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Abstract
Recent advances in machine learning have sig-
nificantly impacted the field of information ex-
traction, with Language Models (LMs) play-
ing a pivotal role in extracting structured in-
formation from unstructured text. Prior works
typically represent information extraction as
triplet-centric and use classical metrics such as
precision and recall for evaluation. We reformu-
late the task to be entity-centric, enabling the
use of diverse metrics that can provide more in-
sights from various perspectives. We contribute
to the field by introducing Structured Entity Ex-
traction and proposing the Approximate Entity
Set OverlaP (AESOP) metric, designed to ap-
propriately assess model performance. Later,
we introduce a new Multistage Structured En-
tity Extraction (MuSEE) model that harnesses
the power of LMs for enhanced effectiveness
and efficiency by decomposing the extraction
task into multiple stages. Quantitative and hu-
man side-by-side evaluations confirm that our
model outperforms baselines, offering promis-
ing directions for future advancements in struc-
tured entity extraction. Our source code is avail-
able at https://github.com/microsoft/Structured-
Entity-Extraction.

1 Introduction
Information extraction refers to a broad family
of challenging natural language processing (NLP)
tasks that aim to extract structured information
from unstructured text (Cardie, 1997; Eikvil, 1999;
Chang et al., 2006; Sarawagi et al., 2008; Grish-
man, 2015; Niklaus et al., 2018; Nasar et al., 2018;
Wang et al., 2018; Martinez-Rodriguez et al., 2020).
Examples of information extraction tasks include:
(i) Named-entity recognition (Li et al., 2020), (ii) re-
lation extraction (Kumar, 2017), (iii) event extrac-
tion (Li et al., 2022), and (iv) coreference reso-
lution (Stylianou and Vlahavas, 2021; Liu et al.,
2023), as well as higher-order challenges, such as
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Figure 1: Illustration of the structured entity extraction,
an entity-centric formulation of information extraction.
Given a text description as well as some predefined
schema containing all the candidates of entity types and
property keys, we aim to output a structured json for all
entities in the text with their information.

automated knowledge base (KB) and knowledge
graph (KG) construction from text (Weikum and
Theobald, 2010; Ye et al., 2022; Zhong et al., 2023).
The latter may in turn necessitate solving a combi-
nation of the former more fundamental extraction
tasks as well as require other capabilities like en-
tity linking (Shen et al., 2014, 2021; Oliveira et al.,
2021; Sevgili et al., 2022).

Previous formulations and evaluations of informa-
tion extraction have predominantly centered around
the extraction of ⟨subject, relation, object⟩ triplets.
The conventional metrics used to evaluate triplet-
level extraction, such as recall and precision, how-
ever, might be insufficient to represent a model’s
understanding of the text from a holistic perspec-
tive. For example, consider a paragraph that men-
tions ten entities, where one entity is associated
with 10 relations as the subject, while each of the
other nine entities is associated with only 1 relation
as the subject. Imagine a system that accurately
predicts all ten triplets for the heavily linked entity
but overlooks the other entities. Technically, this
system achieves a recall of more than 50% (i.e.,
10 out of 19) and a precision of 100%. However,
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when compared to another system that recognizes
one correct triplet for each of the ten entities and
achieves the same recall and precision, it becomes
evident that both systems, despite showing identi-
cal evaluation scores, offer significantly different
insights into the text comprehension. Moreover,
implementing entity-level normalization within tra-
ditional metrics is not always easy due to chal-
lenges like coreference resolution (Stylianou and
Vlahavas, 2021; Liu et al., 2023), particularly in
scenarios where multiple entities share the same
name or lack primary identifiers such as names.
Therefore, we advocate for alternatives that can
offer insights from diverse perspectives.

In this work, we propose Structured Entity
Extraction, an entity-centric formulation of (strict)
information extraction, which facilitates diverse
evaluations. We define a structured entity as a
named entity with associated properties and rela-
tionships with other named-entities. Fig. 1 shows
an illustration of the structured entity extraction.
Given a text description, we aim to first identify the
two entities “Bill Gates” and “Microsoft”. Then,
given some predefined schema on all possible en-
tity types and property keys (referred to as a strict
setting in our scenario), the exact types, property
keys, property values on all identified entities in
the text are expected to be predicted, as well as the
relations between these two entities (i.e., Bill Gates
co-founded Microsoft). Such extracted structured
entities may be further linked and merged to auto-
matically construct KBs from text corpora. Along
with this, we propose a new evaluation metric,
Approximate Entity Set OverlaP (AESOP), with
numerous variants for measuring the similarity be-
tween the predicted set of entities and the ground
truth set, which is more flexible to include differ-
ent level of normalization (see default AESOP in
Sec. 3 and other variants in Appendix A).

In recent years, deep learning has garnered signif-
icant interest in the realm of information extrac-
tion tasks. Techniques based on deep learning for
entity extraction have consistently outperformed
traditional methods that rely on features and kernel
functions, showcasing superior capability in fea-
ture extraction and overall accuracy (Yang et al.,
2022). Building upon these developments, our
study employs language models (LMs) to solve
structured entity extraction. We introduce a Multi-
stage Structured Entity Extraction (MuSEE) model,

a novel architecture that enhances both effective-
ness and efficiency. Our model decomposes the en-
tire information extraction task into multiple stages,
enabling parallel predictions within each stage for
enhanced focus and accuracy. Additionally, we re-
duce the number of tokens needed for generation,
which further improves the efficiency for both train-
ing and inference. Human side-by-side evaluations
show similar results as our AESOP metric, which
not only further confirm our model’s effectiveness
but also validate the AESOP metric.

In summary, our main contributions are:
• We introduce an entity-centric formulation of

the information extraction task within a strict
setting, where the schema for all possible en-
tity types and property keys is predefined.

• We propose an evaluation metric,
Approximate Entity Set OverlaP (AE-
SOP), with more flexibility tailored for
assessing structured entity extraction.

• We propose a new model leveraging the capa-
bilities of LMs, improving the effectiveness
and efficiency for structured entity extraction.

2 Related work
In this section, we first review the formulation of ex-
isting information extraction tasks and the metrics
used, followed by a discussion of current methods
for solving information extraction tasks.

