Retrospex: Language Agent Meets Offline Reinforcement Learning Critic

Yufei Xiang Yiqun Shen

Yeqin Zhang

Cam-Tu Nguyen

State Key Laboratory for Novel Software Technology, Nanjing University
School of Artificial Intelligence, Nanjing University
Nanjing, China
{xiangyf, yiqunshen, zhangyeqin}@smail.nju.edu.cn
ncamtu@nju.edu.cn

Abstract

Large Language Models (LLMs) possess exten-
sive knowledge and commonsense reasoning
capabilities, making them valuable for creating
powerful agents. However, existing LLM agent
frameworks have not fully utilized past experi-
ences for improvement. This work introduces a
new LLM-based agent framework called Retro-
spex , which addresses this challenge by analyz-
ing past experiences in depth. Unlike previous
approaches, Retrospex does not directly inte-
grate experiences into the LLM’s context. In-
stead, it combines the LLLM’s action likelihood
with action values estimated by a Reinforce-
ment Learning (RL) Critic, which is trained on
past experiences through an offline “retrospec-
tion” process. Additionally, Retrospex employs
a dynamic action rescoring mechanism that in-
creases the importance of experience-based val-
ues for tasks that require more interaction with
the environment. We evaluate Retrospex in
ScienceWorld, ALFWorld and Webshop envi-
ronments, demonstrating its advantages over
strong, contemporary baselines'.

1 Introduction

The emergence of LLMs has paved the way for the
development of LLM-based agents. These agents
leverage the vast knowledge and commonsense rea-
soning capabilities within LLMs to tackle a wide
range of tasks (Wang et al., 2022a; Yao et al.,
2022a; Shridhar et al., 2020; Yang et al., 2018;
Thorne et al., 2018). Despite their potential, a sig-
nificant challenge arises from the dependence on
general-purpose LLMs. Specifically, these agents
might not be sufficiently adapted to the specific
environments, potentially hindering their task com-
pletion effectiveness.

Training LLM-based agents for new environ-
ments poses significant challenges. A common
approach is to fine-tune the LLM using “correct”

"https://github.com/Yufei-Xiang/Retrospex

demonstrations—sample trajectories that success-
fully complete the task (Qin et al., 2024; Lin et al.,
2023; Zeng et al., 2024). However, this approach
focuses on correct behaviors, limiting the agent’s
ability to learn and recover from mistakes. Re-
cently, efforts have been made to leverage imper-
fect experiences for training LLLM agents. These
methods fall into two categories: those that rely
on working memory, like Reflexion (Shinn et al.,
2023), and those that utilize cross-task experi-
ences from long-term memory, such as Remem-
berer (Zhang et al., 2024). Despite the progress,
experiences are still not sufficiently used, as they
are only integrated into the LLM’s context. Due to
the limited context length of LLMs, this constrains
the inclusion of more comprehensive experiences.

In this work, we propose a novel LLM-based
agent framework called Retrospex, which collects
cross-task experiences for training a Reinforcement
Learning (RL) Critic in a “retrospection” stage.
The RL Ceritic is then used to support the LLM
in decision making. Unlike previous studies (see
Figure 1), Retrospex does not directly integrate ex-
periences into the context. Instead, it exploits an
action rescoring strategy to combine the likelihood
of the actions provided by the LLM and the action
values estimated by the RL Critic. In addition, Ret-
rospex dynamically increases the weight of action
values from the RL Critic for tasks that require
more interaction steps with the environment, allow-
ing experiences to gradually play a more important
role in difficult tasks.

Retrospex has several advantages over previous
approaches. First, compared to RL-based agents,
Retrospex can leverage the strength of LLMs for
more effective decision making. Second, compared
to previous LLM-based agents, Retrospex can bet-
ter utilize experiences without increasing the con-
text length. Third, Retrospex is more flexible in
controlling how much experience is needed at each
step thanks to the dynamic scoring method. Finally,

4650

Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 4650-4666
November 12-16, 2024 ©2024 Association for Computational Linguistics

ReAct Reflexion Rememberer Retrospex
Context —» Context > Context --..» Long-term —»Context» L’(\J/lng-term
—> - Memory emory
c S
s _% 8 l ex| riencesl l
% : .
g & [LLM } Retriever LLM RL Critic
s ° Top-k
° act P act value
action likelihood
action action Dynamic Action Rescoring
=, . ¢ action
- 4 - _ observation observation @
- \
L J
v

------- » Added to Long-term Memory

————>» Offline RL Training

Figure 1: Comparing different architectures for LLM-based Agents

Retrospex is general and can be adapted to various
LLMs or RL methods. In this paper, we imple-
ment RL Critic with a lightweight neural network,
thus providing little inference overhead compared
to using only LLMs for action selection.

We evaluate Retrospex in three text-based sim-
ulation environments: ScienceWorld (Wang et al.,
2022a), ALFWorld (Shridhar et al., 2020), and
Webshop (Yao et al., 2022a). The experimental
results demonstrate that integrating the RL Critic
and dynamic action scoring in Retrospex enhances
the performance of LLM-based agents, leading to
success rate improvements of 9% in ScienceWorld,
3.5% in ALFWorld, and up to 5% in Webshop.

Our contributions are summarized as follows:

* We propose Retrospex, a general framework
for LLM-based agents that exploits the expe-
rience memory for training an RL Critic to
support LLMs in decision making.

* We propose a dynamic action rescoring that
combines LL.M’s likelihood and RL Critic ac-
tion values. By doing so, we balance the two
factors in planning, the current task informa-
tion and past experiences.

¢ We test our method in three different environ-
ments, ScienceWorld, ALFWorld and Web-
shop. The results are promising and validate
our framework’s effectiveness.

2 Related Work
2.1 Reasoning and Planning with LLM

LLMs have been exploited to tackle a wide range
of tasks such as reasoning (Wei et al., 2022; Ko-
jima et al., 2022; Yao et al., 2024), self-verification

(Wang et al., 2022b; Miao et al., 2023), problem de-
composition or formalization (Madaan et al., 2024;
Zhou et al., 2022), and planning (Yao et al., 2022b;
Wu et al., 2023; Wang et al., 2023).

Most of these aforementioned studies, however,
do not utilize the agent’s past experiences for
performance improvement. To overcome this is-
sue, recent studies leverage relevant experiences to
prompt LLM for reasoning, allowing LLM-based
agents to learn from previous mistakes. Notable
examples include Relexion (Shinn et al., 2023), Re-
memberer (Zhang et al., 2024), Salam (Wang and
Li, 2023) and ExpeL (Zhao et al., 2024). How-
ever, this approach is still limited by the context
length of LL.Ms, hindering the ability to fully uti-
lize past experiences. Our proposed approach com-
bines LLM’s action likelihood with RL Critic’s
action values for action reranking. By doing so,
there is no need to incorporate experiences into the
LLM context, thereby mitigating the problem of
long context.

