
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 8037–8051
November 12-16, 2024 ©2024 Association for Computational Linguistics

Getting More from Less: Large Language Models are Good
Spontaneous Multilingual Learners

Shimao Zhang♣, Changjiang Gao♣, Wenhao Zhu♣, Jiajun Chen♣, Xin Huang3,
Xue Han3, Junlan Feng3, Chao Deng3, Shujian Huang♣*

♣National Key Laboratory for Novel Software Technology, Nanjing University
3China Mobile Research Beijing, China

{smzhang,gaocj,zhuwh}@smail.nju.edu.cn, {huangsj,chenjj}@nju.edu.cn
{huangxinyjy,hanxueai,fengjunlan,dengchao}@chinamobile.com

Abstract

Recently, Large Language Models (LLMs)
have shown impressive language capabilities,
while most of them have very unbalanced per-
formance across different languages. Multilin-
gual alignment based on the translation parallel
data is an effective method to enhance LLMs’
multilingual capabilities. In this work, we first
discover and comprehensively investigate the
spontaneous multilingual alignment of LLMs.
Firstly, we find that LLMs instruction-tuned
on the question translation data (i.e. without
annotated answers) are able to encourage the
alignment between English and a wide range
of languages, even including those unseen dur-
ing instruction-tuning. Additionally, we utilize
different settings and mechanistic interpretabil-
ity methods to analyze the LLM’s performance
in the multilingual scenario comprehensively.
Our work suggests that LLMs have enormous
potential for improving multilingual alignment
efficiently with great language generalization
and task generalization. 1

1 Introduction

Large Language Models (LLMs) have recently
shown impressive language capabilities across nu-
merous downstream language tasks (Zhao et al.,
2023). However, most of the existing LLMs
are trained on extensive high-resource languages
text (Touvron et al., 2023; Brown et al., 2020; Jiang
et al., 2023), which lead to a significant perfor-
mance gap between high-resource languages and
low-resource languages (Huang et al., 2023; Zhang
et al., 2023b; Gao et al., 2024). For the same task
and question contents, using different languages
for inputs may have a significant impact on the
model’s performance.

Some studies have conducted comprehensive
exploration about how to enhance the LLMs’ ca-
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1Our code and data is available at: https://github.com/

Shimao-Zhang/LLM-Multilingual-Learner.

pabilities across different languages. The classi-
cal approach typically follows the translate-based
paradigm (Liu et al., 2024). Considering LLMs’
great performance on the high-resource languages,
some cross-lingual alignment and transfer meth-
ods are proposed (Eronen et al., 2023; Zhu et al.,
2024; Zhao et al., 2024a). Question alignment (Zhu
et al., 2024) is an outstanding paradigm among
these methods which effectively improves multilin-
gual alignment at lower cost, i.e. only utilizes the
X-English parallel question translation data.

Meanwhile, some studies have further explored
the LLMs, revealing that English also partici-
pate in the intermediate latent reasoning of these
models even when LLMs are prompted in non-
English (Wendler et al., 2024; Zhao et al., 2024b).
These findings suggest that for LLMs, different
languages are not isolated, and LLMs are able
to leverage the connections between various lan-
guages to address problems in the multilingual sce-
narios. Researchers also reveal the shared semantic
space for different languages (Chang et al., 2022),
which is consistent with the findings above and
indicates the importance of the multilingual align-
ment. Also, Kew et al. (2023) discover that mul-
tilingual instruction-tuning with three languages
improves model’s cross-lingual transfer abilities on
some generative tasks.

Intuitively, LLMs have abilities to acclimatize
themselves to the multilingual environment through
appropriate training (Shi et al., 2022). Many ex-
isting methods rely on instruction-tuning on the
multilingual instruction-tuning datasets (Kew et al.,
2023; Liu et al., 2024). However, given the ques-
tion alignment paradigm, utilizing multilingual
alignment is also helpful for improving LLMs’ mul-
tilingual abilities. Additionally, we focus on ques-
tion alignment in our work to eliminate the inter-
ference of task-related data with annotated answers
from our analysis of multilingual alignment. Based
on the findings above, can LLMs achieve better
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multilingual alignment across different languages
efficiently through appropriate methods?

In this work, we investigate the multilingual
alignment of LLMs, where we only train the LLMs
on the parallel data without annotated answers
(only queries) in a few languages. Following ques-
tion alignment, we conduct the experiments on
models in different types (English-centric or not)
and parameter sizes, and test across a wide range
of languages on different benchmarks. We find
that question alignment following Zhu et al. (2024)
can effectively enhance the multilingual capabil-
ities of LLMs, which indicates that models can
effectively utilize the relevant knowledge and capa-
bilities learned during the pretraining process with
question alignment, consisting with the "Superfi-
cial Alignment Hypothesis" (Zhou et al., 2024).
Our results also indicate that conducting ques-
tion alignment in a small number of languages
brings much better multilingual alignment even
between English and many languages unseen dur-
ing instruction-tuning process, which implies good
language generalization. Furthermore, we also use
logit lens (Nostalgebraist, 2020) and dimensional-
ity reduction techniques (Pearson, 1901) to study
the latent states of LLMs, providing more compre-
hensive perspectives and empirical results for the
alignment improvements in our experiments.