Information extraction tasks are generally divided
into open and closed settings. Open information
extraction (OIE), first proposed by Banko et al.
(2007), is designed to derive relation triplets from
unstructured text by directly utilizing entities and
relationships from the sentences themselves, with-
out adherence to a fixed schema. Conversely,
closed information extraction (CIE) focuses on ex-
tracting factual data from text that fits into a pre-
determined set of relations or entities, as detailed
by Josifoski et al. (2022). While open and closed
information extraction vary, both seek to convert
unstructured text into structured knowledge, which
is typically represented as triplets. These triplets
are useful for outlining relationships but offer lim-
ited insight at the entity level. It is often assumed
that two triplets refer to the same entity if their
subjects match. However, this assumption is not
always held. Additionally, the evaluation of these
tasks relies on precision, recall, and F1 scores at the
triplet level. As previously mentioned, evaluating
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solely on triplet metrics can yield misleading in-
sights regarding the entity understanding. Thus, it
is essential to introduce a metric that assesses under-
standing at the entity level through entity-level nor-
malization. In this work, we introduce the AESOP
metric, which is elaborated on in Sec. 3.2.

Various strategies have been employed in existing
research to address the challenges of information
extraction. TextRunner (Yates et al., 2007) initially
spearheaded the development of unsupervised
methods. Recent progress has been made with the
use of manual annotations and Transformer-based
models (Vasilkovsky et al., 2022; Kolluru et al.,
2020a). Sequence generation approaches, like IMo-
JIE (Kolluru et al., 2020b) and GEN2OIE (Kolluru
et al., 2022), have refined open information extrac-
tion by converting it into a sequence-to-sequence
task (Cui et al., 2018). GenIE (Josifoski et al.,
2022) focuses on integrating named-entity recogni-
tion, relation extraction, and entity linking within
a closed setting where a knowledge base is pro-
vided. Recent work, PIVOINE (Lu et al., 2023),
focuses on improving the language model’s gener-
ality to various (or unseen) instructions for open
information extraction, whereas our focus is on de-
signing a new model architecture for improving the
effectiveness and efficiency of language model’s
information extraction in a strict setting.

3 Structured Entity Extraction
In this section, we first describe the structured en-
tity extraction formulation, followed by detailing
the Approximate Entity Set OverlaP (AESOP) met-
ric for evaluation. We would like to emphasize that
structured entity extraction is not an entirely new
task, but rather a novel entity-centric formulation
of information extraction.

3.1 Task Formulation
Given a document d, the goal of structured entity
extraction is to generate a set of structured entities
E = {e1, e2, . . . , en} that are mentioned in the doc-
ument text. Each structured entity e is a dictionary
of property keys p ∈ P and property values v ∈ V ,
and let ve,p be the value of property p of entity
e. In this work we consider only text properties
and hence V is the set of all possible text property
values. If a property of an entity is common knowl-
edge but does not appear in the input document, it
will not be considered in the structured entity ex-
traction. Depending on the particular situation, the
property values could be other entities, although

this is not always the case.

So, the goal then becomes to learn a function
f : d → E ′ = {e′1, e′2, . . . , e′m}, and we expect
the predicted set E ′ to be as close as possible to
the target set E , where the closeness is measured
by some similarity metric Ψ(E ′, E). Note that the
predicted set of entities E ′ and the ground-truth set
E may differ in their cardinality, and our definition
of Ψ should allow for the case when |E ′| ̸= |E|.
Finally, both E ′ and E are unordered sets and hence
we also want to define Ψ to be order-invariant over
E ′ and E . As we do not need to constrain f to pro-
duce the entities in any strict order, it is reasonable
for Ψ to assume the most optimistic assignment of
E ′ with respect to E . We denote E⃗′ and E⃗ as some
arbitrary but fixed ordering over items in prediction
set E ′ and ground-truth set E for allowing indexing.

3.2 Approximate Entity Set OverlaP (AESOP)
Metric

We propose a formal definition of the Approximate
Entity Set OverlaP (AESOP) metric, which focuses
on the entity-level and more flexible to include
different level of normalization:

Ψ(E ′, E) = 1

µ

m,n⊕

i,j

Fi,j · ψent(E⃗′
i, E⃗j), (1)

which is composed of two phases: (i) optimal en-
tity assignment for obtaining the assignment matrix
F to let us know which entity in E ′ is matched with
which one in E , and (ii) pairwise entity compar-
ison through ψent(E⃗′

i, E⃗j), which is a similarity
measure defined between any two arbitrary enti-
ties e′ and e. We demonstrate the details of these
two phases in this section. We implement Ψ as
a linear sum

⊕
over individual pairwise entity

comparisons ψent, and µ is the maximum of the
sizes of the target set and the predicted set, i.e.,
µ = max{m,n}.
Phase 1: Optimal Entity Assignment. The op-
timal entity assignment is directly derived from a
matrix F ∈ Rm×n, which is obtained by solving
an assignment problem between E ′ and E . Here,
the matrix F is a binary matrix where each element
Fi,j is 1 if the entity E⃗′

i is matched with the entity
E⃗j , and 0 otherwise. Before formulating the assign-
ment problem, we first define a similarity matrix
S ∈ Rm×n where each element Si,j quantifies the
similarity between the i-th entity in E⃗′ and the j-th
entity in E⃗ for the assignment phase. For practical
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implementation, we ensure inclusion of the union
set of property keys from both the i-th entity in E⃗′

and the j-th entity in E⃗ for each of these entities.
When a property key is absent, its corresponding
property value is set to be an empty string. The
similarity is then computed as a weighted average
of the Jaccard index (Murphy, 1996) for the list of
tokens of the property values associated the same
property key in both entities. The Jaccard index
involved empty strings is defined as zero in our
case. We assign a weight of 0.9 to the entity name,
while all other properties collectively receive a total
weight of 0.1. This ensures that the entity name
holds the highest importance for matching, while
still acknowledging the contributions of other prop-
erties. It is worthy to notice that the weights values
0.9 and 0.1 are not universal standards. One can
tailor the choices of these weights values for spe-
cific requirements. Then the optimal assignment
matrix F is found by maximizing the following
equation:

F = argmax
F

m∑

i=1

n∑

j=1

Fi,j · Si,j , (2)

subject to the following four constraints to ensure
one-to-one assignment between entities in the pre-
diction set and the ground truth set: (i) Fi,j ∈ {0, 1};

(ii)
∑m

i=1 Fi,j ≤ 1,∀j ∈ {1, 2, . . . , n}; (iii)
∑n

j=1 Fi,j ≤
1, ∀i ∈ {1, 2, . . . ,m}; (iv)

∑m
i=1

∑n
j=1 Fi,j = min{m,n}.

