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Abstract

To effectively use large language models
(LLMs) for real-world queries, it is imperative
that they generalize to the long-tail distribution,
i.e., rare examples where models exhibit low
confidence. In this work, we take the first step
towards evaluating LLMs in the long-tail distri-
bution of inferential knowledge. We exemplify
long-tail evaluation on the Natural Language
Inference task. First, we introduce Logic-
Induced-Knowledge-Search (LINK ), a sys-
tematic long-tail data generation framework, to
obtain factually-correct yet long-tail inferential
statements. LINK uses variable-wise prompt-
ing grounded on symbolic rules to seek low-
confidence statements while ensuring factual
correctness. We then use LINK to curate Logic-
Induced-Long-Tail (LINT), a large-scale long-
tail inferential knowledge dataset that contains
108K statements spanning four domains. We
evaluate popular LLMs on LINT; we find that
state-of-the-art LLMs show significant perfor-
mance drop (21% relative drop for GPT4) on
long-tail data as compared to on head distribu-
tion data, and smaller models show even more
generalization weakness. These results further
underscore the necessity of long-tail evaluation
in developing generalizable LLMs.1

1 Introduction

Generalization, especially to unfamiliar and novel
situations, is a cornerstone for the usability of
large language models (LLMs) in addressing
varied real-world inquiries. This imminent demand
necessitates evaluation of LLMs in the long-
tail distribution (the space consisting of unfamiliar
examples on which the model has low confidence).
Previous works, mostly focusing on model mem-
orization issue, define long-tail knowledge using
the frequency of entities in a knowledge base (Cao
et al., 2020), in the pre-training dataset (Kandpal

1https://github.com/INK-USC/LINK

et al., 2023), or in Wikipedia search (Mallen
et al., 2022). Godbole and Jia (2022) introduces
a general definition for long-tail statements, where
long-tail examples are assigned lower likelihood
by a pre-trained language model. We follow this
definition which applies to various data format
and language task – for any set of statements
with similar length and format, those in the
long-tail distribution cannot be generated or are
generated with low confidence by the models,
compared to those in the head distribution.

Recent works have noticed that LLMs have a
marked decline in performance when facing inputs
from the long-tail (McCoy et al., 2023; Razeghi
et al., 2022). Hallucination, for example, is found
to be correlated with data being in the long-tail dis-
tribution (Li et al., 2024; Yu et al., 2024). LLMs’
ineffective utilization of long-tail knowledge im-
pacts its reasoning capabilities and raises reliability
concerns in downstream tasks (Huang et al., 2023).

Evaluation in the long-tail distribution requires
systematic generation of long-tail data. However,
obtaining examples in the long-tail is non-trivial.
With state-of-the-art LLMs being trained on vast
volume of data on the internet (OpenAI, 2023; Tou-
vron et al., 2023b), it is increasingly difficult to find
unseen examples that can effectively test model
generalization to its low-confidence end. Crowd-
sourcing long-tail data is also difficult because of
human cognitive bias (Tversky and Kahneman,
1973, 1974), and LLMs’ generation in the long-
tail distribution is hindered by their pretraining task
of “most likely" next token (McCoy et al., 2023).

While demonstrating long-tail evaluation across
all applications and domains is not feasible within
the scope of one paper, this work focuses on infer-
ential knowledge statement in the form of Natural
Language Inference (NLI) task (Bowman et al.,
2015; Zellers et al., 2019): NLI requires extensive
knowledge and complex reasoning about entities
and events, and is one of such tasks on which LLMs
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Figure 1: Overview of our motivation, long-tail data generation framework, and model evaluation.

have impressive performance (Achiam et al., 2023;
Touvron et al., 2023b; Jiang et al., 2023). Fol-
lowing Sap et al. (2019), we structure inferential
knowledge as if-then relations with variables, writ-
ten in a premise, conclusion format (Table 1).

First, we make long-tail inferential knowledge
generation possible. We propose a novel and
lightweight long-tail inferential knowledge gen-
eration framework, Logic-Induced-Knowledge-
Search (LINK ) (§ 2), a variable-wise prompt-
ing framework grounded on symbolic rules. This
framework enables us to obtain long-tail knowl-
edge statements from existing LLMs. Our eval-
uation shows that by taking simply instructions
ChatGPT(gpt-3.5-turbo) and GPT4(gpt-4) can
only produce statements in the head distribution
that also have lower factual correctness, but using
LINK with the LLMs improves on both distribution
conformity and factual correctness (§ 3).