2 Background

2.1 Unbalanced Multilingual Performance

With a much larger number of parameters pre-
trained on a massive corpus, LLMs have shown
the impressive capabilities in a variety of language
tasks (Zhao et al., 2023). These models are mainly
pretrained on English data, which often accounts
for 90% or even more of all training data. We
present a partial language distribution of LLaMA-
2’s training data in Table 7 in the Appendix A.
Meanwhile, most of the LLMs also show unsta-
ble and unbalanced performance in multilingual
scenarios, especially for some low-resource lan-
guages (Zhang et al., 2023a; Zhu et al., 2024). It’s
important to enable LLMs to adapt to a wider range
of users and scenarios.

2.2 Cross-lingual Enhancement for Large
Language Models

While LLMs still exhibit significant shortcomings
in multilingual scenarios, many researchers pro-
pose multilingual LLMs that are specifically ad-

justed for multilingual tasks (Barbieri et al., 2021;
Le Scao et al., 2023; Wei et al., 2023). But for mul-
tilingual LLMs, researches indicate a decline in
their performance in English because of the limited
tokens and parameter size (Lin et al., 2022; Scao
et al., 2022).

Based on the existing LLMs, researchers have
made great efforts to enhancing the multilin-
gual performance, which include two categories:
prompting close-source LLMs and instruction-
tuning open-source LLMs. For the former, some
studies utilize translation-based strategies which
translate the non-English input into English firstly
before solving the problem (Huang et al., 2023;
Qin et al., 2023). This type of approaches are con-
strained by the translation quality of the model
itself and is cumbersome for users. In addi-
tion, cross-lingual prompting mechanism is also
widely used to improve LLMs’ multilingual perfor-
mance (Ranaldi et al., 2024).

For the latter, LLMs shows significant improve-
ment of multilingual abilities and good task gen-
eralization through multilingual multitask fine-
tuning (Muennighoff et al., 2022). Chen et al.
(2023) follow the translation-based approach and
instruction-tune the model on a multilingual ver-
sion of GSM8K, which is translated from En-
glish GSM8K (Cobbe et al., 2021). Liang et al.
(2024) create a new intermediate language MUL
(Machine-created Universal Language) as a trans-
latable unified representation of shared concepts
across different languages. "X-English" parallel
question translation data have also been used for
multilingual question alignment (Zhu et al., 2024).
In our work, we mainly analyse based on the ques-
tion alignment, which is an outstanding alignment
methods, and eliminates the interference of the an-
notated answers from our analysis.

2.3 Mechanistic Interpretability
In addition to improving the performance of LLMs,
it is also crucial to understand and explain the prin-
ciples of neural networks and related methods ex-
plicitly. Current works mainly analyze LLMs’ ac-
tions by observing the internal states during the
inference process. Intermediate logits and neuron
activation states are both important objects of ob-
servation.

Although the English-centric LLMs are mainly
trained on English data, they also show good per-
formance across some non-English languages (Shi
et al., 2022). Logit lens (Nostalgebraist, 2020) is an
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early proposed technique that uses the model head
in the final layer to project the intermediate latent
logits directly to the vocabulary space. It have been
evidenced that LLaMA 2 (Touvron et al., 2023), a
open-source English-centric LLMs, have explicit
English output in its latent states even when having
non-English inputs (Wendler et al., 2024). There
is also a hypothesis about how LLMs handle multi-
lingualism that LLMs solve task by English with
the help of multilingual knowledge, and output in
the target language finally (Zhao et al., 2024b). All
these results indicate that there are connections
between various languages for LLMs, and LLMs
have the capability to spontaneously learn to uti-
lize multiple languages to solve problems. Zhao
et al. (2024b) calculate the overlapping ratio of the
language-specific neurons of different languages in
different layers. The results indicate that neurons
belonging to different languages exhibit clear distri-
bution differences. In our experiments, we utilize
logit lens and dimensionality reduction techniques
to help us better understand the mechanism behind
our findings.

3 Analysis Pipeline

We investigate the effect of question translation
parallel data on LLMs’ performance across a wide
range of languages even unseen during the fine-
tuning process.

We define the universal set of languages as U:

U = {l0, l1, l2, ... , ln−1} (1)

where li is the i-th language in U, n is the total
number of languages. We let l0 refer to English
specially here.

We select a few of non-English languages Ls =
{li, ..., lk} ⊆ U, and a target language lt ∈ U,
lt /∈ Ls. Then we will construct translation parallel
data from every language l ∈ Ls to target language
lt. When constructing the translation data, we only
use the questions without annotated answers. Then
we get a translation dataset Qtrain including source
question Qs and the corresponding target ques-
tion Qt, which means Qtrain = {(qs, qt) | qs ∈
Qs and qt ∈ Qt}. We instruct-tune the model on
the translation task:

argmin
θ

∑

(qs,qt)∈Qtrain

− log pθ(qt | qs) (2)

where θ is the model parameters, Qtrain is the
whole training translation dataset, qs is the ques-
tion in the source language, qt is the question in the

target language. Then we get the trained model:

θ
′
= θ +∆θ (3)

We use question translation data for training to
eliminate the impact of annotated answers them-
selves. And we use in-context learning for test
while the model haven’t been trained on the corre-
sponding task.