One can take an analogy of maximizing equation. 2
to the optimal flow in the Earth Mover’s Distance
(EMD). In EMD, the optimal flow is the one that
minimizes the entire “cost” of moving the dirt,
while in our case, the optimal assignment is the
one that maximizes the entire "similarity" in the
best possible way.
Phase 2: Pairwise Entity Comparison. After
obtaining the optimal entity assignment, we fo-
cus on the pairwise entity comparison. We define
ψent(E⃗′

i, E⃗j) as a similarity metric between any
two arbitrary entities e′ and e from E ′ and E .

The pairwise entity similarity function ψent is de-
fined as a linear average

⊗
over individual pair-

wise property similarity ψprop as follows:

ψent(e
′, e) =

⊗

p∈P
ψprop(ve′,p, ve,p), (3)

where ψprop(ve′,p, ve,p) is defined as the Jaccard
index between the lists of tokens of the predicted
values and ground-truth values for corresponding

properties. We define the score as zero for missing
properties.

It should be noted that while both S and ψent are
used to calculate similarities between pairs of enti-
ties, they are not identical. During the entity assign-
ment phase, it is more important to make sure the
entity names are aligned, while it is more accept-
able to treat all properties equally without differen-
tiation during the pairwise entity comparison. The
separation in the definitions of two similarity mea-
sures allows us to tailor our metric more precisely
to the specific requirements of each phase of the
process. The definition of similarity and different
variants for our proposed AESOP metric are elabo-
rated in Appendix A. We discuss the relationship
between traditional metrics, such as precision and
recall, and AESOP in Appendix B.

4 Multi-stage Structured Entity
Extraction using Language
Models

In this section, we elaborate on the methodology
for structured entity extraction using LMs. We
introduce a novel model architecture leveraging
LMs, MuSEE, for Multi-stage Structured Entity
Extaction. MuSEE is built on an encoder-decoder
architecture, whose pipeline incorporates two piv-
otal enhancements to improve effectiveness and
efficiency: (i) reducing output tokens through intro-
ducing additional special tokens where each can be
used to replace multiple tokens, and (ii) multi-stage
parallel generation for making the model focus
on a sub-task at each stage where all predictions
within a stage can be processed parallelly.

Reducing output tokens. Our model condenses
the output by translating entity types and property
keys into unique, predefined tokens. Specifically,
for the entity type, we add prefix “ent_type_”,
while for each property key, we add prefix “pk_”.
By doing so, the type and each property key on
an entity is represented by a single token, which
significantly reduces the number of output tokens
during generation thus improving efficiency. For
instance, if the original entity type is “artificial
object” which is decomposed into 4 tokens (i.e.,
“_art”, “if ”, “ical”, “_object”) using the T5 to-
kenizer, now we only need one special token,
“ent_type_artifical_object”, to represent the entire
sequence. All of these special tokens can be de-
rived through the knowledge of some predefined
schema before the model training.
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Figure 2: The pipeline of our proposed MuSEE model, which is built on an encoder-decoder architecture. The input
text only needs to be encoded once. The decoder is shared for all the three stages. All predictions within each stage
can be processed in batch, and teacher forcing enables parallelization even across stages during training.

Multi-stage parallel generation. In addition to
reducing the number of generated tokens, MuSEE
further decomposes the generation process into
three stages: (i) identifying all entities, (ii) deter-
mining entity types and property keys, and (iii)
predicting property values. To demonstrate this
pipeline more clearly, we use the same text shown
in Fig. 1 as an example to show the process of
structured entity extraction as follows:

Stage 1: Entity Identification.

❖ [[[Text Description]]] ⇒ MuSEE ⇒ pred_ent_names
“Bill Gates” “Microsoft” ⟨EOS⟩

Stage 2: Type and property key prediction.

❖ [[[Text Description]]] ⇒ MuSEE ⇒
pred_type_and_property
{“Bill Gates”} ent_type_human pk_country
pk_occupation ⟨EOS⟩

❖ [[[Text Description]]] ⇒ MuSEE ⇒
pred_type_and_property
{“Microsoft”} ent_type_corporation pk_cofounder
pk_headquarter ⟨EOS⟩

Stage 3: Property value prediction.

❖ [[[Text Description]]] ⇒ MuSEE ⇒ pred_val
{“Bill Gates”} {ent_type_human} {pk_country}
America ⟨EOS⟩

❖ [[[Text Description]]] ⇒ MuSEE ⇒ pred_val
{“Bill Gates”} {ent_type_human} {pk_occupation}
Businessman ⟨EOS⟩

❖ [[[Text Description]]] ⇒ MuSEE ⇒ pred_val
{“Microsoft”} {ent_type_corporation}
{pk_cofounder} Bill Gates ⟨EOS⟩

❖ [[[Text Description]]] ⇒ MuSEE ⇒ pred_val
{“Microsoft”} {ent_type_corporation}
{pk_headquarter} Redmond ⟨EOS⟩

Among the three stages depicted, pred_ent_names,
pred_type_and_property, and pred_val are special
tokens to indicate the task. For each model pre-
diction behavior, the first “⇒” indicates inputting
the text into the encoder of MuSEE, while the sec-