2.2 LLM combined with RL

RL has traditionally been used to train agents ca-
pable of making sequential decisions. With the
advent of large language models (LLMs), many ef-
forts have emerged to integrate LLMs with RL for
agent training. These approaches can be broadly
categorized into two groups, as outlined below.
The first group uses RL techniques to train LLMs
as policy models for acting in new environments.
This includes GPT-Critic (Jang et al., 2022), LID
(Liet al., 2022), AgentTuning (Zeng et al., 2024),
PAC (Springenberg et al., 2024), and A3T (Yang
et al., 2024). LID uses LLMs for policy initializa-
tion, while AgentTuning applies imitation learning

4651

(IL) to train adaptable agents. GPT-Critic and PAC,
on the other hand, train LLMs as both critics and ac-
tors using offline RL. Like AgentTuning, A%T and
LID, we use IL to train a base LLM for decision-
making. However, unlike these methods, Retro-
spex also focuses on enhancing the base LLM’s
performance during inference without LLM update.
This approach avoids the computational cost and
potential risk of weakening the LLM’s general ca-
pabilities that could arise from frequent updates.
The second group uses RL methods to train as-
sistants that support LLMs in decision-making via
prompting, including Salam (Wang and Li, 2023),
SayCan (Brohan et al., 2022), and Rememberer
(Zhang et al., 2024). Salam uses IL to train an
assistant who corrects mistakes and provides guide-
lines. Rememberer uses Q-learning to estimate ac-
tion values for past experiences stored in memory.
During inference, Rememberer retrieves the most
relevant experiences (along with their correspond-
ing action values) and incorporates them into the
LLM’s context. Both Salam and Rememberer ex-
tend the LLM’s context with additional information.
SayCan, on the other hand, estimates an affordance
function to help ground the LL.M’s actions. The
final action probability is calculated by combining
the LLM’s likelihood with the affordance value.
Our approach is most closely related to Say-
Can but differs in two key aspects: 1) SayCan’s
affordance function is used for action grounding,
whereas RL Critic in Retrospex is for action re-
evaluation. SayCan allows for combining any LLM
with any affordance function, even independently
trained ones. In contrast, we train an RL Critic
on the action distribution supported by the LLM,
enabling better value estimates for LLM’s actions;
2) Retrospex exploits dynamic scoring, whereas
SayCan employs a static score combination.

3 Methodology

Figure 2 demonstrates the training process of Ret-
rospex which involves a warm-up phase and a retro-
spection phase. During the warm-up phase, we fine-
tune the LLLM based on expert (e.g. human) demon-
strations and collect the working experiences of the
LLM agent. In the retrospection stage, we train an
RL Critic from the LLM agent’s experiences using
Implicit Q-learning (IQL), an offline RL method.
By doing so, the RL Critic is expected to learn from
the LLM agent’s mistakes and assist in making bet-
ter decisions in the future.

3.1 Warm-up Stage

Imitation Learning Inspired by (Lin et al., 2023;
Zeng et al., 2024), we cast the action prediction
task as a text generation task. We fine-tune the
LLM with expert demonstrations (i.e., golden tra-
jectories). The objective is to equip the LLM with
fundamental knowledge about the agent’s environ-
ment. This process, known as Imitation Learning
(IL), is essential for LLMs of moderate size but can
be skipped for powerful LLMs such as GPT-4.
Formally, we train the LLM policy y = 7(x) so
that the generated action y is the most likely action
7* () taken by a human expert. Here, x is the given
context that contains a task description, and a se-
quence of states, and actions. A state encapsulates
the environment information at a specific time. For
simplicity, we assume that states can be inferred
from the initial agent state and subsequent obser-
vations from the environment. A golden trajec-
tory £ = {taskl, s1,a, 2, a2, s3,as} can be de-
composed into multiple (training) instances (x; =
{taskl,s1}, y1 = a1), (xe = {taskl, sy, a1, s2},
Y2 = ag), and (z3 = {taskl, s1, a1, s2, az, s3},
ys = a3). The training objective then involves
solving the following optimization problem:

FLom = arg;nin Z Z Lyrr (n(z), 7" (2))

EeT xe€

where 7 denotes the set of golden trajectories and
¢ is one particular trajectory. Ly, represents the
negative log-likelihood loss, 77*(z) denotes the ex-
pert’s action for state x, and 7} ; ,, is the estimated
policy model (the fine-tuned LLM).

Collecting Experiences Due to the complexity
of the environment and the limited size of demon-
stration data, IL is often insufficient for obtaining
an optimal policy. As such, we collect the expe-
riences of the trained LLM interacting with the
environment. Here, the format of each experience
trajectory is similar to that of a golden trajectory,
but an experience may contain suboptimal actions
and/or be a failed attempt to finish users’ tasks.

3.2 Retrospection Stage

The task of sequential decision can be formal-
ized as a Markov Decision Process (MDP), which
is denoted as (S, A, po(s),p (s | s,a),7(s,a),7).
Here, S, A are the state and action spaces, py is the
initial state distribution, p (s’ | s, a) is the environ-
ment dynamics, 7 (s, a) is a reward function, and -y
is a discount factor. The objective is to find a policy

4652

Warm-up Stage IL & Collecting Experiences

Supervised

Training -LLM

Collecting_Experiences
observation o

v &
Context —) 5

Golden
Trajectories

Mem

1.task 1, s1, a1, s2, a2, ...
2.task 2, s1, a1, ...
3. task 3, s1, a1, s2, a2, ...

Retrospection Stage

=

Offline RL Training

Training tuples:
(s1, a1, s/1,al1)
(82, @z, sl3,als)

Mem

Implicit| Q-Learning (IQL)
Q-Network (RL Critic)

task oRU
desp

s —» GRU —>» —>» Q(s,a)

uoljeus}eouo0)
J9Ae Jeaur

(Action Value)
a__y GRU__,

Figure 2: The training process of Retrospex includes two stages: 1) In the Warm-up stage, an imitation learning
(IL) base agent is trained and used for experience collection; 2) In the Retrospection stage: Offline RL is used to
train RL Critic from offline experiences. Here, s* and a* denote states and actions, respectively. In the retrospection

stage, s’ and o’ indicate the following state and action.

7(als) that maximizes the cumulative discounted
return as follows:

oo
T = arg mawa[Z v (s¢, at)
i t=0

|50Np0,at N7T(' \ St)78t+1 Np(' \ Styat)]

RL can be used to solve the MDP problem and
find 7 using interaction data. In general, RL can
be conducted online, where we update the LLM-
based agent whenever we have a new experience.
However, doing so can be expensive and unstable
(Nottingham et al., 2023). As a result, we follow
the offline RL approach, where we collect experi-
ences to memory, and update the LLM-based agent
once we have enough experience.

Offline RL uses a fixed experience memory to
train the action-value function (s, a). Here, the
(@ value corresponds to the expected cumulative re-
ward (return) obtained by starting from the state s,
performing action a, and then following the policy
7. This work exploits Implicit Q-Learning (IQL)
(Kostrikov et al., 2022), which aims to handle the
issue of overestimating Q-function due to unseen
actions in offline RL. IQL builds on approximate
dynamic programming methods that minimize tem-
poral difference errors as follows:

LTD(Q) = E(s,a,s’)wD[(r(Sa a)+
ymax Qs(s', a) — Qo(s, a))’]

Here, D is the experience memory, s, s’ are the
current and next states respectively. A target Q-

network () is used for action selection, and an
online Q-network () is used for value estimation
update at each training step. After each training
batch, the target network is updated based on the
online network. To prevent the target network from
selecting actions that are not supported in the expe-
rience memory (due to max, (J5) , IQL applies a
separate state value function V() to estimate:

Ly (¢) = E(sa)~p[L3(Q4(s,a) = Vy(s))]

Letu = Qy(s,a) —Vy(s), Ly(u) = |[7—1(u <
0)|u? is the upper expectile function. It has been
proven that, by optimizing the above objective, we
fit Vy(s) to approximate the maximum of Q; over
actions supported by the data distribution when
7 — 1 (Theorem 3 by Kostrikov et al. (2022)).
After this estimation, IQL can apply V (s) to update
the (s, a) with simple MSE loss.

Lo(0) = E[(r(s,a) +vVy(s) — Qa(s, a))?

where the expectation is calculated by sampling
(s,a, s/) ~ D. The value functions (Q-network
and V-network) can be realized in many forms,
here we use GRU neural networks as shown in Fig-
ure 2. We encode task description, state, and action
separately with different GRU blocks, then concate-
nate the embeddings together and send them to the
next linear layers. We use 2 linear layers after the
encoding layer to get the final ¢ and v values. The
structure of the V-network is similar to Q-network
except that we do not have action a as the input and
the output is the state value V'(s).

