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Abstract

We investigate the mechanism of in-context
learning (ICL) on sentence classification
tasks with semantically-unrelated labels
("foo"/"bar"). We find intervening in only 1%
heads (named "in-context heads") significantly
affects ICL accuracy from 87.6% to 24.4%.
To understand this phenomenon, we analyze
the value-output vectors in these heads and
discover that the vectors at each label position
contain substantial information about the
corresponding labels. Furthermore, we observe
that the prediction shift from "foo" to "bar" is
due to the respective reduction and increase in
these heads’ attention scores at "foo" and "bar"
positions. Therefore, we propose a hypothesis
for ICL: in in-context heads, the value-output
matrices extract label features, while the
query-key matrices compute the similarity
between the features at the last position and
those at each label position. The query and
key matrices can be considered as two towers
that learn the similarity metric between the
last position’s features and each demonstration
at label positions. Using this hypothesis, we
explain the majority label bias and recency
bias in ICL and propose two methods to reduce
these biases by 22% and 17%, respectively.

1 Introduction

In-context learning (ICL) is an emergent abil-
ity (Wei et al., 2022a) of large language models
(Brown et al., 2020; Ouyang et al., 2022; Touvron
et al., 2023). By using some demonstration-label
pairs as prompts, ICL performs well without up-
dating parameters on many tasks, such as machine
translation (Sia and Duh, 2023), complexity reason-
ing (Li et al., 2023a), compositional generalization
(Zhou et al., 2022) and information extraction (He
et al., 2023).

Because the mechanism of ICL remains unclear,
many studies focus on understanding how ICL
works. Pan et al. (2023) find that ICL can be disen-
tangled into task recognition (TR) and task learning

(TL). TR does not rely on the demonstration-label
mappings because the roles of demonstrations and
labels are helping the model know "what is the
task". In this situation, the model have similar
predictions when the mappings are wrong (Min
et al., 2022), because the predictions are based on
pre-trained priors. On the other hand, TL relies
on the demonstration-label mappings because the
semantic priors are removed. For example, in an
ICL sentiment classification task, if the labels are
"positive/negative", the task is TR. If the labels
are "foo/bar", the task is TL because the labels are
semantically-unrelated (Wei et al., 2023). Wang
et al. (2023) analyze the information flow by aver-
aging all attention heads and find the label words
are anchors to merge the semantic information of
corresponding demonstrations in shallow layers,
and information is extracted from label words to
the final prediction in deep layers.

foo: 60%, bar: 30%, ... ﬂfo

<«

In-Context Heads
in Deeper Layers
0.3

——>  bar ——> foo

France, — Cat‘.\l\ “-\
C «»F g “)r T e
Vo K Vo K

Q
i 4,_ (C) t
X% Dog
France | Cat et

bar foo 2% France
Shallow Layers (a) /T (a) (a)
/l e / ]
|
/ | =/
France : bar Cat : foo Dog :
demonstration label demonstration label input text

Figure 1: Hypothesis of ICL mechanism. (a) Shallow
layers merge features into label positions and last posi-
tion. In in-context heads, (b) value-output matrix VO ex-
tracts label information. (c) Query matrix Q and (d) key
matrix K compute the (e) similarity scores between last
position and each demonstration, deciding how much
label information is transferred into the last token.
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Although these studies are important for under-
standing ICL, the exact mechanism of ICL remains
a mystery for several reasons. Firstly, the informa-
tion flow is typically observed as an average across
each head, but understanding ICL requires explor-
ing the precise importance of each head. Secondly,
each head has a query matrix, key matrix, value
matrix, and output matrix; it is essential to study
the role of each matrix in detail. Lastly, ICL is
plagued by issues such as majority label bias and
recency bias, and how to explain and mitigate these
biases has not yet been thoroughly investigated.

In this paper, we address these issues by iden-
tifying important heads for ICL and studying the
roles of each matrix within these heads. Using two
methods, we identify 12 important heads (named
in-context heads) that significantly affect ICL ac-
curacy across five datasets, reducing it from 87.6%
to 24.4% on average. Intervening in 6 heads
(fooheads) decreases the probabilities of "foo",
while intervening in the other 6 heads (barheads)
reduces the probabilities of "bar". To explore the
reason of this phenomenon, we study these heads’
value-output vectors computing by value-output
matrices, and find that the vectors on label positions
contain much information about the corresponding
labels. Moreover, we observe the attention scores
in the in-context heads when predictions shift from
"foo" to "bar", and find that the attention scores at
"foo" positions decrease, while the attention scores
at "bar" positions increase. Based on these observa-
tions, we propose a hypothesis for ICL, as shown
in Figure 1: in in-context heads, value-output ma-
trices extract label information ("foo"/"bar") from
corresponding labels, and query-key matrices com-
pute the similarity between the last position and
each label position. The query and key matrices
can be regarded as two towers for learning the simi-
larity between the features at last position and each
demonstration at label positions. The greater the
similarity, the higher the probability of the corre-
sponding label.