ond “⇒” means inputting the encoded outputs into
the decoder. All tokens in blue are the prompt
tokens input into the decoder which do not need
to be predicted, while all tokens in bold are the
model predictions. For the stage 1, we emphasize
that MuSEE outputs a unique identifier for each
entity in the given text. Taking the example in
Fig. 1, the first stage outputs “Bill Gates” only,
rather than both “Bill Gates” and “Gates”. This
requires the model implicitly learn how to do coref-
erence resolution, namely learning that “Bill Gates”
and “Gates” are referring to the same entity. There-
fore, our approach uses neither surface forms, as
the outputs of the first stage are unique identifiers,
nor the entity titles followed by entity linkings. For
stage 2, the MuSEE model predicts the entity types
and property keys, which are all represented by
special tokens. Hence, the prediction can be made
by sampling the token with highest probability over
the special tokens for entity types and property keys
only, rather than all tokens. Notice that we do not
need to predict the value for “type” and “name” in
stage 3, since the type can be directly derived from
the “ent_type_” special key itself, and the name is
obtained during stage 1. The tokens in the bracket
“{..}” are also part of the prompt tokens and are
obtained in different ways during training and in-
ference. During training, these inputs are obtained
from the ground truth due to the teacher forcing
technique (Raffel et al., 2023). During inference,
they are obtained from the output predictions from
the previous stages. The full training loss is a sum
of three cross-entropy losses, one for each stage.
An illustration of our model’s pipeline is shown in
Fig. 2. More implementation details are elaborated
in Appendix C.
Benefits for Training and Inference. MuSEE’s
unique design benefits both training and inference.
In particular, each stage in MuSEE is finely tuned to
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concentrate on a specific facet of the extraction pro-
cess, thereby enhancing the overall effectiveness.
Most importantly, all predictions within the same
stage can be processed in batch thus largely improv-
ing efficiency. The adoption of a teacher forcing
strategy enables parallel training even across dif-
ferent stages, further enhancing training efficiency.
During inference, the model’s approach to breaking
down long sequences into shorter segments signifi-
cantly reduces the generation time. It is also worthy
to mention that each text in the above three stages
needs to be encoded only once by the MuSEE’s
encoder, where the encoded output is repeatedly
utilized across different stages. This streamlined
approach ensures a concise and clear delineation
of entity information, facilitating the transforma-
tion of unstructured text into a manageable and
structured format.

5 Experiments
In this section, we describe the datasets used in our
experiment, followed by the discussion of baseline
methods and training details.

5.1 Data
In adapting the structured entity extrac-
tion, we repurpose the NYT (Riedel et al.,
2010), CoNLL04 (Roth and Yih, 2004), and
REBEL (Huguet Cabot and Navigli, 2021)
datasets, which are originally developed for
relation extractions. For NYT and CoNLL04,
since each entity in these two datasets has a
predefined type, we simply reformat them to our
entity-centric formulation by treating the subjects
as entities, relations as property keys, and objects
as property values. REBEL connects entities
identified in Wikipedia abstracts as hyperlinks,
along with dates and values, to entities in Wikidata
and extracts the relations among them. For entities
without types in the REBEL dataset, we categorize
their types as “unknown”. Additionally, we
introduce a new dataset, named Wikidata-based.
The Wikidata-based dataset is crafted using an
approach similar to REBEL but with two primary
distinctions: (i) property values are not necessarily
entities; (ii) we simplify the entity types by
consolidating them into broader categories based
on the Wikidata taxonomy graph, resulting in less
specific types. The processes for developing the
Wikidata-based dataset is detailed in Appendix D.
The predefined schemas for NYT, CoNLL04, and
REBEL are using all entity types and property keys

from these datasets. The details of the predefined
schema for Wikidata-based dataset are provided in
Appendix D. Comprehensive statistics for all four
datasets are available in Appendix E.

5.2 Baseline
We benchmark our methodology against two dis-
tinct classes of baseline approaches. The first cat-
egory considers adaptations from general seq2seq
task models: (i) LM-JSON: this approach involves
fine-tuning pre-trained language models. The input
is a textual description, and the output is the string
format JSON containing all entities. The second
category includes techniques designed for differ-
ent information extraction tasks, which we adapt
to address our challenge: (ii) GEN2OIE (Kolluru
et al., 2022), which employs a two-stage genera-
tive model initially outputs relations for each sen-
tence, followed by all extractions in the subsequent
stage; (iii) IMoJIE (Kolluru et al., 2020b), an ex-
tension of CopyAttention (Cui et al., 2018), which
sequentially generates new extractions based on
previously extracted tuples; (iv) GenIE (Josifoski
et al., 2022), an end-to-end autoregressive genera-
tive model using a bi-level constrained generation
strategy to produce triplets that align with a pre-
defined schema for relations. GenIE is crafted for
the closed information extraction, so it includes
a entity linking step. However, in our strict set-
ting, there is only a schema of entity types and
relations. Therefore, we repurpose GenIE for our
setting by maintaining the constrained generation
strategy and omitting the entity linking step. We
omit to compare our method with non-generative
models primarily due to the task differences.

5.3 Training
We follow existing studies (Huguet Cabot and Nav-
igli, 2021) to use the encoder-decoder architecture
in our experiment. We choose the T5 (Raffel et al.,
2023) series of LMs and employ the pre-trained
T5-Base (T5-B) and T5-Large (T5-L) as the base
models underlying every method discussed in sec-
tion 5.2 and our proposed MuSEE. LM-JSON and
MuSEE are trained with the Low-Rank Adapta-
tion (Hu et al., 2021), where r = 16 and α = 32.
For GEN2OIE, IMoJIE, and GenIE, we follow all
training details of their original implementation.
For all methods, we employ a linear warm up and
the Adam optimizer (Kingma and Ba, 2017), tun-
ing the learning rates between 3e-4 and 1e-4, and
weight decays between 1e-2 and 0. All experiments
are run on a NVIDIA A100 GPU.
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It is worthy to mention that MuSEE can also build
upon the decoder-only architecture by managing
the KV cache and modifications to the position
encodings (Xiao et al., 2024), though this requires
additional management and is not the main focus
of this study.
6 Results
In this section, we show the results for both quanti-
tative and human side-by-side evaluation.
6.1 Quantitative Evaluation
Effectiveness comparison. The overall effective-
ness comparison is shown in Table 1. We report tra-
ditional metrics, including precision, recall, and F1
score, in addition to our proposed AESOP metric.
From the results, the MuSEE model consistently
outperforms other baselines in terms of AESOP
across all datasets. For instance, MuSEE achieves
the highest AESOP scores on REBEL with 55.24
(T5-B) and 57.39 (T5-L), on NYT with 81.33 (T5-
B) and 82.67 (T5-L), on CoNLL04 with 78.38 (T5-
B) and 79.87 (T5-L), and on the Wikidata-based
dataset with 46.95 (T5-B) and 50.94 (T5-L). These
scores significantly surpass those of the competing
models, indicating MuSEE’s stronger entity extrac-
tion capability. The other three traditional met-
rics further underscore the efficacy of the MuSEE
model. For instance, on CoNLL04, MuSEE (T5-B)
achieves a precision of 73.18, a recall of 60.28, and
a F1 score of 66.01, which surpass all the other
baselines. Similar improvements are observed on
REBEL, NYT, and Wikidata-based dataset. Nev-
ertheless, while MuSEE consistently excels in the
AESOP metric, it does not invariably surpass the
baselines across all the traditional metrics of preci-
sion, recall, and F1 score. Specifically, within the
REBEL dataset, GenIE (T5-B) achieves the highest
precision at 57.55, and LM-JSON (T5-B) records
the best recall at 51.29. Furthermore, on the NYT
dataset, GenIE (T5-B) outperforms other models
in F1 score. These variances highlight the unique
insights provided by our adaptive AESOP metric,
which benefits from our entity-centric formulation.
We expand on this discussion in section 6.2.