4653

Inference Stage

Dynamic Action Rescoring

Context —» Top-k actions —>» J -

RL Critic —>

LM prob
% a(t) Select top
act values action
) x(1—a(t))

Figure 3: Dynamic Action Rescoring in Retrospex, where ¢ indicates the interaction step in the current trajectory.

3.3 Inference Stage

After training, LLM and RL Critic (Q network) are
used for inference as follows.

Action Mapping To ensure that the action can-
didates sampled by the LLM can be executed in
the environment, we map the LLM response to the
valid action space as follows:

1) Given the current context including task descrip-
tion, past states and actions, the LLM generates
K next action candidates using nuclear sam-
pling with a temperature of 1 and top-p of 0.95;

2) Filter out the candidates that are already valid
actions (assuming there are m candidates), and
directly retain this part of the candidates;

3) Obtain embeddings of the (K — m) invalid
candidates, and those of all valid actions
through the Sentence Transformer (Reimers and
Gurevych, 2019); Find the (K — m) valid ac-
tions that have the largest sum of cosine simi-
larities with all the candidates, excluding those
that have been included in Step 2;

4) The final candidate of all actions is the union of
actions in Step 2 and Step 3.

Dynamic Action Rescoring The LLM first gen-
erates several responses by nuclear sampling. After
mapping the responses into action space as afore-
mentioned, LLM provides the probabilities p of
these action candidates. We then normalize these
values to obtain LLM scores.

p = Norm(#rpp(als))
The top-K actions are fed into the RL Critic. The

value function will give the action value ¢ for each
action, which is then normalized as follows.

q= Norm(QrqL(s,a))

To decide which candidate will be chosen, we com-
bine the 2 scores together as the final score .S and
select one with the highest score as follows:

a(t) = maz (b, d")

S(a) = a(t)p+ (1 - alt)q

where b,d € [0,1] and «(t) is the dynamic com-
bination weight between p and q. Whent = 0
(corresponding to «(t) of 1), we have few obser-
vations and rely more on the commonsense of the
LLM to guide action selection. As ¢ increases, c(t)
decreases with a discount factor d, allowing the
RL Ciritic to have a greater influence on decision-
making. However, we set a lower bound of b for
a(t) to ensure the LLM’s role is not reduced too
drastically for long trajectories.

4 Experiments

The experiments are conducted in three environ-
ments: ScienceWorld (Wang et al., 2022a), ALF-
World (Shridhar et al., 2020) and Webshop (Yao
et al., 2022a). We use Average Score (AS) and
Success Rate (SR) to measure the performancez.
Both metrics (AS and SR) are scaled to the range
of [1,100] in all three environments. The train-
ing and testing sets for the three environments are

summarized in Table 1 and Table 2.

4.1 ScienceWorld

Experimental Setup ScienceWorld is a complex
interactive text environment that tests an agent’s sci-
entific commonsense. In this environment, agents
are required to navigate through 10 interconnected
locations (e.g., workshop, kitchen) and utilize the
tools to complete tasks such as “determine if the
metal fork is electrically conductive”. The environ-
ment contains 200 objects, 25 high-level actions,
resulting in approximately 200k possible action-
object combinations. We collect 2157 golden (i.e.
successful) trajectories to train Flan-T5-large? in

2ALFWorld only supports SR for evaluation
3https://huggingface.co/google/flan-t5-large

4654

‘ Warm-up Stage ‘ Retrospection Stage

Env
‘ LLM # Training data ‘ IQL # Training Trajs SR
SciWorld | Flan-T5-large (770M) 2157 golden | GRU (2.7M) 2566 36
ALFWorld GRU (2.7M) 2000 67
Webshop LLaMA3-8B-Instruct Agentlnstruct+ GRU (2.7M) 1500 A4

Table 1: Training data used in the warmup and retrospection stages of Retrospex. Here, Agentlnstruct+ is a
dataset used by (Zeng et al., 2024) for agent training, which consists of 1866 golden trajectories from a mix of 6
environments including Webshop (351 golden trajectories) and ALFWorld (336 golden trajectories). SR denotes the
percentage of the successful trajectories in the memory used for retrospection stage training. We train one LLM for

both ALFWorld and Webshop environments.

Env # Subtasks # Test Samples
SciWorld 30 270
ALFWorld 6 134

Webshop - 100/200/251

Table 2: The number of subtasks and testing samples
in the three tested environments. For Webshop, we
conduct evaluation on three different test sets used by
Zhang et al. (2024) (100 samples), Zeng et al. (2024)
(200 samples), and Yang et al. (2024) (251 samples).

the warm-up stage, and 2566 trajectories, which
contain both fail and successful ones with SR of
36%, for training GRU-based RL Ceritic in the ret-
rospection stage. In the warm-up stage, we follow
the same training strategy for imitation learning
(IL) specified in SwiftSage (Lin et al., 2023). We
denote this IL agent as IL-T5, which corresponds to
the Swift model in SwiftSage as well as Retrospex
(wlo retrospection). For dynamic re-scoring, we
choose d = 0.97,b = 0.6 as our hyper-parameters.

Baselines We compare Retrospex to baselines of
different types: (1) LLM-based agents ReAcT (Yao
et al., 2022b) and Reflexion (Shinn et al., 2023); (2)
online RL agent DRRN (He et al., 2016); and (3)
SayCan (Brohan et al., 2022) which combines LLM
with an affordance function for action grounding.
The details for SayCan, ReAct and Reflexion are
provided in SwiftSage paper (Lin et al., 2023). It
is noteworthy that we do not compare to SwiftSage
here as it exploits two large language models (GPT
and IL-T5) for inference, resulting in a somewhat
unfair comparison. The results of GPTP3.5-based
ReAct and DRRN are produced by ourselves.

Results The experimental results on Science-
World are shown in Table 3, where several obser-
vations can be drawn. Firstly, it can be seen that

Method LLM AS SR
DRRN (our run) GRU 14.13 0
ReAcT (our run) GPT3.5 14.60 0.03

SayCan GPT4+SBERT 33.82 -

ReAcT 7 GPT4 36.43 -

Reflexion f GPT4 45.34 -
IL-T5 Flan-T5-large 48.80 27.0
Retrospex Flan-T5-large 55.98 36.0

Table 3: The AS and SR on ScienceWorld. Here, T
denotes the results from SwiftSage (Lin et al., 2023).

the performance of DRRN is significantly worse
than other baselines, confirming the challenge of
learning an independent RL agent in an environ-
ment with a large action space. Secondly, GPT4-
based ReAct models can achieve relatively good
results without any training, suggesting that power-
ful LLMs can exploit its commonsense to recognize
meaningful action-object combinations for better
results. Thirdly, the result of SayCan is not satisfac-
tory with GPT4+SBERT, suggesting that exploit-
ing a value function that is trained independently
from the LLM-based actor might not be optimal.
Last but not least, it is observable that IL-T5, a
relatively small-size LLM-based IL agent, can out-
perform Reflexion, which is based on the powerful
GPT4 model. This shows that the knowledge of
small size LLM (T5) might be sufficient for Sci-
enceWorld, and IL is important to ground an agent
in the targeted environment. In addition, the fact
that Retrospex significantly outperforms IL-T5 by
7 points in AS and 9 points in SR suggests the im-
portance of the retrospection stage for agents to
explore and learn from mistakes. A more detailed
list of all 30 sub-tasks of ScienceWorld can be seen
in Table 8 in the Appendix.

4655

Method LLM SR
Reflexion f GPT3.5 40.3
ExpeL ¥ GPT3.5 59.0
A3T (round=0) Mistral-7B-Instruct ~ 86.0
A3T (round=1) Mistral-7B-Instruct ~ 94.0
IL-LLaMA3 LLaMA3-8B-Instruct 83.5
Retrospex LLaMA3-8B-Instruct 87.0

Table 4: Overall results on ALFWorld. Here, 1 denotes
the results of Reflexion (Shinn et al., 2023) and ExpeL
(Zhao et al., 2024) from (Zhao et al., 2024). The result
of A®T is from (Yang et al., 2024).

