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Abstract

Reasoning is one crucial capability in Large
Language Models (LLMs), allowing them to
perform complex tasks such as solving math
problems and multi-step planning. While
reasoning capability can emerge in larger
models, smaller ones usually have to rely on
distillation to transfer this capability from a
larger model. However, recent efforts to distill
reasoning capabilities have focused mainly
on English, leaving multilingual distillation
underexplored. To address this gap, this
paper examines existing English reasoning
distillation methods that utilize a variety of
positive rationales in multilingual settings
and proposes d-CoT-nR, which incorporates
incorrect rationales as additional guidance.
Empirical results from multilingual high-
school examinations show that d-CoT-nR
significantly surpasses the baseline, improving
accuracy and the correctness of step-by-step
reasoning. 1

1 Introduction

One potential capability of Large Language Models
(LLMs) is reasoning, which allows them to analyze
complex situations, draw inferences, and make
predictions from the given input. This enhances
their performance in tasks requiring understanding
implicit relationships and generating coherent,
informed responses (Wei et al., 2022b; Wang et al.,
2023). For example, existing studies demonstrate
that Chain-of-Thought (CoT) is beneficial for
solving math problems (Cobbe et al., 2021) and
problems demanding multi-step reasoning (Geva
et al., 2021).

This reasoning capability remains challenging
for smaller models (Wei et al., 2022a), making
this capability out of reach to compute-constrained
scenarios. Consequently, transferring reasoning

*Work was conducted while Peerat Limkonchotiwat was
a PhD candidate at VISTEC

1https://github.com/calzonelover/d-cot-nr

capabilities from larger to smaller models has
gained attention recently.

A popular approach is to distill rationales from a
larger teacher model (Magister et al., 2023; Hsieh
et al., 2023; Ho et al., 2023), which has been
shown to improve the CoT reasoning capabilities
of smaller models in arithmetic, symbolic, and
commonsense reasoning. Kang et al. (2023) further
enhance the CoT reasoning process of smaller
models by integrating relevant knowledge from
external sources, compensating for their limited
parameter knowledge. However, despite numerous
studies on reasoning distillation, its applicability to
multilingual setups remains underexplored.

To address this gap, this paper examines the
effectiveness of existing reasoning distillation
approaches for English in multilingual settings.
We identify key factors and propose a novel set of
distillation techniques to effectively distill smaller
models for multilingual settings, as shown in
Figure 1. Our research comprises three questions:
(F1) Native CoT distillation: Is distillation using

the same language as the question (native)
more effective for smaller models than only
English? While multilingual capabilities are
now common, the choice of language for CoT
distillation needs further research.

(F2) Diverse CoT (d-CoT): Is the diversity of
rationales beneficial for CoT distillation in the
multilingual setup? Diversifying rationales
has been shown to enhance performance in
monolingual settings (Ho et al., 2023). This
paper verifies that diversification enhances
accuracy in both seen and unseen languages.

(F3) Diverse CoT with negative rationales (d-CoT-
nR): Can negative rationales further improve
multilingual CoT distillation? Extending
from our observation about the effectiveness
of diverse CoT, we propose utilizing incorrect
rationales (leading to incorrect outputs) to
refine and delimit diversification.
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Figure 1: The key design decisions for multilingual CoT
distillation are as follows: (Top) A comparison pipeline
between English and native CoT distillation; (Bottom-
greyed) d-CoT distillation incorporating diverse positive
rationales; (Bottom-colored) Our d-CoT-nR distillation
leveraging both positive and negative rationales.

To assess the multilingual reasoning distillation
in knowledge-intensive tasks, we use multilingual
high-school examinations (Hardalov et al., 2020)
in multiple-choice questions. Surprisingly,
for distillation of smaller models, native CoT
consistently yields superior or comparable results
to English CoT, contrary to the CoT prompting
results in LLMs by Shi et al. (2022), which
were done on larger models. Moreover, the
results affirm the importance of the diversity of
positive rationales in reasoning distillation. Finally,
the inclusion of negative rationales significantly
enhances model performance.
Our contributions are summarized as follows:
• To the best of our knowledge, this is the first

work to provide an empirical study on strategies
for multilingual reasoning distillation.

• We introduce d-CoT-nR, a strategy that utilizes
negative rationales as additional guidance. The
experimental results confirm that incorporating
negative rationales along with positive ones
during distillation is beneficial.

• We demonstrate that in small LMs distillation,
native CoT consistently outperforms English

CoT, contrary to the existing trend in LLMs.
However, in English-dominant pre-trained small
models, the performance difference between
native and English CoT becomes negligible.

2 Background

Rationale Generation. A dataset for multiple-
choice question answering tasks can be denoted
as D = {(xi,yi)}Ni=1, where xi represents an
input sequence comprising context, question, and
answer choices (as illustrated in Figure 3), yi is an
answer in an alphabet letter, and N is the number
of training samples. Following the work done in
English (Magister et al., 2023; Hsieh et al., 2023),
we can obtain the rationales from LLMs via CoT
prompting (pCoT) from the input as follows: ri =
LLM(pCoT,xi). Then, we can use a collection of
CoT training samples: DCoT = {(xi,yi, ri)}Ni=1,
during distillation of smaller models below.