As discussed in Sec. 4, our MuSEE model is cen-
tered around two main enhancements: reducing
output tokens and multi-stage parallel generation.
By simplifying output sequences, MuSEE tackles
the challenge of managing long sequences that of-
ten hinder baseline models, like LM-JSON, GenIE,
IMoJIE, thus reducing errors associated with se-
quence length. Additionally, by breaking down

the extraction process into three focused stages,
MuSEE efficiently processes each aspect of entity
extraction, leveraging contextual clues for more
accurate predictions. In contrast, GEN2OIE’s two-
stage approach, though similar, falls short because
it extracts relations first and then attempts to pair
entities with these relations. However, a single re-
lation may exist among different pairs of entities,
which can lead to low performance with this ap-
proach. Supplemental ablation study is provided in
Appendix F.
Efficiency comparison. As shown in the last col-
umn of Table 1, we provide a comparison on the in-
ference efficiency, measured in the number of sam-
ples the model can process per second. The MuSEE
model outperforms all baseline models in terms of
efficiency, processing 52.93 samples per second
with T5-B and 33.96 samples per second with T5-
L. It shows a 10x speed up compared to IMoJIE,
and a 5x speed up compared to the strongest base-
line GenIE. This high efficiency can be attributed to
MuSEE’s architecture, specifically its multi-stage
parallel generation feature. By breaking down the
task into parallelizable stages, MuSEE minimizes
computational overhead, allowing for faster pro-
cessing of each sample. The benefit of this design
can also be approved by the observation that the
other multi-stage model, GEN2OIE, shows the sec-
ond highest efficiency.

To better illustrate our model’s strength, we show
the scatter plots comparing all models with various
backbones in Fig. 3 on the effectiveness and effi-
ciency. We choose the Wikidata-based dataset and
the effectiveness is measured by AESOP. As de-
picted, our model outperforms all baselines with a
large margin. This advantage makes MuSEE partic-
ularly suitable for applications requiring rapid pro-
cessing of large volumes of data, such as processing
web-scale datasets, or integrating into interactive
systems where response time is critical.
Grounding check. As the family of T5 models
are pre-trained on Wikipedia corpus (Raffel et al.,
2023), we are curious whether the models are ex-
tracting information from the given texts, or they
are leveraging their prior knowledge to generate
information that cannot be grounded to the given
description. We use T5-L as the backbone in this
experiment. We develop a simple approach to con-
duct this grounding check by perturbing the orig-
inal test dataset with the following strategy. We
first systematically extract and categorize all enti-
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Table 1: Summary of results of different models. Each metric is shown in percentage (%). The last column shows
the inference efficiency, measured by the number of samples the model can process per second. The best is bolded,
and the second best is underlined. Our model has a statistical significance for p ≤ 0.01 compared to the best
baseline (labelled with *) based on the paired t-test.

Model
REBEL NYT CoNLL04 Wikidata-based samples

per secAESOP Precision Recall F1 AESOP Precision Recall F1 AESOP Precision Recall F1 AESOP Precision Recall F1

LM-JSON (T5-B) 41.91 38.33 51.29 43.87 66.33 73.10 52.66 61.22 68.80 61.63 48.04 53.99 36.98 43.95 29.82 35.53 19.08
GEN2OIE (T5-B) 44.52 35.23 40.28 37.56 67.04 72.08 53.02 61.14 68.39 62.35 42.20 50.26 37.07 40.87 28.37 33.55 28.21
IMoJIE (T5-B) 46.11 34.10 48.61 40.08 63.86 72.28 48.99 58.40 63.68 52.00 42.62 46.85 37.08 41.61 28.23 33.64 5.36
GenIE (T5-B) 48.82∗ 57.55 38.70 46.28∗ 79.41∗ 87.68 73.24 79.81 74.74∗ 72.49∗ 59.39 65.29 40.60∗ 50.27∗ 29.75 37.38 10.19
MuSEE (T5-B) 55.24 56.93 42.31 48.54 81.33 88.29 72.21 79.44 78.38 73.18 60.28 66.01 46.95 53.27 29.33 37.99 52.93

LM-JSON (T5-L) 45.92 39.49 40.82 40.14 67.73 73.38 53.22 61.69 68.88 61.50 47.77 53.77 38.19 43.24 31.63 36.54 11.24
GEN2OIE (T5-L) 46.70 37.28 41.12 39.09 68.27 73.97 53.32 61.88 68.52 62.76 43.31 51.16 38.25 41.23 28.54 33.77 18.56
IMoJIE (T5-L) 48.13 38.55 49.73 43.43 65.72 73.46 50.03 59.52 67.31 53.00 43.44 47.75 38.18 41.74 30.10 34.98 3.73
GenIE (T5-L) 50.06∗ 58.00 42.56 49.09 79.64∗ 84.82∗ 75.69 80.00 72.92∗ 77.75 55.64∗ 64.86 43.50∗ 54.05 30.98 39.38 5.09
MuSEE (T5-L) 57.39 57.11 42.89 48.96 82.67 89.43 73.32 80.60 79.87 74.89 60.72 67.08 50.94 53.72 31.12 39.24 33.96

Figure 3: An overall effectiveness-and-efficiency com-
parison across models on Wikidata-based Dataset.
MuSEE strongly outperforms all baselines on both mea-
sures. The effectiveness is measured by AESOP.
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Figure 4: Grounding check across models on the
Wikidata-based dataset. MuSEE shows the least perfor-
mance drop on the perturbed version of data compared
to other baselines.

ties and their respective properties, based on their
entity types. Then, we generate a perturbed version
of the dataset, by randomly modifying entity prop-
erties based on the categorization we built. We in-
troduce controlled perturbations into the dataset by
selecting alternative property values from the same
category but different entities, and subsequently
replacing the original values in the texts. The ex-
periment results from our grounding study on the
Wikidata-based dataset, as illustrated in Fig. 4, re-
veal findings regarding the performance of various
models under the AESOP and F1 score. Our model,
MuSEE, shows the smallest performance gap be-
tween the perturbed data and the original data com-
pared to its counterparts, suggesting its stronger