Second, we test LLMs’ long-tail generalization
capability on data generated by LINK(§ 4). We pro-
duce a large-scale dataset, Logic-Induced-Long-
Tail (LINT), which contains 108k knowledge state-
ments spanning across 4 different domains(Table 1).
In the long-tail test set of LINT, GPT4’s capability
in identifying incorrect knowledge drop by 21%
relative to the test set in the head distribution, and
the gap is even larger for other models we tested
(ChatGPT, llama2-70b). At the same time, human
performance significantly outperforms LLMs in
both distributions, and stays consistent between
head and long-tail test set.

Locational

Head P: Organization X has a branch in Great Lakes Region.
C: Organization X has office in North America.

Long-
tail

P: Organization X has a branch in Tarapaca Region.
C: Organization X has office in South America.

Outcome
and Effect

Head P: Person X has Asthma.
C: Person X should take Inhaled antiinflammatory drugs.

Long-
tail

P: Person X has Hepatitis.
C: Person X should take Sofosbuvir.

Temporal

Head P: Plant X vanished in Paleolithic Era.
C: Plant X cannot surround Notre Dame de Paris.

Long-
tail

P: Plant X vanished in Classical Greece.
C: Plant X cannot surround Belém Tower.

Natural
Properties

Head P: Bag X has trouble containing Clarinet.
C: Upright Piano cannot fit in Bag X.

Long-
tail

P: Bag X has trouble containing Pandeiro.
C: Dhak cannot fit in Bag X.

Table 1: Examples of inferential knowledge in each do-
main of LINT, in a premise (P), conclusion (C) format.

Our work is the first to propose a systematic
framework that generates data in the long-tail dis-
tribution. Using NLI as an example, we show that
generating data in the long-tail distribution is an
effective way for curating evaluation examples for
LLM generalization. Our work serves as a starting
point for the series of research on long-tail data
discovery and generation, and motivates the
community to incorporate long-tail evaluation into
model building pipelines.

2 Logic-Induced-Knowledge-Search
(LINK )

In this section, we first explain the advantages of
generating inferential knowledge grounded on sym-
bolic rules, then illustrate our process of curating
symbolic rules, and lastly explain knowledge beam
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Figure 2: Overview of knowledge beam search (§ 2.3). We demonstrate searching B conditioned on the values
of A and Z from previous steps. We only verbalize the predicates containing Person X in the final statement as
all other predicates contain knowledge that the model should have.

search, our novel variable-wise search pipeline.

2.1 Advantages of Generating Inferential
Knowledge from Symbolic Rules

Due to the fact that LLMs are pretrained with the
task of generating the “most likely" next token, it
is fundamentally challenging for them to directly
generate long-tail data through prompting that are
factually correct and have low likelihood. Using
symbolic rules to guide the generation of knowl-
edge statements have three benefits: (1) Symbolic
rules are designed to be correct, so we alleviate
the pressure of ensuring the deductive plausibility
of the statement throughout the entire generation
process. (2) The generation process can be broken
down into multiple steps, each of which is condi-
tioned on only one variable. Generating for one
variable at a time will be much easier for the model,
and it is easier to manipulate the distribution of in-
dividual values than the entire sentence. (3) From
one symbolic rule, one can get abundant combi-
nations of variable values as long as they satisfy
each predicate in the rule, making the generation
process scalable.

2.2 Curating Symbolic Rules

A symbolic rule consists of a premise and a conclu-
sion. The conclusion is a single predicate, while
the premise contains a set of predicates connected
by & operators. Each predicate is a triple of a verb
phrase, a subject and an object, and each variable
in the symbolic rule has a designated data type.

While there are infinitely many ways to construct
symbols rules, we create ours using the principles
of Compatibility and Mutual Exclusivity. Com-
patibility refers to a scenario in which one or more
events enables another event to occur. We construct
the premise and conclusion such that if all predi-

cates in the premise are true, then the predicate
in the conclusion can occur. Mutual Exclusivity
refers to a scenario in which two or more events or
conditions cannot occur simultaneously. We con-
struct the premise and conclusion such that if all
predicates in the premise are true, then the predi-
cate in the conclusion will not occur. To construct
such conditions, we add constraints such as time,
location, or outcomes to variables in the symbolic
rules to make their interaction possible/desirable or
impossible/undesirable. In other words, the conclu-
sion describes an event (certain interaction between
the variables) and the premise depicts some combi-
nation of conditions.