We test the trained model on all languages l ∈ U.
We construct the testing dataset Qtest = {Ql | l ∈
U} for every language, where Ql consists of all
test questions in the language l.

Accuracyl =
∑

q∈Ql

Iθ′ (â = a | q) (4)

Accuracy =

∑
l∈UAccuracyl

|U| (5)

where I is a function that takes 1 when the propo-
sition is true and 0 otherwise. Ql denotes the test
dataset of language l. U is the universal set of lan-
guages we use in our work. â is the answer that
the model predicts base on q, and a is the golden
answer corresponding to q.

4 Experimental Setup

We conduct our experiments on both English-
centric and non-English-centric models. And we
utilize different representative tasks and different
model parameter sizes to further strengthen our
conclusions. In this section, we introduce our ex-
perimental settings in detailed.

Models We choose representative open-source
LLMs for our experiments:

• Mistral: Mistral-7B-v0.1 (Jiang et al., 2023)
is an advanced open-source English-centric
large language model, which is one of the
most popular open-source LLMs.

• Qwen: To enhance the generalization and re-
liability of our conclusions, we also choose
models of different types and parameter sizes.
Qwen1.5 is a newly released and enhanced
version of Qwen (Bai et al., 2023). Qwen1.5
is pretrained on a multilingual dataset with
a significant portion of the data being in En-
glish and Chinese, which means it is not an
English-centric model. We choose Qwen1.5-
1.8B, Qwen1.5-4B, and Qwen1.5-14B for our
experiments.
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Mistral-7B en zh de fr es it nl ja ru sv

base 89.2 92.4 91.8 93.4 94.2 93.8 93.6 93.0 93.2 93.4
zh ⇒ en 95.2 94.8 94.8 95.2 94.4 94.4 94.8 94.4 94.0 95.4
sw ⇒ en 95.4 93.4 94.2 94.4 94.2 94.4 93.0 93.6 93.8 94.8
zh/es ⇒ en 95.2 95.0 95.0 95.0 94.8 92.8 94.6 95.0 94.4 94.8
zh/de ⇒ en 95.2 95.4 94.8 95.2 95.2 95.2 94.8 93.6 94.2 94.6
zh/it ⇒ en 95.4 95.8 94.8 94.0 95.2 92.6 94.4 93.0 94.2 95.2
sw/hi ⇒ en 95.4 94.6 94.4 93.4 93.4 93.6 93.6 94.0 93.8 94.4
sw/th ⇒ en 95.4 95.0 93.8 93.4 93.4 92.8 93.6 92.6 93.2 94.0
zh/es/ru ⇒ en 95.4 95.4 94.4 94.0 94.6 92.6 94.6 94.2 94.0 94.2
zh/de/it ⇒ en 95.2 95.6 94.4 95.0 94.0 93.8 95.0 93.6 94.2 94.6

Mistral-7B sl pl bg no ms is hi th sw bn

base 87.6 93.2 91.6 92.4 91.8 63.2 81.6 83.0 58.0 71.0
zh ⇒ en 94.0 94.0 94.6 92.2 89.0 84.0 88.8 88.4 75.8 81.0
sw ⇒ en 89.8 92.6 93.6 93.4 90.0 72.0 64.4 51.4 81.2 54.0
zh/es ⇒ en 93.2 93.6 94.0 93.0 92.2 81.2 87.0 84.8 75.6 75.4
zh/de ⇒ en 93.4 94.0 94.6 93.6 92.2 86.6 84.8 88.4 71.8 68.6
zh/it ⇒ en 92.6 93.8 94.2 93.6 92.6 84.2 77.6 77.2 71.6 60.0
sw/hi ⇒ en 89.2 93.0 93.2 92.6 90.0 71.8 89.8 87.0 77.6 79.4
sw/th ⇒ en 92.8 92.0 93.2 87.2 84.4 79.4 86.8 84.0 81.0 74.2
zh/es/ru ⇒ en 93.6 94.2 93.4 93.4 91.4 83.8 85.0 86.0 77.0 76.0
zh/de/it ⇒ en 91.2 93.6 94.2 93.4 91.8 83.2 77.2 82.4 69.0 71.4

Table 1: Accuracy of Mistral-7B base model and aligned models on the Amazon Reviews Polarity. We report
at least two sets of results for each language quantity to strengthen our conclusions. The accuracy of randomly
choosing is 50.0%. "X/Y/Z ⇒ T" means using a randomly mixed dataset including 10k X to T, 10k Y to T, 10k Z to
T translation data for instruction-tuning. We highlight the best results for every language.

Datasets Following Wendler et al. (2024), we se-
lect test tasks based on two fundamental principles:

1. Obvious Answers: Obvious answers reduce
the entropy during the inference process, min-
imizing the impact of irrelevant tokens on our
analysis.

2. Fixed Answers: Fixed answers (as opposed
to open-ended responses) provide clearer ob-
servation targets, facilitating analysis through
observing the latent outputs of the model. De-
terministic outputs also make it easier for us
to control the model’s outputs.