Human Evaluation Quantitative Metrics
Complete. Correct. Halluc. AESOP Precision Recall F1

MuSEE prefer 61.75 59.32 57.13 61.28 45.33 37.24 40.57

Table 2: Percentage of samples preferred by humans
and metrics on MuSEE’s results when compared with
GenIE’s. The first three columns are for human evalua-
tion. The next four columns are for quantitative metrics.

capability to understand and extract structured in-
formation from given texts.
6.2 Human Evaluation
To further analyze our approach, we randomly se-
lect 400 test passages from the Wikidata-based
dataset, and generate outputs of our model MuSEE
and the strongest baseline GenIE. Human evalua-
tors are presented with a passage and two randomly
flipped extracted sets of entities with properties.
Evaluators are then prompted to choose the output
they prefer or express no preference based on three
criteria, Completeness, Correctness, and Halluci-
nations (details shown in Appendix G). Among all
400 passages, the output of MuSEE is preferred
61.75% on the completeness, 59.32% on the cor-
rectness, and 57.13% on the hallucinations. For a
complete comparison, we also report the percent-
age of samples preferred by quantitative metrics on
MuSEE’s results when compared with GenIE’s, as
summarized in Table 2. As shown, our proposed
AESOP metric aligns more closely with human
judgment than traditional metrics. These observa-
tions provide additional confirm to the quantitative
results evaluated using the AESOP metric that our
model significantly outperforms existing baselines
and illustrates the inadequacy of traditional metrics
due to their oversimplified assessment of extrac-
tion quality. Case study of the human evaluation is
shown in Appendix G.

7 Discussion and Conclusion
We introduce Structured Entity Extraction (SEE),
an entity-centric formulation of information ex-
traction in a strict setting. We then propose the
Approximate Entity Set OverlaP (AESOP) Met-
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ric, which focuses on the entity-level and more
flexible to include different level of normalization.
Based upon, we propose a novel model architec-
ture, MuSEE, that enhances both effectiveness and
efficiency. Both quantitative evaluation and human
side-by-side evaluation confirm that our model out-
performs baselines.

An additional advantage of our formulation is its
potential to address coreference resolution chal-
lenges, particularly in scenarios where multiple
entities share the same name or lack primary iden-
tifiers such as names. Models trained with prior
triplet-centric formulation cannot solve the above
challenges. However, due to a scarcity of relevant
data, we were unable to assess this aspect in our
current study.

8 Limitations
The limitation of our work lies in the assumption
that each property possesses a single value. How-
ever, there are instances where a property’s value
might consist of a set, such as varying “names”.
Adapting our method to accommodate these scenar-
ios presents a promising research direction.
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A Variants of AESOP

The AESOP metric detailed in section 3.2 matches entities by considering all properties and normalizes
with the maximum of the sizes of the target set and the predicted set. We denote it as AESOP-MultiProp-
Max. In this section, we elaborate more variants of the AESOP metric in addition to section 3.2,
categorized based on two criteria: the definition of entity similarity used for entity assignment and the
normalization approach when computing the final metric value between E ′ and E . These variants allow for
flexibility and adaptability to different scenarios and requirements in structured entity extraction.

Variants Based on Entity Assignment. The first category of variants is based on the criteria for
matching entities between the prediction E ′ and the ground-truth E . We define three variants:

• AESOP-ExactName: Two entities are considered a match if their names are identical, disregarding
case sensitivity. This variant is defined as Si,j = 1 if ve′i,name = vej ,name, otherwise 0.

• AESOP-ApproxName: Entities are matched based on the similarity of their “name” property values.
This similarity can be measured using a text similarity metric, such as the Jaccard index.

• AESOP-MultiProp: Entities are matched based on the similarity of all their properties, with a much
higher weight given to the “entity name” property due to its higher importance.

Variants Based on Normalization. The second category of variants involves different normalization
approaches for computing the final metric value through Eq. 1:

• AESOP-Precision: The denominator is the size of the predicted set E ′, i.e., µ = m.

• AESOP-Recall: The denominator is the size of the target set E , i.e., µ = n.

• AESOP-Max: The denominator is the maximum of the sizes of the target set and the predicted set, i.e.,
µ = max{m,n}.

Given these choices, we can obtain 3 × 3 = 9 variants of the AESOP metric. To avoid excessive
complexity, we regard the AESOP-MultiProp-Max as default. For clarity, we illustrate the two phases of
computing the AESOP metric and its variants in Fig. 5. We also show that precision and recall are specific
instances of the AESOP metric in Appendix B.

Figure 5: An illustration of the AESOP metric, including optimal entity assignment (phase 1) and pairwise entity
comparison (phase 2), and overall metric computation with various similarity and normalization choices.

B Relationship between Precision/Recall and AESOP

In this section, we show the traditional metrics, precision and recall, are specific instances of the AESOP
metric. To calculate precision and recall, we use the following equations on the number of triplets, where
each triplet contains subject, relation, and object.

precision =
# of correctly predicted triplets
# of triplets in the prediction

, (4)
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recall =
# of correctly predicted triplets

# of triplets in the target
. (5)

In the framework of the AESOP metric, precision and recall are effectively equivalent to treating each
triplet as an entity, where the subject as the entity name, and the relation and object form a pair of property
key and value. For optimal entity assignment (phase 1), precision and recall use the AESOP-MultiProp
variant but match entities based on the similarity of all their properties with a same weight. For pairwise
entity comparison (phase 2), the ψent(e

′, e) (Eq. 3), can be defined as 1 if v′ = v, otherwise 0, where v′

and v are the only property values in e′ and e, respectively. For Eq. 1,
⊕

aggregation can be defined as a
linear sum, which principally results in how many triplets are correctly predicted in this case. If µ in Eq. 1
is set as the number of triplets in the prediction, this corresponds to the calculation of precision. Similarly,
when µ equals the number of triplets in the target, it corresponds to the calculation of recall.

C Implementation Details of MuSEE

In order to implement the approach of our MuSEE model, one may extend existing models with encoder-
decoder architecture by integrating additional modules and processing steps specifically designed for
entity and property prediction tasks. Specifically, given a predefined schema, we first add all necessary
special tokens to customize the tokenizer as detailed before. The implementation of the generation process
involves three main stages: entity prediction, property key prediction, and property value prediction.