For example, a symbolic rule constrained by
compatibility looks like:

exists(Person X, Location A) & lives(Plant Y, Climate B)
& has_climate(Location A, Climate B)
→ can_plant(Person X, Plant Y)

And a symbolic rule constrained by mutual ex-
clusivity looks like:

exists(Person X, Time Period A) & exists(Plant Y, Time Period B)
& is_much_later_than(Time Period A, Time Period B)
→ cannot_plant(Person X, Plant Y)

Here are some additional properties of our sym-
bolic rules:

No tautologies. For example, aller-
gic_to(Person X, Allergen A) → re-
acts_badly_to(Person X, Allergen A) is not a
valid symbolic rule. This is to ensure that the
symbolic rule contains some reasoning.

The symbolic rule should contain at least 3 vari-
ables. This is to ensure some degree of complex-
ity in the symbolic rule.

The symbolic rule should not contain pred-
icates out of scope of LLMs’ knowledge.
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has_height(Tree X, Height Y) is not a valid predi-
cate, because it is unlikely that LLMs have knowl-
edge about the exact height of one tree. This is to
avoid hallucination.

We create symbolic rules that span across four
domains (of constraint type): temporal, locational,
outcome and effect, and natural properties, totaling
149 person-related rules and 268 object-related
rules. More about symbolic rules in Appendix B.

2.3 Knowledge Beam Search

Defining search order. Since all variables are
linearly chained, we can search them one by one
without repetition. We always start with the subject
of the sentence – the person or the object, repre-
sented as Datatype X. In the rule in Table 2, for
example, we start with Person X in the premise
and find a chain of variables that connects it to the
object in the conclusion: X, A, Z, B.

For some rules that call for factual knowledge
with only one correct answer, such as age, height,
year, etc., we empirically find that it increases the
knowledge quality to start from the subject in the
conclusion and end with the object in the premise.

Constructing Prompt. For each variable, we
construct a prompt using all predicates that con-
tain that variable and other previously searched
variables. For example, to search variable B in
the rule in Table 2, we include predicate ingredi-
ent_in(Ingredient Z, Dish B). We assume Z=butter
and construct the prompt as follows:

Give me 50 values of B to fill in the sentence
“ingredient_in(butter, B)” in the format “1. value.”,
where B is a Dish.

Prompting for knowledge. For each partially
searched beam, we obtain 200 values of the cur-
rent variable from the knowledge model 2. We call
OpenAI API 4 times, generating 50 values each
time (temperature=0.7 3). After each call, we ver-
ify the values using a critic model (see paragraph
below). To prevent duplicates, we explicitly in-
struct the model not to generate verified correct
values and set logit_bias=-100 for incorrect val-
ues. We implement an early stop mechanism: if
for two consecutive calls we do not get any correct
values, we terminate the search for the beam.

2We use text-davinci-003 but one can use any model.
3We keep top_p=1 for maximum diversity, and top_k is

unchangable. Ablation on temperature in Appendix D.1.

Verifying values with a critic. We use
huggingface default implementation of
Flan-T5-XXL (Chung et al., 2022), an instruction-
tuned model that can be used zero-shot, as the
critic that checks data type conformity and factual
correctness of the values. We ask the model to
output yes/no on the correctness of a given state-
ment. For data type conformity, the statement is
“{value} is a {data type}.” For factual correctness,
we convert the symbolic predicate into a natural
language statement. We obtain the yes token
probability and dynamically adjust the threshold
for accepting values for different predicates. More
about the critic model in Appendix C.

Pushing values to long-tail distribution with
reranking. At each search step, we convert sym-
bolic predicates into natural language statements
(ingredient_in(butter, saag chicken) → Butter is
an ingredient in saag chicken) and concatenate
them with “and”. We obtain the sentence likeli-
hood using huggingface default implementation
of llama-7B (Touvron et al., 2023a)4 and rerank
the sentences from the lowest likelihood to the
highest likelihood. We take top the 75% values
unless there are more than 200 values, in which
case we take the top 200 values. Then we move
on to the next variable. To control data distribu-
tion during evaluation, we also generate statements
in the head distribution, by ranking the sentences
from the highest to the lowest likelihood.

From 149 person-related rules and 268 object-
related rules across four domains, we curate our
dataset Logic-Induced-Long-Tail(LINT) that
consists of 54K long-tail knowledge statements.
We also release 54K head distribution statements
that are also searched with the LINK framework.
Domain-wise statistics of LINT in Appendix H.