4.2 ALFWorld

Experimental Setup ALFWorld is also a suite
of text-based environments that challenge an agent
to solve multi-step tasks based on TextWorld (Coté
et al., 2018). The action and task formats of ALF-
World are similar to ScienceWorld but simpler. We
exploit the Agentlnstruct+ dataset for training a
LLaMA3-8B-Instruct-based IL agent in the warm-
up stage and collect 2000 trajectories with SR of
67% for restrospection stage training. Here, Agent-
Tuining+ includes both AgentInstruct* for agent
learning capabilities and ShareGPT? for general
capability. The Agentlnstruct+ dataset contains the
golden trajectories of both ALFWorld and Web-
shop environments, thus we train only one IL agent
for being used in both environments. The combi-
nation parameters of dynamic action rescoring in
Retrospex for ALFWorld are d = 0.95,b = 0.6.

Baselines We compare to Reflexion (GPT 3.5)
and ExpeL (Zhao et al., 2024) and A3T (Yang
et al., 2024). Concurrent to our work, Yang et al.
(2024) proposes A3T, a self-improvement frame-
work to train LLM agents by updating LLM multi-
ple rounds. For the first round (round=0), imitation
learning is used to train LLM from golden trajec-
tories, which is similar to our warm-up stage. For
other rounds (round > 0), A3T updates LLM using
contrastive learning methods like DPO (Rafailov
et al., 2023). A3T also proposes an interesting
method for generating composed trajectories for
exploration. The details of Reflexion, ExpeL, A3T
can be found in A3T paper (Yang et al., 2024).

Results Table 4 presents the performance of com-
pared methods on the ALFWorld environment. The

“https://huggingface.co/datasets/ THUDM/AgentInstruct
Shttps://huggingface.co/datasets/anon8231489123/Share
GPT_Vicuna_unfiltered

results indicate that Retrospex outperforms the
base IL model (IL-LLaMA3) and A?T (round=0)
but falls short when compared to A%T (round=1).
Upon examining the training details of A3T, we
observe that A3T leverages 981 golden trajectories
for round=0 and 3431 trajectories (with a 90.2%
success rate) for round=1. In contrast, Retrospex
uses only 351 Webshop golden trajectories during
the warm-up phase and 2000 trajectories with a
lower success rate of 67% for the retrospection
phase (see Table 1). The discrepancy in data qual-
ity and quantity accounts for the underperformance
of IL-LLaMA3 compared to A3T (round=0) and
of Retrospex compared to A%T" (round=1).

Although Retrospex does not achieve state-of-
the-art (SOTA) performance on ALFWorld, our
retrospection strategy remains valuable for three
key reasons. First, the retrospection phase signifi-
cantly improves the base IL agent, as evidenced by
the 3.5% success rate (SR) increase of Retrospex
compared to IL-LLaMA3. Second, the retrospec-
tion phase is much more cost-effective than a full
training round in A3T. Specifically, A3T requires
direct updates to a large (7B) LLM, while Retro-
spex only updates a smaller RL-Critic model—a
GRU with 2.7M parameters. Frequently updating
LLM is not only computationally expensive but
also risks weakening its general capability due to
catastrophic forgetting. Finally, the strategies of
Retrospex and A3T can be combined as a small
RL-Critic model can be trained to assist with infer-
ence between LLM update cycles in A3T, offering
a more practical approach.

4.3 'Webshop

Experimental Setup Webshop (Yao et al.,
2022a) is an online shopping website environment
with 1.18M products and 12k human instructions.
An agent is required to purchase a product based
on a user instruction such as “I am looking for a
nightstand with drawers.” To complete the task, the
agent needs to perform actions such as searching
“nightstand drawers,” or choosing clickable buttons.
We use the same IL-LLaMA3 as the IL base agent
as described in the previous section. The RL-Ceritic,
however, is trained specifically for Webshop. The
parameters of dynamic action rescoring for Web-
shop are d = 0.9,b = 0.5.

Baselines We compare with three main baselines
Rememberer (Zhang et al., 2024), AgentLM (Zeng
et al., 2024), and A%T. As different studies con-

4656

Method LLM AS SR

Rememberer (Zhang et al., 2024) test set

ReAcT ¥ GPT3.5 66.0 36.0
Rememberer § GPT3.5 68.0 38.0
IL-LLaMA3 LLaMA38B 76.2 424
Retrospex LLaMA3 8B 74.6 46.0
AgentLM (Zeng et al., 2024) test set
ReAcT % GPT4 58.6 -
AgentLM i LLaMA27B 63.6 -
AgentLM % LLaMA2 13B 70.8 -
IL-LLaMA3 LLaMA3 8B 77.1 455
Retrospex LLaMA38B 77.7 50.5

AgentBoard (Ma et al., 2024) test set

A3T (round=0) Mistral 7B 72.0 -

A3T (round=1) Mistral 7B 73.5 -
IL-LLaMA3 LLaMA38B 76.5 44.2
Retrospex LLaMA38B 77.2 49.0

Table 5: Overall results on Webshop, where 1 and &
results are from (Zhang et al., 2024) and (Zeng et al.,
2024). The result of A3T is from (Yang et al., 2024).

duct evaluations on different subsets of the original
Webshop test tasks, we conduct multiple tests for
fair and comprehensive comparisons. Specifically,
Rememberer uses the first 100 samples for testing
whereas AgentLM uses 200 samples. A3T both
compares with AgentLM © and reports the result
on AgentBoard test set. Here, we compare to A3T
results on the AgentBoard test set.

Results Table 5 shows the performance of Ret-
rospex and other baselines on Webshop environ-
ment. The experiment verifies the effectiveness of
Retrospex over Rememberer, AgentLM, and A3T
(round=0), (round=1) on their respective reported
test sets. It is noteworthy that Retrospex performs
well compared to A3T even though we use one
base LLM for ALFWorld and Webshop, whereas
AT finetunes another LLM specifically for Web-
shop. The retrospection stage in Retrospex helps
improve the success rate (SR) significantly over
three test sets and improves AS in two over three
test sets. One explanation for why Retrospex ob-
tains higher SR yet lower AS in the Rememberer
test set is that IL-LLaMA3 may not return correct
products in many cases (fail cases) yet it returns
close enough products (high scores). We leave
further investigation to future work.

8 A3T doesn’t explicitly state if AgentLM test set is used

Short Medium Long

SayCan 43.83 36.55 23.65
IL-TS 90.87 4271 25.56
T5-then-IQL 68.17 31.18 1993
Retrospex 9549 55.18 31.93

Table 6: Average reward scores on different task com-
plexity on ScienceWorld

S Further Analysis

5.1 Analysis on Task Complexities

To evaluate the performance of Retrospex across
varying task complexities, we categorize the tasks
in ScienceWorld into three levels: short (fewer than
20 steps), medium (20 to 50 steps), and long (more
than 50 steps). We then calculate the average score
(AS) for each complexity level, with the results pre-
sented in Table 6. Across all three levels, Retrospex
demonstrates significant improvements. Notably,
tasks with medium-length trajectories show an av-
erage score increase of more than 10 points, while
tasks with short and long trajectories see improve-
ments of over 5 points.

We also report the results for T5-then-IQL,
where the top actions are reranked based solely
on RL-Ceritic scores. The inferior performance of
T5-then-IQL compared to IL-T5 suggests that the
LLM’s likelihood should not be disregarded when
selecting actions. This performance drop is espe-
cially pronounced in tasks with short trajectories,
highlighting the importance of LLM when we have
fewer observations. This supports our intuition be-
hind dynamic scoring, where we place greater trust
in the LLM when the step count ¢ is small.

