc-
tion tuning, we used the entire train and test portion
of each dataset. For more details on the datasets,
please see Appendix E.

4.2 Results

4.2.1 Metrics

Traditional metrics for NER are insufficient for ac-
curately evaluating nested NER due to their inabil-
ity to fully capture the complexity of nested entity
relationships. To address this limitation, Rojas et al.
(2022) introduced metrics specifically designed for
nested NER, implementing three types of evalua-
tion criteria. The Flat metric assesses the identifica-
tion of non-nested entities, focusing on the simplest
entity recognition tasks. The Nested metric is de-
signed to evaluate the recognition of entities within
nested structures, considering both inner and outer

1https://huggingface.co/meta-llama/Llama-2-13b-hf
2https://huggingface.co/meta-llama/Meta-Llama-3-8B
3https://huggingface.co/mistralai/Mistral-7B-v0.3
4https://huggingface.co/Qwen/Qwen2-7B
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Method ACE 2004 ACE 2005 GENIA
Flat Nested Nesting Flat Nested Nesting Flat Nested Nesting

PoS+SC Zero 36.17 36.44 0.59 27.88 20.41 0.38 31.47 38.69 5.93

Recursive
Zero 26.29 26.08 1.68 32.43 24.23 1.46 43.85 23.60 3.13
One 38.89 28.56 1.85 34.18 25.90 1.48 47.46 28.80 3.35
Five 39.11 30.48 1.96 37.32 26.57 1.59 51.69 29.11 3.77

Extract-then-Classify
Zero 28.06 27.90 1.74 33.33 26.98 1.43 45.07 26.95 3.24
One 37.32 28.10 1.81 37.81 27.12 1.60 47.35 29.49 3.74
Five 43.15 28.48 1.96 40.24 28.64 1.61 50.24 24.21 3.02

Decomposed-QA
Zero 41.17 11.76 0.00 34.75 1.66 0.00 62.32 9.97 0.57
One 47.24 14.08 0.23 39.54 8.53 0.00 63.46 9.87 0.55
Five 50.25 14.23 0.37 41.77 5.76 0.00 67.75 6.70 0.15

Structure-based
Decomposed-QA

Zero 41.61 36.02 2.22 34.72 31.32 1.83 37.17 17.15 3.39
One 47.49 37.60 2.37 37.01 32.95 1.84 49.12 34.84 3.78
Five 51.97 39.96 2.43 39.80 34.01 2.88 53.22 35.82 9.99

Label Information
(Wikipedia)

Zero 35.19 35.82 0.00 27.69 31.07 0.00 28.10 33.78 0.34
One 42,55 39.55 1.96 35.60 34.62 0.84 48.89 49.19 6.74
Five 45.95 42.11 5.46 34.07 38.26 5.89 51.69 45.98 11.45

Label Information
(Wikipedia)
+ Nested Case Description

Zero 35.70 36.39 0.00 27.84 31.03 0.00 36.74 40.36 0.34
One 43.07 39.72 1.68 34.75 35.50 1.66 49.49 47.53 7.27
Five 46.17 43.03 6.58 35.09 39.46 6.06 52.75 44.81 12.05

Label Information
(ChatGPT)

Zero 36.80 36.84 0.00 27.82 31.65 0.00 25.69 32.10 0.33
One 42.55 40.11 2.00 35.45 34.36 1.24 48.99 47.91 7.35
Five 45.88 43.21 5.82 32.71 36.93 6.36 50.62 45.53 11.21

Label Information
(ChatGPT)
+ Nested Case Description

Zero 35.35 36.63 0.00 27.89 30.65 0.00 34.32 39.19 0.97
One 42.33 40.54 2.66 34.88 34.32 0.84 54.07 45.46 9.28
Five 46.75 42.53 5.94 34.75 38.29 6.63 51.92 45.52 12.66

Table 1: ChatGPT 4.0 results of reasoning concepts and nested NER-tailored instructions with reported F1 Scores.
For the Recursive techniques, we instruct ChatGPT to identify the innermost and outermost first, respectively. We
report the results of the innermost initial setting since it showed better performance. Bold numbers highlight the best
scores within the respective categories, while Underlined numbers denote the highest scores across all reasoning
techniques. Scores for each technique were averaged over five trials.

entities but not assessing their relationships simul-
taneously. To complement this, the Nesting metric
is introduced to evaluate the accuracy of identify-
ing nested entity relationships, requiring both inner
and outer entities to be recognized correctly for an
evaluation to be deemed accurate. We adopt these
three metrics—Flat, Nested, and Nesting—to eval-
uate the performance of our methods using LLMs
on nested NER tasks.