3 Generating Long-tail Inferential
Knowledge with LINK

In this section, we compare LINK’s ability to gener-
ate long-tail inferential knowledge with instruction-
only LLMs, ChatGPT and GPT4, who do not use
knowledge beam search.

3.1 Instruction-Only Knowledge Generation

We generate knowledge statements from a subset of
200 symbolic rules from LINT using ChatGPT and
GPT4 by only providing it with an instruction. We

4llama2 was not released at the time of experiments.
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Symbolic
Rule

is_allergic_to(Person X, Food allergen A)& is_
ingredient_in(Ingredient Z, Name of a dish or food B) &
is_one_type_of(Ingredient Z, Food allergen A)
→ is_not_able_to_eat(Person P, Name of a dish or food B)

Prompt

In the following sentence, A is a Food allergen, B is a
Name of a dish or food, Z is a Ingredient. Find values
of A, B, Z to fill in the blank in the sentence ‘If Person
X is allergic to [A] and [Z] is a ingredient in [B] and [Z]
is one type of [A], then Person X is not able to eat [B].’
and make it a grammatical and correct sentence.
Give me 50 values in the format ‘1. A=, B=, Z=’.

Table 2: An illustration of prompts for zero-shot LLMs,
containing a symbolic rule in natural language and its
variables with data type specified.

prompt the LLMs with a natural language version
of the symbolic rule with data types of the variables
specified, and ask them to populate the rule with
all variables simultaneously(Table 2). Generations
from this prompt serve as the head distribution
baseline, to which we compare model generations
when they are instructed to generate in the long-
tail distribution.

To instruct models to generate long-tail knowl-
edge from symbolic rules, we append “Use less
frequent terms of A and B and C” in the prompt.5

For each rule, we obtain 200 statements using
default instruction and 200 statements using long-
tail instruction, from ChatGPT and GPT4 respec-
tively. We present our findings below.

3.2 LINK Generations Consistently Fall in
Long-tail Distribution

Following Godbole and Jia (2022)’s definition
of long-tail statements, we use the most capable
LLM that was producing log likelihood at the time
of experiments (text-davinci-003) to assign
likelihood to generated data. We compare how
different models assign distributions to the same
statements, in order to ensure that the distribution
stays consistent among all models despite the
absolute log likelihood difference (Appendix E.2).

We calculate the log likelihood over
InstructGPT of all statements generated by LINK,
compared with instruction-only ChatGPT and GPT4.
We calculate δ = mean(D(H)) − mean(D(L))
for each set of statements generated from each
symbolic rule, where D(·) means the log likeli-
hood distribution of the probability model, H is
the set of statements as head distribution baseline,
and L is the set of the statements intended to

5We tried 10 prompts as shown in Appendix F and they
have similar effect on model behavior.

be in the long-tail distribution. For a model
to successfully generate long-tail knowledge
statements, the “long-tail” set of sentences should
be assigned distinguishably lower probabilities
than the sentence in the head distribution.

ru
le

0

ru
le

2

ru
le

5

ru
le

16

ru
le

32

ru
le

35

ru
le

41

ru
le

43

ru
le

44

ru
le

45

ru
le

46

ru
le

49

ru
le

67

ru
le

70

ru
le

71

ru
le

76

ru
le

79

ru
le

80

ru
le

91

ru
le

10
4

ru
le

10
7

ru
le

10
9

ru
le

11
1

ru
le

11
7

ru
le

13
6

ru
le

14
5

ru
le

14
8

ru
le

16
7

ru
le

17
2

ru
le

17
7

ru
le

18
4

ru
le

19
8

ru
le

21
8

ru
le

22
2

ru
le

23
1

ru
le

23
2

ru
le

24
3

ru
le

24
9

ru
le

26
0

ru
le

26
3

ru
le

26
9

ru
le

27
0

ru
le

27
6

ru
le

28
2

ru
le

28
4

ru
le

28
7

ru
le

28
8

ru
le

29
2

ru
le

29
6

ru
le

30
7

ru
le

31
1

ru
le

32
7

ru
le

32
8

ru
le

33
0

ru
le

33
5

ru
le

34
2

ru
le

34
6

ru
le

35
6

ru
le

35
9

ru
le

36
9

ru
le

37
1

ru
le

39
4

ru
le

39
7

ru
le

40
0

ru
le

41
3−1.5

−1

−0.5

0

0.5

1

1.5

2

LINK
ChatGPT
GPT4

Delta value for Person related rules between Head and Long-tail distribution over text-davinci-003