5.2 Analysis on Combination Parameters

In order to investigate the effect of differences in
the parameters used for the combination of dy-
namic action scoring, we test different d and b on
ScienceWorld and the results are shown in Table 7.

Necessity of Two Scores When using only the
IQL score (d = 0,b = 0), the average scores drop
significantly for three different complexity settings.
When we use LLM only (first column), the perfor-
mance is poor compared to the results of the score
combination. Both scores, therefore, are essential
for performance improvement.

Necessity of Dynamic Combination We study
if a dynamic combination is necessary. For that, we

4657

LTS5 d=0 d=0.95 d=0.97 d=0.97 d=0.99 Static combination
b=0 =025 b=0.5 b=0.6 b=0.6 0.6p+0.4q
Short 90.87 68.17 94.63 96.43 9549 93.11 94.35
Medium 42.71 31.18 5240 54.68 55.18 51.63 54.63
Long 25.56 1993 25.58 29.33 31.93 35.39 29.21
AS 48.80 36.7 52.51 55.13 55.98 55.63 54.37

Table 7: Results on ScienceWorld with different dynamic scoring parameters

select and fix a combination of the action likelihood
and value based on the study of different b values.
The last column of Table 7 shows the score with
a static combination. It is observable that static
combination underperforms dynamic combination,
verifying the role of the discount factor d in incor-
porating more experiences for long-horizon tasks.

Parameter Choice We analyze the two param-
eters d and b in dynamic action rescoring. First,
when d is small, the weight of the LLLM score de-
creases rapidly within a smaller number of steps.
Consequently, the agent quickly shifts the focus
to action values from IQL, leading to a drop in
performance. Secondly, for our method to be suf-
ficiently effective, the LLM still needs a relatively
large weight even at the end of a long trajectory. As
such, we need to keep the value of b high to ensure
that the validity of the LLM scores is maintained.

5.3 Analysis on Inference Time Cost

Given the context of length [V containing past in-
teractions and thoughts, LLM-based agents need
to generate the next action. As the action length
is often much shorter compared to the context
length, we simplify the analysis by estimating the
inference time for ReAct, Reflexion, Rememberer
and Retrospex to generate one-token action with
Transformer-based LLM.

ReAct The time for ReAct to generate one-token
action is dominated by attention operations in LLM,
which is N? x T} where T} is the computational
time depending on the LLM model and the hard-
ware infrastructure.

Reflexion The time for Reflexion to generate one-
token action is dominated by (N + R)? x Ty, where
R contains the historical trials and errors.

Rememberer The time complexity is (N +
KI)*T1+(MTy+M log K). Here, K indicates the
number of experiences incorporated into the LLM

context, and [is the average experience length. As-
suming bruteforce search with the support of a
max-heap, MT5 + M log K is the time for retriev-
ing K relevant experiences in the memory of size
M, and T5 is the time for calculating the similarity
between the current trajectory and each trajectory
in the memory. The size of memory M will be ac-
cumulated, leading to longer inference over time.

Retrospex The time for one-token action gener-
ation is N2 x T + KT3 where T} is the time for
calculating the Q-value with GRU. As T7 > T3,
Retrospex adds little inference overhead compared
to ReAct. However, as we can obtain better perfor-
mance with Retrospex with smaller LLM (smaller
T1), Retrospex can still win in inference time com-
pared to ReAct based on GPT4. Compared to Re-
flexion and Rememberer, due to shorter context,
Retrospex is more efficient. In Retrospex, we still
need to sample top-K actions, however, this is done
only on the last layer, which is much less demand-
ing compared to N2 x T} for LLM.

6 Conclusion

This work introduces a novel LLM-based agent
framework, named Retrospex, that addresses the
limitations of prior approaches in leveraging expe-
riences for decision-making. Retrospex overcomes
the context length restriction by separating experi-
ence analysis (through a Reinforcement Learning
Critic) from LLM-based action selection. This
enables the agent to effectively utilize past experi-
ences while retaining the strengths of LLMs. Ad-
ditionally, the dynamic action rescoring method
allows for flexible control over the influence of ex-
periences based on task complexity. Evaluations
demonstrate that Retrospex achieves significant per-
formance improvements compared to strong base-
lines, highlighting its potential for real-world appli-
cations of LLM agents.

4658

Limitations

There are several limitations to our work. First,
LLM-dependent action sampling and short-term
evaluation can include limitations and biases from
the LLM itself. In addition, the closely related
memory can also suffer from distributional biases
in trajectories and lack of exploration of the action
space. Future work can be investigated to expand
the action exploration in the collection stage, thus
gathering trajectories with more diversity. Second,
current work does not explore the potential of in-
corporating verbal feedback such as those from
Reflexion for better retrospection of past experi-
ences. Third, it will be interesting to improve the
dynamic action scoring with an automatic module
that decides the weights of experiences instead of
relying on predefined hyperparameters.

Ethic Statement

In our study, we utilize open simulation environ-
ments, ensuring that there is no direct interaction
with humans that could potentially cause harm. The
training data used in our experiments is sourced
from publicly available datasets, all of which are
thoroughly cited and referenced in the main text
to maintain transparency. By limiting our work to
simulated settings and publicly accessible data, we
minimize ethical concerns related to privacy, con-
sent, and safety. However, it is important to empha-
size that while the current study avoids real-world
risks, the broader application of LLM-based agents
requires careful consideration. As these technolo-
gies are increasingly deployed in real-world set-
tings, it is essential to ensure that they are aligned
with human values, respect ethical guidelines, and
mitigate potential biases.

Acknowledgement

We thank the anonymous reviewers for their con-
structive feedback that helps improve this work
significantly. Our study was partially supported
by computing resources from NJU, the State Key
Laboratory for Novel Software Technology, and
Intelligent Integration Co. LTD (INT2), Vietnam.

References

Anthony Brohan, Yevgen Chebotar, Chelsea Finn, Karol
Hausman, Alexander Herzog, Daniel Ho, Julian
Ibarz, Alex Irpan, Eric Jang, Ryan Julian, et al. 2022.
Do as i can, not as i say: Grounding language in

robotic affordances. In Conference on robot learning,
PMLR.

Marc-Alexandre Coté, Akos Kadar, Xingdi Yuan,
Ben A. Kybartas, Tavian Barnes, Emery Fine, James
Moore, Matthew J. Hausknecht, Layla El Asri, Mah-
moud Adada, Wendy Tay, and Adam Trischler. 2018.
Textworld: A learning environment for text-based
games. In Twenty-seventh International Conference
on Artificial Intelligence, IJCAI

Scott Fujimoto, Herke Hoof, and David Meger. 2018.
Addressing function approximation error in actor-
critic methods. In International conference on ma-
chine learning.

Ti

—_

He, Mari Ostendorf, Xiaodong He, Jianshu Chen,
Jianfeng Gao, Lihong Li, and Li Deng. 2016. Deep
reinforcement learning with a combinatorial action
space for predicting popular reddit threads. In Pro-
ceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP.

Youngsoo Jang, Jongmin Lee, and Kee-Eung Kim. 2022.
Gpt-critic: Offline reinforcement learning for end-to-
end task-oriented dialogue systems. In Ninth Inter-
national Conference on Learning Representations,
ICLR.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. In Thirty-sixth
Conference on Neural Information Processing Sys-
tems, NeurIPS.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine.
2022. Offline reinforcement learning with implicit
g-learning. In Tenth International Conference on
Learning Representations, ICLR.

Shuang Li, Xavier Puig, Chris Paxton, Yilun Du, Clin-
ton Wang, Linxi Fan, Tao Chen, De-An Huang, Ekin
Akyitirek, Anima Anandkumar, et al. 2022. Pre-
trained language models for interactive decision-
making. In Thirty-sixth Conference on Neural In-
formation Processing Systems, NeurIPS.