4.2.2 Results of prevalent reasoning concepts
To assess the impact of various reasoning tech-
niques on nested NER, we carried out experiments
as detailed in Section 3.3. The performance out-
comes, presented in Table 1, highlight the effi-
cacy of these techniques. Specifically, PoS+SC, a
method previously proposed by Xie et al. (2023)
that combines the Part-of-Speech (PoS) reason-
ing technique with self-consistency (SC), serves
as a benchmark. The SC method, which verifies
the responses of LLMs, has been shown by Xie
et al. (2023) to consistently improve performance

in an NER task. Despite its benefits, SC was not
incorporated into our other experiments. This de-
cision was due to the method’s requirement to
query LLMs multiple times with the same question,
leading to increased costs. Firstly, we observed
that the performance of nested NER improves as
the number of provided examples increases. Sec-
ondly, while the decomposed-QA (D-QA) tech-
nique, which prompts LLMs to independently iden-
tify each NE category, markedly enhances flat
NER performance, it conversely diminishes nested
NER capabilities. This finding underscores the lim-
ited applicability of the D-QA technique, highly
effective for flat NER as demonstrated by Xie
et al. (2023), to nested NER scenarios. Further-
more, other well-regarded reasoning techniques,
such as recursive and extract-then-classify, which
have shown effectiveness in BERT-based fine-tuned
models, also fall short in addressing nested NER
challenges under the LLMs. Contrastingly, our
proposed reasoning technique, the structure-based
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decomposed-QA (SD-QA), which directs LLMs
to independently discern between flat and nested
NER, surpasses all traditional techniques in both
Nested and Nesting metrics. These findings vali-
date the superiority of SD-QA in leveraging LLMs
for nested NER, significantly outperforming ex-
isting reasoning methods. However, these results
yet comparable with BERT-base fine-tuned mod-
els. To alleviate this gap, we investigate the nested
NER-tailored instruction for eliciting the ability of
LLMs.

4.2.3 Results of Nested NER-Tailored
Instruction

To evaluate the effectiveness of our proposed in-
structions tailored for nested NER, we conducted
experiments leveraging NE label information and
descriptions of nesting cases. The results, pre-
sented in Table 1, align with observations from
Section 4.2.2, indicating that nested NER perfor-
mance improves with an increasing number of ex-
amples. In the zero-shot scenario, the label infor-
mation, whether sourced from Wikipedia or gen-
erated by ChatGPT, did not enhance the LLMs’
capability in nested NER. Intriguingly, under the
five-shot setting, instructions incorporating our la-
bel information significantly surpassed the perfor-
mance of the SD-QA technique—previously the
most effective among the explored reasoning meth-
ods—across all datasets in both Nested and Nesting
metrics. This trend underscores a notable perfor-
mance leap associated with the incremental exam-
ples provided to our label information instructions,
demonstrating their effective synergy. Particularly
within the GENIA dataset, a domain-specific cor-
pus, we observed that our label information sig-
nificantly aids LLMs in adapting to specialized
domains. In both the one-shot and five-shot set-
tings, our nested NER-tailored instructions notably
improved performance. This demonstrates that our
label information effectively interacts with few-
shot examples, enhancing their utility in special-
ized domains. Moreover, label information gen-
erated by ChatGPT proved to be more effective
than that sourced from Wikipedia. This suggests
that a general description, as provided by Chat-
GPT, is more conducive to LLMs’ domain-specific
adaptation than the more dictionary-like nature of
Wikipedia definitions. Most importantly, the addi-
tion of both label information and nested case de-
scriptions markedly improved performance on the
Nesting metric. These findings confirm the signifi-

cant efficacy of our approach for enhancing nested
NER performance.

4.2.4 Results of LLMs Instruction Tuning
Table 2 shows the results of instruction tuning us-
ing various LLMs. We explore which method is
effective for tuning LLMs on the GENIA dataset.
The results of instruction tuning on ACE 2004 and
ACE 2005 datasets are in Appendix F.

Decomposed-QA (D-QA) technique demon-
strated poor performance on nested NER, indicat-
ing its suitability primarily for flat NER rather than
nested NER. To assess the ability of structure-based
decomposed-QA (SD-QA) to differentiate between
flat and nested NEs, we evaluated models special-
ized for flat and nested NER independently. The re-
sults showed that the Flat SD-QA model, intended
to identify flat NEs, inadvertently extracted more
nested NEs compared to the Nested SD-QA model.
This outcome suggests that distinguishing between
flat and nested NEs remains a challenge for even
instruction-tuned 13B LLMs. Our approach of us-
ing NE label information and nested case descrip-
tions once again proved highly effective in the in-
struction tuning setting. Specifically, instructions
incorporating NE label information generated by
ChatGPT and nested case descriptions markedly
enhanced the nested NER performance of all LLMs.
This finding further confirms that a general descrip-
tion is more conducive to LLMs’ performance in
domain-specific scenarios. Additionally, Llama3
8B, Mistral-7B-v0.3, and Qwen2-7B are reported
to outperform Llama2-13B on various LLM bench-
marks, including mathematical reasoning and QA
tasks. However, these newer models with 7B and
8B configurations did not surpass Llama2-13B in
nested NER tasks. This may suggest that the capa-
bility to recognize complex named entities could
improve with larger model sizes. Despite these ad-
vancements, none of these methods exceeded the
performance of the existing state-of-the-art (SOTA)
model, which is fully supervised and fine-tuned
using BERT, even with the deployment of a 13B
model. This highlights the ongoing need for further
exploration within nested NER tasks, employing a
variety of LLM sizes and methodologies.