Based on these, we conduct our experiments on
three different types of tasks:

• Sentiment analysis: Sentiment analysis is an
important and classic NLP task (Alswaidan
and Menai, 2020), which always has three
common outputs: "positive", "negative", and
"neutral". We choose Amazon Reviews Po-
larity2 (Zhang et al., 2015), a famous dataset
includes two classes "positive" and "negative",
to construct the parallel data mentioned in
§2.2 and the test data. We extract 10K in-
stances from train subset for parallel data and

2https://huggingface.co/datasets/amazon_
polarity

500 instances from test subset for test data
respectively.

• Natural Language Inference: Natural lan-
guage inference (NLI) aims to judge the rela-
tionship between a given premise and a hy-
pothesis sentence. There are always three
possible outputs: "entailment", "neutral", and
"contradiction". We choose SNLI3 (Stanford
Natural Language Inference) (Bowman et al.,
2015) for our experiments. Following the set-
tings above, we extract 10K instances from
train subset for parallel data and 600 instances
from test subset for test data respectively.

• Paraphrase Identification: Model needs to
judge if two given sentences are semanti-
cally equivalent in the paraphrase identifi-
cation task, which includes two possible la-
bels. We conduct our experiments on PAWS4

dataset (Zhang et al., 2019), which is a famous
dataset proposed by Google. Following the
above tasks, we extract 10K instances from
train subset for parallel data and 500 instances
from test subset for test data respectively.

3https://huggingface.co/datasets/stanfordnlp/
snli

4https://huggingface.co/datasets/
google-research-datasets/paws

8040

https://huggingface.co/datasets/amazon_polarity
https://huggingface.co/datasets/amazon_polarity
https://huggingface.co/datasets/stanfordnlp/snli
https://huggingface.co/datasets/stanfordnlp/snli
https://huggingface.co/datasets/google-research-datasets/paws
https://huggingface.co/datasets/google-research-datasets/paws


Languages We conduct our following experi-
ments across 20 languages in this work. As shown
in Table 7 in Appendix A, we choose English (en),
German (de), French (fr), Swedish (sv), Chinese
(zh), Spanish (es), Russian (ru), Dutch (nl), Italian
(it), and Japanese (ja) as the top 10 highest-resource
languages according to Touvron et al. (2023). Ad-
ditionally, we choose another 10 representative lan-
guages to strengthen our work, including Slovenian
(sl), Polish (pl), Bulgarian (bg), Norwegian (no),
Malay (ms), Icelandic (is), Hindi (hi), Thai (th),
Swahili (sw), and Bengali (bn).

Implementations We use LoRA (Hu et al., 2021)
to instruction-tune the pretrained models on the
mixed parallel translation data first. We train LLMs
on the translation data excluding the golden an-
swers to mitigate the impact of the data of the tasks
themselves on the model’s capabilities. We use
in-context learning which not only doesn’t inter-
fere with LLMs’ parameters but also help LLMs
handle the tasks better. We use constrained decod-
ing rather than sampling that is used for diverse
generation (Zhang et al., 2024) to eliminate the
interference of irrelevant outputs on the results.

For instruction-tuning process we mentioned
above, we use LoRA (rank = 8, α = 16) with 3
epochs (1 epoch for PAWS to mitigate overfitting),
batch_size = 16, learning_rate = 5e-5, val_size =
0.05, lr_scheduler_type = cosine, cutoff_len = 2048
based on the settings of LLaMA-Factory5 (Zheng
et al., 2024), a widely used and recognized open-
source project for LLMs efficient fine-tuning. We
use single NVIDIA RTX A6000 48GB or single
NVIDIA Tesla V100 SXM2 32GB for training.
Training time varies from 4 hours to 10+ hours
depending on the language and the total instance
quantity.

More details are shown in Appendix B.

5 Results

In this section, we report the main results across
different experimental settings and conduct some
discussions based on the results.

5.1 Main Results

We report the accuracy of Mistral-7B on sentiment
analysis task in Table 1. Clearly, we can see that
the models trained on multilingual translation data
outperform the original model obviously across a

5https://github.com/hiyouga/LLaMA-Factory

lot of languages, which indicates that model have
much stronger multilingual capabilities after a mul-
tilingual training. We summarize our empirical
findings as follows:

1. Large language models can learn to han-
dle multilingualism better spontaneously.
Traditionally, fine-tuning or alignment on the
target languages is needed to help the model
adapt. However, our results indicate that
LLMs are able to perform effective learning
and transfer across multiple languages without
parallel data for most of them. As seen, mod-
els have much higher overall accuracy across
20 languages after training on the parallel data
containing 2-4 languages.

2. High-resource languages are not only good
learners but also good leaders. Is there any
difference when we use high-resource lan-
guages or low-resource languages in our train-
ing data? Our results in Table 1 show that the
accuracy on high-resource language is not ob-
viously related to whether the corresponding
language data is used. More importantly, train-
ing on high-resource language data enables
the model to achieve more stable improve-
ments across multiple languages compared
to that on low-resource languages (Swahili,
Hindi, and Thai).