Bill Yuchen Lin, Yicheng Fu, Karina Yang, Faeze Brah-
man, Shiyu Huang, Chandra Bhagavatula, Prithviraj
Ammanabrolu, Yejin Choi, and Xiang Ren. 2023.
Swiftsage: A generative agent with fast and slow
thinking for complex interactive tasks. In Thirty-
seventh Conference on Neural Information Process-
ing Systems, NeurlPS.

Chang Ma, Junlei Zhang, Zhihao Zhu, Cheng Yang,
Yujiu Yang, Yaohui Jin, Zhenzhong Lan, Lingpeng
Kong, and Junxian He. 2024. Agentboard: An ana-
Iytical evaluation board of multi-turn 1lm agents. In
Twelfth International Conference on Learning Repre-
sentations, ICLR.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,

4659

et al. 2024. Self-refine: Iterative refinement with self-
feedback. In Thirty-seventh Conference on Neural
Information Processing Systems, NeurlPS.

Ning Miao, Yee Whye Teh, and Tom Rainforth. 2023.
Selfcheck: Using llms to zero-shot check their own
step-by-step reasoning. In Tielfth International Con-
ference on Learning Representations, ICLR.

Kolby Nottingham, Yasaman Razeghi, Kyungmin Kim,
JB Lanier, Pierre Baldi, Roy Fox, and Sameer Singh.
2023. Selective perception: Optimizing state descrip-
tions with reinforcement learning for language model
actors. arXiv preprint arXiv:2307.11922.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, et al. 2024. Toolllm: Facilitating large
language models to master 16000+ real-world apis.
In Eleventh International Conference on Learning
Representations, ICLR.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2023. Direct preference optimization: Your language
model is secretly a reward model. In Thirty-seventh

Conference on Neural Information Processing Sys-
tems, NeurlPS.

Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley,
Shaden Smith, and Yuxiong He. 2021. Zero-infinity:
Breaking the gpu memory wall for extreme scale
deep learning.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing, EMNLP-1JCNLP.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik R Narasimhan, and Shunyu Yao. 2023. Re-
flexion: Language agents with verbal reinforcement
learning. In Thirty-seventh Conference on Neural
Information Processing Systems, NeurlPS.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Cote,
Yonatan Bisk, Adam Trischler, and Matthew
Hausknecht. 2020. Alfworld: Aligning text and
embodied environments for interactive learning. In
Eighth International Conference on Learning Repre-
sentations, ICLR.

Jost Tobias Springenberg, Abbas Abdolmaleki, Jing-
wei Zhang, Oliver Groth, Michael Bloesch, Thomas
Lampe, Philemon Brakel, Sarah Bechtle, Steven Kap-
turowski, Roland Hafner, et al. 2024. Offline actor-
critic reinforcement learning scales to large models.
In Proceedings of the Fourty-first International Con-
ference on Machine Learning, ICML.

James Thorne, Andreas Vlachos, Christos
Christodoulopoulos, and Arpit Mittal. 2018.
Fever: A large-scale dataset for fact extraction and

verification. In 2018 Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics: Human Language Technologies, NAACL
HILT.

Danging Wang and Lei Li. 2023. Learning from mis-
takes via cooperative study assistant for large lan-
guage models. In Proceedings of the 2023 Confer-
ence on Empirical Methods in Natural Language
Processing, EMNLP.

Ruoyao Wang, Peter Jansen, Marc-Alexandre C6té, and
Prithviraj Ammanabrolu. 2022a. Scienceworld: Is
your agent smarter than a 5th grader? In Proceedings
of the 2022 Conference on Empirical Methods in
Natural Language Processing, EMNLP.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le,
Ed H Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2022b. Self-consistency improves
chain of thought reasoning in language models. In
Eleventh International Conference on Learning Rep-
resentations, ICLR.

Zihao Wang, Shaofei Cai, Guanzhou Chen, Anji Liu,
Xiaojian Ma, and Yitao Liang. 2023. Describe, ex-
plain, plan and select: interactive planning with llms
enables open-world multi-task agents. In Thirty-
seventh Conference on Neural Information Process-
ing Systems, NeurlPS.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. In Thirty-sixth Con-
ference on Neural Information Processing Systems,
NeurlIPS.

Yue Wu, So Yeon Min, Yonatan Bisk, Ruslan Salakhut-
dinov, Amos Azaria, Yuanzhi Li, Tom Mitchell, and
Shrimai Prabhumoye. 2023. Plan, eliminate, and
track-language models are good teachers for embod-
ied agents. arXiv preprint arXiv:2305.02412.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D Manning. 2018. Hotpotqa: A dataset for
diverse, explainable multi-hop question answering.
In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, EMNLP.

Zonghan Yang, Peng Li, Ming Yan, Ji Zhang, Fei Huang,
and Yang Liu. 2024. React meets actre: When lan-
guage agents enjoy training data autonomy. CoRR.

Shunyu Yao, Howard Chen, John Yang, and Karthik
Narasimhan. 2022a. Webshop: Towards scalable
real-world web interaction with grounded language
agents. In Thirty-fifth Conference on Neural Infor-
mation Processing Systems, NeurIPS.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom
Griffiths, Yuan Cao, and Karthik Narasimhan. 2024.
Tree of thoughts: Deliberate problem solving with
large language models. In Thirty-seventh Conference
on Neural Information Processing Systems, NeurIPS.

4660

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik R Narasimhan, and Yuan Cao.
2022b. React: Synergizing reasoning and acting
in language models. In Eleventh International Con-
ference on Learning Representations, ICLR.

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao
Liu, Yuxiao Dong, and Jie Tang. 2024. Agenttuning:
Enabling generalized agent abilities for llms. In Find-
ings of the Association for Computational Linguistics
ACL.

Danyang Zhang, Lu Chen, Situo Zhang, Hongshen Xu,
Zihan Zhao, and Kai Yu. 2024. Large language
models are semi-parametric reinforcement learning
agents. Thirty-seventh Conference on Neural Infor-
mation Processing Systems, ICLR.

Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu
Lin, Yong-Jin Liu, and Gao Huang. 2024. Expel:
Llm agents are experiential learners. In Proceedings
of the AAAI Conference on Artificial Intelligence,
AAAL

Denny Zhou, Nathanael Schirli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc V Le, et al. 2022.
Least-to-most prompting enables complex reasoning
in large language models. In Eleventh International
Conference on Learning Representations, ICLR.

A Supplementary Details for Dynamic
Rescoring Method

Our method merges the probability of LLM and
the Q value from the IQL together and selects the
final action. For detail, the LLM first generates sev-
eral responses by nuclear sampling. After mapping
the responses into action space as aforementioned,
LLM provides the probabilities p of these action
candidates. We then normalize these values to ob-
tain LLM scores. Here p means the probabilities
of all actions given the current state.

p=A{rrpm(ails)li=1,2,.. K}
p; — min(p) (1)

Normi{pi) = maz(p) — min(p)

The top-k actions are fed into the RL Critic. The
value function will give the action value ¢ for each
action, which is then normalized as follows. Here
q means the q values of all actions at the current
state. When the q values are equal to each other,
we give a score of 0.5 to all actions.

q = {Q]QL(S,ai))‘i = 1,2, ,K}
q; — min(q) 2)

Normla) = faa(@) — minta)

1.0 —— b=0, d=0
b=0.25, d=0.95
—— b=0.5, d=0.97
0.8 — b=0.6, d=0.97
—— b=0.6, d=0.99

0.6

max(b, d*)

0.4

a(t)

0.2

0.0

0 20 40 60 80 100
Steps (t)

Figure 4: «(t) with different values of steps ¢

To decide which candidate will be chosen finally,
we combine the 2 scores together as the final score
S and select one with the highest score as follows:

a(t) = max (b, d") 3)

S(a) = a(t)p+ (1 —a(t)q @

where «(t) is the dynamic combination weight be-
tween p and ¢ which changes with different values
of the step ¢. In the first step ¢ = 0, «(¢) is 1 and
the agent trusts the trained LLM completely. This
is because when the trajectory is short with few
observations from the environment, the LLM agent
requires fewer experiences for decision. As the step
t increases, «(t) will decline with a discount factor
d, giving more chance for RL Critic to influence
the decision making. However, we set the lower
bound limit for () to be b so the weight of p will
not be too low. The effects of different settings for
b and d are shown in Figure 4.