4.3 Error Analysis

Recognizing the importance of analyzing LLM er-
rors, we have conducted a detailed error analysis
with instruction-tuned models. Figure 2 shows the
analysis of error by best performance model (Label
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Model Method
GENIA

Flat Nested Nesting
Precision Recall F1 Precision Recall F1 Precision Recall F1

Llama2-13B

Decomposed-QA 67.02 40.82 50.74 43.05 28.88 34.57 5.53 3.66 4.40
Structure-based
Decomposed-QA 63.38 66.04 64.69 26.86 52.23 35.47 7.91 17.77 10.95

Flat Case of
Structure-based
Decomposed-QA

59.39 62.12 60.72 92.47 36.47 52.31 27.50 1.92 3.58

Nested Case of
Structure-based
Decomposed-QA

76.27 22.65 34.92 23.27 33.91 27.60 10.66 21.41 14.24

Label Information
(Wikipedia) 71.62 54.96 62.19 69.22 38.78 49.71 30.56 13.41 18.64

Label Information
(Wikipedia)
+ Nested Case Description

72.44 58.93 64.99 72.84 40.26 51.86 34.18 14.11 19.98

Label Information
(ChatGPT) 70.80 66.02 68.33 70.07 49.83 58.24 34.25 19.15 24.86

Label Information
(ChatGPT)
+ Nested Case Description

71.96 68.37 70.12 69.06 53.22 60.11 34.93 22.82 27.61

Llama3-8B

Label Information
(Wikipedia) 69.63 53.87 60.74 82.92 33.25 47.47 31.00 5.40 9.20

Label Information
(Wikipedia)
+ Nested Case Description

78.41 60.19 68.98 71.08 42.26 59.96 22.70 14.79 17.91

Label Information
(ChatGPT) 72.39 65.88 68.98 73.23 46.95 57.21 35.71 17.42 23.42

Label Information
(ChatGPT)
+ Nested Case Description

73.77 68.12 70.42 74.53 54.18 64.29 32.70 21.97 26.88

Mistral-7B-v0.3

Label Information
(Wikipedia) 76.70 68.00 72.09 74.81 49.01 59.22 37.12 17.07 23.39

Label Information
(Wikipedia)
+ Nested Case Description

77.39 69.49 73.23 77.88 48.51 59.79 39.08 16.20 22.91

Label Information
(ChatGPT) 76.07 64.68 69.91 78.58 47.52 59.23 42.86 17.77 25.12

Label Information
(ChatGPT)
+ Nested Case Description

76.09 71.41 73.69 68.29 54.54 60.64 33.07 21.95 26.39

Qwen2-7B

Label Information
(Wikipedia) 76.10 60.91 67.66 76.90 44.22 56.16 32.70 12.02 17.58

Label Information
(Wikipedia)
+ Nested Case Description

74.09 65.15 69.34 73.37 47.28 57.50 33.45 16.03 21.67

Label Information
(ChatGPT) 73.29 64.00 68.22 72.36 47.01 57.08 37.40 15.19 24.01

Label Information
(ChatGPT)
+ Nested Case Description

73.99 68.46 70.74 70.82 53.15 60.33 34.81 20.91 26.12

BERT fine-tuned SOTA - - 81.20 - - 65.80 - - 35.30

Table 2: Results of tuning utilizing various instructions. Bold numbers highlight the best scores within the respective
method. Scores for each method were averaged over three trials.

Information from ChatGPT + Nested Case Descrip-
tion). Because nested NEs have complicated struc-
tures, we have analyzed whether the instruction-
tuned models accurately recognized inner and outer
NEs. The Inner metric specifically assesses the
recognition of entities within nested structures, fo-
cusing on inner entities, while the Outer metric
evaluates the identification of only the outer enti-
ties. The Wrong type error metric measures the er-
ror rate of incorrect entity type predictions. For the
GENIA dataset, it is apparent that LLMs and BERT

(49.30 for inner and 82.40 for outer) struggle more
with recognizing inner entities as compared to outer
entities. Nevertheless, LLMs demonstrate a notable
ability in classifying entity types, as evidenced by
the significantly low error rates for wrong types.
However, there is still room for improvement in
LLMs’ capability to accurately identify nested en-
tities.

Different from the GENIA dataset, LLMs ex-
hibit similar capabilities in recognizing both inner
and outer entities on the ACE2004 and ACE2005
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Figure 2: Results of detailed analysis

datasets. A potential reason for this discrepancy
could be the presence of more deeply nested enti-
ties (up to a maximum of 5-depth) in the ACE2004
and ACE2005 datasets, as opposed to the GE-
NIA dataset (maximum 3-depth), posing additional
challenges for LLMs. Furthermore, LLMs demon-
strate a higher error rate in classifying wrong entity
types compared to their performance on the GENIA
dataset, while maintaining similar recall metrics.
This may be attributed to the greater number of
entity categories in the ACE datasets (seven cate-
gories) versus GENIA (five categories), underscor-
ing the need for a more detailed analysis of error
types in LLMs’ performance on nested NER tasks.