General CoT Distillation. Similar to Magister
et al. (2023); Hsieh et al. (2023); Ho et al.
(2023), based on a triplet of (xi,yi, ri) in DCoT
from the teacher LLM, we train smaller models
(parameterized with θ) to reason through the
language modeling objective (Radford et al., 2018):

LCoT = − 1

B

B∑

i=1

log pθ(yi, ri|xi), (1)

where B is the batch size. Furthermore, we use
the same training objective for the knowledge-
augmented (KA) fine-tuning (FT) baseline without
teacher rationales.

3 Methodology

This study explores the three key factors (F1-F3,
illustrated in Figure 1) to enhance multilingual CoT
distillation, which we formalize in this section.

Native CoT distillation. According to Shi et al.
(2022), in multilingual settings, one can prompt
a teacher model to generate a CoT in English
(English CoT, pen

CoT) irrespective of the language
of the input. Yet, the English CoT may not capture
nuanced meanings inherent to the original language.
Alternatively, the teacher model can be instructed
to use the native language of the input for reasoning
(Native CoT, pnt

CoT).

Diverse CoT (d-CoT) Distillation. To obtain a
set of diverse rationales from the teacher, we use its
stochasticity in generation as follows: {rij}Dj=1 =
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LLM(pL
CoT,xi;D) where L is the choice of CoT

language and D is the teacher rational diversity (Ho
et al., 2023). It is worth noting that, since some
of the generated rationales explicitly lead to the
incorrect answer, similar to Zelikman et al. (2022),
we use a heuristic approach to filter out those
negative rationales (r−ij) and only keep positive
rationales (r+ij). Then, d-CoT training samples can
be written as Dd-CoT = {(xi,yi, r

+
i )}Mi=1 where M

is the number of positive rationales for all samples.
We denote the final training objective as:

Ld-CoT = − 1

B ·D
D∑

j=1

B∑

i=1

log pθ(yi, r
+
ij |xi) (2)

Diverse CoT with negative rationales (d-CoT-
nR) Distillation. Previous reasoning distillation
studies (Ho et al., 2023; Kang et al., 2023)
have exclusively employed the diversity of only
positive rationales to guide the reasoning paths
toward the correct answer. We hypothesize
that incorporating negative rationales could assist
in further refining the decoding search space.
Specifically, there are multiple ways to train the
model with negative rationales, as follows: (i)
Unlikelihood objective (Welleck et al., 2020) (ii)
Contrastive learning via CLICK (Zheng et al.,
2023) (iii) Preference optimization using ORPO
(Hong et al., 2024). Detailed descriptions are
provided in Appendices A and B. We represent
their objective function as LCoT-nR, and train the
smaller model with d-CoT as follows:

Ld-CoT-nR = αLd-CoT + (1− α)LCoT-nR, (3)

where α is the hyperparameter that decides the
trade-off between d-CoT and CoT-nR.

4 Experimental Setup

Datasets. To validate the capability of smaller
(distilled) models in knowledge-intensive
reasoning tasks, we use the EXAMS dataset
(Hardalov et al., 2020). This dataset consists
of multilingual high-school multiple-choice
examination questions and their relevant passages
across various subjects, e.g., chemistry, biology,
and history. Based on the background knowledge
corpus, languages are categorized2 into top-portion
languages (TPL) and bottom-portion languages

2
Based on Table 8 in Hardalov et al. (2020) where there are languages that has more

than one million articles in the corpus and the rest are below.

(BPL). We use accuracy as the main metric while
using McNeMar’s test for the significant test.
Language Models. We use GPT3.5-turbo-1106
as the teacher model. For the student model,
we experiment with mT5-base (580M) (Xue
et al., 2021), XGLM (564M) (Lin et al., 2022),
and Gemma-Instruct (2B) (Team et al., 2024)3.
mT5 and XGLM are pre-trained on a multi-
lingual corpus that compensated for language
skewness, while the pretraining data for Gemma
was predominately in English. Note that we report
the average across three seeds for mT5 and XGLM
in d-CoT and d-CoT-nR methods, while we report
only one seed for Gemma. Additionally, the
training details are described in Appendix C.

5 Experimental Results

5.1 English vs Native CoT Distillation

Our findings reveal that native CoT distillation
is the most effective strategy for small language
models. As shown in Table 1, native CoT
distillation consistently outperforms the English
counterpart across TPL, BPL, and overall accuracy
for mT5 and XGLM. Similarly, for a stronger
model such as Gemma, despite achieving high
scores without CoT, native CoT distillation
remains effective, demonstrating that native CoT
distillation is effective in all settings examined.
In addition, we observe that for a strong baseline
(Gemma), English CoT distillation yields a similar
improvement as native CoT distillation.

It is known that CoT prompting in English is
more effective than in native languages in large
models (Shi et al., 2022). However, we do not
observe the same trend for CoT distillation for
smaller models. This suggests that empirical results
on CoT prompting may not lead to the same results
for CoT distillation.