B Experimental Details

B.1 Environment Details

Samples of the initial prompts for three environ-
ments are listed in the following. In general, each
prompt contains an environment description and a
task description. The prompt formats of ALFWorld
and Webshop are derived from the AgentInstruct
dataset (Zeng et al., 2024).

ScienceWorld Sample Task

Task Description Your task is to find the animal
with the longest life span. The animals are in the
“outside’ location. Focus on the animal with the

longest life span.
Status Time: 1; Score: 0;

Action history: Ilook around (+0) —> N/A |

4661

Current environment: This room is called the
workshop. In it, you see: | the agent | a substance
called air | a table. On the table are: a battery,
a black wire, a orange light bulb, which is off, a
orange wire, a red wire, a switch, which is off, a
violet light bulb, which is off, a yellow light bulb,
which is off. | a ultra low temperature freezer. The
ultra low temperature freezer door is closed. | You
also see: | A door to the hallway |

Current inventory:
an orange |

In your inventory, you see: |

Visited rooms: workshop

Question: What action should you do next?

Webshop Sample Task

Environment Description You are web shop-
ping. I will give you instructions about what to do.
You have to follow the instructions. Every round
I will give you an observation and a list of avail-
able actions, you have to respond an action based
on the state and instruction. You can use search
action if search is available. You can click one of
the buttons in [clickables]. An action should be of
the following structure:

* search[keywords]
e click[value]

If the action is not valid, perform nothing.
Keywords in search are up to you, but the
value in click must be a value in the list of
available actions. Remember that your key-
words in search should be carefully designed.
Your response should use the following format:
Thought: I think ... Action:search/click[...]

Task Description Find me machine wash men’s
dress shirts with cotton spandex, classic fit, short
sleeve with color: black, and size: 5x-large tall,
and price lower than 60.00 dollars [Search]

ALFWorld Sample Task

Environment Description Interact with a house-
hold to solve a task. Imagine you are an intelligent
agent in a household environment and your target is
to perform actions to complete the task goal. At the
beginning of your interactions, you will be given
the detailed description of the current environment
and your goal to accomplish. For each of your turn,
you will be given a list of actions which you can
choose one to perform in this turn.

Actions You should choose from two actions:
“THOUGHT” or “ACTION”. If you choose
“THOUGHT,” you should first think about the cur-
rent condition and plan for your future actions, and
then output your action in this turn. Your output
must strictly follow this format:

» THOUGHT: your thoughts.
* ACTION: your next action

If you choose “ACTION”, you should directly out-
put the action in this turn. Your output must strictly
follow this format:

* ACTION: your next action.

After your each turn, the environment will give
you immediate feedback based on which you plan
your next few steps. if the environment output
"Nothing happened", that means the previous ac-
tion is invalid and you should try more options.

Reminder:

1. The action must be chosen from the given
available actions. Any actions except pro-
vided available actions will be regarded as
illegal.

2. Think when necessary, try to act directly more
in the process.

Initial Observation You are in the middle of
a room. Looking quickly around you, you see a
cabinet 16, a cabinet 15, a cabinet 14, a cabinet 13,
a cabinet 12, a cabinet 11, a cabinet 10, a cabinet
9, a cabinet 8, a cabinet 7, a cabinet 6, a cabinet 5,
a cabinet 4, a cabinet 3, a cabinet 2, a cabinet 1, a
coffeemachine 1, a countertop 2, a countertop 1, a
diningtable 1, a drawer 5, a drawer 4, a drawer 3, a
drawer 2, a drawer 1, a fridge 1, a garbagecan 1, a
microwave 1, a safe 1, a sinkbasin 1, a stoveburner
4, a stoveburner 3, a stoveburner 2, a stoveburner 1,
and a toaster 1.

Task Description Your task is to: put a clean
spoon in diningtable.

B.2 ScienceWorld Experimental Details

Warm-up Stage Following the training approach
outlined in (Lin et al., 2023), we enhance the tra-
ditional one-hop imitation learning data to multi-
hop data by incorporating a sliding window that
captures states and rewards from the previous 10

4662

actions (K = 10). Additionally, we introduce a dedi-
cated field to track visited rooms, ensuring no dupli-
cation occurs. This approach provides agents with
an extended context, thereby preventing redundant
room navigation. The main idea is to exploit nega-
tive log-likelihood (NLL) loss to train the model to
imitate the golden action.

Our backbone model is Flan-T5-large, which is
trained with a learning rate of le-4 and a batch size
of 8. We terminate our model at step 8000. For
efficient training, we also employ DeepSpeed Zero-
3 (Rajbhandari et al., 2021) for parallel training
across four V100 GPUs.

Retrospection Stage We collect trajectories by
letting the IL-based LLM interact with the Sci-
enceWorld environment. We then break down each
trajectory into steps in the form of (task description,
current state, action, next state). More details re-
garding the collected trajectories and the proportion
of the positive trajectories are provided in Table 1.

For ScienceWorld, the Q-network IQL consists
of 1 embedding layer, 5 GRU blocks, and 2 linear
layers. The input for the Q-function includes task
description, current state, and action. The state is
divided into freelook and inventory, the two spe-
cific states in ScienceWorld. All these 5 parts (task,
current state, action, freelook, and inventory) are
passed through separate GPUs. We then concate-
nate the output of 5 GRU blocks before being fed
into the last 2 linear layers. The V-network of IQL
is similar to (-network but doesn’t need to input
action. As a result, the input for V' network does
not include the action part.

We set the size of the embedding layer to be 64,
the output layer of GRU and the first linear layer to
be 128. We train the IQL in 20 epochs with a batch
size of 128. Due to the light parameter of GRU, the
training process is around 2 hours, which is much
less than 20h for the warm-up stage. The details of
training parameters and training costs are listed in
Table 9 and Table 10.

DRRN In ScienceWorld, we separately train one
online RL agent (DRRN) for each task of 30 tasks.
For each task, the training step for DRRN is 10000,
with a learning rate of 1e — 4. The Q-network in
DRRN is GRU+MLP with the embedding size of
128 and the hidden size of 128, which is consistent
with ScienceWorld paper (Wang et al., 2022a).

Extra Results Tabel 8 shows the detailed results
for all 30 subtasks of ScienceWorld using different

(s.a) ——
l v

Q network 1 ‘ Q network 2 l
q value 1 q value 2
Min
final q
value

Figure 5: The structure of Twin-Q.

methods. As we can see, Retrospex achieves the
highest score in most of the subtasks.

B.3 Webshop Experimental Details

Warm-up Stage Following the approach in
(Zeng et al., 2024), we construct our training data
by combining the Agentlnstruct and ShareGPT
datasets. The inclusion of ShareGPT helps prevent
catastrophic forgetting, which could cause LLMs
to lose their general capabilities. We refactor the
Agentlnstruct dataset so that each turn becomes an
individual sample. For ShareGPT, we extract sam-
ples in a 20:80 ratio relative to Agentlnstruct. This
results in a training dataset of 13,000 samples from
Agentlnstruct and 52,000 samples from ShareGPT.

