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Abstract

Visual arguments, often used in advertising or
social causes, rely on images to persuade view-
ers to do or believe something. Understanding
these arguments requires selective vision: only
specific visual stimuli within an image are rele-
vant to the argument, and relevance can only be
understood within the context of a broader ar-
gumentative structure. While visual arguments
are readily appreciated by human audiences,
we ask: are today’s AI capable of similar un-
derstanding?

We present VisArgs1, a dataset of 1,611 images
annotated with 5,112 visual premises (with re-
gions), 5,574 commonsense premises, and rea-
soning trees connecting them into structured
arguments. We propose three tasks for evalu-
ating visual argument understanding: premise
localization, premise identification, and con-
clusion deduction. Experiments2 show that 1)
machines struggle to capture visual cues: GPT-
4-O achieved 78.5% accuracy, while humans
reached 98.0%. Models also performed 19.5%
worse when distinguishing between irrelevant
objects within the image compared to external
objects. 2) Providing relevant visual premises
improved model performance significantly.

1 Introduction

What we see depends
mainly on what we look for.

– Lubbock (1893)

Humans often communicate messages visually.
For example, traffic light colors regulate drivers’
behavior, while computer icons, such as the trash
bin symbol for deleting files or the magnifying
glass for searching, guide user actions.

* denotes equal contribution
1Data: https://huggingface.co/datasets/jiwan-c

hung/visargs
2Code: https://github.com/JiwanChung/VisArgs
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Figure 1: An example from our VisArgs corpus. Vis-
Args makes the persuasion process in a visual argument
explicit by representing it as a reasoning tree. Image
credit: Eglė Plytnikaitė

We consider the case of visual arguments. Con-
sider Fig. 1, which depicts a polar bear on a shrink-
ing ice floe. Without any text, this image calls
attention to climate change: a visual metaphor con-
nects melting ice to industrial emissions from facto-
ries. A plausible interpretation of the argument con-
cludes: industrial pollution needs to be reduced.

We introduce VisArgs, an annotated dataset of
1,611 images containing visual arguments. VisArgs
makes explicit the reasoning process in interpret-
ing a visual argument:3 each image is annotated
with visual premises grounded on object bounding
boxes, commonsense premises eliciting implicit
knowledge, and argument trees formalizing the
connection of these premises to the conclusion. An
argument tree consists of a root node (conclusion),
some internal nodes (intermediate conclusion), and
two types of leaf nodes (visual and commonsense
premises).

Using VisArgs, we propose three complemen-

3We note that our corpus contains just one possible inter-
pretation of a visual argument (rather than, e.g., claiming to
represent the creator’s intent).
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Figure 2: To identify the bottleneck in visual argument understanding, we define three tasks over VisArgs:
Localization of Premises requires models to ground the visual premises. Identification of Premises necessitates
models to infer the visual premise relevant to the given intermediate conclusion. Deduction of Conclusion studies
the ability of models to deduce the argument’s conclusion based on different levels of inputs.

tary tasks to evaluate different aspects of machine
capacity for comprehending visual arguments as
illustrated in Fig. 2: 1) Localization of Premises:
associates the description of a visual premise with
a specific region in the image, 2) Identification of
Premises: Given an image and an (intermediate)
conclusion, retrieves the necessary visual premises
to support the conclusion, and 3) Deduction of Con-
clusion: generates the conclusion with increasing
detail of the annotated visual argument.

Experiments on VisArgs demonstrate that the
main bottleneck for machine understanding of vi-
sual arguments is selective vision, i.e., Identifica-
tion of Premises relevant to a given conclusion (see
§ 5.2). We show that while machines can identify
visual premises within an image (albeit worse than
human agreement, see Localization of premises
§ 5.1), they struggle to discern which premises are
relevant to the conclusion among them. Results on
our final Deduction of Conclusion task (§ 5.3) ad-
ditionally support the hypothesis that difficulties in
understanding visual arguments do not stem from
deficiencies in raw vision capacity. There, we con-
trolled the level of input to the algorithm, ranging
from raw images to explicit reasoning trees. The
greatest accuracy gains came from the inclusion of
relevant visual cues, further supporting our main
hypothesis. In all visual argument understanding
tasks, machines perform worse than human agree-
ment, providing avenues for future work.

In conclusion, our results suggest that selective
attention to visual cues is the main bottleneck for
the current AI capacity to understand visual argu-
ments. This finding also establishes visual argu-
ment understanding as a distinct area of study in

the computational domain: vision does not precede,
but works jointly with reasoning in terms of under-
standing visual arguments. We expect that VisArgs
will be utilized as a diagnostic benchmark for selec-
tive vision in future multimodal models: even the
best current models lag significantly behind human
performance in our Identification of Premises and
Deduction of Conclusion tasks.

2 Related Work

Visual arguments are arguments built on visual
medium (Boland, 2005). Unlike typical images, a
visual argument is intentionally organized to per-
suade viewers to a certain conclusion (Birdsell and
Groarke, 1996; Boland, 2005). This work builds
upon to ongoing debates in the human studies litera-
ture about the nature of visual arguments (Johnson,
2003; Tseronis, 2018). Our results (§ 5) suggest
that understanding visual arguments requires fo-
cusing on a subset of the visual context: not all
visual cues contribute, and identifying the relevant
ones is the key necessity. This task one of selective
vision: the human capability to focus on behav-
iorally relevant stimuli. (Desimone and Duncan,
1995). Examples of visual arguments are prevalent
in advertisements (Kjeldsen, 2012; Zhang et al.,
2018; Hussain et al., 2017; Ye et al., 2019), car-
toons (Birdsell and Groarke, 2007), mathematical
educations (Inglis and Mejía-Ramos, 2009), and, ar-
guably, diagrams (Kembhavi et al., 2016; Alikhani
and Stone, 2018). Liu et al. (Liu et al., 2022) also
investigate arguments conveyed through images.
However, our work focuses on visual argument,
requiring that the argumentative content be primar-
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ily communicated through visual elements rather
than relying solely on accompanying captions or
written text. Furthermore, we provide explicit an-
notations of the argumentation structure in a tree
format, facilitating detailed, hierarchical analysis
of the model’s ability to comprehend visual argu-
ments step-by-step.
Multimodal reasoning. Recent studies have in-
troduced various multimodal models capable of
sophisticated reasoning across different modali-
ties, such as vision and language. Models such
as LLaVA (Liu et al., 2023a), Idefics2 (Laurençon
et al., 2024), and Qwen-VL (Bai et al., 2023) are
built on pretrained large language models (e.g.,
LLaMA (Touvron et al., 2023)) and integrate vi-
sion encoders. Others, including OFA (Wang
et al., 2022) and Unified-IO (Lu et al., 2022), are
developed from scratch. These models excel in
tasks such as localization, image captioning, and
commonsense reasoning. Furthermore, models
such as Unified-IO-2 (Lu et al., 2023) and GPT-
4-O (Achiam et al., 2023) can understand audio,
while others (Zellers et al., 2022; Han et al., 2023a)
support video understanding, demonstrating broad
multimodal reasoning capabilities.
Beyond factual visual understanding. Visual
comprehension is moving beyond factual under-
standing to include various types of writing. These
include visual commonsense reasoning (Zellers
et al., 2019; Park et al., 2020; Han et al., 2023b;
Hessel et al., 2022), humor understanding (Hessel
et al., 2023; Hyun et al., 2023), and understanding
social interaction (Zadeh et al., 2018). Of particular
relevance to our work is visual metaphors (Akula
et al., 2023), which express abstract concepts with
concrete visual cues. While some overlap exists
in the images used, there are clear differences in
intention and structure; not all metaphorical images
present clear arguments and can be seen as visual
arguments. Conversely, not all visual arguments
depend on metaphors (Blair, 2012).
Argument structure. An argument is typically
understood as a structure that starts from a set of
premises (reasons) and ends in a conclusion, of-
ten represented symbolically as a tree (Whately,
1863; Freeman, 2011). While there have been ex-
tensions, including computational models of argu-
ments (Bench-Capon and Dunne, 2007; Rahwan
and Simari, 2009; Atkinson et al., 2017), we use
the basic form of trees connecting premises to con-
clusions, following previous literature (Stab and
Gurevych, 2014; Lawrence and Reed, 2020).

Stairs that resembles a rough terrain.

Depiction of a Jeep driving up the stairs.

"Jeep" is written at the base of the stairs.

Concrete stairs in an urban setting.

A white outline labeled "P".

The outline includes the Jeep logo.

Hallucination! Replace.

“base of the stairs” is not relevant.

“rough terrain” involves 
commonsense inference.

Figure 3: Human workers iteratively refine initial data
produced by machines in VisArgs annotation process.

3 VisArgs Dataset

VisArgs comprises a total of 1,611 images featur-
ing clear visual arguments. These images are cat-
egorized into 914 advertisement images and 697
cartoon images based on their sources. Each im-
age in VisArgs is annotated with descriptions and
bounding boxes for the visual premises (VP), de-
scriptions of the commonsense premises (CP), the
conclusion, and an argumentation tree (T) detailing
the reasoning path from the premises to the conclu-
sion (C). All descriptions are in English, with an
average character length of 79, 91, 142, and 105 for
VP, CP, C, and T, respectively. On average, each
image contains 3.17 visual premises, 3.46 common-
sense premises, and 2.88 intermediate conclusions.

3.1 Annotation Process

We partially rely on GPT-4-O (Achiam et al., 2023)
for initial annotations. However, these machine-
generated annotations serve only as preliminary
seeds, which are then extensively refined by experi-
enced human workers, as illustrated in §3. The ma-
chine’s role is merely to provide imperfect starting
points to facilitate the human annotation process.
Below, we detail our annotation procedure.
Collecting Images. Our primary criterion was to
select images that enable human annotators to eas-
ily and accurately interpret both the visual premise
and the corresponding conclusion, thereby clari-
fying the argumentative structure within the im-
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age. Also, we ruled out samples with scene text
within the images that directly describe the conclu-
sion. We manually collect around 1,600 images
following these criteria from Pinterest.4 Starting
with keyword-based searches (e.g. creative ads),
we expanded our collection by exploring related
images. Cartoons (which often contain visual argu-
ments (Birdsell and Groarke, 1996)) were sourced
from a dedicated website.5 We manually collected
around 1,600 cartoons from various categories, in-
cluding politics, education, and environment. We
include URLs to the images to comply with licens-
ing terms following previous work (Schuhmann
et al., 2022; Lee et al., 2021). Refer to Appendix A
for details.
Describing Visual Premises. The next step is to
explicitly describe the visual argument within each
image. However, during the early stages of our
annotation process, we discovered that although
humans can naturally understand visual arguments,
they often find it challenging to articulate their
interpretation into structured argumentation trees.
Therefore, we used an AI model (GPT-4-O) to gen-
erate initial candidates. Human workers then se-
lect and modify these initial annotations, as shown
in Fig. 3. The human annotators could optionally
incorporate new visual premises when necessary:
∼ 21% of images had their set of visual premises
expanded through this process. To facilitate this
process, we break down the annotation into two
steps: describing the visual premises and specify-
ing the argument structure.