5.2 Diverse CoT (d-CoT) Distillation

Table 1 shows that diversification significantly
improves distillation performance, which is
consistent across TPL and BPL, as well as the three
architectures. On average, native d-CoT is the best
performer and statistically better than English d-
CoT. However, in the case of the Gemma model,
no statistically significant difference was found,
with English d-CoT slightly outperforming native
d-CoT. These results indicate that smaller models

3
https://huggingface.co/google/gemma-2b-it
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TPL BPL Average
Method it pl vi pt sr hu tr bg hr mk sq TPL BPL All
Random 26.0 25.0 25.0 25.0 26.2 27.7 23.1 25.0 26.7 25.0 25.0 25.3 25.5 25.4
mT5 (580M)
FT with KA 34.9 25.8 25.3 32.2 32.1 29.6 30.2 34.9 34.6 28.4 33.8 29.5 31.9 31.1
KA + English CoT 61.3 58.6 49.2 59.4 59.1 60.1 61.9 71.9 64.2 70.6 61.3 57.1 64.2 61.6
KA + Native CoT 66.5∗ 65.2∗ 52.5∗ 63.5 62.1∗ 63.8∗ 64.7∗ 74.7∗ 68.3∗ 75.0∗ 64.5∗ 61.9∗ 67.6∗ 65.5∗

KA + English d-CoT 72.0‡ 70.7‡ 56.4‡ 73.1‡ 65.0‡ 73.4‡ 72.3‡ 79.4‡ 72.6‡ 81.4‡ 71.6‡ 68.0‡ 73.7‡ 71.6‡

KA + Native d-CoT 71.6‡ 70.6‡ 57.6∗‡ 74.1‡ 66.9∗‡ 73.9‡ 72.9‡ 79.9∗‡ 73.5∗‡ 80.7∗‡ 72.5∗‡ 68.4∗‡ 74.3∗‡ 72.2∗‡

XGLM (564M)
FT with KA 31.1 27.7 26.7 21.6 30.1 27.8 26.3 29.8 29.6 28.8 25.2 26.8 28.2 27.7
KA + English CoT 46.9 45.8 36.0 38.7 46.0 42.7 46.2 54.6 49.8 51.3 45.2 41.8 48.0 45.7
KA + Native CoT 52.7∗ 52.7∗ 42.8∗ 45.6∗ 49.3 50.7∗ 45.6 60.9∗ 56.0∗ 57.4∗ 49.7∗ 48.4∗ 52.8∗ 51.2∗

KA + English d-CoT 57.7‡ 59.4‡ 48.6‡ 54.9‡ 54.3‡ 52.8‡ 56.8‡ 68.7‡ 60.1‡ 66.4‡ 59.0‡ 55.1‡ 59.7‡ 58.1‡

KA + Native d-CoT 59.2∗‡ 60.5∗‡ 49.9∗‡ 58.6∗‡ 57.1∗‡ 58.3∗‡ 58.6∗‡ 70.5∗‡ 62.7∗‡ 69.0∗‡ 62.6∗‡ 57.1∗‡ 62.7∗‡ 60.7∗‡

Gemma-Instruct (2B)
FT with KA 50.6 69.7 51.3 65.4 63.6 69.0 66.8 75.8 57.7 75.4 53.8 59.3 66.0 63.6
KA + English CoT 66.7 67.0 51.9 63.1 62.6 64.2 63.1 74.3 68.9 77.2 66.9 62.2 68.2 66.0
KA + Native CoT 67.0 66.5 51.3 65.0 63.9 66.7 65.3 74.7 70.3 77.9 68.6 62.5 69.6∗ 67.0∗

KA + English d-CoT 69.2 72.0‡ 57.1‡ 70.2‡ 68.6‡ 69.5‡ 69.9‡ 77.4‡ 71.5‡ 78.8 72.8‡ 67.1‡ 72.7‡ 70.6‡
KA + Native d-CoT 69.3 71.3‡ 55.7‡ 70.8‡ 67.7‡ 69.4‡ 70.0‡ 78.1‡ 72.0 77.8 70.5 66.8‡ 72.2‡ 70.2‡

Teacher
Zero-shot English CoT 70.3 66.8 54.2 64.6 68.5 59.9 69.5 73.0 72.6 68.2 13.9 64.0 60.8 62.0
Zero-shot Native CoT 69.3 61.0 50.7 67.4 64.9 57.8 51.0 68.9 71.1 64.5 19.1 62.1 56.8 58.7

Table 1: Accuracy of English and native CoT Distillations. We use "∗" to indicate that native CoT is statistically
significantly better than English CoT and vice versa and "‡" to indicate a statistically significant improvement when
comparing d-CoT and CoT in the specified language(s).

benefit from further guidance in terms of rationale
diversity and distillation in the target language.

5.3 Diverse CoT with Negative Rationales
(d-CoT-nR) Distillation

In this study, we explore the potential of integrating
d-CoT-nR with various training objectives to
identify the most effective approach. Note that,
given the computational costs involved, we first
conduct experiments using smaller variants of
encoder-decoder (mT5) and decoder-only (XGLM)
architectures to identify the optimal training
configuration. Our goal is to determine the most
effective d-CoT-nR approach that enhances the
performance of both architectures relative to d-CoT.
Once the most effective d-CoT-nR configuration
is established, we then apply this configuration to
Gemma, the more capable base model in this study.