Figure 3 shows the performance changes accord-
ing to the nested level. In this figure, the "Nested
Level" metric evaluates performance based on the
depth of nesting. "Level 1" corresponds to the in-
nermost entity, while "Levels 2" and "Level 3" rep-
resent entities nested within two and three depths,
respectively. As illustrated, LLMs and BERT ex-
hibit comparable performance on entities nested
within three depths on the GENIA dataset. How-
ever, LLMs demonstrate a notably lower perfor-
mance on innermost and 2-depth nested entities.
This indicates that while LLMs show promise in
identifying deeply nested entities, their effective-
ness in extracting innermost and moderately nested
entities (i.e., Recall) requires further improvement.
Contrasting with the GENIA dataset, where LLMs
show comparable performance to BERT, on the
ACE2005 datasets, LLMs exhibit significantly poor
performance on lower nested levels. This discrep-
ancy is likely attributed to the more complex nested
entity structures within the ACE datasets. Such
complexity highlights the need for methodologies
specifically tailored for training LLMs on nested
NER tasks. This underscores the ongoing require-
ment to develop and refine approaches that more ac-

Figure 3: Analysis according to the nested level

curately capture the nuances of nested entity recog-
nition with LLMs.

5 Conclusions

We explored the nested NER using various con-
cepts, methodologies, and techniques from the pre-
vious nested NER works. We also proposed nested
NER-tailored reasoning techniques and instruc-
tions, which demonstrated significant effectiveness
on nested NER. We observe the output format that
LLMs would generate is significantly important
in the NER task. We also confirmed the previous
reasoning technique, especially decomposed-QA,
which is highly effective on flat NER, is not ro-
bust on the nested NER. Our proposed instruction
that incorporating the NE label information and
nested case description using LLMs is significantly
effective on nested NER. Unfortunately, the perfor-
mance of all of our methods yet outperformed the
previous BERT-based fine-tuned models. It reveals
nested NER still needs to be further explored.

Limitations

For cost efficiency, our experiments on instruction
tuning were confined to using open LLMs, specif-
ically models up to 13B in size. This limitation
restricts our ability to compare performance across
larger LLMs, which might yield different insights
into the effectiveness of the proposed techniques
for nested NER. The decision to employ 7B, 8B,
and 13B models was also influenced by compu-
tational resource constraints. Access to more di-
verse or powerful computational resources would
allow for a broader exploration of models and tech-
niques, potentially leading to different outcomes.
As the field of LLMs is rapidly evolving with fre-
quent updates and new model releases, our findings,
while relevant to the current technological land-
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scape, may require re-evaluation as newer models
and techniques become available.

Handling of Repeated Named Entities In the
nested NER environment, our analysis indicates
that there are no instances where the exact same
entity is annotated with multiple labels. If the
same entity appears multiple times within the same
sentence and its entity type changing depending
on the context, this indeed could be problematic.
Through our analysis, we identified such samples
in the ACE 2004 test set.

Context: "that requires even greater efforts on
the part of the palestinian authority to try to
control the crowds , to keep them away from
israeli fixed positions and on the israeli side
that would enable them to restrain the use of
live fire ."

Answer of span extraction output for-
mat: [[GPE, 9, 11], [GPE, 24, 24], [GPE, 29,
31], [GPE, 30, 30], [GPE, 35, 35], [PER, 16,
17], [PER, 21, 21]]

Answer of entity-category output for-
mat: "the palestinian authority": [GPE],
"israeli": [GPE, GPE], "the israeli side":
[GPE], "them": [GPE, PER], "the crowds":
[PER]

The entity-category output format has the disadvan-
tage of not maintaining order, which complicates
determining the placement of types like GPE and
PER for "them." Currently, there are output formats
that favor nested NER performance and those that
are advantageous for post-processing, which we
consider a trade-off. However, upon analyzing the
ACE 2004, ACE 2005, and GENIA test datasets,
we found that such cases were minimal, with only
4, 2, and 5 instances respectively. Moreover, the
entity-category output format has shown signifi-
cantly higher performance in generative models,
making it the preferred option at this time.

Entities Identical and Post-processing The er-
ror rate for NEs in sentences not matching their
generated counterparts was extremely low (0.53%
of all errors) in the study (Xie et al., 2023), and
similarly negligible in our study. Nevertheless, we
acknowledge that these could potentially occur in
generative models. We consider handling such er-

rors to be improvements due to post-processing
rather than inherent model capabilities; hence, we
did not apply incorrect post-processing. Real-world
applications will require careful consideration of
these handling methods.
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A Difference between GPT-NER and Our
work

GPT-NER does not explore prompts/instructions
specialized for nested NER: While GPT-
NER shares the commonality of investigating
prompts/instructions for utilizing LLMs in NER
tasks, it does not conduct an in-depth study for
nested NER. The authors of GPT-NER propose
an effective few-shot sampling technique for flat
NER prompts and merely apply these to datasets
for nested NER tasks to conduct experiments.
We illustrate the difference between GPT-NER’s
instruction and our nested NER-tailored instruction
using the GENIA dataset as an example. Note
that the label set for the GENIA dataset, which
includes [cell_line, cell_type, DNA, RNA, protein],
is common to both GPT-NER and our study.