Given an image containing a visual argument,
we instructed the model to generate a set of visual
premises necessary to support the argument (refer
to Appendix J for further details). However, the AI
model often fails to fully comprehend the visual
argument. To address this, we engaged a pool of
experienced human workers to review the machine-
generated outputs. They selected the correct visual
premises and made necessary modifications to en-
sure accuracy and coherence. Additionally, we
identified that a model-generated visual premise
sometimes contains multiple atomic premises. We
instructed the reviewers to separate these merged
premises into individual atomic premises. Further
details are provided in Appendix A.
Specifying Argument Structure. Given the visual
premises and the image, we further annotate three

4www.pinterest.com
5www.cartoonmovement.com
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Figure 4: Variety of the topics represented in the visual
premises and conclusions in VisArgs.

components constituting the argumentation struc-
ture: commonsense premises, conclusions, and ar-
gument trees. As in the previous stage, we first
generate initial candidates using an AI model. For
this stage, we impose an additional criterion: the
set of selected premises should be both necessary
and complete (refer to Appendix J). The same pool
of human workers then adjust the annotations for
greater accuracy. The workers first verify the cor-
rectness of the conclusion and discard the image
if it is incorrect. They then identify and correct
any errors, including semantic and structural mis-
takes. We discarded 1,593 of the 3,204 images in
this process. Details are provided in Appendix A.
Visual Grounding. Lastly, we manually gather
bounding box annotations for each visual premise
to finalize the multimodal annotations. We assume
a one-to-one relationship between each bounding
box (vpri ) and its corresponding textual description
(vpdi ). Annotators are instructed to ensure accurate
matching and precise bounding box tightness, as
detailed in Appendix A.

3.2 Data Analysis

Topic Diversity. To gauge the diversity of topics
covered in VisArgs, we run zero-shot categoriza-
tion using GPT-4-O and LLaMa3 (AI@Meta, 2024)
to classify the topics of visual premises and con-
clusions. The topics cover a wide range of visual
objects and argument topics, as shown in Fig. 4.
Refer to Appendix B for details.
Visual Cues vs. Dense Captioning. In theory, se-
lective attention to visual premises could be col-
lapsed into an NLP problem by describing every-
thing in an image. To test this counter-hypothesis,
we manually check how often the visual premises
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Number of Samples Image Size (pixels)
Category Total W/ Text Width Height

Ads 914 389 877.2 969.7
Cartoons 697 218 480.0 427.6

Table 1: Overview of dataset statistics. W/ Text indicates
the subset of images containing scene text.

Recall Hit rate

LLaVaNeXT 0.48 0.14
LLaVa-LLaMa3-Docci 0.27 0.02
ShareCaptioner 0.40 0.12

Table 2: Frequency of detailed captions containing vi-
sual premises. Hit rate denotes how often all visual
premises per image are included in the captions.

are contained in the outputs of detailed captioning
models. We include three baselines here: a gener-
alist (LLaVA-Next (Liu et al., 2024b)), a specialist
(ShareCaptioner (Chen et al., 2023)), and LLaVA-
LLaMa3 (XTuner Contributors, 2023) fine-tuned
on a detailed captioning corpus (DOCCI (Onoe
et al., 2024))6. Tab. 2 summarizes our manual in-
spection of 100 images, showing that the detailed
captions insufficiently capture the visual premises,
with the hit rate staying below 15% for all models.
Safety. Since we did not initially filter for safety,
we now analyze the safety of VisArgs using stan-
dard models. For textual safety, we utilize the Per-
spective API7, and for visual domains, we employ
LAION-Safety8. The toxicity scores for textual de-
scriptions were 0.03 for visual premises and 0.07
for conclusions. Also, given the threshold of 0.7,
no descriptions and visual premises were classified
as toxic. Furthermore, only 71 among 1611 images
are classified as unsafe. Manual inspection reveals
that such “unsafe" images were social campaigns
advocating against the harmful behaviors which
presumably triggered the LAION detector.

4 Task Overview

We pose three tasks based on VisArgs for a struc-
tured analysis of how machines understand argu-
ments presented in visual form.

An instance of VisArgs consists of an im-
age I , a set of visual premises VP =
{(vpd0, vpr0), (vpd1, vpr1), . . .} with textual descrip-
tion vpd along with region grounding with a bound-

6huggingface.co/gokaygokay/llava-llama3-docci
7www.perspectiveapi.com; June 2024 version.
8www.github.com/LAION-AI/LAION-SAFETY

Acc. Prec. Rec. F1 Corr. (ρ)

BLEU-4 67 44 67 53 18
ROUGE 75 76 75 72 35
CIDEr 72 70 72 70 26
GPTEval 75 83 75 76 53
BERTScore 94 94 93 93 59

Table 3: Correlation of each metric with human deci-
sions in the Deduction of Conclusion task.

ing box vpr = ⟨x, y, h, w⟩, a set of commonsense
premises CP = {cpd0, cpd1, . . .}, and the conclusion
in textual form C. Further, a single argument tree
for each image is built on the premises. Each tree
t ∈ T represents a reasoning path leading to the
conclusion C. The nodes N of a tree consist of the
following: 1) leaf nodes: subsets of the union of
the visual and commonsense premises VP∪CP. 2)
internal nodes: elements of the set of intermediate
conclusions IC. 3. root node: the conclusion C.
An edge e of the tree connects a subset of nodes
N̄ ⊂ VP ∪ CP ∪ IC to either an intermediate con-
clusion ic ∈ IC or the final conclusion C.

4.1 Localization of Premises

The first task focuses on assessing whether ma-
chines can accurately align visual premises (VPd)
with the corresponding regions (VPr) in a given
image (I), requiring minimal computational reason-
ing capabilities. It aims to determine if difficulties
in understanding visual arguments originate from
basic object detection stages.

We investigate two setups based on the algo-
rithm’s ability to output bounding box labels: First,
closed-set grounding is designed for a broad range
of models that lack explicit grounding capabili-
ties. The problem is formulated as a retrieval task
where the goal is to match a region in the image
(vpri ) with an appropriate description (vpdi ). We
adapt standard image-text matching models (e.g.
CLIP) to perform grounded image-text matching.
More details can be found in § 5. Second, open-set
grounding tests models with explicit grounding ca-
pabilities. The task is framed as a visual grounding
problem (Yu et al., 2016), where the machine must
locate an object in an image based on a natural
language expression. Both the ground truth and
machine output are represented as bounding box
coordinates ⟨x, y, h, w⟩. Performance is evaluated
using the intersection over union (IoU) ratio, with
predictions considered correct if IoU ≥ 0.5.
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4.2 Identification of Premises

The second task tests the machines’ capabilities
to discern visual premises that would better sup-
port the given conclusion. Given the image I ,
the intermediate conclusion ic, and a superset of
the gold text descriptions of the visual premises
S ⊃ VPd, the machine should retrieve a correct
visual premise vpdi ∈ VPd. Note that the candidate
set S contains a single ground truth premise vpdi
and a fixed number K = 2 of negative premises.

The complexity of a retrieval task is impacted
by the choice of the negative set. We explore four
types of global samplers and a single local sam-
pler for constructing the negative set. The global
samplers source the negatives from visual premises
that do not correspond to the selected image. The
only difference is the sample selection strategy: 1.
Random sampling samples uniformly without re-
placement. 2. Visual sampling samples from the
top premise descriptions that are the closest to the
given image. We use CLIPScore (Hessel et al.,
2021) for the multimodal scoring. 3. Textual sam-
pling samples from the top premise descriptions
that are the closest to the ground truth premise. We
use cosine similarity on the ColBERT (Khattab and
Zaharia, 2020) representation space for the textual
scoring. 4. Mixed sampling combines textual and
visual sampling by visually selecting from the top
10 textual retrieval results.

For local sampling, we select from the visual
premises that do correspond to the given image. Re-
lying on our argumentation tree annotation, we can
automatically obtain the set of local visual premises
that does not help justify the given intermediate
conclusion ic. we sample uniformly without du-
plicates from the local pool and name the method
5. Semantic sampling due to its argumentation-
dependent nature. Additionally, we report human
performance on 100 random samples to mitigate
the risk of false negatives.

4.3 Deduction of Conclusion

The final task is to evaluate how each component
(I , VP, CP, IC, and T ) influences the deduc-
tion of the conclusion C. We approach this as a
sequence-to-sequence task aimed at generating C.
While this allows flexible output formats, it com-
plicates evaluation because the machine-generated
text must be compared to the free-form label. Com-
mon text comparison practices, such as BLEU (Pa-
pineni et al., 2002), ROUGE (Lin, 2004), and

Acc. (%)

Ads Cartoon All

Random 33.33 33.33 33.33
Human 100.00 100.00 100.00

CLIPRN50 80.83 82.72 81.91
CLIPViT-L 82.72 82.96 82.85
CLIPViT-L@336 82.09 83.26 82.76
SigLIP 86.10 86.67 86.43
AlphaCLIP 75.15 77.44 76.45

OFABase 68.75 75.71 72.71
OFALarge 72.01 79.18 76.10

Table 4: closed-set results in localization of premises.

IoU Acc. (%)

UNINEXT-H 38.75 35.58
LISA 44.25 44.62
Unified-IO-2 48.61 47.15
OFA 50.14 49.13
MM-G-Dino 55.02 54.98

Table 5: open-set results in localization of premises.

CIDER (Vedantam et al., 2015) measure surface
form similarity, not semantic similarity between
conclusions. Alternatively, prompt-based evalua-
tion using general reasoners (e.g. GPT-4) (Achiam
et al., 2023) can be biased by factors including can-
didate order (Pezeshkpour and Hruschka, 2023).
Human verification, though ideal, is costly and hard
to reproduce. We conduct a small-scale comparison
study (see Tab. 3) to verify that the model-based
metric BERTScore (Zhang* et al., 2020) provides
the most stable estimate, making it our primary
metric. Details are in Appendix D.