As shown in Table 2, the findings indicate that
the unlikelihood approach significantly enhances
the overall accuracy, improving performance not
only across different languages but also across
various architectures. Additionally, our results
show that CLICK, a contrastive learning approach,
is not beneficial in our setup. Furthermore, we
found that although the ORPO methodology shows
a notable performance enhancement in the XGLM
model by increasing accuracy from 60.7% to 66.3%
and surpassing the teacher model, it does not
achieve comparable improvements in the mT5

model. Furthermore, empirical results reveal that
utilizing the unlikelihood approach in the Gemma
model for English reasoning leads to an average
accuracy improvement of 0.7 percentage points.
Therefore, we recommend the simplest approach,
namely the unlikelihood method.

6 Additional Analysis

6.1 Unseen Languages
We extend our investigation to determine if small
models trained on reasoning distillation exhibit
cross-lingual capabilities for performing CoT
reasoning in unseen languages. Table 3 indicates
that, in most cases, CoT distillation enhances
accuracy in unseen languages. Our results conform
with previous studies (Hu et al., 2020) that when
multilingual models are aligned in the pre-training
step, learning in one language can be transferred
across languages in the same model.

The significant performance improvement
observed in d-CoT distillation implies that
incorporating diversity can enhance generalization.
Additionally, in the context of native reasoning for
models such as mT5 and XGLM, our proposed d-
CoT-nR method, using the unlikelihood objective,
outperforms other approaches and demonstrates
robustness in handling unseen languages. However,
for the Gemma model, no improvement was
observed when applying English d-CoT-nR to
unseen languages; thus, future investigation could
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TPL BPL Average
Method it pl vi pt sr hu tr bg hr mk sq TPL BPL All
Random 26.0 25.0 25.0 25.0 26.2 27.7 23.1 25.0 26.7 25.0 25.0 25.3 25.5 25.4
mT5 (580M)
KA + Native d-CoT 71.6 70.6 57.6 74.1 66.9 73.9 72.9 79.9 73.5 80.7 72.5 68.4 74.3 72.2
KA + Native d-CoT-nR (Unlikelihood) 72.5⋄ 71.3⋄ 58.3 73.9 67.4 74.8⋄ 73.3 80.6⋄ 73.1 81.2⋄ 72.6⋄ 69.0⋄ 74.7⋄ 72.6⋄
KA + Native d-CoT-nR (Click) 71.9 70.2 57.7 73.9 66.0 73.7 72.5 79.8 72.5 80.8 72.4 68.4 74.0 71.9
KA + Native d-CoT-nR (ORPO) 71.8 70.6 57.5 73.1 66.0 74.1 72.9 79.3 73.3 80.5 72.3 68.2 74.1 71.9
XGLM (564M)
KA + Native d-CoT 59.2 60.5 49.9 58.6 57.1 58.3 58.6 70.5 62.7 69.0 62.6 57.1 62.7 60.7
KA + Native d-CoT-nR (Unlikelihood) 65.3⋄ 66.6⋄ 53.1⋄ 63.9⋄ 62.2⋄ 65.5⋄ 63.5⋄ 76.7⋄ 68.2⋄ 75.4⋄ 68.7⋄ 62.2⋄ 68.6⋄ 66.3⋄
KA + Native d-CoT-nR (Click) 44.5 45.7 37.6 44.6 44.4 43.6 42.8 53.1 48.2 50.7 44.7 43.1 46.8 45.5
KA + Native d-CoT-nR (ORPO) 66.2⋄ 65.7⋄ 53.2⋄ 65.3⋄ 62.6⋄ 65.6⋄ 63.2⋄ 76.2⋄ 68.1⋄ 75.0⋄ 68.4⋄ 62.6⋄ 68.4⋄ 66.3⋄

Gemma-Instruct (2B)
KA + English d-CoT 69.2 72.0 57.1 70.2 68.6 69.5 69.9 77.4 71.5 78.8 72.8 67.1 72.7 70.6
KA + English d-CoT-nR (Unlikelihood) 69.8 73.4 57.2 71.7 67.2 70.5 72.2⋄ 77.4 71.6 78.7 74.8 68.0 73.2 71.3
Teacher
Zero-shot English CoT 70.3 66.8 54.2 64.6 68.5 59.9 69.5 73.0 72.6 68.2 13.9 64.0 60.8 62.0
Zero-shot Native CoT 69.3 61.0 50.7 67.4 64.9 57.8 51.0 68.9 71.1 64.5 19.1 62.1 56.8 58.7

Table 2: Performance comparison between d-CoT and d-CoT-nR. "⋄" denotes the statistically significant
improvement when comparing d-CoT-nR and d-CoT in the specified language(s).

explore this setup across additional models.