Based on this hypothesis, we explore the reason
why ICL has majority label bias (Zhao et al., 2021)
and recency bias (Lu et al., 2021). The existing of
majority label bias matches our hypothesis: query
and key matrices compute the attention weights
between the last position and each demonstration,
so the sum of one label’s attention weights is larger
when this label is related to more demonstrations.
About recency bias, we hypothesize that it is caused

by the influence of positional embedding during
attention score computation in both shallow and
deep layers. Based on our analysis, we propose
two methods for reducing these biases. For ma-
jority label bias, we increase the attention weight
of the imbalanced label’s position in in-context
heads, and the majority label bias reduces 22%.
For recency bias, we remove the affect of position
embedding in in-context heads, and the recency
bias reduces 17%. Our code and data will be re-
leased on https://github.com/zepingyu0512/
in-context-mechanism.

2 Related Work

2.1 Understanding ICL

Many studies have explored the mystery of ICL.
Min et al. (2022) find that randomly replacing
the ground truth labels does not hurt performance
much. Wei et al. (2023) argue the reason of this
phenomenon is the model can rely on semantic pri-
ors. Therefore, they study semantically-unrelated
label ICL by transferring the labels into "foo" and
"bar" and find that the performance is related to
the demonstration-label mapping. Pan et al. (2023),
disentangle ICL into task recognition (TR) and task
learning (TL) to explain this phenomenon. Chan
et al. (2022) demonstrate that the ICL ability is ob-
tained when training data have enough rare classes.
Liu et al. (2021) argue that selecting the closest
neighbors as demonstrations can enhance ICL abil-
ity. Gonen et al. (2022) propose choose low per-
plexity demonstrations to increase the performance
of ICL. Dong et al. (2022) conclude these methods
in a survey for ICL. Wang et al. (2023) find the
label words are anchors to extract demonstrations
in shallow layers, and the last position extracts in-
formation from label words in deep layers.

Some studies try to explain ICL theoretically.
Xie et al. (2021) argue that ICL ability is gained
when the pretraining distribution is a mixture of
HMMs, and they explain ICL as implicit Bayesian
inference. Garg et al. (2022) prove that transform-
ers can learn linear functions by ICL. Akyiirek et al.
(2022) find transformers can learn linear regression
functions and hypothesize that ICL can implement
standard learning algorithms implicitly. Li et al.
(2023b) explore the softmax regression and find
that attention-only transformers are similar with
gradient descent models. Von Oswald et al. (2023)
and Dai et al. (2022) regard ICL as meta-learning
and argue that ICL does gradient descent implicitly.
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2.2 Mechanistic Interpretability

The goal of mechanistic interpretility (Olah, 2022;
Nanda et al., 2023) is to reverse engineer the cir-
cuits from inputs to outputs. One common method
is to apply gradient-based methods (Sundararajan
et al., 2017; Kindermans et al., 2019) or causal trac-
ing methods (Pearl, 2001; Vig et al., 2020; Meng
et al., 2022) to analyze the importance of differ-
ent attention heads and hidden states. Olsson et al.
(2022) find that induction heads in attention lay-
ers are helpful for copying words from the input
sequence (e.g. [X][Y]...[X] -> [Y]). Wang et al.
(2022) interpret the circuits on indirect object iden-
tification task in GPT2. Hanna et al. (2023) studies
how GPT2 computes greater-than by constructing a
computational graph of head node and MLP node.

Another common method for mechanistic inter-
pretability is the logit lens (Nostalgebraist, 2020),
whose idea is to analyze the hidden vectors in un-
embedding space (also named vocabulary space).
Many studies have found that the parameters in
transformers are interpretable when projecting into
vocabulary space (Elhage et al., 2021; Geva et al.,
2022; Dar et al., 2022).

3 Hypothesis for ICL Mechanism

Our hypothesis is motivated by a case study in
Section 3.1. We find that ICL performance can
be affected much by only 1% heads, where some
can enhance the probabilities for "foo" and others
for "bar" (Section 3.2). To understand why this
happens, we analyze the value-output vectors and
attention scores in Section 3.3 and find that value-
output matrices extract the label information and
attention scores computed by query-key matrices
control the label information flow. At last, we dis-
cuss our hypothesis for ICL in Section 3.4.