GPT-NER’s instruction (for DNA entity
type):
I am an excellent linguist. The task is to label
DNA entities in the given sentence.
Input: {Text of first example}
Output: {DNA Answer of the first example}
Input: {Text of the second example}
Output: {DNA Answer of the second exam-
ple}
Input: {Text of the third example}
Output: {DNA Answer of the third example}
Input: Text of target input
Output: Generated output by LLM

Ours nested NER-tailored instruction:
Given entity label set: [cell_line, cell_type,
DNA, RNA, protein].
cell_line: Describes a specific line of cells
used in experiments or research.
cell_type: Describes the type or category of a
cell.
DNA: Denotes the genetic material present in
a cell.
RNA: Represents ribonucleic acid, involved
in gene expression.
protein: Refers to large molecules essential

for various biological functions.
Based on the given entity label set, please
recognize the named entity in the given text.
Consider there might be a nested case, where
one entity contains another.
NDT: It consists of an entity containing a
shorter entity tagged with a different type.
NST: This case usually occurs when entities
are originally represented by a hierarchy.
Here are some examples.
Text 1: Text of the first example
Answer 1: Answer of the first example
Text 2: Text of the second example
Answer 2: Answer of the second example
Text 3: Text of the third example
Answer 3: Answer of the third example
Text: Text Input
Answer: Generated output by LLM

GPT-NER’s instruction requires repetition for
each entity type present in the dataset. In contrast,
our proposed instruction allows the identification
and recognition of all entity types in a single exe-
cution. Unlike GPT-NER, our approach provides
entity type information and descriptions of nested
cases to fully elicit the nested NER capabilities of
LLMs. To reiterate, GPT-NER’s instruction can ex-
tract only one entity type at a time, necessitating
repeated prompts/instructions for each entity type.
Moreover, GPT-NER’s approach resembles the
decomposed-QA methodology, a baseline method
experimented with in our study. Decomposed-QA,
as used with generative models like ChatGPT-3.5
and Llama2 in (Xie et al., 2023), demonstrates ef-
fectiveness in recognizing one entity type at a time
in flat NER. However, its effectiveness in nested
NER remains unclear. Additionally, GPT-NER pro-
poses a method to enhance few-shot examples in
prompts by searching for few-shot examples re-
lated to the input text. This search process uses a
supervised fine-tuned NER model, leveraging simi-
larity searches between entities extracted from the
input text (i.e., text entered for NER purposes) and
the entity representations of the fine-tuned model
to provide few-shot examples with entities most
similar to those in the input text. This reliance on
a supervised fine-tuned NER model marks a sig-
nificant divergence from our study, which does not
depend on such models. Furthermore, since GPT-
NER requires running a prompt for each entity type,
it necessitates a few-shot example search with each
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Figure 4: Examples of output formats

prompt execution, resulting in considerable time
complexity.

B Structure-based nested NER Work

The exploration of nested Named Entity Recogni-
tion (NER) has evolved through various innovative
approaches. Lu and Roth (2015) laid foundational
work with a mention hypergraph representation for
entity mention extraction, which was further en-
hanced by Muis and Lu (2017) through the use of
mention separators and handcrafted features. Build-
ing on these concepts, Katiyar and Cardie (2018)
introduced a directed hypergraph utilizing LSTM
features to comprehend nesting structures. Li et al.
(2020a) developed a recursively binary modifica-
tion (RBM) model, leveraging modification rela-
tions among sub-entity types to define entity spans.
Our model, RLAN, while recursive, diverges from
RBM by processing the output from one layer into
the next to delineate nested entity levels, operating
at the sentence rather than region level, as RBM
does. Further advancements include the Pyramid
model by Wang et al. (2020), utilizing stacked NER
layers in a pyramid shape for the token or text re-
gion embeddings, and an inverse pyramid for layer
interaction. Similarly, Fu et al. (2021) employed
TreeCRFs and a biaffine scoring module in a tree-
shaped stack for entity boundary prediction and
decoding. Wan et al. (2022) enhanced span repre-
sentations with retrieval-based span-level graphs,
linking spans and entities via n-gram feature simi-
larity to integrate information through entity-entity
and span-entity graphs. However, as noted by Wang
and Lu (2018), these models often grapple with
spurious structures and structural ambiguities, indi-
cating ongoing challenges in nested NER research.

C Details for the output format

Figure 4 shows the examples of output formats.

C.1 Span Extraction

For this output format, we instruct LLMs to pro-
duce responses in the format of (Entity Category,
start_index, end_index). For instance, given the in-
put sentence S, "nuclear NF - kappa B" (from the
GENIA dataset), the expected output is [(‘protein’,
0, 4), (‘protein’, 1, 4)]. This approach allows us to
leverage the mathematical capabilities of LLMs for
precise entity span identification.