Languages
Method de fr es ar lt All
mT5-base
FT with KA 30.5 34.9 35.3 34.2 43.0 35.6
+ English CoT 58.2 62.3 52.8 72.2 82.1 65.5
+ Native CoT 58.1 67.3∗ 59.6∗ 76.3∗ 85.0∗ 69.3∗

+ English d-CoT 72.2‡ 75.3‡ 68.1‡ 81.2‡ 89.5‡ 77.3‡

+ Native d-CoT 72.4‡ 77.4‡∗ 70.1‡∗ 80.5‡ 89.2‡ 77.9‡

+ Native d-CoT-nR 74.6⋄ 78.3 72.9⋄ 82.0⋄ 88.7 79.3⋄

XGLM
FT with KA 32.9 35.5 31.5 25.8 27.7 30.7
+ English CoT 46.4 49.4 41.3 51.2 59.4 49.5
+ Native CoT 44.5 48.7 47.7 50.5 64.4∗ 51.2
+ English d-CoT 54.7‡ 58.4‡ 45.0 68.3‡ 73.1‡ 59.9‡

+ Native d-CoT 40.3 60.7‡∗ 47.1∗ 68.4‡ 75.2‡∗ 58.3‡

+ Native d-CoT-nR 46.0 61.9⋄ 44.3 76.2⋄ 83.5⋄ 62.4⋄

Gemma-Instruct (2B)
FT with KA 65.2 48.7 53.6 80.4 72.3 64.1
+ English CoT 65.3 67.0 58.7 73.7 84.7 69.9
+ Native CoT 64.6 65.1 61.3 74.2 84.5 69.9
+ English d-CoT 72.6 74.8∗ 67.7‡ 81.1‡ 89.2‡ 77.1‡
+ Native d-CoT 67.4 72.0‡ 63.0 78.1‡ 84.8 73.1‡

+ English d-CoT-nR 69.5 69.2 67.2 79.4 88.5 74.8
Teacher
Zero-shot English CoT 59.1 63.2 66.0 60.7 62.9 62.4
Zero-shot Native CoT 58.4 61.0 62.1 48.2 59.7 57.9

Table 3: Accuracy in unseen languages. Symbols have
the same meanings as previously defined.

6.2 Reasoning Quality

While our empirical results demonstrate that CoT
distillation improves accuracy in both seen and
unseen languages, it remains unclear whether
this performance gain is attributed to enhanced
reasoning. To investigate this further, we
analyzed step-by-step correctness following the
methodology of Zeng et al. (2024) with the expert
model (GPT-4o-2024-05-13); further details are
provided in Appendix D.

According to Table 4, the analysis reveals that
the d-CoT method increases overall reasoning

accuracy from 38.2% to 49.4%. The introduction
of d-CoT-nR further improves accuracy to 50.1%.
However, for unseen languages, the accuracy of
d-CoT-nR is slightly lower than that of d-CoT by
0.8 percentage points.

It is noteworthy that the teacher model achieves
an accuracy of 62.6%, indicating that d-CoT-nR
not only improves accuracy but also enhances
the quality of reasoning, demonstrating potential
benefits for knowledge-intensive tasks.

Rationale Correctness (%)
Method TPL BPL All Unseen
KA + Native CoT 32.5 40.6 38.2 34.5
KA + Native d-CoT 42.0 52.4 49.4 40.0
KA + Native d-CoT-nR 45.1 52.1 50.1 39.2
Teacher 58.1 64.5 62.6 65.2

Table 4: Average correctness of the rationales producing
by mT5 and the teacher model (GPT-3.5-turbo-1106).

7 Conclusion
This paper examines the effectiveness of
reasoning distillation techniques in multilingual
settings, focusing on small language models.
Our empirical results show that native CoT
distillation consistently outperforms the English
counterpart across multiple metrics and languages,
significantly improving models like mT5 and
XGLM. Furthermore, diversifying rationales (d-
CoT) improves performance across all languages
and model architectures. Finally, we showcase that
the proposed d-CoT-nR approach, incorporating
both positive and negative rationales, is the best
performer, significantly improving accuracy and
robustness for unseen languages in most cases.
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Limitations

The main evaluation method utilized in this work is
multiple-choice exam questions. This assessment
format provides a structured and controlled way to
assess the capabilities of a large language model
(LLM). However, this is a substantial departure
from real-world knowledge-intensive tasks, such as
document analysis, strategy development, content
recommendation, and creative writing. While the
proposed method narrows the performance gap in
multiple-choice question answering, it may not
correspond to enhanced user experiences in real-
world tasks. Further research is needed to derive
an assessment method that mimics the real-world
conditions in tasks stated above without sacrificing
the structured and controlled benefits we receive
from multiple-choice exams.
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A Sample Generation for d-CoT-nR

To generate training samples for d-CoT-nR
distillation, we extend each sample of d-CoT
by randomly adding negative rationales from the
same given input. For a training sample that
has no negative rationales, we augment them
by stochastically switching the final answer into
an incorrect choice. Hence, we can represent
the training data for d-CoT-nR as, Dd-CoT-nR =
{(xi,yi, r

+
i , r

−
i )}Mi=1.

B Candidate Methods to utilize the
negative rationales

Unlikelihood. Directly apply unlikelihood on
the negative rationales. It is a simple yet
most straightforward way to degenerate undesired
sequence of tokens. Welleck et al. (2020) defined
the unlikelihood loss as:

LUnlikelihood = − 1

B

B∑

i=1

log
(
1− pθ(yi, r

−
i |xi)

)
(4)

CLICK. To encourage the likelihood rank of a
positive rationale to surpass a negative rationale
given the same input, a contrastive learning method
known as CLICK (Zheng et al., 2023) can be
used to marginalize over sequence likelihood. The
objective LCLICK is defined as follows:

− 1
B

∑B
i=1 max{0, γ + log pθ(yi, r

−
i |xi)− log pθ(yi, r

+
i |xi)}

(5)
where γ is the margin hyperparameter.
ORPO. Given the favorable positive rationale
and unwanted negative rationale, alternatively, the
problem can be seen as preference optimization
(PO). We apply ORPO (Hong et al., 2024) that
adopt the concept of odds ratio disregarding the
reward model. Formally, the ORPO loss in our
setup can be written as

LORPO = − 1
B

∑B
i=1 log σ

(
log

oddsθ(yi,r
+
i |xi)

oddsθ(yi,r
−
i |xi)

)
. (6)

C Training Details

C.1 Fine-tuning and Inference
Similar to (Kang et al., 2023), we fine-tune all
models using a learning rate of 5e-5, a batch size
of 32, and a warm-up ratio of 0.1 for 3 epochs,
utilizing the AdamW optimizer (Loshchilov and
Hutter, 2019). However, for the XGLM in
English and native CoT distillation, we extend
the training duration to 20 epochs due to their

slower convergence relative to other configurations.
Furthermore, we implement a classifier dropout
rate of 0.1 across all strategies within the mT5
model.

For the inference phase, following Kang et al.
(2023), we adopt the self-consistency inference
method as described by Wang et al. (2023), setting
the number of candidates to 10 for all experiments.
The final answer was determined by the majority
vote among these candidates.

C.2 Hyperparameters Tuning in d-CoT-nR
Distillation

We perform a grid search to find the optimal
parameters on development set of the dataset using
hyper-parameters listed in the Table 5. The best
performing hyperparameters on the development
set is reported in Table 6. In addition, we further
experiment the optimal hyperparameters with 3
different seeds for the study.

Methods α γ

Unlikelihood 0.9, 0.95, 0.99 -
CLICK 0.9, 0.8, 0.7 15, 20
ORPO 0.9, 0.8, 0.7 -

Table 5: Hyperparameter configurations.

Methods Unlikelihood CLICK ORPO
mT5 α = 0.9 α = 0.8, γ = 20 α = 0.8
XGLM α = 0.99 α = 0.9, γ = 15 α = 0.9

Table 6: Optimal hyperparameters.

C.3 Computing Resources

We trained the mT5 and XGLM models on an
NVIDIA Tesla V100 GPU (32GB VRAM) over a
period of 3 days, depending on the specific methods
employed, with the inference phase for the test set
requiring approximately 1-2 days. The Gemma
model was fine-tuned on a single NVIDIA A100
GPU (80GB VRAM) for 3-4 days, with the test
set inference phase extending to about 5 days. In
total, it takes around 3,000 GPU hours on V100 and
840 GPU hours on A100. The associated training
costs and performance improvements are detailed
in Table 7.

D Reasoning Quality Assessment

To evaluate the accuracy of the reasoning steps,
we selected identical sub-samples from the test
set across various methods from a student model
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Method Estimated Training Time (Hours) Accuracy (%)
mT5
KA 2.77 25.4
CoT 6.55 65.5 (+40.1)
d-CoT 17.72 72.2 (+6.6)
d-CoT-nR (Wellick) 35.47 72.6 (+0.4)
d-CoT-nR (Click) 35.52 71.9 (-0.3)
d-CoT-nR (ORPO) 35.55 71.9 (-0.3)
XGLM
KA 5.28 27.7
CoT 34.96 51.2 (+23.5)
d-CoT 34.13 60.7 (+9.5)
d-CoT-nR (Wellick) 70.18 66.3 (+5.6)
d-CoT-nR (Click) 70.47 45.5 (-15.2)
d-CoT-nR (ORPO) 70.73 66.3 (+5.6)

Table 7: Estimated training time for each approach of
mT5 and XGLM.

(mT5). To minimize the study costs, we
sampled 400 identical test sample IDs, achieving
approximately a 95% confidence level with a 5%
margin of error from a total of 13,510 test samples.
Additionally, we ensured that the distribution of
language-subjects in the sub-samples reflected the
entire test set.

Regarding a test sample, a small model will
generate a certain number of candidate rationales.
We adopt the expert (GPT-4o-2024-05-13)
prompting template from Zeng et al. (2024) to
assess the step-by-step correctness of the student
rationales and average the percentage of correct
rationale across the identical samples.

E Demonstration

The demonstration of solving identical problem
(Chemistry in Turkish language as shown
in Figure 3) using step-by-step reasoning
via various strategies on mT5 model, along
with expert assessments, is illustrated in
Figure 5, 6, 7 and, 8 for CoT, d-CoT, d-CoT-nR
and teacher, respectively. Furthermore, we use
ChatGPT for the translation provided in the
figures.

F Generating Teacher Rationales

We use GPT-3.5-turbo-1106 as a teacher model.
The system prompt utilized in our experiments
is demonstrates in Figure 2 where [language]
set to English for English CoT. For native CoT
generation, we used the predefined language
specified in the dataset metadata for each sample.
The generation hyperparameters were consistent
across all experiments, with D = 10, a temperature
of 0.7, and a maximum token limit of 512.

System Prompt
The following are multiple-choice question
and the relevant context in [subject] subject.
Solve them in a step-by-step fashion and
output a single option as the final answer in
[language] language.