3.1 Hypothesis Motivated by Case Study

Our hypothesis and analysis is motivated by a case
study in GPT2-large (Radford et al., 2019). We
design a simple ICL case for word classification:
"love : bar like : bar eight : foo two : foo one :'',
where the model’s prediction is ""foo''. In this case,
"foo" is the semantic-unrelated label for "number"
and "bar" is for "sentiment". We propose a locate-
and-project method for case study: we first locate
the most important heads using the method dis-
cussed in Section 3.2, then project the vectors on
label and last positions into vocabulary space by
multiplying each vector v and the unembedding

matrix E,, following Dar et al. (2022):
D, = softmax(E,v) (1

Top tokens of value-output vectors and key vectors
at label positions and query vector at last position
in a9, (layer22, head0) are shown in Table 1.

position  top words in vocabulary space

2-value BAR, Barron, Barrett, Band, Bray, Bars,
Baron, Bar, Bay, Boyd

5-value BAR, Barron, Barrett, Baron, Bar, Band,
Barbie, Barbar, Bard

8-value foo, Foo, FO, fo, Foley, Fresno, FDR, fas-
cists

11-value  foo, Foo, fo, FO, fascists, FDR, Foley, Goo,
fascists

2-key kisses, goddess, love, charms, idol, stress,
nobles, happiness

5-key style, oriented, +++, like, indo, height,
Lover, xual, dont, foo

8-key foo, mc, blah, happ, avg, french, omega,
prod, english, google, height, neigh

11-key foo, mc, infinity, omega, three, two, repeat,
twelve, 666, Three, thirds, five, sixteen

13-query first, end, only, no, all, given, person, cer-

tain, call, same, short, long, 1, one, value

Table 1: Top tokens at label positions and last position.

Label positions’ value-output vectors contain
concepts about the labels, and their key vectors
contain the corresponding demonstrations. For ex-
ample, the label at position 2 is "bar" and the value-
output vector contains "BAR, Bars, Bar". Its key
vector’s top tokens are related to the correspond-
ing demonstration "love". The last position have
concepts about the input text "one". Hence, we
hypothesize that value-output matrices extract the
label information and query-key matrices compute
the similarity between the last position (encodes the
input text) and each label position (encodes demon-
stration). We also note interpretable results in sen-
tence classification cases, detailed in Appendix A.

3.2 Identifying Important Heads for ICL

Datasets and models. We conduct the experi-
ments on five sentence classification datasets, in-
cluding financial phrasebank (Financ) (Malo et al.,
2014), AG’s news topic classification (AGnews)
(Zhang et al., 2015), Amazon reviews (Amazon)
(McAuley and Leskovec, 2013), Hate Speech De-
tection (ETHOS) (Mollas et al., 2020), and Stan-
ford Sentiment Treebank binary (SST2) (Socher
et al., 2013). We conduct experiments on Llama-
7B (Touvron et al., 2023) with 32 layers (32 heads
per layer), and GPT-J (Wang and Komatsuzaki,
2021) with 28 layers (16 heads per layer).
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Financ AGnews Amazon ETHOS SST2
foo 90.6 96.6 84.2 69.0 89.2
bar 99.8 100.0 85.6 73.2 88.8
foo 97.6 99.6 65.2 54.2 90.4
bar 98.6 83.2 98.8 92.8 97.2

Table 2: ICL accuracy (%) with correct label "foo"/"bar"
in Llama (first block) and GPT-J (second block).

Inspired by Pan et al. (2023) and Wei et al. (2023)
that task learning is the emergent ability of large
language models (LLMs), we replace the labels
with semantic-unrelated labels "foo" and "bar" to
study the mechanism of ICL task learning ability.
In each dataset, we randomly sample two sentences
with each label, and propose the ICL sentence: 'S0
: bar S1: bar S2 : foo S3 : foo S4 :" with correct
label "foo" and ''SO : foo S1 : foo S2 : bar S3 :
bar S4 :'"" with correct label "bar", where SO and
S1 have the same label, and S2, S3, S4 have the
other label. We randomly sample 1,000 sentences
in each dataset. The accuracy when correct labels
are "foo" and "bar" are shown in Table 2, which
indicate that the ICL ability exists in most datasets.

Methods. We apply two methods to identify the
important heads for ICL. Firstly, we use causal
tracing methods (Pearl, 2001; Vig et al., 2020) and
intervene each head in deep layers by setting the
head’s parameters to zero, and re-calculate the de-
crease in each dataset. Secondly, following Yu and
Ananiadou (2024), we compute the log probabil-
ity increase .S lh of each head to find which heads
directly contribute to the final predictions:

Sp = log(p(blo}" + Liny)) — log(p(b|Liny)) (2)

where b is the predicted label ("foo"/"bar"), Lin; is
[th layer’s input, and of‘ is the head output vector
on layer [, head h. The probability is calculated
by multiplying the vector with the unembedding
matrix F, (Eq.1). If the score is large, the head is
useful for increasing the probability of label b. We
identify the heads rank top10 in both methods, and
there are 6 important "fooheads" affecting "foo"
and 6 important "barheads" affecting "bar" in both
model. The average accuracy change when inter-
vening the fooheads and barheads is shown in Table
3. When intervening the fooheads, datasets with
correct label "foo" show a significant decrease in
accuracy, while those with correct label "bar" ex-
perience a substantial increase in accuracy. When
masking in the barheads, datasets with correct la-
bel "bar" show a significant decrease in accuracy,

while those with correct label "foo" experience a
substantial increase in accuracy. Therefore, our
identified fooheads and barheads are important for
predicting "foo" and "bar", respectively. We name
these heads "in-context heads".

correct label : foo correct label : bar

fooheads  barheads fooheads  barheads
Llama 86.0/0.01 86.0/99.3 89.0/99.2 89.0/35.4
GPT-J] 81.4/10.6 81.4/98.9 94.1/99.9 94.1/51.4

Table 3: Origin/intervened accuracy (%) when interven-
ing fooheads and barheads in Llama and GPT-J.

3.3 Analyzing Value-Output Vectors and
Attention Scores in In-context Heads

Head output o in Eq.1 is computed by the weighted
sum of value-output vectors vo on all positions p:

T—-1
0= Z aP - voP 3)
p=0

where 7' is the length of the input text. « is the
attention score computed by the softmax function
on the inner product of last position’s query vector
and each position’s key vector. vo is computed by
the linear transform of value-output matrices on
each position’s layer input. To explore the impor-
tance of label positions in each in-context head,
we investigate sentences with correct label "foo",
and compute the logit minus score M at "foo" and
"bar" positions’ weighted value-output vectors:

M = log(p(foola® -voP)) —log(p(bar|a? - voP))
“)
If M is larger than zero, the vectors are important
for enhancing "foo" probability. On the contrary,
they are important for enhancing "bar" probability.
The average logit minus scores at "foo" positions
(fp) and "bar" positions (bp) in fooheads (th) and
barheads (bh) are shown in Table 4. In both mod-
els, foo positions contain much information about
"foo" in fooheads, and bar positions contain much
information about "bar" in barheads. Furthermore,
the proportion between label positions’ logit minus
scores and the in-context heads’ logit minus scores
1 99.1%. Therefore, the reason fooheads/barheads
affect probabilities of "foo"/"bar" is due to the in-
formation saved at "foo"/"bar" positions’ weighted
value-output vectors « - vo.
To explore the roles of query-key matrices and
value-output matrices, we compute the attention
scores and the value-output vectors’ logit minus

3284



Financ AGnew Amaz ETHOS SST2 fooheads barheads
fafp 029 032 030 030 032 foopos _ barpos _ foopos  barpos
fh-bp  -0.02 -0.05 -0.04 -0.04 -0.04 minus-w  -12.1%  +54.4%  -479% +47.2%
bh-fp -0.05 -0.03 -0.03 -0.02 -0.04 minus +26.5% -21.4% +41.8% -10.5%
bh-bp  -0.11 -0.08 -0.14 -0.14 -0.12 attn 21.8% +124.8% -44.4%  +91.4%
th-fp 0.26 0.23 0.26 0.28 0.31 minus-w  -40.4%  +408.5% -51.7% +55.1%
fh-bp 0.00 -0.01 0.00 -0.01 -0.01 minus +13.9%  +32.0% +442% -17.6%
bh-fp -0.07 -0.05 -0.06 -0.06 -0.06 attn -43.0% +237.8% -46.1% +86.0%
bh-bp  -0.16 -0.17 -0.20 -0.23 -0.18

Table 4: Logit minus of weighted value-output vectors
at "foo"/"bar" positions (fp, bp) in fooheads/barheads
(fh, bh) in Llama (first block) and GPT-J (second block).

scores (removing o in Eq.4). The average scores
across all datasets are shown in Table 5.

fooheads barheads
foopos barpos foopos barpos
attn 0.742  0.047 0369  0.195
minus  0.613  -0.574 -0.075 -0.658
attn 0.540  0.037 0219 0203
minus 0958  0.099 -0.253 -1.656

Table 5: Attention score and logit minus at "foo"/"bar"
positions in fooheads/barheads in Llama (first block)
and GPT-J (second block), averaged on all datasets.

Both query-key matrices and value-output matri-
ces can affect the probabilities. In Llama fooheads,
the query-key matrices play large roles for predict-
ing "foo". The value-output matrices can extract
both "foo->foo" and "bar->bar", since the absolute
values of logit minus scores at "foo" and "bar" po-
sitions are similar. In GPT-J fooheads, both query-
key matrices and value-output matrices play large
roles for enhancing "foo". In Llama barheads and
GPT-J barheads, value-output matrices play larger
role than query-key matrices for predicting "bar".