3. A few languages can lead to spontaneous
multilingual learning. We select one, two, or
three languages with English for instruction-
tuning respectively. In Table 1, although us-
ing more languages sometimes leads to more
stable improvements, model trained only on
Chinese and English have achieved similar
overall performance improvements. This is
also consistent with the findings of Kew et al.
(2023). The multilingual alignment improve-
ment shows great language generalization.

4. Our findings remain consistent across mod-
els of different parameter sizes. We
also present the average accuracy results of
Qwen1.5-1.8B, Qwen1.5-4B, and Qwen1.5-
14B in Table 2 to strengthen our conclusions.
We find significant multilingual performance
improvements across all of these models.

We have also validated our findings on the other
two tasks to strengthen our conclusions, including
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Model Qwen1.5-1.8B Qwen1.5-4B Mistral-7B Qwen1.5-14B

base 68.35 79.52 87.07 86.27
zh/es ⇒ en 76.13 81.99 90.83 91.53
zh/de ⇒ en 74.23 82.64 90.81 92.25
zh/it ⇒ en 75.70 83.32 89.10 92.13
sw/hi ⇒ en 75.37 85.32 90.21 90.28

Table 2: Average accuracy of models of different parameter sizes on the Amazon Reviews Polarity. We highlight
the best results for every model.

Qwen1.5-14B Sentiment Analysis NLI Paraphrase Identification

base 86.27 66.94 76.36
zh/es ⇒ en 91.53 73.03 82.59
zh/de ⇒ en 92.25 73.28 82.21
zh/it ⇒ en 92.13 71.94 82.15
sw/hi ⇒ en 90.28 71.48 81.80

Table 3: Average accuracy results of Qwen1.5-14B base model and trained models on the Amazon Reviews Polarity,
SNLI and PAWS across 20 different languages. The accuracy of randomly choosing is 33.33% for SNLI and 50.00%
for the other two tasks. We highlight the best results for every task. Full results are reported in Appendix E.

Model Qwen1.5-1.8B Mistral-7B

base 68.35 87.07
ja/it ⇒ zh 73.32 90.34
sw/hi ⇒ zh 77.00 90.58
en/ja ⇒ zh 71.92 90.04

Table 4: Average accuracy on Amazon Reviews Polarity.
We replace English with Chinese as the target language.
We highlight the best results for each model.

Natural Language Inference (NLI) and Paraphrase
Identification. The model needs to determine the
relationship between two paragraphs of text in both
of these two tasks. We conduct our experiment
on SNLI for NLI task and PAWS for Paraphrase
Identification task. We report the average accuracy
of Qwen1.5-14B across all languages in Table 3.
And we report the full results on each language in
the Appendix E.

5.2 Analysis

Building upon the above results, we conduct more
comprehensive observations and analyses of the
model’s behavior.

English is not necessary as the target language in
the training data. As elaborated in Section 4, we
use outputs in English uniformly for all languages
in our previous experiments. English has been
widely used for multilingual transfer as a pivot
language (Zhu et al., 2024; Hu et al., 2023). We
further investigate the case of replacing English
with Chinese in training data and report the results
in Table 4. Mistral and Qwen1.5 represent two

Model Amazon Polarity SNLI

base 86.27 66.94
zh/es ⇒ en 90.38 68.72
zh/de ⇒ en 90.75 67.50
zh/it ⇒ en 90.46 67.76
sw/hi ⇒ en 90.53 65.76

Table 5: The model tested on Amazon Reviews Polarity
is trained on SNLI questions. The model tested on SNLI
is trained on Amazon Reviews Polarity questions.

different types of LLMs (English-centric or not)
respectively. From the results, we can find that
using Chinese as the target language leads to the
same conclusions as using English. For both of
the two types of LLMs, using Chinese rather than
English as the target language is also helpful for
models’ multilingual performance improvement,
which indicates that English is not necessary as the
target language in the training data.

It is not necessary but more beneficial to use the
train subset corresponding to the test data as
the source of translation data. Following Zhu
et al. (2024), in our previous experiments, we con-
struct the parallel translation data for instruction-
tuning based on the train subset corresponding to
the test dataset, which have the similar data char-
acteristics and distributions. We further cross-test
the Qwen1.5-14B trained on SNLI on Amazon Re-
views Polarity and the Qwen1.5-14B trained on
Amazon Reviews Polarity on SNLI. We report the
results in Table 5. We can find that although the
models trained on data with different distributions
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Figure 1: Logit lens on Mistral-7B in Chinese, Japanese and Russian scenarios (languages not in training
data). The horizontal axes is the layer num and the vertical axes is the probability. "en" (Green covered by Red)
means the latent English output corresponding to the correct answer in the target language. "zh/ja/ru" (Orange)
means the correct answer in the target language. "all_possible_out" (Blue) means the probability of all possible
outputs in the target language. "all_possible_latent" (Red) means all possible outputs in English.