User Prompt
Context: [Context]
Question: [Question]
(A) [A text]
(B) [B text]
(C) [C text]
(D) [D text]

Figure 2: CoT prompt template for the teacher model.
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Context: IA grubu elementleri, Ca, Sr,Ba gibi aktif metallerin su ile reaksiyonu sonucunda hidrojen
gazı elde edilir. Amonyak çözeltisinin sodyum hipoklorit ile etkileşmesinden elde edilir. Cu(I)Cl
çözeltisi genellikle CuCl çözeltisinin çok fazla bakır metali yardımıyla indirgenmesi sonucunda
elde edilir. Rüzgârdan elde edilecek elektrikle suyun hidroliz edilmesi sonucunda; su, oksijen ve
hidrojen elementlerine ayrılarak çok ucuz bir yolla hidrojen elde edilmiş olacaktır. Doğal agrega,
kum ocaklarından, dere yataklarından ya da deniz kıyısından elde edilir. Hidrojen gazının yakılması
sonucunda ortama sadece su/su buharı çıkar. Elementlerinden de elde edilen hidrojen sülfür
laboratuvarlarda demir sülfür üzerine hidrojen klorür etki ettirmekle elde edilir. Sulu çözeltisinin
hidrojen peroksit ile oksidasyonu, tellurat iyonunu verir. Küçük molekül, (genellikle su, amonyak
veya hidrojen klorid) elimine edilir. Ufalanma, insan eliyle veya makineler yardımıyla yapılacak
olursa kırmızı taş veya sadece kırma denilen agrega elde edilir. Hidroklorik asit, hidrojen klorür adlı
maddenin, suda çözülmesiyle elde edilir. NaBr, sodyum hidroksitin hidrojen bromür ile tepkimesi ile
elde edilir. Makineleri dolaşan soğutucu su tatlı su olup eksilmesi halinde takviye edilir. Örneğin
metandan bir hidrojen çıkarılırsa metil (CH), etandan bir hidrojen çıkarılırsa etil (CH) elde edilir.
Genellikle siklohekzan ile bir karışım halinde elde edilir. Hidrokarbon yakıtın gas molekülleri
anot yüzeyinde su buharı ile birlikte adsorblanır ve hidrojen atomları, etkin bir şekilde sıyrılarak
elektrolite absorblanır. Potasyum elektroliz yöntemiyle elde edilen ilk metaldir. Elde edilen kireç,
agrega ile karıştırılarak harç olarak kullanılmaktaydı. Alkali metal polisülfitler, bir sülfür çözeltisinin
işlenmesi ile elde edilir, örneğin sodyum sülfat, elemental kükürt: Bazı durumlarda, bu anyonlar
organik çözücülerde eriyebilen organik tuzlar olarak elde edilir. Demir dışı metaller genellikle
elektroliz yoluyla rafine edilir. Bu NaBr’nin sulu çözeltisinin kolin gazı ile reaksiyonu ile elde edilir:
Sodyum bromür endüstride oldukça kullanışlı bir malzemedir. Propilenin, su ve sülfat asidiyle
hidrojenlendirilmesinden elde edilir. Su cazibeyle değil çoğunlukla pompaj ile elde edilir. Oksijen
genel olarak beş farklı işlemle elde edilir: Hava ayrıştırma (ASU), basınç salınımlı adsorpsiyon
(PSA), vakum basınç salınımlı adsorpsiyon (VPSA), elektroliz ile su ayrıştırma ve membran
teknolojisi. Bu mekanik dönme hareketi sonucunda alternatörlerde elektrik elde edilir.

Question: Kaliyum hidroksid su çözeltisinin elektroliz süreci sonucunda katoda elektrodasında ne
elde edilir:
(A) Kaliyum iyonları. (B) gas agrega halinde hidrojen . (C) Gas agrega halinde oksijen. (D)
elementar helde kaliyum.

Figure 3: An example input in their native language.
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Context: Hydrogen gas is produced through the reaction of IA group elements, such as Ca, Sr,
and Ba, with water. It is also obtained from the interaction of an ammonia solution with sodium
hypochlorite. Cu(I)Cl solution is typically obtained by reducing CuCl solution with an excess
of copper metal. Through the electrolysis of water using electricity generated from wind, water
is split into oxygen and hydrogen elements, yielding hydrogen in a very cost-effective manner.
Natural aggregate is obtained from sand quarries, riverbeds, or seashores. The combustion of
hydrogen gas releases only water/water vapor into the environment. Hydrogen sulfide, produced
from its elements, is obtained in laboratories by reacting hydrogen chloride with iron sulfide. The
oxidation of its aqueous solution with hydrogen peroxide yields the tellurate ion. A small molecule
(usually water, ammonia, or hydrogen chloride) is eliminated. Crushing, whether done manually
or with machinery, produces aggregate known as red stone or simply crushed stone. Hydrochloric
acid is obtained by dissolving hydrogen chloride in water. NaBr is produced by reacting sodium
hydroxide with hydrogen bromide. Fresh water, used as a coolant in machines, is replenished if
depleted. For example, removing one hydrogen from methane yields methyl (CH), and removing
one hydrogen from ethane yields ethyl (CH). It is usually obtained in a mixture with cyclohexane.
Hydrocarbon fuel gas molecules are adsorbed on the anode surface along with water vapor, and
hydrogen atoms are effectively stripped and absorbed into the electrolyte. Potassium was the first
metal obtained by electrolysis. The lime obtained is mixed with aggregate to be used as mortar.
Alkali metal polysulfides are obtained by processing a sulfide solution, such as sodium sulfate with
elemental sulfur. In some cases, these anions are obtained as organic salts soluble in organic solvents.
Non-ferrous metals are usually refined by electrolysis. This NaBr is obtained by reacting its aqueous
solution with chlorine gas; sodium bromide is a highly useful industrial material. It is obtained
from the hydrogenation of propylene with water and sulfuric acid. Water is typically obtained not
by gravity but by pumping. Oxygen is generally obtained through five different processes: air
separation (ASU), pressure swing adsorption (PSA), vacuum pressure swing adsorption (VPSA),
water electrolysis, and membrane technology. This mechanical rotational motion generates electricity
in alternators.