C.2 Insertion of Distinguishable Tokens

For this output format, we instruct ChatGPT and
Llama2 to reproduce the input sentence S, embed-
ding distinguishable tokens to mark entities within
the text. For the given sentence S, "nuclear NF -
kappa B", we expect the output to be "<nuclear
<NF - kappa B: protein>: protein>", which allows
us to clearly identify the entities and their cate-
gories.

C.3 Nested Level BIO Tagging

In this output format, we instruct ChatGPT and
Llama2 to annotate all input words in sentence S
with BIO tags, accounting for nested NER. Tra-
ditional flat NER BIO tagging fails to adequately
represent nested entities due to their inability to
assign multiple tags to a single entity. To address
this limitation, we introduce a nested level BIO
schema that combines both the nested level of enti-
ties and BIO tagging. For example, given the sen-
tence S, "nuclear NF - kappa B", the expected
output is {‘nuclear’: [‘1-B-protein’, ‘O’], ‘NF’:
[‘1-I-protein’, ‘2-B-protein’], ‘-’: [‘1-I-protein’, ‘2-
I-protein’], ‘kappa’: [‘1-I-protein’, ‘2-I-protein’],
‘B’:[‘1-I-protein’, ‘2-I-protein’]}. Here, ‘nuclear’
appears in the outermost nested entity level but not
within any inner nested entity, thus receiving the
tags ’1-B-protein’ and ’O’. This format requires
LLMs to figure out the maximum nesting level
within sentence S.

Given that the cost associated with the ChatGPT
API increases with longer input and output lengths,
we evaluate these output formatting methods to
identify the most robust approach. This selection
process is crucial for optimizing resource utiliza-
tion in subsequent analyses, thereby achieving cost
savings without compromising the effectiveness of
our nested NER exploration.
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Output Format Zero-Shot One-Shot Five-Shot
Flat Nested Nesting Flat Nested Nesting Flat Nested Nesting

Span Extraction 2.08 2.86 0.00 2.17 3.14 0.00 2.87 3.88 0.04

Entity-Category Dictionary 28.56 35.52 0.65 43.57 47.27 5.44 50.24 44.21 11.47

Distinguishable Token 25.16 29.08 0.52 38.24 42.20 4.51 42.19 38.81 8.97

Nested Level BIO 16.28 22.08 0.10 24.17 28.65 2.65 30.40 34.15 3.99

Table 3: Results for different output formats. Each output format underwent evaluation in three separate trials, with
the resulting scores averaged for consistency. The experiments were conducted using the ChatGPT 3.5 and 4.0 API.

Method
GENIA

Flat Nested Nesting
Precision Recall F1 Precision Recall F1 Precision Recall F1

Span Extraction 22.45 11.79 15.88 21.83 9.08 13.78 6.79 2.61 3.14
Entity-Category Dictionary 71.73 68.57 70.12 70.98 48.02 57.28 34.24 17.60 13.25

Table 4: Results of instruction tuning across different output formats.

C.4 Performance According to Output
Format

To assess the impact of different output format-
ting methods on nested NER performance, we con-
ducted experiments across various formats, employ-
ing the vanilla method as described by Xie et al.
(2023) for cost efficiency. These experiments were
carried out on the GENIA dataset, utilizing zero-
shot, one-shot, and few-shot approaches to eval-
uate the effectiveness of each format. As shown
in Table 3, the performance of nested NER is sig-
nificantly influenced by the design of the output
format. Interestingly, the span extraction format
exhibited notably poor performance, despite Chat-
GPT’s recognized strength in mathematical reason-
ing. Similarly, the Nested Level BIO format, which
requires mathematical reasoning to interpret nested
levels, also underperformed. In contrast, the entity-
category dictionary (E-C dictionary) format demon-
strated superior performance across all tested for-
mats. Based on these observations, we conclude
that the E-C dictionary format is the most effective
and efficient for nested NER, offering optimal per-
formance with minimal output length. Therefore,
we have chosen the E-C dictionary format for sub-
sequent experiments.

As shown in Table 4, we further confirmed that
the output format significantly influences the per-
formance of nested NER, affecting both in-context
learning and instruction tuning settings. Notably,
the entity-category dictionary output format sub-
stantially outperformed the span extraction format
under identical instruction settings.

D Implementation Details

We used the ChatGPT 3.5 (gpt3.5-turbo-1106) and
ChatGPT 4 (gpt-4-1106-preview) API to explore
our target task, nested NER. Following the prece-
dent set by an empirical study on flat NER using
LLMs (Xie et al., 2023), we set the temperature
to 0.0. Both top-p and top-n were configured to 1.
For instruction tuning, we utilized the Llama2 13B,
Llama3 8B, Mistral 7B, and Qwen2 7B models
with QLoRa. We set the QLoRa alpha to 16 and
dropout to 0.1. We set r, which is the dimension
size of Lora, to 128. We set the batch size to 8 and
accumulation steps to 2. We also set the learning
rate to 2e-4.5

E Statistics of Datasets

The ACE 2004 and ACE 2005 datasets feature
seven entity types, with 24% and 22% of their
named entities being nested, respectively. We uti-
lized the data preprocessing method as detailed by
Katiyar and Cardie (2018) and Lin et al. (2019),
dividing these datasets into training, development,
and testing sets in an 8:1:1 ratio for instruction
tuning purposes. For the GENIA dataset, specifi-
cally GENIAcorpus3.02p which includes five en-
tity types (DNA, RNA, protein, cell line, and cell
type), we adhered to the preprocessing approach
outlined by Katiyar and Cardie (2018), assigning
the first 90% of the dataset for training and the lat-
ter 10% for evaluation. Table 5 shows the statistics
of the ACE2005 and GENIA datasets.