To explore how the predictions change from
"foo" to "bar", we compare the sentences ''S0 : bar
S1: bar S2 : foo S3 : foo S4 :'" and "'S0 : foo S1
: foo S2 : bar S3 : bar S4 :" in each dataset. We
compute the change of absolute value on weighted
value-output vectors’ logit minus scores (minus-w),
value-output vectors’ logit minus scores (minus),
and attention scores, shown in Table 6.

The prediction shift is caused by the change of
weighted value-output vectors’ logit minus scores.
When changing the labels, fooheads’ foo positions
contain less information about "foo", and barheads’
bar positions contain more information about "bar".
The "foo" decrease at fooheads’ "foo" positions
and the "bar" increase at barheads’ "bar" positions
cause the probability change from "foo" to "bar".

Table 6: Change of attention score and logit minus at
"foo"/"bar" positions in fooheads/barheads in Llama
(first block) and GPT-J (second block) on all datasets.

The attention scores change significantly when
the predictions shift from "foo" to "bar". Attention
scores at fooheads’ "foo" positions decrease sub-
stantially, while those at barheads’ "bar" positions
increase markedly. Comparatively, the change di-
rection of the value-output vectors’ logit minus
scores does not show a relevant trend with the logit
minus scores of the weighted value-output vectors.
Therefore, we hypothesize that the change of atten-
tion scores within in-context heads is the primary
cause for the prediction shift from "foo" to "bar".

3.4 Proposed Hypothesis and Discussion

For better understanding, we list the evidence of ex-
isting studies and previous sections: a) Wang et al.
(2023) demonstrate that the label positions ("foo",
"bar") extract corresponding demonstrations’ fea-
tures in shallow layers. b) In Section 3.2, we find
that in deep layers there are a few fooheads impor-
tant for predicting "foo" and barheads for "bar". c)
Table 4 proves that the "foo" positions in fooheads
and the "bar" positions in barheads contain much
information for predicting "foo" and "bar", respec-
tively. d) The experiments in Table 5 demonstrate
that both query-key matrices and value-output ma-
trices can affect the information storage. e) Table
6’s results prove that the change of attention scores
within fooheads and barheads is the primary cause
for the prediction shift from "foo" to "bar" when
reversing the demonstrations’ labels.

Based on these findings, we conclude our hy-
pothesis: In shallow layers, the label positions
extract features from the corresponding demon-
strations (hypothesized from evidence a), while
the last position encodes information of the input
text and previous demonstrations/labels (X% input
text + Y% near demonstrations + Z% far demon-
strations). In deep layers’ in-context heads, the
value-output matrices extract the label features into
value-output vectors (hypothesized from evidence
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b and c). For example, fooheads extract "foo->foo"
and barheads learn "bar->bar". The query-key ma-
trices compute the similarity between the last po-
sition’s features and each label position’s features.
When the labels change from "foo" to "bar", the
change of last position features causes the similar-
ity scores change and the prediction shift (hypoth-
esized from evidence d and e). For instance, the
fooheads’ similarity scores at foo positions change
from SIM((X+Y)%foo, foo) to SIM(Z%foo, foo),
and the barheads’ similarity scores at bar positions
change from SIM(Z%bar, bar) into ((X+Y)%bar,
bar). Hence, the foo positions’ attention scores de-
crease in fooheads and the bar positions’ attention
scores increase in barheads, causing the probability
change from "foo" to "bar".

If considering all the in-context heads together,
the overall value-output matrices can learn both
"foo->foo" and "bar->bar". Under our hypothesis,
the query and key matrices can be regarded as two
towers computing the semantic similarity between
the last position’s features and each label position’s
demonstration features. If the similarity score is
large, more corresponding label information is in-
corporated, enhancing the probability of that label.
There are four modules related to the ICL ability.

a) Information extraction ability of shallow
layers. Shallow layers can be regarded as feature
extraction modules. The ability of extracting corre-
sponding demonstrations and the input text decides
the quality of features.

b) Value projection ability of in-context heads’
value-output matrices. If the value projection
ability is good enough, the in-context heads should
project "foo" and "bar" together and fairly.

¢) Metric learning ability of in-context heads’
query and key matrices. The query and key matri-
ces might be the most important module, because
they should learn computing different metrics using
the same matrices. If different ICL tasks share the
same in-context heads, the query and key matrices
should learn these metrics jointly.

d) Numbers and parameters of in-context
heads. If we regard one in-context head as a two-
tower model for metric learning, the parameters of
the head are directly related to the learning ability.
At the same time, different in-context heads can be
regarded as voting or ensemble models, so the head
number also controls the learning ability.