rules

d
el

ta

ru
le

1

ru
le

9

ru
le

11

ru
le

17

ru
le

20

ru
le

23

ru
le

26

ru
le

37

ru
le

48

ru
le

52

ru
le

56

ru
le

74

ru
le

78

ru
le

84

ru
le

89

ru
le

93

ru
le

96

ru
le

10
1

ru
le

11
2

ru
le

11
8

ru
le

12
3

ru
le

13
8

ru
le

14
2

ru
le

14
7

ru
le

15
4

ru
le

15
8

ru
le

16
4

ru
le

16
8

ru
le

17
0

ru
le

17
9

ru
le

18
8

ru
le

19
6

ru
le

20
3

ru
le

20
7

ru
le

21
1

ru
le

21
3

ru
le

22
0

ru
le

22
5

ru
le

22
8

ru
le

23
5

ru
le

23
7

ru
le

24
4

ru
le

25
3

ru
le

26
4

ru
le

27
3

ru
le

27
7

ru
le

28
0

ru
le

28
3

ru
le

28
6

ru
le

29
4

ru
le

30
1

ru
le

30
8

ru
le

31
7

ru
le

32
0

ru
le

32
6

ru
le

33
2

ru
le

34
4

ru
le

34
9

ru
le

35
4

ru
le

36
7

ru
le

37
2

ru
le

37
6

ru
le

38
0

ru
le

38
4

ru
le

38
8

ru
le

39
2

ru
le

40
2

ru
le

41
1−1.5

−1

−0.5

0

0.5

1

1.5

2

LINK
ChatGPT
GPT4

Delta value for Object related rules between Head and Long-tail distribution over text-davinci-003

rules

de
lt

a

Figure 3: LINK generations have higher δ values for
most rules, while δ values of ChatGPT and GPT4 mostly
locate around 0.
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Figure 4: Only LINK generations fall in the correct dis-
tributions on the log likelihood scale of InstructGPT.

Figure 3 illustrates that while ChatGPT and GPT4
are not able to generate long-tail statements merely
from prompting, LINK is able to generate long-
tail statements with much lower likelihood. Each
grid on the x-axis represents a unique symbolic rule,
and each grid on the y-axis represents δ ∈ [−1.5, 2].
A δ close to 0 means that the intended long-tail dis-
tribution generations have the same log likelihoods
as the statements in the head distribution, being
larger than 0.3 empirically means a decent drop in
likelihood, and being negative means the intended
long-tail distribution data have even high likelihood
than the head distribution data.

Averaged across 200 sampled rules, LINK has
a positive δ of 0.48, while ChatGPT and GPT4 each
has a delta of -0.14 and -0.02. The δ values for
LINK (blue line) float above 0 for most of the rules,
some even being above 0.5. On the other hand, δ
values for ChatGPT (red line) and GPT4 (green line)
mostly locate around 0, with many being negative.

To better illustrate the distribution of statements
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Accuracy ChatGPT GPT4 LINK

Data Type 85.40 91.80 94.23
Factuality 67.50 84.82 88.71

Overall 56.44 78.23 83.95

Table 3: LINK has both the highest factual and data
type accuracy in human evaluation.

generated by LINK, ChatGPT and GPT4, we plot
the log likelihood of the generated statements for
one symbolic rule from the three methods Figure 4.
To eliminate noise from incorrect statements on the
distribution, we only plot the statements that are
marked as correct in human evaluation (explained
in § 3.3). The likelihood distribution of more rules
can be found in Figure 9.

The long-tail statements from LINK clearly
fall in a much lower probability distribution than
GPT4’s “long-tail” generations. Moreover, GPT4’s
generation in the “long-tail distribution” in fact
falls in the same probability distribution as its head
distribution generations.

3.3 LINK Achieves Higher Data Correctness
than Instruction-Only LLMs

In addition to distribution correctness, we also
evaluate data type conformity and factual correct-
ness of LLMs’ long-tail knowledge generations
using crowdworkers from Amazon Mechanic Turk
(AMT). For data type conformity, we ask an AMT
worker Is {variable} a {data type}? for each vari-
able in the symbolic rule. For factual correctness,
we ask an AMT worker Does the premise entail
the conclusion? We sample 4,000 statements from
LINT for human evaluation, of which 2,025 are
from head distribution and 1,975 are from long-
tail distribution. We take 3 annotations for each
statement and take the majority vote. Annotator
agreement can be found in Appendix I.3. The AMT
template can be found in Appendix I.2.