1. Entity Prediction: We first encode the input sequence using the encoder to obtain the hidden states
for the entire sequence. We generate a prompt “pred_ent_names” and transform it to token ids using
the tokenizer. This prompt, repeated for each sample in the batch, is concatenated with the encoded
input sequence and processed through the decoder to produce entity name predictions as a sequence
of tokens.

2. Property Key Prediction: For each predicted entity name, we generate prompts in the format
“pred_type_and_property [entity_name]”. These prompts are tokenized, padded to a fixed length, and
concatenated with the encoded input sequence. The concatenated sequences are then passed through
the decoder to predict entity types and property keys as a sequence of special tokens for entity types
and property keys. We achieve this by sampling the token with highest probability over all special
tokens for entity types and property keys, rather than training a separate classifier head.

3. Property Value Prediction: For each predicted entity and its corresponding property keys, we create
prompts in the format “pred_val [entity_name] [entity_type] [property_key]”. These prompts are
tokenized, padded, and concatenated with the encoded input sequence. The concatenated sequences
are processed by the decoder to generate property value predictions.

The training loss is a summation of the cross-entropy loss from each stage, and the training process can be
parallel as we elaborate in section 4.

D Details of Wikidata-based Dataset

We build a new Wikidata-based dataset. This dataset is inspired by methodologies employed in previous
works such as Wiki-NRE (Trisedya et al., 2019), T-REx (Elsahar et al., 2018), REBEL (Huguet Cabot
and Navigli, 2021), leveraging extensive information available on Wikipedia and Wikidata. The primary
objective centers around establishing systematic alignments between textual content in Wikipedia articles,
hyperlinks embedded within these articles, and their associated entities and properties as cataloged in
Wikidata. This procedure is divided into three steps: (i) Parsing Articles: We commence by parsing
English Wikipedia articles from the dump file1, focusing specifically on text descriptions and omitting
disambiguation and redirect pages. The text from each selected article is purified of Wiki markup to
extract plain text, and hyperlinks within these articles are identified as associated entities. Subsequently,
the text descriptions are truncated to the initial ten sentences, with entity selection confined to those

1The version of the Wikipedia and Wikidata dump files utilized in our study are 20230720, representing the most recent
version available during the development of our work.
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referenced within this truncated text. This approach ensures a more concentrated and manageable dataset.
(ii) Mapping Wikidata IDs to English Labels: Concurrently, we process the Wikidata dump1 file to
establish a mapping (termed as the id-label map) between Wikidata IDs and their corresponding English
labels. This mapping allows for efficient translation of Wikidata IDs to their English equivalents. (iii)
Interconnecting Wikipedia articles with Wikidata properties: For each associated entity within the text
descriptions, we utilize Wikidatas API to ascertain its properties and retrieve their respective Wikidata
IDs. The previously established id-label map is then employed to convert these property IDs into English
labels. Each entitys type is determined using the value associated with instance of (P31). Given the highly
specific nature of these entity types (e.g., small city (Q18466176), town (Q3957), big city (Q1549591)),
we implement a recursive merging process to generalize these types into broader categories, referencing
the subclass of (P279) property. Specifically, we first construct a hierarchical taxonomy graph. Each node
within this graph structure represents an entity type, annotated with a count reflecting the total number
of entities it encompasses. Second, a priority queue are utilized, where nodes are sorted in descending
order based on their entity count. We determine whether the top n nodes represent an ideal set of entity
types, ensuring the resulted entity types are not extremely specific. Two key metrics are considered for
this evaluation: the percentage of total entities encompassed by the top n nodes, and the skewness of the
distribution of each entity type’s counts within the top n nodes. If the distribution is skew, we then execute
a procedure of dequeuing the top node and enqueueing its child nodes back into the priority queue. This
iterative process allows for a dynamic exploration of the taxonomy, ensuring that the most representative
nodes are always at the forefront. Finally, our Wikidata-based dataset is refined to contain the top-10 (i.e.,
n = 10) most prevalent entity types according to our hierarchical taxonomy graph and top-10 property
keys in terms of occurrence frequency, excluding entity name and type. The 10 entity types are talk,
system, spatio-temporal entity, product, natural object, human, geographical feature, corporate body,
concrete object, and artificial object. The 10 property keys are capital, family name, place of death, part of,
location, country, given name, languages spoken, written or signed, occupation, and named after.

E Statistics of Datasets

NYT is under the CC-BY-SA license. CoNLL04 is under the Creative Commons Attribution-
NonCommercial-ShareAlike 3.0 International License. REBEL is under the Creative Commons At-
tribution 4.0 International License. The dataset statistics presented in Table 3 compare NYT, CoNLL04,
REBEL, and Wikidata-based datasets. All datasets feature a minimum of one entity per sample, but they
differ in their average and maximum number of entities, with the Wikidata-based dataset showing a higher
mean of 3.84 entities. They also differ in the maximum number of entities, where REBEL has a max of
65. Property counts also vary, with REBEL having a slightly higher average number of properties per
entity at 3.40.

Table 3: Statistics of all three datasets used in our paper.

Statistics NYT CoNLL04 REBEL Wikidata-based

# of Entity Min 1 1 1 1
# of Entity Mean 1.25 1.22 2.37 3.84
# of Entity Max 12 5 65 20
# of Property Min 3 3 2 2
# of Property Mean 3.19 3.02 3.40 2.80
# of Property Max 6 4 17 8
# of Training Samples 56,196 922 2,000,000 23,477
# of Testing Samples 5,000 288 5,000 4,947

F Ablation Study

The ablation study conducted on the MuSEE model, with the Wikidata-based dataset, serves as an
evaluation of the model’s core components: the introduction of special tokens and the Multi-stage parallel
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Figure 6: Frequency histogram of entity types in
Wikidata-based Dataset.
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Figure 7: Frequency histogram of property keys in
Wikidata-based Dataset.

Table 4: Ablation study on Wikidata-based dataset. Each metric is shown in percentage (%).