4 Understanding Majority Label Bias and
Recency Bias in ICL

There are several phenomena of ICL that haven’t
been explained. Zhao et al. (2021) demonstrate
that models tend to predict majority labels and the
labels near the input text. Lu et al. (2021) also find
that changing the demonstration order can affect
predictions a lot. Based on our hypothesis, we
explore why ICL has majority label bias (in Section
4.1) and recency bias (in Section 4.2).

4.1 Understanding Majority Label Bias

According to our hypothesis, it is reasonable that
the model tends to predict majority labels, because
the label information flow is controlled by the simi-
larity between last position and each label position.
When a label has high frequency, the sum of simi-
larity scores will be larger, thus the probability of
this label is larger in final prediction. We design an
imbalanced dataset to verify this. For each sentence
with correct label "foo", we remove the last demon-
stration and label. For example, 'S0 : bar S1 :
bar S2 : foo S3 : foo S4 :" is changed into "'SO0 :
bar S1 : bar S2 : foo S4 :"'. We compute the sum
of attention weights on "foo" positions in fooheads
and "bar" positions in barheads on the imbalanced
datasets and the original datasets, averaged on all
five datasets. The changing of attention scores at
"foo" positions and "bar" positions in both models
are shown in Figure 2.
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Figure 2: Attention scores on foo positions in fooheads
and bar positions in barheads, on original dataset and
imbalanced dataset in Llama (left) and GPT-J (right).

In both models, the sum of attention weights on
"foo" positions decrease on the imbalanced dataset.
On the contrary, the attention weights on "bar"
positions increase. The results meet our analysis.
The attention weights are computed by a softmax
function, so when a "foo" demonstration and its
label are removed, the sum of attention weights
on "foo" positions will decrease, and that on "bar"
positions will increase.
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4.2 Understanding Recency Bias

The ICL performance is extremely sensitive to the
demonstration order. We hypothesize that the re-
cency bias is caused by the influence of positional
embeddings on the attention score computation in
both shallow layers and deep layers. The attention
score is calculated by applying a softmax function
to the product of the last position’s query vector
and each label position’s key vector. These query
and key vectors are derived from the layer input,
which is a combination of the positional embed-
ding, the word embedding, and the output vectors
from previous attention layers and feed-forward
network (FFN) layers. Therefore, a "position term"
consistently influences the attention scores.

The feature extraction of last position is related
to the attention scores in shallow layers’ heads.
Due to the influence of positional embedding, the
model tends to extract varying amounts of features
at different positions. Let us consider the case 'S0
: bar S1: bar S2 : foo S3 : foo S4 :". The
last position contains X% S4 + Y% (S2+S3) and
Z% (S0+S1), simplified into (X+Y)% foo + Z%
bar. If the demonstration order is changed into
"S2 : foo S3 : foo SO : bar S1 : bar S4 :"', the
last position will contain X% S4 + Z% (S0+S1) +
Y % (S2+S3), simplified into (X+Z)% foo + Y%
bar. Hence, the final prediction probability will be
different between these two sentences if Y and Z
are different. If Y is larger than Z, the last position
will contain less "foo". Similarly, the influence of
positional embeddings also exists in deep layers’
heads, which tends to enlarge the attention scores
on later positions in these heads.

We design a reverse dataset to evaluate the differ-
ence among different positions. For each sentence
SO : bar S1 : bar S2 : foo S3 : foo S4 :, we
transfer it into a reverse sentence S2 : foo S3 : foo
SO : bar S1 : bar S4 :. We compute the average at-
tention score change at "foo" positions in fooheads
and "bar" positions in barheads, between the orig-
inal and the reverse dataset, shown in Figure 3.
Moreover, we remove the impact of positional em-
bedding in each in-context head and re-compute
the attention scores (original modify and reverse
modify in Figure 3).

Compared with the original dataset, "foo" po-
sitions’ attention weights decrease and "bar" po-
sitions’ attention weights increase in the reverse
dataset in both models. This result aligns with the
observations in previous studies (Zhao et al., 2021)
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Figure 3: Attention scores on foo positions in fooheads
and bar positions in barheads, on original dataset and
reverse dataset in Llama (left) and GPT-J (right).

that the probability is affected much when revers-
ing the demonstration order. When removing the
impact of positional embedding in each head, the
near positions’ attention scores decrease and the far
positions’ scores increase. Hence, our hypothesis is
verified: the positional term in each head enlarges
the attention scores on later positions. After re-
moving the positional term in in-context heads, the
attention score is still different between the original
dataset and the reverse dataset. This difference is
caused by the difference in shallow layers’ feature
extraction stage.