Table 3 shows that instruction-only ChatGPT and
GPT4 underperform LINK in both data type confor-
mity and factual correctness. Without LINK, both
models struggle more with factual correctness, a
foreseeable behavior in the low likelihood realm.
For domain wise performance see Table 17. For
examples of failure cases, see Table 20.

3.4 Ablation Studies

Our results above show that LINK is better than
instruct-only generations with ChatGPT and GPT4,
in terms of both “long-tailedness” and factual cor-

rectness. In this section, we perform ablation stud-
ies on the role of reranker, critic, and knowledge
models in LINK.

Ablation on reranker. Our variable-wise
reranker is essential for pushing LINK generations
into the long-tail distribution. Figure 6 presents the
distribution comparison of generated statements
by LINK and the variant without the reranker.
Without the reranker, the statements for the long-
tail distribution are pulled towards the head distri-
bution, making the two completely inseparable.

Post-hoc reranking over LLM generations does
not have the same effect as variable-wise reranking
in LINK. Figure 7 illustrates the distribution
of generated statements by LINK, compared
to instruction-only GPT4 and instruction-only
GPT4 reranked by InstructGPT. Post-hoc rerank-
ing barely changes the distribution of generations,
even when using the same model as the evaluation.

Even though log likelihood is both used by
reranker and evaluation, they are taken from
different models and using different inputs. The
statements we use for ranking the knowledge
beams are shorter than the final statement, as they
only consist of partial predicates. Despite these
differences, variable-wise reranking that uses a
smaller model achieves the separation that post-hoc
filtering with the evaluation model cannot achieve.

Our findings highlight the importance of per-
forming variable-wise reranking in LINK.

Ablation on the critic model. Critic models are
essential for guaranteeing the generation quality,
especially in the long-tail distribution. Table 8 in
Appendix D.2 shows that removing the critic and
removing both reranker and critic leads to signif-
icant drops of data type conformity and factual
correctness of generations in the long-tail distri-
bution. Note that LINK w/o reranker + critic has
higher generation quality than LINK w/o critic.
This is because without a reranker the model is
only able to generate statements in the head dis-
tribution, making it easier to be factually correct
than in the long-tail distribution. This observation
further suggests that critic models are essential for
generation qualities in the long-tail distribution.

Ablation on Knowledge Model. Our analysis
above has shown that by simply providing an in-
struction to ChatGPT and GPT4, we cannot effec-
tively generate knowledge statements that are both
high quality and in the long-tail distribution. By
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adding LINK, we can improve both distribution
correctness and generation quality, as shown in Fig-
ure 8 and Table 10.

Interestingly, we find that the generations from
LINK + GPT4 do not show a big improvement over
LINK + InstructGPT, both on distribution correct-
ness and generation quality. This suggests that the
improvement a stronger knowledge model brings to
LINK is marginal compared to that of the reranker
and critic model. This finding highlights the effec-
tiveness of LINK in facilitating long-tail generation
regardless of the knowledge model.

4 LLMs’ (Lack of) Generalization in the
Long-tail Distribution

Using data from LINT, we evaluate LLM general-
ization through an entailment classification task on
inferential knowledge in the long-tail distribution.

We use all human evaluated knowledge state-
ments except for those with incorrect data types
in LINT, with 1,925 statements in head distribu-
tion and 1,856 statements in long-tail distribution.
Statements rated as factually correct has entailment
between premise and conclusion, and statements
rated as factually incorrect has contradiction be-
tween premise and conclusion.

In order to prevent LLMs’ template biases from
misleading the evaluation, we convert each state-
ment into 13 question templates, where each ques-
tion templates corresponds to a positive label
(“Yes”, “True”, or “Right”) or a negative label
(“No”, “False”, or “Wrong”). The question tem-
plates are summarized in Appendix G.1. We con-
sider a model answering accurately about one state-
ment only if the model answers all question tem-
plates correctly.

We evaluate three LLMs: llama2-70B,
ChatGPT and GPT4. In order to enforce the model
to predict the target token sets and minimize
format noncompliance, we use Chain-of-Thought
(CoT) (Wei et al., 2022) prompting that includes 2
in-context examples with randomly shuffled orders
of positive label and negative label.