Model Same Language Task-agnostic

base 76.86 50.40
zh/es ⇒ en 83.48 77.61
zh/de ⇒ en 83.69 72.28
zh/it ⇒ en 82.33 72.32
sw/hi ⇒ en 84.59 74.92

Table 6: The results of Mistral-7B on sentiment analysis
task for different output types. Same Language means
the outputs in the same language with the inputs. Task-
agnostic means using the task-agnostic outputs.

also have better overall performance in most cases,
they have a worse performance than that trained
on the data corresponding to the target task. That
means the multilingual data is crucial for enhancing
the model’s multilingual capabilities, and similar
types of data is more helpful. This is consistent
with the "Superficial Alignment Hypothesis" (Zhou
et al., 2024), which indicates that model learns
knowledge and capabilities almost entirely in pre-
training process, while alignment only guides the
model to utilize the different "subdistribution of
formats". So the data in the same subdistribution
of formats is more beneficial.

How about using outputs in different types?
Except the outputs in English, we also conduct
our experiments by using outputs in different types,
including outputs in the same language with the
inputs and task-agnostic outputs. When using out-
puts in the same language with the inputs, as shown
in Table 6, the model also perform better after

instruction-tuning, while performing worse com-
pared to using English outputs (shown in Table 2)
under the same settings. This confirms our con-
clusion in Section 4 that generating content in the
target language is sometimes another great chal-
lenge for LLMs except understanding and solving
multilingual problems themselves.

We further replace "positive" with "ox" and re-
place "negative" with "horse" to investigate the
cases of using task-agnostic outputs. We report
the results in Table 6. Firstly, we can observe a
significant decrease in multilingual performance
of the base model when using task-agnostic out-
puts, which indicates that task-specific outputs are
important for effective in-context learning (ICL).
Clearly, we find a significant improvement in mul-
tilingual performance of the instruction-tuned mod-
els. By comparing the results before and after train-
ing, we can find that our training greatly improves
the model’s ICL capability on the specific task, and
this capability improvement exhibits excellent mul-
tilingual generalization. Based on the Superficial
Alignment Hypothesis, we infer that the questions
in only a few languages are able to effectively acti-
vate the corresponding subdistribution of formats
across a wide range of languages.

6 Mechanistic Interpretability Analysis

In this section, we further utilize methods men-
tioned in §2.3 to analyze the model’s changes be-
fore and after the training.
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Figure 2: PCA (Principal Component Analysis) on Mistral-7B in English, German, French and Hindi
scenarios. Before means the base model. After means the trained model. All logits are mapped into the two-
dimensional representation. Each point in the plot corresponds to one instance.

6.1 Logit Lens

Following Wendler et al. (2024), we utilize logit
lens to analyze the changes of the model. Logit lens
technique uses the model head in the final layer to
project the intermediate latent logits directly to the
vocabulary space. We utilize logit lens on Qwen1.5,
a series of LLMs that are not English-centric, and
find there is not English latent outputs in the inter-
mediate layers. And the prefix token overlapping
between target language and English will also bring
errors to the results. For example, the English word
"positive" is written as "positivo" in Spanish, while
they share the same prefix "positiv", which makes
it difficult to distinguish the language of the token
and accurately calculate probabilities for each lan-
guage separately through logit lens. So we choose
Chinese, Japanese and Russian as three represen-
tative languages for our experiment, which shows
significant improvement in our results before. Fol-
lowing Wendler et al. (2024), we use the outputs in
the same language with the inputs (Table 6). We
conduct our experiments on Mistral-7B and its best
trained version "sw/hi ⇒ en" in Table 6. We report
the results in Figure 1.

Clearly, we can observe the following points: (1)
All models generate latent English output before
generating outputs in the target language finally;
(2) The proportion of the probability of the correct
answer increases in the sum of all possible answer
probabilities; (3) The probability of all other pos-
sible answers (except correct answer) in the latent
English outputs is nearly zero; (4) The area of latent

English output obviously increases, which means
the trained models perform latent inference in En-
glish better and indicates better alignment.

6.2 Principal Component Analysis

We further utilize the dimensionality reduction
technique to visualize the intermediate layer latent
outputs of the model across different languages.
PCA (Principal Component Analysis) (Pearson,
1901) can be used in some scenarios where logit
lens doesn’t work. Principal components are a
few linear combinations of the original variables
that maximally explain the variance of all the vari-
ables (Greenacre et al., 2022). We utilize PCA to
map the latent logits into the two-dimensional rep-
resentation. Based on the patterns shown in Figure
1, we report layer 20, 25, 30 and the last layer as
four representative layers in Figure 2.

We have the following findings: (1) The points
of different languages follow the similar patterns in
layer 20 and layer 25, where English latent outputs
have appeared and outputs in the target language
haven’t appeared. We further calculate the Pear-
son correlation coefficient of 1 dimension PCA re-
sults (Appendix C). There is a strong linear correla-
tion between representations of different languages,
which also indicates an uniform latent representa-
tion pattern during latent inference process; (2)
Representations belonging to different languages
exhibit greater distance from each other after train-
ing; (3) The results of the last layer is similar be-
cause of the same possible outputs; (4) Based on
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the Pearson coefficient results reported in the Ap-
pendix C (Table 8 and 9), the correlation between
the low-resource languages (hi, th, sw, and ms) and
other high-resource languages greatly improves,
which suggests better alignment with English.