5 Experiments

5.1 Localization of Premises
Localization of Premises tests the visual grounding
capabilities of machines. Given the image I and
description of a visual premise vpd, the goal is to
find a corresponding region vpr in the image.
Metrics and Models. We define open-set evalua-
tion as a setting in which models are required to
generate bounding box coordinates without relying
on a predefined candidate list. As a result, models
used for open-set and closed-set evaluations are
architecturally distinct, since models lacking an ex-
plicit generative head, such as CLIP (Radford et al.,
2021), are not compatible with open-set evaluation
due to their dependence on a candidate region list
for text-to-region matching.

For closed-set grounding, which is an N-way
classification task, the goal is to match the given
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Global Local

Random Visual Textual Mixed Semantic

Random 33.33 33.33 33.33 33.33 33.33 (-)
Human 100.00 99.00 94.00 100.00 98.00 (↑ 4.00)

OFA 0.00 0.00 0.00 0.00 0.00 (-)
Qwen-VL-Chat 86.05 85.77 70.67 75.57 49.74 (↓ 20.93)
CogVLM 97.46 96.39 88.00 92.22 65.31 (↓ 22.69)
Idefics2 98.68 97.83 91.80 95.07 75.01 (↓ 16.79)
InstructBLIP 83.77 79.23 66.95 71.37 61.90 (↓ 5.05)
Unified-IO-2 98.42 96.99 86.87 92.81 34.74 (↓ 52.13)
LLaVA-1.5 98.65 97.91 83.74 89.86 67.43 (↓ 16.31)
LLaVA-NeXT 97.66 96.20 80.90 85.86 78.53 (↓ 2.37)
GPT-4-O - - - - 79.50 (-)

Semantic

+ G.T region

-
-
-
-

78.13 (↑ 16.23)
84.39 (↑ 49.65)
76.67 (↑ 9.24)
82.19 (↑ 3.66)

-

Table 6: Results of the Identification of Premises task. Difference between the lowest score in global and local setup
for each model are highlighted.

description with the correct bounding box. To eval-
uate standard image-text matching algorithms (e.g.
CLIP), we crop the regions accordingly. The mod-
els for this task include various CLIP-based models
(CLIP (Radford et al., 2021) with different back-
bones and SigLIP (Zhai et al., 2023)) and a mul-
titask model OFA (Wang et al., 2022). The CLIP-
based models are adapted as follows: for each can-
didate object region (specified by bounding box co-
ordinates), the corresponding regions are cropped
from the image to create region-level image rep-
resentations. Image features for each cropped re-
gion are then extracted using a CLIP-based encoder,
while text features are obtained by encoding the
input description using the same model. Cosine
similarity is calculated between the text feature
and each region-level image feature. The region
with the highest similarity score is selected as the
predicted match.

For open-set grounding, which is to locate an
object in an image based on a natural language
expression, we instruct the models to output bound-
ing box coordinates and we compare them to the
ground truth region. A predicted coordinate is con-
sidered correct if its intersection over union with
the gold label is at least (IoU ≥ 0.5). We use
a diverse set of models that support local region
output formats, UNINEXT-H (Yan et al., 2023),
LISA (Lai et al., 2023), Unified-IO-2 (Lu et al.,
2023), OFA, MM-G-DINO (Liu et al., 2023b).

Results. Tab. 4 demonstrates that current models
are generally effective in matching descriptions of
visual premises to the correct regions in images,
thereby meeting the basic vision requirements for
understanding visual arguments. However, the re-
sults for open-set grounding, shown in Tab. 5, are

Image + VP + CP + Tree

LLaMA3 - 30.2 37.8 (↑7.6) 40.8 (↑2.0)
Mistralv0.2 - 18.9 30.2 (↑11.3) 36.6 (↑6.4)
Zephyr - 20.6 28.7 (↑8.1) 36.5 (↑7.8)

OFA -41.3 -24.6 (↑16.7) -16.5 (↑8.1) -13.9 (↑2.6)
Qwen-VL-Chat 12.8 23.7 (↑10.9) 30.2 (↑6.5) 32.7 (↑2.5)
CogVLM 25.7 30.7 (↑5.0) 33.6 (↑2.9) 36.3 (↑2.7)
Idefics2 16.4 22.8 (↑6.4) 29.5 (↑6.7) 36.6 (↑7.2)
InstructBLIP -18.4 16.6 (↑35.0) 28.9 (↑12.3) 32.2 (↑3.3)
Unified-IO-2 -9.9 -3.4 (↑6.5) 4.2 (↑7.6) 8.0 (↑3.8)
LLaVA-1.5 2.2 20.0 (↑17.8) 29.6 (↑9.6) 33.7 (↑4.1)
LLaVA-Next 15.1 28.4 (↑13.3) 34.3 (↑5.9) 39.5 (↑5.2)
GPT-4-O 25.5 - 34.3 (↑8.8) 41.0 (↑6.7)

Table 7: Results of the Deduction of Conclusion task,
showing how incremental additions of inputs affect the
correctness of the conclusion. Scores are presented
using BERTScore, with similar trends observed across
other metrics as detailed in Appendix F.

somewhat mixed: the scores are acceptable but
not uniformly high. We traced this performance
decline to the nature of zero-shot object detectors,
which are designed to detect concrete objects and
clear segments. In contrast, our bounding boxes are
more semantic (Guo et al., 2018). Visual examples
can be found in Appendix G.

5.2 Identification of Premises

Identification of Premises tests the selective atten-
tion capabilities, i.e., selecting necessary visual
cues to understand an argument. Given the image
I and an intermediate conclusion ic, the goal is
to select a visual premise vpd that leads to this
intermediate conclusion.
Metrics and Models. For this task, we retain only
intermediate conclusions that have at least two un-
related visual premises within the image. We report
classification accuracy based on a single gold vi-
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Image ∆ VP ∆ CP ∆ Tree

LLaVA-1.5 3.48 ↑ 13.29 (5.42) ↑ 8.57 (4.75) ↑ 4.72 (4.34)
LLaVA-Next 15.04 ↑ 11.28 (1.21) ↑ 6.72 (2.78) ↑ 4.14 (4.02)

Table 8: Mean of incremental improvements in
BERTScore with each additional input across four dif-
ferent prompts in Deduction of Conclusion. Standard
deviations are shown in parentheses.

sual premise and two negative candidates. The
negative sets are sourced as described in § 4.2
and are categorized into random, visual, textual,
mixed, and semantic sets. Given the task’s require-
ment for understanding argumentation structure,
the models evaluated are primarily multimodal
large language models with adequate reasoning
capabilities. We experiment with a broad selection
of models: OFA (Wang et al., 2022), Qwen-VL-
Chat (Bai et al., 2023), CogVLM (Wang et al.,
2023), Idefics2 (Laurençon et al., 2024), Instruct-
BLIP (Dai et al., 2024), Unified-IO 2 (Lu et al.,
2023), LLaVa-1.5 (Liu et al., 2024a), and LLaVa-
Next (Liu et al., 2024b). For the sake of brevity,
we do not report per-category results (Ads and Car-
toon) here. Refer to Appendix F for full results.

Results. Tab. 6 highlights a significant trend: mod-
els struggle to distinguish negatives within the im-
age (local), but excel in identifying global neg-
atives. A major challenge for most models was
handling semantic negatives within the same im-
age, as evidenced by the generally wide margin
between models’ performance on global and local
setups. Still, the global negative samples exhib-
ited more pronounced distinctions based on their
sampling scheme. Negatives sampled uniformly
were distinguishable by most models with ≥ 90%
accuracy. In contrast, retrieval methods proved
more challenging across the board, particularly for
negatives retrieved using the text-to-text similarity
model (textual), which increased the problem com-
plexity for most models. Notably, OFA failed to
follow zero-shot instructions for multiple-choice
answering, scoring close to zero. Finally, we also
present results for cropped ground-truth region im-
ages. Although cropped images are not lossless
representations of the regions, all models exhibited
significant improvements, indicating that the abil-
ity to infer relevant visual cues is indeed a critical
challenge. Thus, we conclude that models struggle
to infer which visual cues support the argument.

A  on 
the left side.

missile The text reads, 
"Words kill ."wars

The  represents .missile war

Large  of 
plastic bags.

wave plastic bags 
are flying out

of the .wave

Wave indicates the destructive 
force in nature.

The right side 
is  and 

leafless.
barren

The left side 
is lush and 

green.

The  indicates 
environmental degradation.

barren side

Figure 5: Failure cases of LLaVA-1.5 in Identification of
Premises. The model incorrectly reasons about relevant
objects, relying instead on common words.

5.3 Deduction of Conclusion

Deduction of Conclusion evaluates the comprehen-
sive ability to deduce the conclusion of an argu-
ment. Given a subset of inputs among the im-
age I , the visual premises VP, the commonsense
premises CP, and the reasoning tree T , the objec-
tive is to generate the conclusion C of an argument.
Metrics and Models. As discussed earlier in § 4.3,
we use BERTScore as the primary metric. We
supplement this with three additional static met-
rics (Bleu-4, ROUGE-L, CIDEr) in Appendix F.
The models tested in this task include all the mul-
timodal LLMs used in the previous experiment
and text-only LLMs (LLaMa-3-Instruct (AI@Meta,
2024), Mistral-Instruct (Jiang et al., 2023), and
Zephyr (Tunstall et al., 2023)). All LLMs consid-
ered here are the 7 ∼ 8b sized variants. The LLMs
do not take the image as an input.
Results. Table 7 shows the results for this task. As
expected from previous tasks, most models expe-
rience the highest gain from the additional infor-
mation provided by the ground-truth set of visual
premises. This supports our hypothesis that selec-
tive attention to visual premises is a bottleneck in
understanding visual arguments in current models.
Also, both multimodal and text-only models bene-
fited from commonsense premises and reasoning
trees in most setups, indicating that models cannot
yet perfectly understand visual arguments in a text-
only format and benefit from explicit reasoning
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Figure 6: Left: OCR detection results. Right: Ground
truth text instances missed by the model (highlighted
in red). Most detection errors are attributed to Out-of-
Domain cases such as calligraphy, handwritten text, or
text that is too small for the model to detect, despite
being distinguishable to the human eye.

process information. We note that OFA struggled
to follow the instruction format, leading to sub-
zero scores. Although rare, BERTScore, based on
cosine similarity, can yield negative values. We
also clarify that the multimodality of the deduction
of conclusion task resides in the visual premises,
making it solvable by text-only models given them.