For each domain, we report aggregated (All)
performance of each model as well as human
baseline performance in Table 4. We also include
performance on positive labels only and negative
labels only. We also mark relative performance
drop δ = t−h

h , where h and t are head and tail
distribution aggregated performance.

We obtain human performance on the same set

of statements. We recruit 17 AMT workers who
do not participate in the evaluation task (and thus
have not seen the task data). The workers see the
knowledge statements in premise, conclusion for-
mat and are asked to select “yes/no” to whether the
premise entails the conclusion. The workers are
asked to use search engines to verify their answers.
See AMT templates in Appendix I.2.

We make the following observations on LLM
generalization in long-tail NLI.

Performance drops in the long-tail distribution.
All models exhibit a large relative drop in perfor-
mance in the long-tail distribution. The most com-
petitive model, GPT4, has a 21% overall drop from
head to long-tail distribution, while other models
exhibit a even larger drop.

Human Performance does not drop for long-
tail distribution. Performance drop in the
long-tail distribution does not occur to humans for
3 out of 4 domains. It is expected because humans
can verify their knowledge using search engines, so
infrequent knowledge does not challenge humans
as much as models (discussion in Appendix A).
The exception with the locational domain may
be due to some relations being less available
online(eg. banned_in(Food, Country)).

Brittleness towards question templates. The
huge gap between model and human baseline per-
formance indicate that LLMs cannot reliably rea-
son on the same statement when question templates
change. We find that model performance between
positive and negative labels can be very different
for certain domains, indicating that models are mis-
calibrated for positive and negative answer tokens.
Although this phenomenon is not entirely due to the
shift of distribution of the knowledge statements, it
is caused by model’s unfamiliarity of certain ques-
tion templates. For example, we find that template
5 and template 12 are the same question (“Premise:
... Conclusion: ... Does the Premise entail the
Conclusion?") with opposite answers (“Yes" and
“No"), but all models’ performance on template
5 is significantly lower than that on template 12.
This suggests that models are more likely to create
false negatives in such context, another evidence of
performance drop due to long-tail distribution.

In summary, our analysis shows that while hu-
man’s inferential reasoning is not affected by their
familiarity to the data (provided that they know
the entities involved), model’s inferential reasoning
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Domain Distribution Llama2-70B ChatGPT GPT4 Human
Baseline

Pos Neg All Pos Neg All Pos Neg All All

Natural
Properties

Head 2.78 6.72 0.44 1.45 5.56 0.0 13.68 43.83 9.23 82.31
Long-tail 2.64 3.49 0.0 1.08 5.29 0.0 10.82 39.9 7.21 82.45

∆ - - -100% - - -0.0% - - -21.89% 0.17%

Temporal
Head 6.58 2.6 0.46 10.72 38.28 4.13 68.3 43.95 36.91 84.69

Long-tail 7.43 3.07 0.0 9.05 32.15 2.26 60.58 38.93 28.11 83.20
∆ - - -100% - - -45.28% - - -23.84% -1.76%

Outcomes
and Effects

Head 7.62 7.93 1.22 19.92 29.27 6.1 57.32 55.18 41.16 83.83
Long-tail 8.5 9.97 0.59 19.65 26.1 2.64 55.72 46.63 33.43 85.13

∆ - - -51.64% - - -56.72% - - -18.78% 1.56%

Locational
Head 8.57 7.14 0.0 17.14 10.0 5.71 18.57 18.57 2.86 75.71

Long-tail 11.24 8.99 3.37 15.73 4.49 1.12 37.08 8.99 3.37 67.42
∆ - - 0.0% - - -80.39% - - 17.83% -10.95%

Total
Head 5.08 5.28 0.56 8.21 20.67 2.62 39.49 44.87 23.64 83.12

Long-tail 5.69 4.67 0.27 7.76 17.86 1.28 36.58 39.34 18.66 82.44
∆ - - -51.79% - - -51.15% - - -21.07% -0.82%

Table 4: Performance on the entailment classification task of three LLMs decreases on the long-tail distribution
compared to the head distribution, while human performance does not.

ability drops over long-tail knowledge. Our result
highlights the importance and effectiveness of long-
tail evaluation for model generalization, and our
dataset LINT can be used as a useful resource for
testing inferential generalization of LLMs.