To provide a clearer perspective, we illustrate the
attention score change on "foo" positions in each
foohead and "bar" positions in each barhead. The
change of imbalanced dataset and reverse dataset in
Llama and GPT-J is shown in Figure 5 and 6, where
the first 6 columns are "foo" positions’ attention
scores in fooheads and the last 6 columns are "bar"
positions’ scores in barheads. Compared with the
original dataset, the attention scores decrease on
"foo" positions and increase on "bar" positions in
imbalanced dataset and reverse dataset.
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Figure 4: Attention scores on "foo"/"bar" positions in
original, imbalanced, and recency datasets in Llama.
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Figure 5: Attention scores on "foo"/"bar" positions in
original, imbalanced, and recency datasets in GPT-J.

5 Reducing Majority Label Bias and
Recency Bias

In this section, we propose a method for reducing
majority label bias in Section 5.1, and propose a
method for reducing recency bias in Section 5.2.

5.1 Reducing Majority Label Bias by
Enlarging Imbalanced Label Attention

According to our analysis in Section 4.1, the ma-
jority label bias can be attributed to the lack of
attention weights on imbalanced label positions.
So we propose a method to reduce the majority
label bias by enlarging the imbalanced label posi-
tions’ attention scores. Specifically, we multiply
an amplified score a on the imbalanced label po-
sitions’ weighted value-output vectors (aa? - voP
in Eq.3) and add this vector into the final embed-
ding. a is the product of a constant hyperparameter
a. and a varying score a,, where a, is the ratio
of the larger demonstration number to the smaller
demonstration number.

We first make a balanced dataset by randomly
sampling 2-4 demonstrations in each label, and ran-
domly set the demonstration order. The correct
labels of the balanced sentences are "foo". Then
we get a "lackfoo" sentence by randomly removing
a "foo" demonstration, and a "lackbar" sentence by
randomly removing a "bar" demonstration. Except
the results in Financ GPT-J, the accuracy of "lack-
foo" dataset is smaller than the balanced dataset
due to the lack of "foo" demonstrations, and "lack-
bar" accuracy is larger than the balanced dataset.

Compared to the balanced dataset, we calculate
the sum of accuracy change on "lackfoo" and "lack-
bar" datasets before and after applying our method
with amplified constant score a. 0.03. The accuracy
change is shown in Table 7. On average, the accu-

AGnew Amaz ETHOS SST2

before 0.10 0.09 0.23 0.10 0.19
after 0.07 0.05 0.17 0.07 0.15

before  0.04 0.03 0.05 0.05 0.08
after 0.06 0.02 0.02 0.03 0.06

Financ

Table 7: Accuracy change before/after applying our
method in Llama (first block) and GPT-J (second block).

racy change reduces 29.1% in Llama and 14.9%
in GPT-J. The results indicate that our method can
reduce the accuracy change caused by the influence
of imbalanced demonstrations/labels.

5.2 Reducing Recency Bias by Removing
Positional Embedding Affect

As discussed in Section 4.2, we find the recency
bias is due to the effect of positional embedding
on the calculation of attention scores. Hence, in
order to reduce the recency bias, we reduce the
position term in in-context heads, and re-calculate
the output vectors in all in-context heads. This
method is similar with adding a shortcut adapter
from each in-context head to the final embedding.

Financ AGnew Amaz ETHOS SST2
acc-be 0.37 0.42 0.26 0.22 0.30
acc-af 0.31 0.39 0.15 0.16 0.18

attn-be  0.06 0.08 0.06 0.05 0.06
attn-af  0.03 0.06 0.04 0.03 0.03

acc-be 0.39 0.27 0.45 0.41 0.40
acc-af 0.36 0.16 0.42 0.40 0.35
attn-be  0.07 0.05 0.07 0.06 0.08
attn-af  0.04 0.03 0.05 0.04 0.05

Table 8: Standard deviation of accuracy and attention
scores before/after applying our method in Llama (first
block) and GPT-J (second block).

We apply this method to the original dataset and
three recency datasets with different demonstra-
tion orders, detailed in Appendix B. We calculate
the standard deviation in accuracy and in-context
heads’ attention scores before (acc-be, attn-be) and
after (acc-af, attn-af) applying our method. The
results are shown in Table 8. On average, the ac-
curacy standard deviation reduces 23.4% in Llama
and 10.6% in GPT-J, and the attention score stan-
dard deviation reduces 40.1% in Llama and 37.7%
in GPT-J. Therefore, removing the positional term
in in-context heads is helpful for reducing the re-
cency bias. It is also important to reduce the re-
cency bias during feature extraction in shallow lay-
ers, and we leave this exploration in future work.
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6 Conclusion

We identify the important heads for ICL and ana-
lyze the value-output vectors and attention scores
in these heads. We propose a hypothesis for the
mechanism of ICL. In shallow layers, the demon-
strations and input text is captured by the label posi-
tions and the last position. In in-context heads, the
value-output matrices project the label features into
value-output vectors. The query and key matrices
can be regarded as two towers learning the simi-
larity between the last position’s features and each
label position’s features. If the similarity score
is high, the corresponding label’s probability is
enlarged. Based on this hypothesis, we interpret
why ICL has majority label bias and recency bias.
Furthermore, we propose two methods to reduce
these biases by 22% and 17%. Overall, our study
provides a new method and a reasonable hypothe-
sis for understanding the mechanism of in-context
learning.