Model
AESOP-ExactName AESOP-ApproxName AESOP-MultiProp

Max Precision Recall Max Precision Recall Max Precision Recall

w/o Multi-stage (T5-B) 25.19 40.87 27.64 25.75 42.14 28.26 26.93 44.49 29.72
MuSEE (T5-B) 44.95 50.63 58.99 45.75 51.57 60.10 46.95 53.00 61.75

w/o Multi-stage (T5-L) 27.74 53.04 28.81 28.14 54.10 29.22 29.14 56.90 30.29
MuSEE (T5-L) 49.35 57.97 59.63 49.89 58.69 60.35 50.94 60.11 61.68

generation. By comparing the performance of the full MuSEE model against its ablated version, where
only the special tokens feature is retained, we aim to dissect the individual contributions of these design
choices to the model’s overall efficacy. The ablated version simplifies the output format by eliminating
punctuation such as commas, double quotes, and curly brackets, and by converting all entity types and
property keys into special tokens. This is similar to the reducing output tokens discussed in Sec. 4. Results
from the ablation study, as shown in Table 4, reveal significant performance disparities between the
complete MuSEE model and its ablated counterpart, particularly when examining metrics across different
model sizes (T5-B and T5-L) and evaluation metrics. The full MuSEE model markedly outperforms
the ablated version across all metrics with notable improvements, underscoring the Multi-stage parallel
generation’s critical role in enhancing the model’s ability to accurately and comprehensively extract
entity-related information. These findings highlight the synergistic effect of the MuSEE model’s design
elements, demonstrating that both the Reducing output tokens and the Multi-stage parallel generation are
pivotal for achieving optimal performance in structured entity extraction tasks.

G Human Evaluation Criteria and Case Study

The details for the three human evaluation criteria are shown below:

• Completeness: Which set of entities includes all relevant entities and has the fewest missing important
entities? Which set of entities is more useful for further analysis or processing? Focus on the set that
contains less unimportant and/or irrelevant entities.

• Correctness: Which set of entities more correctly represents the information in the passage? Focus
on consistency with the context of the passage. Do extracted properties correctly represent each
entity or are there more specific property values available? Are property values useful?

• Hallucinations: Which set of entities contains less hallucinations? That is, are there any entities or
property values that do not exist or cannot be inferred from the text?

We provide a case study for the human evaluation analysis comparing the outputs of GenIE (T5-L) and
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MuSEE (T5-L) given a specific text description. MuSEE accurately identifies seven entities, surpassing
GenIE’s two, thus demonstrating greater completeness. Additionally, we identify an error in GenIE’s
output where it incorrectly assigns Bartolomeo Rastrelli’s place of death as Moscow, in contrast to the
actual location, Saint Petersburg, which is not referenced in the text. This error by GenIE could stem
from hallucination, an issue not present in MuSEE’s output. In this example, it is evident that MuSEE
outperforms GenIE in terms of completeness, correctness, and resistance to hallucinations.

Text Description: The ceremonial attire of Elizabeth, Catherine Palace, Tsarskoye Selo; fot. Ivonna
Nowicka Elizabeth or Elizaveta Petrovna (; ) reigned as Empress of Russia from 1741 until her
death in 1762. She remains one of the most popular Russian monarchs because of her decision
not to execute a single person during her reign, her numerous construction projects, and her strong
opposition to Prussian policies. The second-eldest daughter of Tsar Peter the Great (), Elizabeth lived
through the confused successions of her father’s descendants following her half-brother Alexei’s
death in 1718. The throne first passed to her mother Catherine I of Russia (), then to her nephew
Peter II, who died in 1730 and was succeeded by Elizabeth’s first cousin Anna (). After the brief rule
of Anna’s infant great-nephew, Ivan VI, Elizabeth seized the throne with the military’s support and
declared her own nephew, the future Peter III, her heir. During her reign Elizabeth continued the
policies of her father and brought about a remarkable Age of Enlightenment in Russia. Her domestic
policies allowed the nobles to gain dominance in local government while shortening their terms of
service to the state. She encouraged Mikhail Lomonosov’s foundation of the University of Moscow,
the highest-ranking Russian educational institution. Her court became one of the most splendid
in all Europe, especially regarding architecture: she modernised Russia’s roads, encouraged Ivan
Shuvalov’s foundation of the Imperial Academy of Arts, and financed grandiose Baroque projects of
her favourite architect, Bartolomeo Rastrelli, particularly in Peterhof Palace.

GenIE (T5-L):

{
"0": {

"entity name": "Bartolomeo Rastrelli",
"place of death": "Moscow",
"given name": "Bartolomeo",
"family name": "Rastrelli",
"languages spoken, written or signed": "Russian",
"country": "Russia",
"type": "human"

},
"1": {

"entity name": "Catherine I of Russia",
"given name": "Catherine",
"languages spoken, written or signed": "Russian",
"type": "human"

}
}

MuSEE (T5-L):

{
"0": {

"type": "human",
"entity name": "Peter the Great",
"given name": "Peter"

},
"1": {
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"type": "human",
"entity name": "Bartolomeo Rastrelli",
"family name": "Rastrelli",
"given name": "Bartolomeo"

},
"2": {

"type": "human",
"entity name": "Catherine I of Russia",
"given name": "Catherine"

},
"3": {

"type": "human",
"entity name": "Peter III",
"given name": "Peter"

},
"4": {

"type": "human",
"entity name": "Ivan Shuvalov",
"family name": "Shuvalov",
"given name": "Ivan",
"languages spoken, written or signed": "Russian"

},
"5": {

"type": "concrete object",
"entity name": "Peterhof Palace",
"country": "Russia"

},
"6": {

"type": "human",
"entity name": "Mikhail Lomonosov",
"family name": "Lomonosov",
"given name": "Mikhail",
"languages spoken, written or signed": "Russian"

}
}

H Metric Correlation Analysis

We show the correlation analysis between AESOP metric variants across all models on all four datasets,
shown in Fig. 8, Fig. 9, Fig. 10, and Fig. 11, respectively. Specifically, we focus on the correlation analysis
of different variants based on entity assignment variants in Phase 1 of AESOP, as described in Sec. 3.
For Phase 2, the “Max” normalization method is employed by default. Observations for the other two
normalization variants are similar. In the associated figures, AESOP-MultiProp-Max is uniformly used as
the x-axis measure, while AESOP-ExactName-Max or AESOP-ApproxName-Max serve as the y-axis
metrics. The scatter plots in all figures tend to cluster near the diagonal, indicating a robust correlation
among the various metric variants we have introduced.
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REBEL Dataset

Figure 8: Metric correlation analysis on the REBEL dataset.
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Figure 9: Metric correlation analysis on the NYT dataset.
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CONLL04 Dataset

Figure 10: Metric correlation analysis on the CONLL04.
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Figure 11: Metric correlation analysis on the Wikidata-based dataset.
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