5.4 Diagnostics

Prompt Robustness. To ensure the robustness of
our empirical results, we differentiated the prompts
provided to the models. As shown in Tab. 8, the
trend of gains remained stable across four different
prompts, confirming the validity of our tests. For
detailed prompts, refer to Appendix M, and for
results in other tasks, see Appendix E.
Error Analysis. Fig. 5 provides qualitative exam-
ples of failure cases. We present straightforward
instances to clearly explain the errors. In these
cases, the models fail to reason about the relevant
object, which is the subject of the given intermedi-
ate conclusion, and instead rely on common words,
leading to incorrect inference results.
Reliance on OCR Capabilites. To examine how
demanding VisArgs is on OCR capabilities, we em-
ploy a lightweight OCR detector (Du et al., 2021)
to detect bounding boxes of the visual premises
without leveraging text annotations as input. Even
this simplified model achieves 82.77% accuracy in
image-wise evaluation, where an image is consid-
ered correctly detected only if all visual premises
within it are identified. Typical failure cases are
illustrated in Fig. 6.

6 Conclusion

We introduce VisArgs, a curated and annotated
benchmark for visual argument understanding. Us-
ing our benchmark, we affirm a compelling hypoth-
esis: selective vision is a critical bottleneck for
visual reasoning in current machines. We aim for
our benchmark to serve as a resource for advancing
multimodal intelligence beyond passive captioning.
Future work includes:

1. Conditional Saliency Analysis: It is demon-
strated that the saliency required for visual ar-
guments differs from that needed for passive
captioning. Can the varying saliency require-
ments across different tasks be analyzed?

2. Extending Modalities: In speech recognition,
non-conditional selective attention is known as
the cocktail party effect. Would conditional se-
lective attention be necessary in modalities other
than vision as well?

Limitations

VisArgs, which is built on advertisements and car-
toons from web sources, does not encompass all
forms of visual arguments. Visual arguments also
include various forms of media including mathe-
matical diagrams (Inglis and Mejía-Ramos, 2009)
and videos, such as films (Alcolea-Banegas, 2009).
Consequently, the findings of this study do not rep-
resent all forms of visual arguments.

Additionally, the annotations for VisArgs are
created by two NLP researchers with similar cul-
tural backgrounds. Although a different group of
human evaluators validated these annotations, fu-
ture research should consider individual variances
in the interpretation of visual arguments and the
reasoning processes identified by reasoning trees.

Finally, we excluded images containing written
text in non-English languages when curating Vis-
Args, as the annotators were not familiar with other
languages. This limitation may confine the cul-
tural context covered by VisArgs, thus representing
only a partial depiction of visual arguments. Since
the logical relations forming a visual argument can
depend on culture-specific elements, this skewed
distribution of images can lead to a biased under-
standing of visual arguments.

We encourage future research to extend this work
by exploring a wider range of visual arguments and
incorporating more diverse cultural and linguistic
contexts.
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A Data Annotation Details

Human Resources. To ensure a comprehensive
understanding of the intricate requirements of our
setup and maintain consistency across annotations,
two of this paper’s authors conducted the entire
annotation process. Three volunteers from the NLP
research community did the human evaluation.
Annotation Interface. We used a custom-built
interface for efficient and convenient image annota-
tion. The interface is depicted in Fig. 7 and Fig. 8.
Additionally, we provide a snapshot of the human
evaluation interface for Identification of Premises
in Fig. 9. We will open-source this interface along
with the dataset.
Inter-Annotator Agreement. The dataset annota-
tion was conducted by two primary human anno-
tators, with a third evaluator assigned to assess an-
notation quality and consistency. To measure inter-
annotator agreement, 100 samples were randomly
selected and re-annotated by a secondary annotator
different from the original. Subsequently, the third
evaluator independently assessed the equivalence
of each annotated sample.

Given that the annotations comprise premise sets
and natural language conclusions, rather than nu-
merical scores, traditional metrics such as Cohen’s
kappa are not applicable. Instead, we measured
inter-annotator agreement using two distinct crite-
ria: equivalence of visual premise sets and equiva-
lence of natural language conclusions. The Jaccard
similarity index was employed to quantify the over-
lap between visual premise sets, while a binary
equivalence test was used to evaluate alignment in
the conclusions.

The results, as presented in Tab. 9, demonstrate
a high degree of inter-annotator agreement. Quali-
tative analysis revealed that observed discrepancies
primarily stemmed not from substantive semantic
variations but from differences in how annotators
segmented a single concept into one or more visual
premises.

B Analyzing Topic Diversity

Initially, we considered using the Latent Dirich-
let Allocation (LDA) (Blei et al., 2003) method
for data visualization, following previous litera-
ture (Hessel et al., 2022). However, we found that
LDA based on Bag-of-Words representations could
not generate meaningful clusters or labels for con-
clusion topics. As a solution, we developed an
adaptive semantic classification technique using

Visual Premise Conclusion

Human-Human 0.78 0.96
Machine-Machine 0.51 0.88

Table 9: Inter-annotator agreement results based on hu-
man evaluation, quantified using the Jaccard Similarity
Index for set-level comparisons.

model dtype #parameter version

CLIP - 623M RN50x64
CLIP - 427M ViT-L/14
CLIP - 427M ViT-L/14@336px
SigLIP - 652M large-patch16-384
AlphaCLIP - 428M clip_l14_336_grit_20m_4xe
UNINEXT-H - 775M image_joint_vit_huge_32g
LISA - 7B xinlai/LISA-7B-v1
MM-G-DINO - 343M grounding_dino_swin-l_pretrain_all
LLaVA-1.5 FP16 7B llava-1.5-7b-hf
LLaVA-NeXT FP16 7B mistral-v0.2
Idefics2 FP16 8B chatty
OFA - 470M vqa-pretrain-large
QwenVLChat BF16 9B Qwen-VL-Chat
CogVLM BF16 17B cogvlm-chat-hf
InstructBLIP FP16 7B instructblip-vicuna-7b
Unified-IO-2 - 3B uio2-xl

Table 10: Details on the models used in our experiments.

multimodal large language models:
Defining Class Labels. We utilize GPT-4-O. We
first sample 400 sentences each for VP and C, and
then feed them to GPT with the following instruc-
tions: For VP: "Give me well-balanced 10 object
type classes for these texts (e.g., eating & dining,
environments & landscapes, attire). Just classes."
For C: "Give me well-balanced 10 classes for these
texts. Just classes." After receiving the 10 classes
from the GPT, we manually refine these classes
into 8 classes for both VP and C.
Labelling Data. We use a pretrained language
model to classify visual premises (VP) and conclu-
sions (C) in a zero-shot manner. We provide the
following input to the LLaMA-39 LLM:� �
Classes: {}
Your task is to classify a sentence

↪→ into
the given classes.
Give me just the class.
Sentence: {}� �

Visualization. We use the Plotly (Plotly, 2015)
library.

C Experiment Details

C.1 Localization of Premises

For closed-set grounding, we utilized CLIP, SigLIP,
AlphaCLIP, and OFA. We measured the align-
ment between regions and descriptions of visual

9meta-llama/Meta-Llama-3-8B-Instruct
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premises using image-to-text cosine similarity
scores. The input regions were provided as cropped
images. A model output was considered correct
(True) if the similarity between the ground-truth
region and the given description was the highest
among all candidates; otherwise, it was marked
incorrect (False).

For open-set grounding, we employed ob-
ject grounding models such as MM-GDINO,
UNINEXT-H, LISA, OFA, and Unified-IO-2 to
directly generate bounding box coordinates. We ap-
plied a threshold of 0.35 to the outputs, merging the
selected regions into the tightest rectangle union.
For LISA, we converted the output segmentation
mask into bounding boxes. We then calculated
the Intersection over Union (IoU) score for each
bounding box. To compute the accuracy metric,
we used a threshold of 0.5 for binary classification
over the IoU. We calculated the local mean, which
is the mean per visual premise in an image, and the
mean per image.

C.2 Identification of Premises
We utilized OFA, Qwen-VL-Chat, CogVLM,
Idefics2, InstructBLIP, Unified-IO-2, LLaVA-1.5,
LLaVA-Next, and GPT-4-O for our experiments.
We created multiple-choice questions with three
possible answers: one correct answer and two in-
correct answers. Five conditions were set for sam-
pling the negatives for incorrect answers:
• Random Sampling: This global sampler selects

samples uniformly without duplication.
• Visual Sampling: This global sampler chooses

the top 2 premise descriptions most similar to the
image, using CLIP to score the cosine similarity
between the image and text. We set the CLIP
similarity threshold to 0.24 to ensure negative
premises do not accurately describe the image.

• Textual Sampling: This sampler selects the top 2
premise descriptions most similar to the ground
truth premise, using ColBERT to score the co-
sine similarity between texts. We set the Col-
BERT similarity threshold to 25 to prevent neg-
ative premises from accurately describing the
image.

• Mixed Sampling: This approach combines visual
and textual sampling, visually selecting from the
top 10 textual retrieval results.
To ensure a fair comparison across various nega-

tive sampling methods, we use only intermediate
conclusions that have three or more related visual
premises. This results in 1,775 visual premises

for the advertisement category and 1,774 for the
cartoon category, totaling 3,549 visual premises,
which is 62.34% of the overall visual premises.
Human Evaluation. We randomly selected 100
images from each data category and had human
annotators perform the same tests as the machines
across all negative set setups. The results demon-
strated that humans achieved nearly perfect accu-
racy in this task, as shown in Tab. 14.

C.3 Deduction of Conclusion

We conducted experiments on both Multi-Modal
Large Language Models (MLLM) and Large
Language Models (LLMs). The MLLMs used
in our experiments include LLaVA-1.5, LLaVA-
NeXT, Idefics2, OFA, InstructBLIP, Qwen-VL-
Chat, CogVLM, and Unified-IO-2. The LLMs
include LLaMA-3, Mistral, and Zephyr.
Prompting. Before conducting the experiments,
we established a set of instructions to be applied to
all models to elicit appropriate responses. During
this process, we encountered several issues with
prompt engineering, such as model refusal to ad-
dress controversial or unsafe questions, the inclu-
sion of unnecessary tokens, multiple sentences, and
the positioning of image tokens. Ultimately, we
decided on the following prompt: "<image> <in-
formation> Your task is to answer what the image
wants to convey. You should respond in only one
sentence without any unnecessary prefixes. AN-
SWER:"

C.4 Resource & Hyperparameters

Computation. We utilized RTX-4090 and A6000
GPUs for our experiments. All models, except
for CogVLM, were implemented using RTX-4090
GPUs. Due to the size of its model weights,
CogVLM was implemented on an A6000 GPU.
Each model required up to 8 RTX-4090 GPU-hours
per task. In total, conducting all tasks demanded
200 RTX-4090 GPU-hours.
Hyperparameters. Our experiments are de-
terministic, given the pretrained model weights,
the greedy decoding scheme, and the instruction
prompts. We explore prompt diversification in § 5.4
and Appendix E.