Question: What is obtained at the cathode electrode as a result of the electrolysis process
of the potassium hydroxide aqueous solution?
(A) Potassium ions. (B) Hydrogen in gaseous form. (C) Oxygen in gaseous form. (D) Elemental
potassium.

Figure 4: The example input translated into English language.
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KA + Native CoT
Verilen metinde, kaliyum hidroksid su çözeltisinin elektroliz süreci sonucunda katoda elektrodasında
ne elde edilir: (C) Gas agrega halinde oksijen. => C
(Translated)
In the given text, what is obtained at the cathode electrode as a result of the electrolysis process of
the potassium hydroxide aqueous solution: (C) Oxygen in gaseous form. => C
Expert Assessment
Step-by-step Evaluation:
1. The student was asked about the products at the cathode during the electrolysis of potassium
hydroxide (KOH) in aqueous solution.
2. In the process of electrolysis of KOH, water is electrolyzed rather than KOH itself.
3. At the cathode (negative electrode), reduction occurs, and typically, hydrogen ions (H+) are
reduced to hydrogen gas (H2), not oxygen.
4. The student selected option C - Gas agrega halinde oksijen, which is incorrect terminology for
cathode products. Gas agrega halinde oksijen (oxygen gas) is actually produced at the anode (positive
electrode).
Final Judgement: wrong

Figure 5: The output produced by the model trained using native CoT from the given identical test example
(Figure 3).

KA + Native d-CoT
1. Kaliyum hidroksid su çözeltisinin elektroliz süreci sonucunda katoda elektrodasında hidrojen elde
edilir. 2. Doğru cevap: (B) gas agrega halinde hidrojen. => B
(Translated)
1. Hydrogen is obtained at the cathode electrode as a result of the electrolysis process of the
potassium hydroxide aqueous solution. 2. Correct answer: (B) Hydrogen in gaseous form. => B
Expert Assessment
Step-by-step Evaluation:
1. The student correctly identified that Kaliyum hidroksid (potassium hydroxide) in water undergoes
electrolysis.
2. They correctly stated that during this process, hydrogen is produced at the cathode.
3. The answer choice selected by the student is (B) gas agrega halinde hidrojen, which translates to
gaseous hydrogen, aligning with their correct reasoning.
Final Judgement: correct

Figure 6: The output produced by the model trained using native d-CoT from the given identical test example
(Figure 3).
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KA + Native d-CoT-nR
1. Kaliyum hidroksid, su çözeltisinin elektroliz süreci sonucunda katoda elektrodasında elde edilir. 2.
Kaliyum hidroksid su çözeltisinin elektroliz süreci sonucunda katoda elektrodasında hidrojen elde
edilir. 3. Dolayısıyla, doğru cevap (B) gas agrega halinde hidrojen’dir. => B
(Translated)
1. Potassium hydroxide is obtained at the cathode electrode as a result of the electrolysis process of
the aqueous solution. 2. Hydrogen is obtained at the cathode electrode as a result of the electrolysis
process of the potassium hydroxide aqueous solution. 3. Therefore, the correct answer is (B)
Hydrogen in gaseous form. => B
Expert Assessment
Step-by-step Evaluation:
1. The student starts by reiterating the question, which is unnecessary but does not contain errors,
except it should be clearer that this is a re-statement of the question.
2. The student correctly states that during the electrolytic process of potassium hydroxide solution,
hydrogen is produced at the cathode.
3. Based on the correctly stated reasoning in step 2, the student arrives at the correct solution, which
is (B) gas aggregate hydrogen.
Final Judgement: correct

Figure 7: The output produced by the model trained using native d-CoT-nR from the given identical test example
(Figure 3).

Teacher
Elektroliz süreci sonucunda katoda elektrodasında hidrojen gazı elde edilir.
Dolayısıyla, doğru cevap: (B) gas agrega halinde hidrojen.
(Translated)
Hydrogen gas is obtained at the cathode electrode as a result of the electrolysis process.
Therefore, the correct answer is: (B) Hydrogen in gaseous form.
Expert Assessment
Step-by-step Evaluation: The student correctly identifies that during the electrolytic process involving
potassium hydroxide (KOH) solution, hydrogen gas is produced at the cathode. The student’s choice
of (B) gas aggregate hydrogen aligns with the correct understanding that hydrogen gas will indeed
form at the cathode due to the reduction of water.
Final Judgement: correct

Figure 8: Output generated by the teacher (GPT3.5-turbo-1106) from the given identical test example (Figure 3).
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