5Our code and all instructions will be available on Github
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GENIA
Nested Level Train Test
Level 1 42,826 4,942
Level 2 3,910 569
Level 3 91 15
Level 4 1 0

ACE 2005
Nested Level Train Test
Level 1 19,676 2,724
Level 2 3,934 505
Level 3 731 102
Level 4 90 10
Level 5 7 1
Level 6 2 0

Table 5: The number of data in each level.

F Results of Instruction Tuning on ACE
2004 and ACE 2005

Table 6 presents the performance of instruction-
tuned LLMs on the ACE 2004 and ACE 2005
datasets. Unlike the results observed with the GE-
NIA dataset, Mistral demonstrated significantly
better performance than Llama2 on both datasets,
despite being much smaller in size. This suggests
that recognizing nested NEs in domain-specific sce-
narios is more challenging with relatively smaller
LLMs. Additionally, for general domains, as rep-
resented by the ACE 2004 and ACE 2005 datasets,
the results indicate that newer models may have a
superior ability to accurately follow the provided
instructions.

G Details for Instructions

Table 7 and 8 show the examples of our nested
NER-tailored instructions.
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Model Method
ACE 2004

Flat Nested Nesting
Precision Recall F1 Precision Recall F1 Precision Recall F1

Llama2-13B

Label Information
(Wikipedia) 69.63 53.87 60.74 82.92 33.25 47.47 31.00 5.40 9.20

Label Information
(Wikipedia)
+ Nested Case Description

62.36 63.40 62.87 47.46 52.86 50.02 18.29 20.79 19.46

Label Information
(ChatGPT) 69.63 53.87 60.74 82.92 33.25 47.47 31.00 5.40 9.20

Label Information
(ChatGPT)
+ Nested Case Description

63.52 59.88 61.65 52.01 52.08 52.05 20.86 20.97 20.92

Mistral-7B-v0.3

Label Information
(Wikipedia) 77.43 71.17 74.17 70.22 66.64 68.38 39.71 35.39 37.43

Label Information
(Wikipedia)
+ Nested Case Description

79.13 63.21 70.28 87.85 53.64 66.61 53.33 25.28 33.81

Label Information
(ChatGPT) 78.03 63.15 69.81 76.97 62.12 68.75 46.88 36.52 41.05

Label Information
(ChatGPT)
+ Nested Case Description

80.68 65.49 72.30 87.22 56.89 68.86 55.29 30.34 39.18

Qwen2-7B

Label Information
(Wikipedia) 65.73 66.42 66.07 69.28 58.16 63.23 35.53 28.28 31.49

Label Information
(Wikipedia)
+ Nested Case Description

71.14 57.22 63.43 77.71 48.55 59.77 41.41 23.03 29.60

Label Information
(ChatGPT) 64.92 61.79 63.31 64.80 51.52 57.40 32.39 25.66 28.63

Label Information
(ChatGPT)
+ Nested Case Description

67.78 53.64 59.89 69.11 45.23 54.68 33.22 18.91 24.11

Model Method
ACE 2005

Flat Nested Nesting
Precision Recall F1 Precision Recall F1 Precision Recall F1

Llama2-13B

Label Information
(Wikipedia) 69.63 53.87 60.74 82.92 33.25 47.47 31.00 5.40 9.20

Label Information
(Wikipedia)
+ Nested Case Description

62.20 59.48 60.81 59.32 50.21 54.39 22.70 18.10 20.14

Label Information
(Wikipedia) 69.63 53.87 60.74 82.92 33.25 47.47 31.00 5.40 9.20

Label Information
(ChatGPT)
+ Nested Case Description

60.75 60.45 60.60 62.83 49.79 55.56 25.43 18.97 21.73

Mistral-7B-v0.3

Label Information
(Wikipedia) 76.45 71.04 73.65 71.83 64.14 67.77 42.82 37.93 40.23

Label Information
(Wikipedia)
+ Nested Case Description

73.77 62.45 67.64 73.60 53.42 61.91 40.25 28.02 33.04

Label Information
(ChatGPT) 77.65 69.26 73.22 74.90 60.42 66.88 45.68 36.42 40.53

Label Information
(ChatGPT)
+ Nested Case Description

74.48 70.02 72.18 75.31 57.13 64.97 42.64 29.96 35.19

Qwen2-7B

Label Information
(Wikipedia) 64.90 59.43 62.04 74.21 47.59 57.99 34.55 20.47 25.71

Label Information
(Wikipedia)
+ Nested Case Description

67.94 62.29 64.99 80.82 54.77 65.29 43.96 25.86 32.56

Label Information
(ChatGPT) 67.70 48.24 56.34 78.53 41.35 54.17 38.92 17.03 23.69