C.5 Model Details

We specify all exact model identifiers and sizes
in Tab. 10.
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D Comparison of Metrics for Deduction
of Conclusion

Here, we describe details for human evaluation of
goodness per each metric illustrated in Tab. 3.
Human Evaluation. We sampled 200 target im-
ages and collected responses from three models:
LLaVA-Next, Qwen-VL-Chat, and GPT-4o. Hu-
man annotators then determined whether each
model’s conclusion was semantically similar to the
reference conclusion.
Metrics. To evaluate accuracy, precision, recall,
and F1-score, we first converted each metric into
binary decisions using derived thresholds. We es-
tablished these thresholds by training a logistic
regression model on 100 pairs of metric scores and
human decisions. Subsequently, we inferred binary
decision labels on the remaining 100 pairs. The
results are presented in Tab. 11. Additionally, the
correlation between the metrics and human deci-
sions is reported using Pearson’s coefficient (Cohen
et al., 2009).

E Prompt Robustness in Identification of
Premises

Extending the robustness study in Tab. 8, we con-
ducted a similar prompt diversification experiment
for the task of Identification of Premises. By para-
phrasing the original prompt as described in Ap-
pendix L, we performed the same evaluation. The
results, presented in Tab. 12, demonstrate that our
experimental outcomes remain stable for Identifi-
cation of Premises across different prompt para-
phrases.

F Full Results

This section presents the comprehensive versions of
the results summarized in the main paper. Tab. 13
displays the open-set grounding results for Local-
ization of Premises, while Tab. 14 provides the
results for Identification of Premises. The results
for the task of Deduction of Conclusion are detailed
by category: advertisements are shown in Tab. 15,
cartoons in Tab. 16, and the average across both
categories in Tab. 17.

G Qualitative Samples on Open-Set
Grounding

To identify the cause of low performance in the
open-set evaluation of the Localization of Premises
task, we examine qualitative samples shown in

Fig. 10. Traditional object detection models are
typically trained on single object labels, whereas
our semantic region labels may encompass multi-
ple objects with similar meanings. Consequently,
although the models may detect the correct target,
the intersection over union (IoU) scores are lower,
resulting in reduced accuracy.

H Qualitative Samples on Deduction of
Conclusion

Inference results of different models with varying
inputs are shown in Fig. 11 and Fig. 12. The out-
puts of the models display discrepancies; for in-
stance, CogVLM exhibits weak conditioning on
additional inputs, producing similar outputs despite
the incremental increase in information provided
through different inputs.

I Credits

We do not claim any rights to the images included
in our dataset. Therefore, we provide only the
URLs to the corresponding images instead of dis-
tributing the raw files. For usage outside of an aca-
demic context, please contact the copyright holders
directly.
Figures. All icons used in the figures are from
www.flaticon.com.
• Figure 1: www.art-vibes.com/design/egle
-plytnikaite-environmental-issues

• Figure 2: www.commarts.com/project/24399
/mcdonald-s-refresh

• Figure 3: www.aisleone.net/2007/10/30/
jeep/ | www.nextml.github.io/caption-c
ontest-data/dashboards/630.html | ww
w.i.pinimg.com/originals/ac/32/16/ac
321665c9e8f5feccc62eb3f6d09d37.jpg |
www.ipnoze.com/publicite-sociale/ | www.
adsoftheworld.com/campaigns/scissors-1
e569372-d5e7-488b-9e06-8bf46580801e

• Figure 5: www.adsoftheworld.com/campaign
s/words-1c383606-d2b3-4aea-9f19-c0627
b6fb4ff | www.behance.net/gallery/687475
47/The-Great-Plastic-Wave | www.fanpop
.com/clubs/global-warming-prevention/
images/33088666/title/global-warming-p
hoto

J Prompts for Annotation

• Annotation for Visual Premises
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Accuracy Precision Recall F1-score Pearson Corr. (ρ)

BLEU-4 0.67 0.44 0.67 0.53 0.18
ROUGE 0.75 0.76 0.75 0.72 0.35
CIDEr 0.72 0.70 0.72 0.70 0.26
GPTEval 0.75 0.83 0.75 0.76 0.53
BERTScore 0.94 0.94 0.93 0.93 0.59

Table 11: Comparison of metrics with human decision on Deduction of Conclusion

Global Local

Prompt Random Visual Textual Mixed Semantic

LLaVA-NeXT Original 97.10 96.14 80.53 84.70 77.51
InstructBLIP 90.65 84.53 71.54 74.75 58.21

LLaVA-NeXT Paraphrase 1 97.24 96.59 80.98 85.63 77.60
InstructBLIP 90.93 84.73 72.78 74.98 59.68

LLaVA-NeXT Paraphrase 2 97.60 96.25 81.46 86.00 76.67
InstructBLIP 93.32 89.83 79.01 81.71 64.50

Table 12: Assessment of prompt robustness with different paraphrases in Identification of Premises. Accuracy is
measured as a percentage.

IoU Acc. (%)

Ads Cartoon All Ads Cartoon All

UNINEXT-H 34.50 44.33 38.75 31.67 40.71 35.58
LISA 40.05 49.17 44.25 40.52 50.01 44.62
Unified-IO-2 45.81 52.29 48.61 44.66 50.43 47.15
OFA 49.10 51.49 50.14 49.06 49.22 49.13
MM-G-Dino 52.70 58.06 55.02 52.39 58.37 54.98

Table 13: Open-set grounding results in localization of
premises.

� �
Your task is to identify visual

↪→ premises from the image. These
↪→ are visual cues that support or
↪→ illustrate the conclusion,
↪→ enhancing the overall
↪→ understanding and clarity of
↪→ the image.

Example
Visual Premises (VP):
1. The image depicts a maze with entry

↪→ point and exit.
2. At the entry point of a maze labeled

↪→ "Start," there is a cigarette.
3. The exit of the maze is labeled "

↪→ Lung Cancer."
4. There’s a text saying, "Or you can

↪→ start here," with an arrow
↪→ pointing to another text that
↪→ reads, "Make the right choice.
↪→ DON’T SMOKE."� �

• Annotation for Constructing Arguments

� �
Visual Premises (VP):
1. VP1
2. VP2
3. VP3

Given the visual premises of the image,
↪→ your task is to generate the
↪→ necessary commonsense premises
↪→ and conclusion of the image.
↪→ The conclusion should be one
↪→ simple sentence. Then show the
↪→ reasoning steps to reach the
↪→ conclusion. The reasoning steps
↪→ should include all visual
↪→ premises and commonsense
↪→ premises. You can refer to the
↪→ following example.

Example
Visual Premises (VP):
1. The image depicts a maze with entry

↪→ point and exit.
2. At the entry point of a maze labeled

↪→ "Start," there is a cigarette.
3. The exit of the maze is labeled "

↪→ Lung Cancer."
4. There’s a text saying, "Or you can

↪→ start here," with an arrow
↪→ pointing to another text that
↪→ reads, "Make the right choice.
↪→ DON’T SMOKE."

Commonsense Premises (CP):
1. Mazes are often used to represent

↪→ complex journeys or paths one
↪→ must navigate.

2. Cigarettes are known to be harmful
↪→ to health and a major cause of
↪→ lung cancer.

3. The phrase "Make the right choice"
↪→ implies that there is a
↪→ decision to be made that can
↪→ impact one’s health.

4. Public health messages often use
↪→ strong visuals to convey the
↪→ importance of making healthy
↪→ choices.
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Conclusion (C):
The image is a public health message

↪→ that illustrates the dangerous
↪→ path from smoking to lung
↪→ cancer while encouraging
↪→ individuals to choose not to
↪→ smoke for their health.

Reasoning Steps:
(VP1, CP1 -> IC1): The maze represents

↪→ the difficult and potentially
↪→ harmful journey.

(VP2, CP2 -> IC2): The presence of a
↪→ cigarette at the maze’s entry
↪→ point indicates the start of
↪→ this hazardous journey.

(VP3, CP2 -> IC3): Labeling the maze’s
↪→ exit as "Lung Cancer" directly
↪→ links smoking to this deadly
↪→ disease.

(VP4, CP3, CP4 -> IC4): The additional
↪→ text offers an alternative
↪→ choice to avoid smoking,
↪→ emphasizing the importance of
↪→ preventive health measures.

(IC1, IC2, IC3, IC4 -> C): The image is
↪→ a public health message that
↪→ warns about the risks of
↪→ smoking and encourages making
↪→ the right choice for one’s
↪→ health.

Answer� �
K Prompts for Evaluation

• GPTEval

� �
Task Description: You will be given a

↪→ ground truth sentence that
↪→ describes an image and a model-
↪→ generated sentence. Your task
↪→ is to evaluate the semantic
↪→ similarity between the model-
↪→ generated sentence and the
↪→ ground truth sentence. You don’
↪→ t need to give me any
↪→ description. Just score should
↪→ be answered.

Evaluation Criteria: T/F. False means
↪→ the sentences are completely
↪→ different. True means they mean
↪→ exactly the same thing.

Ground Truth: {}
Generated: {}� �

L Prompts for Identification of Retrieval
• Original Prompt� �

<image>
The following are multiple choice

↪→ questions (with answers) about
↪→ image understanding.

When given an image, a conclusion, and
↪→ several visual cue options, you
↪→ need to identify the visual
↪→ cue that best relates to the
↪→ conclusion. To do this
↪→ effectively, carefully analyze
↪→ how each visual cue connects to
↪→ the key elements of the
↪→ conclusion. Select the visual
↪→ cue that most directly supports
↪→ or illustrates the conclusion,
↪→ ensuring that it enhances the
↪→ overall understanding and
↪→ clarity of the message. Answer
↪→ A), B), or C) with no
↪→ additional explanation.
↪→ Conclusion: {conclusion}

{vp_options}
ANSWER:� �

• Paraphrase 1� �
<image>
The following are multiple choice

↪→ questions (with answers) about
↪→ image understanding.