7 Limitation

In this paper, we focus on understanding the mech-
anism in in-context heads in deep layers. It is also
important to study how shallow layers transfer fea-
tures into label positions and the last position. Our
hypothesis explains the ICL mechanism for classifi-
cation tasks. More studies should be done on other
ICL tasks, such as chain-of-thought reasoning (Wei
et al., 2022b).

Another limitation of our work comes from the
attribution method for identifying important heads.
Gradient-based methods and causal tracing meth-
ods, which calculate a module’s impact on the fi-
nal prediction, are commonly employed for impor-
tance attribution. Additionally, many studies utilize
saliency score-based methods. In this paper, we
apply both causal tracing and saliency score-based
methods to identify important heads, and we be-
lieve the results in Table 3 support our findings.
However, it is important to note that there is no
unified method for attributing important modules,
and further exploration is needed to design better
attribution methods.
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A Case Study on Sentence Classification

We analyze a sentence classification case sampled
in AGNews dataset. The top tokens in head 23-
13 in GPT?2 large are shown in Table 9. With the
prediction "foo", the case is:

. bar

: bar Liverpool completes signings
of Alonso, Garcia LIVERPOOL, England (AP) —
Spanish pair Xabi Alonso from Real Sociedad and
Luis Garcia from Barcelona signed five-year con-
tracts with Liverpool on Friday. : U.S. Doping
Watchdog to Question BALCO’s Conte - IAAF
HELSINKI (Reuters) - U.S . anti-doping officials
plan to question Victor Conte after the BALCO
head claimed he saw sprinter Marion Jones taking
banned drugs, world athletics body the IAAF said
Saturday. : foo Liverpool Progresses to Champions
League; Monaco, Inter Advance Four-time cham-
pion Liverpool progressed to soccer Champions
League 2-1 on aggregate, overcoming a 1-0 home
defeat to AK Graz in the second leg of qualifying.

position top words in vocabulary space

bar-value  BAR, bars, Bars, bart, Bar, bartender, bar,
Barber

bar-value  bartender, Bars, bart, bars, Bar, Barber,
bar, BAR

-value foo, McKenzie, Foo, Barney, Walters, Jen-
ner, Murphy, lobster, Handler

foo-value  Walters, foo, Barney, McKenzie, Harrington,
Murphy, Barber, Barron, Jenner

bar-key Bloomberg,

, obal,
, bullish, Barron,

bar-key , Conn, Ok, Previous, Daily, NY, Yes,
Anon, US, Ibid, , Staff, Journal, Van-
guard, Tribune,

-key Buy, iverpool, Ibid, YORK, UNITED, Oliv,
Charl, Location, Spanish, Miami, US, Liver-
pool, Pool, London, Greenwich, United

foo-key NYT, WATCH, Latest, Exclusive, Previous,
UNC, US, Watch, Possible, Ibid, Statement,
Reaction, UK, Reuters, United, Smoke

last-query  ruary, Pipe, lihood, swick, Flavoring, iver-

pool, paddle, paraph, Lake, Repe, tong, bole,
etheless, Lakes

Table 9: Top words of labels and last token in GPT2
large layer 23, head 13 on a sentence classification case.

In this case, the false demonstrations with label

"bar" are sampled from the "Business" class. The
true demonstrations with label "foo" and the input
text are sampled from the "Sports"” class. On la-
bel positions’ value-output vectors, "bar" and "foo"
have top rankings. As for the key vectors at label
positions, the labels correspond to business demon-
strations extract the concepts about business, such
as "investor" and "profit". The top tokens of true
labels are related to places such as "Liverpool”
and "Spanish", which exist in the corresponding
demonstrations. These observations indicate that
the value-output matrices extract label features, and
the key matrix extract corresponding demonstration
features. Analyzing the last position’s query vector,
we also observe concepts related to "Liverpool".

B Recency Datasets for Evaluation

The three recency sentences transformed from the
original sentence is shown in Table 10.

sentence

origin S0 : bar S1 : bar S2 : foo S3 : foo S4 :
reorder-1 S22 : foo SO : bar S1 : bar S3 : foo S4 :
reorder-2 SO : bar S2 : foo S3 : foo S1 : bar S4 :
reverse S2 : foo S3 : foo SO : bar S1 : bar S4 :

Table 10: Sentences transferred from origin sentence.
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