Label Information
(ChatGPT)
+ Nested Case Description

71.73 57.86 64.06 71.06 49.11 58.08 39.59 25.00 30.65

Table 6: Results of tuning utilizing various instructions on ACE 2004 and ACE 2005 datasets. Bold numbers
highlight the best scores within the respective method. Scores for each method were averaged over three trials.
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Instruction Example for the GENIA dataset

Vanilla

Given entity label set: [cell_line, cell_type, DNA, RNA, protein].
Based on the given entity label set,
please recognize the named entity in the given text.
Consider there might be nested NEs,
where one entity contains another.
Text: {Text Input}
Answer:

Label Information from Wikipedia

Given entity label set: [cell_line, cell_type, DNA, RNA, protein].
cell_line: A general term that applies to a defined population of cells that can be maintained in culture
for an extended period of time, retaining stability of certain phenotypes and functions.
cell_type: A classification used to identify cells that share morphological or phenotypical features.
DNA: A polymer composed of two polynucleotide chains that coil around each other to form a double helix.
RNA: A polymeric molecule that is essential for most biological functions,
either by performing the function itself (non-coding RNA) or
by forming a template for the production of proteins.
protein: The large biomolecules and macromolecules that
comprise one or more long chains of amino acid residues.
Based on the given entity label set, please recognize the named entity in the given text.
Consider there might be a nested case, where one entity contains another.
Text: {Text Input}
Answer:

Label Information Generated by ChatGPT

Given entity label set: [cell_line, cell_type, DNA, RNA, protein].
cell_line: Describes a specific line of cells used in experiments or research.
cell_type: Describes the type or category of a cell.
DNA: Denotes the genetic material present in a cell.
RNA: Represents ribonucleic acid, involved in gene expression.
protein: Refers to large molecules essential for various biological functions.
Based on the given entity label set, please recognize the named entity in the given text.
Consider there might be a nested case, where one entity contains another.
Text: {Text Input}
Answer:

Label Information Generated by ChatGPT + Nested Case Descriptions

Given entity label set: [cell_line, cell_type, DNA, RNA, protein].
cell_line: Describes a specific line of cells used in experiments or research.
cell_type: Describes the type or category of a cell.
DNA: Denotes the genetic material present in a cell.
RNA: Represents ribonucleic acid, involved in gene expression.
protein: Refers to large molecules essential for various biological functions.
Based on the given entity label set, please recognize the named entity in the given text.
Consider there might be a nested case, where one entity contains another.
NDT: It consists of an entity containing a shorter entity tagged with a different type.
NST: This case usually occurs when entities are originally represented by a hierarchy.
Text: {Text Input}
Answer:

Table 7: Instructions Examples
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Instruction Example for the GENIA dataset

Label Information Generated by ChatGPT + Nested Case Descriptions

Given entity label set: [cell_line, cell_type, DNA, RNA, protein].
cell_line: Describes a specific line of cells used in experiments or research.
cell_type: Describes the type or category of a cell.
DNA: Denotes the genetic material present in a cell.
RNA: Represents ribonucleic acid, involved in gene expression.
protein: Refers to large molecules essential for various biological functions.
Based on the given entity label set, please recognize the named entity in the given text.
Consider there might be a nested case, where one entity contains another.
NDT: It consists of an entity containing a shorter entity tagged with a different type.
NST: This case usually occurs when entities are originally represented by a hierarchy.
Here are some examples.

Text 1: Alpha B2 proteins bound the PEBP2 site within the mouse GM-CSF promoter.
Answer 1: {"Alpha": "protein", "PEBP2": "protein", "PEBP2 site": "DNA",

"GM-CSF": "protein", "mouse GM-CSF promoter": "DNA"}

Text 2: Employing the EBV - transformed human B ell line SKW6.4.
Answer 2: {"EBV - transformed human B ell line": "cell_line", "human B ell line": "cell_line"}

Text 3: An IL - 2 promoter bearing a defective NF - chi B site was completely inactive in EBV - transformed B cells,
while it still had activity in Jurhat T cells.

Answer 3: {"IL - 2": "protein", "IL - 2 promoter": "protein", "NF - chi B": "protein", "NF - chi B site": "DNA", "chi B": "DNA",
"EBV - transformed B cells": "cell_line", "B cells": "cell_type", "T cells": "cell_type"}

Text 4: IL - 1 induces a rapid , protein synthesis - independent appearance of IL - 2R alpha mRNA
that is blocked by inhibitors of NF - kappa B activation.

Answer 4: {"IL - 1": "protein", "IL - 2R alpha mRNA": "RNA", "NF - kappa B": "protein"}

Text 5: In functional studies , PML expression was inhibited by addition of antisense oligomers targeting PML mRNA ( alpha - PML ).
Answer 5: {"PML": "protein", "PML mRNA": "RNA", "alpha - PML": "protein"}

Text: {Text Input}
Answer:

Table 8: Our Instructions Examples with Few-shot Samples.
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