When given an image, a conclusion, and
↪→ several visual cue options,
↪→ identify the visual cue that
↪→ best relates to the conclusion.
↪→ Select the visual cue that
↪→ most directly supports or
↪→ illustrates the conclusion,
↪→ ensuring that it enhances the
↪→ overall understanding and
↪→ clarity of the message. To do
↪→ this effectively, carefully
↪→ analyze how each visual cue
↪→ connects to the key elements of
↪→ the conclusion. Answer A), B),
↪→ or C) with no additional
↪→ explanation. Conclusion: {
↪→ conclusion}

{vp_options}
ANSWER:� �

• Paraphrase 2� �
<image>
The following are multiple choice

↪→ questions (with answers) about
↪→ image understanding.

Given an image, what is the visual cue
↪→ most related to the given
↪→ conclusion? Answer A), B), or C)
↪→ with no additional explanation.
↪→ Conclusion: {conclusion}

{vp_options}
ANSWER:� �

M Prompts for Deduction of Conclusion
• Image -> C
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� �
<image>
Your task is to answer what the image

↪→ wants to say. You should answer
↪→ in only one sentence without
↪→ an unnecessary prefix. ANSWER:� �

• Image, VP -> C� �
<image>
"Visual Premises (VP)" are the

↪→ important features presented in
↪→ the images.

Visual Premises (VP):
1. VP1
2. VP2
3. VP3

Your task is to answer what the image
↪→ wants to say. You should answer
↪→ in only one sentence without
↪→ an unnecessary prefix. ANSWER:� �

• Image, VP, CP -> C� �
<image>
"Visual Premises (VP)" are the

↪→ important features presented in
↪→ the images. " Commonsense
↪→ Premises (CP)" are not visually
↪→ depicted in the image but are
↪→ commonly understood by people.

Visual Premises (VP):
1. VP1
2. VP2
3. VP3

Commonsense Premises (CP):
1. CP1
2. CP2
3. CP3

Your task is to answer what the image
↪→ wants to say. You should answer
↪→ in only one sentence without
↪→ an unnecessary prefix.

ANSWER:� �
• Image, VP, CP, Tree -> C� �

<image>
"Visual Premises (VP)" are the

↪→ important features presented in
↪→ the images. " Commonsense
↪→ Premises (CP)" are not visually
↪→ depicted in the image but are
↪→ commonly understood by people.
↪→ "Reasoning Steps" are the
↪→ structure of explanation of how
↪→ we came up to the "
↪→ Intermediate Conclusion(IC) and
↪→ "Conclusion".

Visual Premises (VP):
1. VP1
2. VP2
3. VP3

Commonsense Premises (CP):
1. CP1
2. CP2
3. CP3

Reasoning Step:
(VP1, CP1 -> IC1): IC1
(VP2, CP2 -> IC2): IC2
(VP3, CP3 -> IC3): IC3
(IC1, IC2, IC3 -> C):

Your task is to answer what the image
↪→ wants to say. You should answer
↪→ in only one sentence without
↪→ an unnecessary prefix. ANSWER:� �

• Prompt Style 1� �
<image>
"Visual Premises (VP)" are the

↪→ important features presented in
↪→ the images. " Commonsense
↪→ Premises (CP)" are not visually
↪→ depicted in the image but are
↪→ commonly understood by people.
↪→ "Reasoning Steps" are the
↪→ structure of explanation of how
↪→ we came up to the "
↪→ Intermediate Conclusion(IC) and
↪→ "Conclusion".

Visual Premises (VP):
...

Commonsense Premises (CP):
...

Reasoning Step:
...

Answer in one sentence what the image
↪→ wants to convey. ANSWER:� �

• Prompt Style 2� �
<image>
"Visual Premises (VP)" are the key

↪→ visual elements in the image. "
↪→ Commonsense Premises (CP)" are
↪→ elements based on general
↪→ common sense. "Reasoning Steps"
↪→ are the process of reaching
↪→ the "Intermediate Conclusion (
↪→ IC)" and "Conclusion".

Visual Premises (VP):
...

Commonsense Premises (CP):
...

Reasoning Step:
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...

Write the message of the image in one
↪→ sentence. You should answer in
↪→ only one sentence without an
↪→ unnecessary prefix. RESPONSE:� �

• Prompt Style 3� �
<image>
"Visual Premises (VP)" represent the

↪→ important features observed in
↪→ the image. "Commonsense
↪→ Premises (CP)" are things not
↪→ visually depicted but generally
↪→ understood. "Reasoning Steps"
↪→ are the explanation process
↪→ leading to the "Intermediate
↪→ Conclusion (IC)" and "
↪→ Conclusion".

Visual Premises (VP):
...

Commonsense Premises (CP):
...

Reasoning Step:
...

Write the main message of the image in
↪→ one sentence. RESPONSE:� �

• Prompt Style 4� �
<image>
"Visual Premises (VP)" are the key

↪→ features observed in the image.
↪→ "Commonsense Premises (CP)"
↪→ are not visually depicted but
↪→ can be understood through
↪→ general knowledge. "Reasoning
↪→ Steps" are the logical
↪→ explanation process leading to
↪→ the "Intermediate Conclusion (
↪→ IC)" and "Conclusion".

Visual Premises (VP):
...

Commonsense Premises (CP):
...

Reasoning Step:
...

Write the meaning the image wants to
↪→ convey in one sentence.
↪→ RESPONSE:� �
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 1. Below is the auto generated annotations. Please read them carefully and make any corrections following the instructions. 
 2. List all the visual elements necessary to understand the message conveyed by the image as visual premises. 

 3. List all the commonsense knowledge required to understand the message conveyed by the image as commonsense premises. 

 4. Write down the message that the image is trying to convey.

 5. Create the argument step by step to reach the conclusion. The reasoning tree must include all premises.


Image Annotation

Figure 7: Human annotation interface for collecting textual annotations.
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Bounding Box Annotation
Draw a bounding box around the image that captures its semantic meaning, 

ensuring it is the best-fitting box. 

Include all relevant objects within the bounding box.

Figure 8: Human annotation interface for collecting bounding boxes of visual premises.
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Figure 9: Human evaluation interface for Identification of Premises.

2445



Target Visual Premise:


Mannequins in a store window wearing fur coats.

IOU : 0.23

Target Visual Premise:


A garlic bulb and a chili pepper, both smaller than onion.

IOU : 0.29

Explanation: 


The model seems to be detecting the correct target,


but only for a single object.

Explanation: 


The model detecting on object related to the target,


but on wrong object.

Explanation: 


The model seems to be detecting the correct target, 


but only for a single object.

Target Visual Premise: 


A bird, made of water, is drinking from the water plant.

IOU : 0.00

Figure 10: Qualitative samples of open-set grounding results.
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I, VP -> C

I, VP, CP -> C

I, VP, CP, T -> C

I -> C

I, VP -> C

I, VP, CP -> C

I, VP, CP, T -> C

I -> CLLaVANeXT InstructBLIP

The image shows a man trying to fix a 
broken wall with a hammer and a chisel, 
but the elephant is causing chaos by 
knocking down the bricks.

I, VP -> C

I, VP, CP -> C

I, VP, CP, T -> C

I -> C

I, VP -> C

I, VP, CP -> C

I, VP, CP, T -> C

I -> CLLaVANeXT InstructBLIP

The image illustrates the consequences of 
curiosity and the unexpected 
consequences of one's actions.

The image humorously illustrates the 
consequences of curiosity and the 
unexpected power of an elephant.

The image warns against curiosity or 
investigation that may lead to dangerous 
consequences.

elephant

The image wants to say that the man was 
knocked down by the elephant as it burst 
through the wall.

The image depicts a man using a stick to 
probe a small hole in the wall, and an 
elephant bursts through the wall, creating 
a large hole and knocking the man down.

The image suggests that curiosity can lead 
to unexpected and potentially harmful 
consequences.

The image wants to say that mcdonald's is 
everywhere.

mcdonalds

The image wants to say that McDonald's 
is a ubiquitous presence in urban 
environments, even at night.

The image is advertising McDonald's 
delivery service.

The image showcases the convenience of 
McDonald's delivery service in a city 
setting, emphasizing the brand's presence 
and the availability of nighttime delivery.

The image wants to showcase the 
convenience of McDonald's delivery 
service in an urban European setting, 
emphasized by the illuminated golden 
arches logos on various building facades.

The image showcases McDonald's 
delivery service in a city environment, 
highlighting the convenience of nighttime 
food delivery.

The image is advertising McDonald's 
delivery service in a nighttime urban 
setting with illuminated golden arches 
logos on various building facades.

Figure 11: Qualitative samples of Deduction of Conclusion, with inference results from LLaVA-NeXT and
InstructBLIP models.
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I, VP -> C

I, VP, CP -> C

I, VP, CP, T -> C

I -> C

I, VP -> C

I, VP, CP -> C

I, VP, CP, T -> C

I -> CCogVLM QwenVLChat

I, VP -> C

I, VP, CP -> C

I, VP, CP, T -> C

I -> C

I, VP -> C

I, VP, CP -> C

I, VP, CP, T -> C

I -> CCogVLM QwenVLChat

the image wants to say that cyberbullying 
is not a joke.

The image wants to say that cyberbullying 
is a serious issue and should not be taken 
lightly.

The image wants to say that cyberbullying 
can be as harmful as physical violence, and 
it uses a keyboard and a knife to represent 
these concepts.

The image is a metaphorical representation 

of the dangers of cyberbullying, suggesting 
that it is as harmful as physical violence.

The image is conveying a message about 
the potential dangers of cyberbullying, 
suggesting that one's online actions can 
have real-world consequences.

The image is emphasizing the severity of 
cyberbullying by comparing it to physical 
violence, suggesting that both can have 
harmful consequences.

The image is emphasizing the harmful 
nature of cyberbullying by comparing it to 
physical violence, suggesting that one 
should be cautious and sure about their 
online actions.

The image wants to say that cyberbullying 
can be as harmful as physical violence, and 
it is a serious issue that should not be 
underestimated.

The image conveys the challenges and 
dangers faced by journalists in conflict 
zones.

the image wants to say that journalists are 
often threatened and attacked while doing 
their jobs.

The image conveys the dangers and 
challenges faced by journalists in conflict 
zones.

The image depicts a journalist kneeling in 
front of armed soldiers, symbolizing the 
danger and sacrifice of reporting in 
conflict situations.

The image conveys the dangers and 
challenges faced by journalists in conflict 
zones, emphasizing the sacrifices they 
make to report the truth.

The image portrays a journalist kneeling in 
front of armed soldiers, conveying the 
dangers and challenges faced by 
journalists in reporting from conflict zones.