7 Conclusion

In this paper, we find that LLMs only trained on
question translation data without annotated answers
are able to get a significant multilingual alignment
improvement between English and a wide range of
languages, even those unseen during instruction-
tuning. We conduct the experiments on different
models, different benchmarks and 20 different lan-
guages to strengthen our conclusions. Our results
indicate that utilizing question alignment greatly
enhances the multilingual alignment and the in-
context learning capabilities of LLMs. And these
improvements demonstrate the excellent model and
language generalization. Furthermore, we also con-
duct comprehensive analysis based on some mecha-
nistic interpretability methods, including logit lens
and dimensionality reduction technique. Our work
demonstrates the enormous potential of LLMs for
efficient multilingual capability improvement. We
hope our work can inspire the community to fur-
ther explore this promising direction for the better
multilingual alignment.

8 Limitations

We aim to draw more attention to the multilingual
alignment which is a promising research direction.
Despite our work has demonstrated LLMs’ strong
capabilities of multilingual generalization and the
great potential of efficient multilingual alignment,
there are still some limitations waiting for research.
Because we investigate the models trained on the
parallel question translation data in our work to
eliminate the interference of the task-related data
with annotated answers from our analysis of multi-
lingual alignment, we utilize few-shot learning to
help models handle the target tasks better. Analyz-
ing LLMs’ multilingual alignment in a zero-shot
setting properly would further strengthen the con-
clusions if possible.

Due to the limited resources, we conduct experi-
ments on different LLM scale from 1.8B to 14B in
this work. We are willing to verify our conclusions
on larger LLMs (70B or larger) if more resources
are available in the future. Meanwhile, we mainly
utilize automatic translation engine in our work be-

cause of the limited resources, while data annotated
by native speakers would be more accurate.
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A LLaMA 2 Language Distribution

Language Percent

en 89.70%
unknown 8.38%
de 0.17%
fr 0.16%
sv 0.15%
zh 0.13%
es 0.13%
ru 0.13%
nl 0.12%
it 0.11%
ja 0.10%

Table 7: Top-10 (except unknown) lanaguage distri-
bution in LLaMA-2’s pretraining data (Touvron et al.,
2023). The majority of these data is English data. And
the unknown category is partially made up of program-
ming code data.

B Additional Experimental
Implementations

We construct 10k parallel data for every language
pair used for training. For example, for "zh/de-en"
setting of Mistral-7B, we construct a dataset includ-
ing 10k Chinese-to-English translation instances
and a dataset including 10k German-to-English
translation instances firstly. Then we instruction-
tune the Mistral-7B model only on 20k randomly
mixed translation data.

We use test data and few-shot examples trans-
lated from English by Google Translate for all lan-
guages to minimize the impact of test dataset and
few-shot examples themselves and ensure testing
fairness across different languages. We choose the
few-shot examples which are not in our training
data and test data.

Additionally, we find that not only non-English
inputs but also non-English outputs have significant
impacts on the model’s performance. For exam-
ple, for Mistral-7B and sentiment analysis task,
the accuracy on Hindi is 0.5 if we use outputs in
Hindi, while the accuracy is 0.816 if the output
is "positive" or "negative". This implies that gen-
erating content in the target language is another
great challenge for LLMs, which is distinct from
understanding and solving problems in the corre-
sponding language. Considering we mainly focus
on the language understanding and task solving

capabilities, we use English outputs uniformly if it
is not specified.

C Pearson Correlation Coefficient Based
on PCA

Layer 20 Base Trained

en-de 0.9727 0.9752
en-fr 0.9804 0.9822
en-hi 0.9268 0.9526
de-fr 0.9825 0.9834
de-hi 0.9564 0.9707
fr-hi 0.9518 0.9674
en-th 0.8727 0.8941
en-sw 0.9501 0.9594
en-ms 0.9552 0.9620

Table 8: Pearson correlation coefficient of 1 dimension
PCA results in Mistral-7B layer 20.

Layer 25 Base Trained

en-de 0.9286 0.9275
en-fr 0.9520 0.9447
en-hi 0.5060 0.7942
de-fr 0.9628 0.9754
de-hi 0.6233 0.9102
fr-hi 0.6272 0.9001
en-th 0.6791 0.7484
en-sw 0.2316 0.8514
en-ms 0.7835 0.8448

Table 9: Pearson correlation coefficient of 1 dimension
PCA results in Mistral-7B layer 25.

D Logit Lens and PCA Results for
Qwen1.5

We report the logit lens and the PCA results of
Qwen1.5-1.8B (total 24 layers) here. In Figure 3,
we can find that as we mentioned above, while uti-
lizing logit lens on Qwen1.5, a non-English-centric
model, there is no intermediate latent output before
generating the output in the target language finally.
This indicates that logit lens might not be an ef-
fective tool for analyzing the non-English-centric
LLMs.

We further report the PCA results in Figure 4,
which also indicates a clear similar latent represen-
tation pattern for different languages in the non-
English-centric LLMs’ intermediate layers. This
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further reinforces the significance of multilingual
alignment, which also provides the basis for the
success of question alignment paradigm on Qwen.
The Pearson coefficient results reported in Table
10 and Table 11 show the better alignment with
English, consisting with the results of Mistral-7B.