We select the LLaMA3-8B-Instruct model as our
backbone model. The training objective follows
the approach outlined in (Zeng et al., 2024). We,
however, employ LoRA for fine-tuning, with rank
and alpha set to 32 and 64. During fine-tuning,
we compute the loss based on the model’s outputs
using SFTTrainer’. We utilize a learning rate of
le-4 and train for 2 epochs with a batch size of 2.
To ensure an efficient training, we leverage Deep-
Speed Zero-3 (Rajbhandari et al., 2021) for parallel
training across four V100 GPUs.

Retrospection Stage We collect trajectories on
Webshop and perform preprocessing similar to that
in ScienceWorld. More details are provided in Ta-
ble 1. For Webshop, we treat the state as a whole
part and use one GRU block for it, which is dif-
ferent from ScienceWorld. The Q-network we use
is Twin Q (Clipped Double Q-learning) (Fujimoto

https://huggingface.co/docs/trl/main/en/sft_trainer

4663

task average #steps ‘ DRRN ReAcT SayCan IL-T5 Retrospex

0 107.7(L) 0 0 33.06 29.89 14.33
1 75.2(L) 2 0 0.37 0 0
2 33.6(M) 0 0 47.81 29 25
3 15.1(S) 0 0 39.26 28.89 51.11
4 23(M) 6.5 38.8 19.72 44.78 40.44
5 14.6(S) 4.8 18 22.87 93.2 100
6 14.6(S) 5.7 17.6 3143 93.2 100
7 8.8(S) 13 0 58.18 100 100
8 12.6(S) 10 8.6 20.87 96.6 98.3
9 88.9(L) 6 19.4 3.88 29.78 9.56
10 79.6(L) 10 9 13.93 33.8 28.7
11 69.5(L) 22.6 14.9 9.92 11.2 26.5
12 40(M) 17.8 10.1 2091 24.8 26.6
13 16.3(S) 33.6 68.3 16 15 20.25
14 97(L) 18.5 11.6 21.94 34 39
15 84.9(L) 12.44 7.2 32.26 49.5 51.5
16 123.1(L) 7.3 5 13.67 28 54
17 7(S) 15.75 23 80 100 100
18 &(S) 26.67 16.67 50 100 100
19 7(S) 10.33 4.1 67.5 100 100
20 35.2(M) 18.17 50 8.03 11.1 65
21 65(L) 33 30 17.41 6.8 87.6
22 78.6(L) 50 42.5 10.39 40 28.22
23 130.1(L) 21 0.8 67.53 26.5 17.8
24 132.1(L) 20 8 59.45 17.2 259
25 13.6(S) 10 4 52.14 88.6 85.2
26 20.8(M) 10 13.5 225 62.4 58
27 25.6(M) 10 14.5 99.56 60.2 69.2
28 29(M) 16.9 1.9 47.76 77.8 76.1
29 21.4M) 11.9 0.7 26.37 31.6 81.1
Average - ‘ 14.13 14.6 33.82 48.80 55.98

Table 8: Overall experiment results on ScienceWorld. The result is the average of final scores in 100 steps per
trajectory. The result of SayCan comes from (Lin et al., 2023).

Environment Warm-up training cost Retrospection training cost

SciWorld 432G V100s/ 20h 15 rounds/ 1.5h
Webshop 20 rounds/ <0.5h
ALFWorld ~ +32G V100s/20h 20 rounds/ <0.5h

Table 9: Training cost of warm-up stage and retrospection stage on 3 tasks.

Environment LLM training parameters IQL training parameters
SciWorld Flan-T5-Large(770M) GRU(2.7M)
Webshop Llama3-8B-Instruct (Lora,1.5B) GRU(2.2M)
Alfworld Llama3-8B-Instruct (Lora,1.5B) GRU(2.2M)

Table 10: Training parameters on 3 tasks. The RL critic has a very small size of parameters, thus costing little
additional time when doing training and inference.

4664

Samples 500 1000 1500 2000

AR 764 767 717 773
SR 0475 0475 0.505 0.485

Table 11: Results of Retrospex in Webshop (AgentLM
test set) with IQL trained in different number of col-
lected samples.

et al., 2018), which uses 2 networks with the same
structure and the last () value is the minimum of
these two networks. The structure of Twin Q is
shown in Figure 5. The number of steps is compar-
atively small on Webshop, thus using Twin-Q can
make the Q-network more stable. The other part of
IQL is the same as that in ScienceWorld.

We set the embedding size of the embedding
layer to be 64, the output layer of GRU and the
first linear layer to be 128. We train the IQL in
20 epochs with batch size 128. Due to the light
parameter of GRU, the training process is around 2
hours. The details of training parameters and cost
of warm-up and retrospection stage are listed in
Table 9 and Table 10.

Analysis on Collected Samples Table 11 shows
the impact of the number of samples collected on
RL training and the final performance on the Web-
shop environment. In order to discover the impact
of the number of samples collected, we trained dif-
ferent IQLs with a number of samples collected
from the Webshop environment ranging from 500
to 2000. We find that using 1500 samples can ob-
tain better performance which means using 2000
samples may have resulted in the problem of over-
fitting. Due to this consideration, we believe that
the training of lightweight IQL needs to be further
investigated to achieve a balance between overfit-
ting and underfitting.

B.4 ALFWorld Experimental Details

Warm-up Stage We train only one model for
both ALWorld and Webshop. For detail training
information, please refer to section B.3.

Retrospection Stage We collect trajectories on
ALFWorld and perform preprocessing in the same
with ScienceWorld and Webshop. Details are also
provided in Table 1. For ALFWorld, the training of
IQL is identical to Webshop, where we use Twin-Q
for Q-network.

Method LLM SR
AT (round=0) Mistral-7B-Instruct ~ 86.0
A3T (round=1) Mistral-7B-Instruct ~ 94.0
A3T (round=2) Mistral-7B-Instruct 96.0
A3T (round=3) Mistral-7B-Instruct ~ 95.0

FT-LLaMA3 LLaMA3-8B-Instruct 83.5
Retrospex LLaMA3-8B-Instruct 87.0

Table 12: Overall results on ALFWorld. The result of
the AT is from paper (Yang et al., 2024).

Method LLM AS
A3T (round=0) Mistral 7B 72.0
A3T (round=1) Mistral 7B 73.5
A3T (round=2) Mistral 7B 72.3
A3T (round=3) Mistral 7B 72.9

Retrospex LLaMA38B 77.2

Table 13: Overall results on Webshop, Agentboard Test-
set. The result of the A3T is from A3T paper (Yang
et al., 2024).

B.5 More Comparison with A3T

We conduct a detailed comparison with 437" on
Webshop and ALFWorld. The results are shown
in Table 12 and 13. In both environments, Retro-
spex outperforms the result of A3T at round = 0.
Because A®T continues to increase the training
trajectories and trains the LLM at each round, it
works better in round = 1,2, 3 in the ALFWorld
environment. However, compared to the expensive
training investment of A37T", Retrospex still has ad-
vantages. On Webshop, Retrospex outperformed
all A3T rounds in 251 test cases of AgentBoard.

B.6 More Analysis

Table 14 shows the role of action mapping in Retro-
spex in ScienceWorld and ALFWorld. Here, Retro-
spex (w/o retrospection) correspond to IL-T5 in Sci-

Env Methods AS SR
SciWorld Retrospex 55.98 36.0
w/o retrospection 48.80 27.0
w/o act mapping 55.25 34.3
ALFWorld Retrospex - 87.0
w/o retrospection - 83.5
w/o0 act mapping - 85.1

Table 14: Results of our ablation study.

4665

enceWorld and IL-LLaMA?3 in ALFWorld, which
we put here for cross-reference. As expected, re-
moving action mapping leads to a performance
decline in Retrospex, consistent with previous find-
ings (Brohan et al., 2022). However, the drop is
relatively modest, suggesting that action mapping
is not the only key factor for Retrospex in these
environments. One possible explanation is that im-
itation learning during the warm-up phase helps
the LLM partially adapt to the target environment,
reducing the occurrence of invalid actions.

4666