The image conveys the dangers and 
challenges faced by journalists in conflict 
zones, highlighting the vulnerability of 
press freedom and the sacrifices made for 
the sake of truth.

Journalists often face danger and violence 
while reporting news, even in conflict 
zones where they are supposed to be 
protected by the "PRESS" label.

Figure 12: Qualitative samples of Deduction of Conclusion, with inference results from CogVLM and Qwen-VL-
Chat models.
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Global Local

Random Visual Textual Mixed Semantic

Ads Cartoon All Ads Cartoon All Ads Cartoon All Ads Cartoon All Ads Cartoon All

Random 33.33 33.33 33.33 33.33 33.33 33.33 33.33 33.33 33.33 33.33 33.33 33.33 33.33 33.33 33.33
Human 100.00 100.00 100.00 100.00 98.00 99.00 96.00 92.00 94.00 100.00 100.00 100.00 98.00 98.00 98.00

OFA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Qwen-VL-Chat 88.90 83.21 86.05 88.67 82.87 85.77 73.73 67.61 70.67 77.00 74.14 49.73 53.21 46.25 75.57
CogVLM 97.58 97.35 97.46 96.45 96.34 96.39 88.78 87.21 88.00 91.66 92.79 92.22 69.28 61.35 65.31
Idefics2 98.59 98.76 98.68 97.91 97.75 97.83 93.18 90.42 91.80 95.15 94.99 95.07 77.40 72.62 75.01
InstructBLIP 82.41 85.13 83.77 78.07 80.39 79.23 68.55 65.35 66.95 71.87 70.87 71.37 66.91 56.90 61.90
Unified-IO-2 98.31 98.54 98.42 97.29 96.68 96.99 88.78 84.96 86.87 92.28 93.35 92.81 34.67 34.82 34.74
LLaVA-1.5 98.82 98.48 98.65 98.08 97.75 97.91 84.44 83.04 83.74 89.23 90.48 89.86 73.34 61.52 67.43
LLaVA-NeXT 97.35 97.97 97.66 96.05 96.34 96.20 81.17 80.62 80.90 84.33 87.38 85.86 82.69 74.37 78.53
GPT-4-O - - - - - - - - - - - - 75.22 82.56 79.50

Table 14: Results on Identification of Premises.

Inputs Automatic Semantic
I VP CP RS BLEU-4 ROUGE CIDEr BERT

LLaMA3
✓ 7.07 28.41 33.08 43.00
✓ ✓ 8.65 (↑ 1.58) 31.44 (↑ 3.03) 40.87 (↑ 7.79) 59.58 (↑ 16.58)
✓ ✓ ✓ 8.34 (↓ 0.31) 31.18 (↓ 0.26) 41.94 (↑ 1.07) 56.70 (↓ 2.88)

Mistral
✓ 2.95 19.84 23.28 24.86
✓ ✓ 4.95 (↑ 2.00) 25.13 (↑ 5.29) 33.90 (↑ 10.62) 39.92 (↑ 16.05)
✓ ✓ ✓ 6.15 (↑ 1.20) 27.06 (↑ 1.93) 38.34 (↑ 4.43) 49.54 (↑ 9.62)

Zephyr
✓ 2.78 16.35 24.06 16.15
✓ ✓ 3.25 (↑ 0.47) 17.44 (↑ 1.08) 30.41 (↑ 6.35) 31.38 (↑ 6.52)
✓ ✓ ✓ 5.20 (↑ 1.94) 22.70 (↑ 5.26) 36.29 (↑ 5.88) 45.23 (↑ 13.85)

OFA

✓ 0.00 0.13 0.01 -41.26
✓ ✓ 0.00 (-) 5.24 (↑ 5.10) 0.47 (↑ 0.47) -22.52 (↑ 18.75)
✓ ✓ ✓ 0.00 (-) 5.79 (↑ 0.55) 0.37 (↓ 0.10) -15.87 (↑ 6.65)
✓ ✓ ✓ ✓ 0.00 (-) 6.53 (↑ 0.75) 0.70 (↑ 0.33) -12.51 (↑ 3.36)

QwenVLChat

✓ 0.72 13.12 8.41 14.32
✓ ✓ 4.02 (↑ 3.30) 24.73 (↑ 11.61) 30.58 (↑ 22.17) 28.74 (↑ 14.41)
✓ ✓ ✓ 4.85 (↑ 0.83) 26.67 (↑ 1.94) 35.30 (↑ 4.72) 34.05 (↑ 5.31)
✓ ✓ ✓ ✓ 4.89 (↑ 0.03) 26.89 (↑ 0.23) 38.30 (↑ 3.00) 35.11 (↑ 1.06)

CogVLM

✓ 4.96 24.40 25.56 27.38
✓ ✓ 6.06 (↑ 1.09) 27.37 (↑ 2.97) 39.19 (↑ 13.63) 33.24 (↑ 5.87)
✓ ✓ ✓ 7.18 (↑ 1.13) 29.25 (↑ 1.88) 47.21 (↑ 8.02) 36.41 (↑ 3.17)
✓ ✓ ✓ ✓ 7.68 (↑ 0.50) 30.03 (↑ 0.78) 51.44 (↑ 4.23) 37.71 (↑ 1.29)

Idefics2

✓ 4.00 21.97 18.56 21.27
✓ ✓ 4.53 (↑ 0.53) 24.13 (↑ 2.17) 28.79 (↑ 10.24) 27.39 (↑ 6.12)
✓ ✓ ✓ 5.56 (↑ 1.03) 25.17 (↑ 1.04) 38.21 (↑ 9.42) 33.22 (↑ 5.83)
✓ ✓ ✓ ✓ 7.48 (↑ 1.92) 27.73 (↑ 2.56) 53.22 (↑ 15.01) 38.40 (↑ 5.17)

InstructBLIP

✓ 0.00 4.22 1.01 -15.92
✓ ✓ 3.27 (↑ 3.26) 18.94 (↑ 16.26) 22.16 (↑ 21.15) 23.15 (↑ 39.07)
✓ ✓ ✓ 6.00 (↑ 2.73) 26.91 (↑ 7.32) 44.23 (↑ 22.07) 35.20 (↑ 12.05)
✓ ✓ ✓ ✓ 6.27 (↑ 0.27) 28.29 (↑ 0.37) 45.53 (↑ 1.29) 35.52 (↑ 0.32)

Unified-io 2

✓ 0.07 10.02 0.89 -8.49
✓ ✓ 0.65 (↑ 0.58) 14.81 (↑ 4.79) 5.18 (↑ 4.29) -0.04 (↑ 8.45)
✓ ✓ ✓ 0.82 (↑ 0.17) 15.27 (↑ 0.46) 7.73 (↑ 2.55) 5.63 (↑ 5.68)
✓ ✓ ✓ ✓ 0.93 (↑ 0.11) 16.10 (↑ 0.83) 10.12 (↑ 2.39) 8.43 (↑ 2.79)

LLaVA

✓ 1.38 14.93 3.73 3.25
✓ ✓ 3.92 (↑ 2.54) 22.93 (↑ 8.01) 21.49 (↑ 17.76) 22.21 (↑ 18.96)
✓ ✓ ✓ 5.49 (↑ 1.58) 26.40 (↑ 3.47) 39.29 (↑ 17.80) 32.48 (↑ 10.28)
✓ ✓ ✓ ✓ 5.68 (↑ 0.19) 26.46 (↑ 0.06) 42.65 (↑ 3.36) 34.22 (↑ 1.74)

LLaVA-NeXT

✓ 3.62 21.08 15.23 18.05
✓ ✓ 6.78 (↑ 3.16) 28.31 (↑ 7.23) 42.17 (↑ 26.94) 32.98 (↑ 14.94)
✓ ✓ ✓ 7.51 (↑ 0.73) 30.03 (↑ 1.72) 50.54 (↑ 8.37) 37.93 (↑ 4.95)
✓ ✓ ✓ ✓ 8.51 (↑ 1.00) 31.19 (↑ 1.15) 61.70 (↑ 11.16) 40.96 (↑ 3.02)

GPT-4-O
✓ 2.38 17.20 23.08 25.96
✓ ✓ 5.44 (↑ 3.07) 24.47 (↑ 7.27) 46.05 (↑ 22.98) 36.09 (↑ 10.13)
✓ ✓ ✓ ✓ 6.82 (↑ 1.38) 26.36 (↑ 1.88) 61.20 (↑ 15.15) 41.08 (↑ 4.99)

Table 15: Results on Deduction of Conclusion in the Advertisement category.
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Inputs Automatic Semantic
I VP CP RS BLEU-4 ROUGE CIDEr BERT

LLaMA3
✓ 5.51 27.67 31.28 26.46
✓ ✓ 6.65 (↑ 1.13) 29.95 (↑ 2.28) 48.01 (↑ 16.73) 33.71 (↑ 7.25)
✓ ✓ ✓ 8.81 (↑ 2.17) 32.17 (↑ 2.22) 61.74 (↑ 13.73) 39.20 (↑ 5.49)

Mistral
✓ 1.87 16.29 11.24 13.23
✓ ✓ 4.01 (↑ 2.14) 22.24 (↑ 5.95) 28.15 (↑ 16.91) 25.22 (↑ 11.99)
✓ ✓ ✓ 6.45 (↑ 2.44) 27.82 (↑ 5.59) 45.00 (↑ 16.85) 34.39 (↑ 9.17)

Zephyr
✓ 1.70 13.88 11.54 16.15
✓ ✓ 3.28 (↑ 1.58) 17.51 (↑ 3.63) 24.92 (↑ 13.38) 26.40 (↑ 10.25)
✓ ✓ ✓ 6.91 (↑ 3.63) 27.20 (↑ 9.69) 46.63 (↑ 21.71) 36.70 (↑ 10.29)

OFA

✓ 0.00 0.45 0.01 -41.35
✓ ✓ 0.00 (-) 5.30 (↑ 4.84) 0.27 (↑ 0.26) -27.23 (↑ 14.12)
✓ ✓ ✓ 0.00 (-) 8.15 (↑ 2.85) 0.26 (↓ 0.01) -17.30 (↑ 9.93)
✓ ✓ ✓ ✓ 0.00 (-) 8.45 (↑ 0.30) 0.58 (↑ 0.32) -15.74 (↑ 1.56)