Layer 12 Base Trained

en-de 0.9816 0.9820
en-fr 0.9848 0.9850
en-hi 0.9730 0.9742
de-fr 0.9852 0.9855
de-hi 0.9760 0.9769
fr-hi 0.9732 0.9740
en-th 0.9538 0.9547
en-sw 0.9746 0.9763
en-ms 0.9815 0.9823

Table 10: Pearson correlation coefficient of 1 dimension
PCA results in Qwen1.5-1.8B layer 12.

Layer 18 Base Trained

en-de 0.7331 0.9176
en-fr 0.6243 0.9303
en-hi 0.3623 0.8589
de-fr 0.7493 0.9477
de-hi 0.5639 0.8965
fr-hi 0.4729 0.8854
en-th 0.2881 0.4566
en-sw -0.0424 0.8592
en-ms 0.4297 0.8648

Table 11: Pearson correlation coefficient of 1 dimension
PCA results in Qwen1.5-1.8B layer 18.

E Full Results of SNLI and PAWS

We report the complete results of SNLI and PAWS
on 20 different languages in Table 12 and 13 sep-
arately. Similar to the sentiment analysis task, we
can see that models instruction-tuned on multilin-
gual translation data significantly outperform the
base model, which confirms that our findings have
good generalization across different tasks.
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Figure 3: Logit lens on Qwen1.5-1.8B in English, Chinese, and Japanese scenarios (languages not in training
data). The horizontal axes is the layer num and the vertical axes is the probability. "en" (Green) means the latent
English output corresponding to the correct answer in the target language. "en/zh/ja" (Orange) means the correct
answer in the target language. "all_possible_out" (Blue) means the probability of all possible outputs in the target
language. "all_possible_latent" (Red) means all possible outputs in English.
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Figure 4: PCA (Principal Component Analysis) on Qwen1.5-1.8B in English, German, French and Hindi
scenarios. Before means the base model. After means the trained model. All logits are mapped into the two-
dimensional representation. Each point in the plot corresponds to one instance. There is also a similar latent
representation pattern for different languages in the intermediate layers while logit lens can’t reveal it.
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Qwen1.5-14B en zh de fr es it nl ja ru sv

base 84.50 83.50 74.17 75.17 81.17 78.67 78.17 51.17 76.83 76.17
zh/es ⇒ en 92.50 84.67 82.67 82.83 85.50 83.83 84.67 57.00 82.67 84.33
zh/de ⇒ en 91.83 84.50 83.67 84.50 85.00 83.67 84.50 57.17 81.67 84.33
zh/it ⇒ en 91.67 83.83 80.83 82.67 84.00 80.00 83.50 55.83 81.50 83.33
sw/hi ⇒ en 91.33 85.67 80.67 80.83 83.50 81.50 82.33 55.00 79.50 82.83

Qwen1.5-14B sl pl bg no ms is hi th sw bn

base 63.17 67.83 64.33 43.00 75.00 48.17 61.00 69.67 45.83 41.33
zh/es ⇒ en 66.00 76.83 76.33 37.50 80.67 57.67 71.33 75.00 58.33 40.33
zh/de ⇒ en 66.83 77.00 78.00 35.33 80.50 57.50 73.00 75.00 58.33 43.33
zh/it ⇒ en 65.67 77.33 76.17 36.67 79.00 56.00 70.50 73.67 55.33 41.33
sw/hi ⇒ en 63.00 76.67 72.17 39.67 80.33 54.17 67.67 74.67 56.83 41.33

Table 12: Accuracy of Qwen1.5-14B base model and trained models on the SNLI. We report all of the results on 20
languages. The accuracy of randomly choosing is 33.33%. We highlight the best results for every language.

Qwen1.5-14B en zh de fr es it nl ja ru sv

base 85.4 78.4 74.0 82.2 78.8 79.4 78.6 75.0 73.0 76.6
zh/es ⇒ en 87.8 83.2 81.2 86.0 85.8 83.8 86.0 77.0 82.6 84.4
zh/de ⇒ en 87.0 80.8 84.8 84.8 84.6 82.2 86.0 77.0 83.0 84.6
zh/it ⇒ en 87.4 80.8 80.4 85.0 83.8 85.2 85.2 77.0 82.2 85.2
sw/hi ⇒ en 87.2 78.4 79.6 81.8 84.6 83.2 84.4 76.6 81.0 85.0

Qwen1.5-14B sl pl bg no ms is hi th sw bn

base 70.2 79.8 75.2 78.6 82.0 67.0 73.2 79.4 75.4 65.0
zh/es ⇒ en 82.6 80.8 82.0 86.4 86.8 77.4 80.6 82.0 79.2 76.2
zh/de ⇒ en 80.8 80.2 82.0 85.8 85.8 77.0 81.4 81.4 80.8 74.2
zh/it ⇒ en 81.2 81.6 81.8 86.8 85.6 77.2 79.4 81.2 81.2 74.8
sw/hi ⇒ en 82.4 81.8 82.6 87.0 85.8 78.2 80.8 80.4 78.2 77.0

Table 13: Accuracy of Qwen1.5-14B base model and trained models on the PAWS. We report all of the results on
20 languages. The accuracy of randomly choosing is 50.0%. We highlight the best results for every language.
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