QwenVLChat

✓ 0.49 13.98 4.23 10.79
✓ ✓ 3.18 (↑ 2.69) 23.80 (↑ 9.81) 18.02 (↑ 13.79) 17.18 (↑ 6.39)
✓ ✓ ✓ 4.23 (↑ 1.05) 26.40 (↑ 2.60) 26.76 (↑ 8.74) 25.03 (↑ 7.85)
✓ ✓ ✓ ✓ 4.79 (↑ 0.56) 27.87 (↑ 1.47) 32.10 (↑ 5.34) 29.49 (↑ 4.46)

CogVLM

✓ 4.89 27.48 24.56 23.51
✓ ✓ 5.49 (↑ 0.60) 28.50 (↑ 1.02) 32.11 (↑ 7.54) 27.24 (↑ 3.73)
✓ ✓ ✓ 6.43 (↑ 0.94) 29.64 (↑ 1.14) 38.02 (↑ 5.91) 29.88 (↑ 2.64)
✓ ✓ ✓ ✓ 7.89 (↑ 1.46) 31.72 (↑ 2.08) 53.05 (↑ 15.04) 34.45 (↑ 4.56)

Idefics2

✓ 3.50 21.74 16.07 16.36
✓ ✓ 3.61 (↑ 0.78) 23.47 (↑ 2.04) 20.02 (↑ 7.20) 16.70 (↑ 6.78)
✓ ✓ ✓ 5.42 (↑ 1.81) 26.58 (↑ 3.11) 29.96 (↑ 9.94) 24.50 (↑ 7.81)
✓ ✓ ✓ ✓ 8.28 (↑ 2.86) 31.01 (↑ 4.43) 54.64 (↑ 24.68) 34.27 (↑ 9.76)

InstructBLIP

✓ 0.00 3.24 0.40 -21.55
✓ ✓ 2.53 (↑ 2.53) 18.94 (↑ 15.14) 16.35 (↑ 15.60) 16.62 (↑ 34.98)
✓ ✓ ✓ 5.33 (↑ 2.80) 26.91 (↑ 7.98) 36.87 (↑ 20.52) 28.92 (↑ 12.30)
✓ ✓ ✓ ✓ 6.18 (↑ 0.85) 28.29 (↑ 1.38) 42.53 (↑ 5.65) 32.17 (↑ 3.25)

Unified-io 2

✓ 0.00 9.07 0.40 -11.68
✓ ✓ 0.56 (↑ 0.56) 11.32 (↑ 2.25) 2.60 (↑ 2.20) -7.80 (↑ 3.88)
✓ ✓ ✓ 0.62 (↑ 0.06) 13.79 (↑ 2.48) 5.40 (↑ 2.80) 2.39 (↑ 10.19)
✓ ✓ ✓ ✓ 1.33 (↑ 0.71) 16.50 (↑ 2.70) 12.63 (↑ 7.24) 7.47 (↑ 5.08)

LLaVA

✓ 1.46 17.84 3.55 0.92
✓ ✓ 3.73 (↑ 2.27) 23.22 (↑ 5.38) 12.56 (↑ 9.01) 14.92 (↑ 14.01)
✓ ✓ ✓ 5.61 (↑ 1.87) 27.63 (↑ 4.41) 28.99 (↑ 16.44) 25.89 (↑ 10.97)
✓ ✓ ✓ ✓ 7.87 (↑ 2.26) 30.46 (↑ 2.84) 47.25 (↑ 18.25) 33.11 (↑ 7.22)

LLaVA-NeXT

✓ 2.71 22.32 11.26 11.26
✓ ✓ 5.78 (↑ 3.07) 27.79 (↑ 5.48) 28.12 (↑ 16.86) 22.46 (↑ 11.20)
✓ ✓ ✓ 7.31 (↑ 1.52) 30.44 (↑ 2.65) 43.84 (↑ 15.73) 29.57 (↑ 7.11)
✓ ✓ ✓ ✓ 9.16 (↑ 1.85) 33.09 (↑ 2.65) 61.44 (↑ 17.60) 35.88 (↑ 6.32)

GPT-4-O
✓ 4.07 23.37 23.15 24.96
✓ ✓ 6.40 (↑ 2.34) 27.39 (↑ 4.02) 40.64 (↑ 17.50) 32.05 (↑ 7.09)
✓ ✓ ✓ ✓ 8.69 (↑ 2.29) 31.32 (↑ 3.93) 63.13 (↑ 22.48) 40.78 (↑ 8.73)

Table 16: Results on Deduction of Conclusion in the Cartoon category.
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Inputs Automatic Semantic
I VP CP RS BLEU-4 ROUGE CIDEr BERT

LLaMA3
✓ 6.40 28.09 37.93 30.22
✓ ✓ 7.78 (↑ 1.39) 30.80 (↑ 2.71) 54.57 (↑ 16.65) 37.77 (↑ 7.55)
✓ ✓ ✓ 8.54 (↑ 0.76) 31.61 (↑ 0.82) 58.88 (↑ 4.31) 40.75 (↑ 2.98)

Mistral
✓ 2.48 18.30 18.41 18.93
✓ ✓ 4.54 (↑ 2.06) 23.88 (↑ 5.57) 34.83 (↑ 16.42) 30.15 (↑ 11.21)
✓ ✓ ✓ 6.28 (↑ 1.74) 27.39 (↑ 3.51) 47.58 (↑ 12.75) 36.63 (↑ 6.48)

Zephyr
✓ 2.31 15.28 19.10 20.64
✓ ✓ 3.26 (↑ 0.95) 17.47 (↑ 2.18) 28.59 (↑ 9.49) 28.67 (↑ 8.04)
✓ ✓ ✓ 5.94 (↑ 2.67) 24.65 (↑ 7.18) 45.84 (↑ 17.25) 36.47 (↑ 7.79)

OFA

✓ 0.00 0.27 0.01 -41.30
✓ ✓ 0.00 (-) 5.26 (↑ 4.99) 0.39 (↑ 0.38) -24.55 (↑ 5.68)
✓ ✓ ✓ 0.00 (-) 6.81 (↑ 1.55) 0.32 (↓ 0.06) -16.49 (↑ 1.73)
✓ ✓ ✓ ✓ 0.00 (-) 7.36 (↑ 0.55) 0.65 (↑ 0.32) -13.91 (↑ 1.22)

QwenVLChat

✓ 0.62 13.50 6.60 12.79
✓ ✓ 3.66 (↑ 3.04) 24.33 (↑ 10.83) 25.15 (↑ 18.54) 23.74 (↑ 10.94)
✓ ✓ ✓ 4.58 (↑ 0.92) 26.55 (↑ 2.23) 31.61 (↑ 6.46) 30.15 (↑ 6.41)
✓ ✓ ✓ ✓ 4.85 (↑ 0.26) 27.31 (↑ 0.76) 35.62 (↑ 4.01) 32.68 (↑ 2.53)

Idefics2

✓ 3.50 21.74 16.07 16.36
✓ ✓ 4.13 (↑ 0.64) 23.84 (↑ 2.11) 25.00 (↑ 8.92) 22.76 (↑ 6.41)
✓ ✓ ✓ 5.50 (↑ 1.37) 25.78 (↑ 1.93) 34.64 (↑ 9.64) 29.45 (↑ 6.69)
✓ ✓ ✓ ✓ 7.82 (↑ 2.32) 29.15 (↑ 3.37) 53.84 (↑ 19.20) 36.61 (↑ 7.16)

InstructBLIP

✓ 0.00 3.80 0.75 -18.36
✓ ✓ 2.53 (↑ 2.53) 18.94 (↑ 15.14) 16.35 (↑ 15.60) 16.62 (↑ 34.98)
✓ ✓ ✓ 5.33 (↑ 2.80) 26.91 (↑ 7.98) 36.87 (↑ 20.52) 28.92 (↑ 12.30)
✓ ✓ ✓ ✓ 6.18 (↑ 0.85) 28.29 (↑ 1.38) 42.53 (↑ 5.65) 32.17 (↑ 3.25)

CogVLM

✓ 4.93 25.73 25.13 25.53
✓ ✓ 5.81 (↑ 0.88) 27.86 (↑ 2.13) 36.13 (↑ 11.00) 30.65 (↑ 4.94)
✓ ✓ ✓ 6.86 (↑ 1.04) 29.42 (↑ 1.56) 43.23 (↑ 7.10) 33.59 (↑ 2.94)
✓ ✓ ✓ ✓ 7.77 (↑ 0.92) 30.76 (↑ 1.34) 52.14 (↑ 8.90) 36.30 (↑ 2.71)

Unified-io 2

✓ 0.04 9.61 0.68 -9.87
✓ ✓ 0.61 (↑ 0.57) 13.30 (↑ 3.69) 4.07 (↑ 3.39) -3.40 (↑ 6.47)
✓ ✓ ✓ 0.74 (↑ 0.12) 14.63 (↑ 1.33) 6.72 (↑ 2.66) 4.23 (↑ 7.63)
✓ ✓ ✓ ✓ 1.10 (↑ 0.37) 16.27 (↑ 1.64) 11.21 (↑ 4.48) 8.01 (↑ 3.78)

LLaVA

✓ 1.50 16.01 3.65 2.24
✓ ✓ 3.86 (↑ 2.36) 22.88 (↑ 6.87) 18.69 (↑ 15.04) 19.98 (↑ 17.74)
✓ ✓ ✓ 5.54 (↑ 1.69) 26.93 (↑ 4.05) 34.84 (↑ 16.14) 29.63 (↑ 9.66)
✓ ✓ ✓ ✓ 6.63 (↑ 1.09) 28.19 (↑ 1.26) 44.64 (↑ 9.80) 33.74 (↑ 4.11)

LLaVA-NeXT

✓ 3.23 21.62 13.51 15.11
✓ ✓ 6.35 (↑ 3.12) 28.09 (↑ 6.47) 36.09 (↑ 22.58) 28.43 (↑ 16.75)
✓ ✓ ✓ 7.42 (↑ 1.07) 30.21 (↑ 2.12) 47.64 (↑ 11.55) 34.31 (↑ 8.07)
✓ ✓ ✓ ✓ 8.46 (↑ 1.04) 31.69 (↑ 1.49) 61.14 (↑ 13.50) 39.50 (↑ 2.58)

GPT-4-O
✓ 3.11 19.87 23.11 24.50
✓ ✓ 5.86 (↑ 2.75) 25.74 (↑ 5.87) 43.71 (↑ 20.61) 31.89 (↑ 7.39)
✓ ✓ ✓ ✓ 7.63 (↑ 1.77) 28.51 (↑ 2.77) 62.03 (↑ 18.32) 38.42 (↑ 6.53)

Table 17: Results for the Deduction of Conclusion averaged across the two categories.
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