5 Related Work

Works on model generalization analysis have fo-
cused on generating adversarial examples for
model evaluation (Zhang and Li, 2019; Ziegler
et al., 2022; Perez et al., 2022; Casper et al., 2023),
flagging abnormal inputs that are likely to trigger
bad behavior. Recently, the community has real-
ized the importance of testing language models’
abilities in the long-tail distribution (Godbole
and Jia, 2022). Works reveal that LLM perfor-
mance is affected by input data probability. (Mc-
Coy et al., 2023; Razeghi et al., 2022), and more
works have focused on generating less common
data for probing LLMs. RICA (Zhou et al., 2020)
proposes to include novel entities in self-contained
commonsense statements to evaluate robust infer-
ence capabilities. UnCommonSense (Arnaout et al.,
2022) proposes to evaluate models on informative
negative knowledge about everyday concepts in ad-
dition to positively expressed commonsense knowl-
edge. Razeghi et al. (2022) observe a correlation
between the model performance on math problems
and the frequency of numeric and temporal terms
from those instances in the pretraining data.

In addition to probing models on less common
data, recent works also test LLMs generating
less common data. Chen et al. (2023) propose a

negative knowledge generation task where models
generate uncommon knowledge with negation
conditioned on constrained keywords. Tang et al.
(2023) introduce the “less likely brainstorming”
task that asks a model to generate outputs that
humans think are relevant but less likely to happen.

Generating uncommon data is challenging not
only for LLMs, but also for humans because of
our cognitive bias. Tversky and Kahneman (1974)
observe that humans are prone to more systematic
errors when facing uncertain events, and Tversky
and Kahneman (1973) reveal that humans tend to
evaluate the frequency of classes or the probabil-
ity of events by availability, i.e., by the ease with
which relevant instances come to mind. These traits
make it difficult for humans to come up with novel
associations (Kray et al., 2006), a crucial ability to
create data in the long-tail distribution.

6 Conclusion

Using NLI as a case study, we illustrated the signif-
icant potential of long-tail data in uncovering the
generalization limitations of LLMs. We introduced
the first systematic framework designed to gener-
ate inferential data within the long-tail distribution,
and then demonstrated a noteworthy performance
drop of LLMs in the long-tail examples. Our work
initiates a new line of research focused on long-
tail data discovery and generation, urging the re-
search community to adopt long-tail evaluation in
the development of LLMs.
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Checklist

Limitation

Limitation on knowledge statement format.
Long-tail knowledge statements may come in mul-
tiple shapes and forms. Our work focuses only
on premise, conclusion format, as the first step to-
wards the generation of knowledge statements. The
symbolic rules do not have high complexity, due to
the limited number of variables and predicates, and
being under the constraint for the symbolic rules to
be linearly chained. Therefore, the effectiveness of
our framework on generating more complex knowl-
edge statements has not been tested.

Limitation on testing with open-source models.
Our work did not include open-source models in
evaluations of long-tail statement generation and
entailment classification task. While ChatGPT and
GPT4 are arguably the strongest models, open-
source models may exhibit new behaviors in the
long-tail realm that are worth exploring.

Limitation on ablating with different critic
and reranker model settings. While we per-
formed extensive ablation studies on the critic and
reranker models and established their importance in
the LINK framework, we did not explore a diverse
set of model options as well as hyperparameter set-
tings. Using other models may or may not affect
the performance of LINK.

Limitation on sample size. Due to constraint
from human annotation resources, we were only
able to evaluate models on 200 rules uniformly
sampled from the LINT. Although the general trend
should remain the same, model performance evalu-
ated on all rules may result in some deltas.

Risk

Generation of harmful values. LINK might be
used on mal-intention-ed rules or searching for
toxic and harmful values, where researchers may
replace our reranker with another model trained to
prefer more harmful values.

Environmental tax. Another potential risk is in-
creasing environmental burdens because we exten-
sitvely call OpenAI APIs to large language models
during search; however, one can replace the large
language models with smaller open source models
with less environmental tax.

Factual errors in generations. Be-
cause LINK operates in the long-tail realm,
its generations are no guaranteed to be correct
100% of the time. If one uses the generations
directly without verification, one my introduce
false information into their system.

Use and Distribution
All data we collected through LLMs in our work
are released publicly for usage and have been duly
scrutinized by the authors. Data for all human stud-
ies that we conduct are also publicly released with
this work, with appropriate annotator anonymiza-
tions.

Our framework LINK may only be used for gen-
erations that follow the ethics guideline of the com-
munity. Using LINK on mal-intention-ed rules or
searching for toxic and harmful values is a poten-
tial threat, but the authors strongly condemn doing
so.
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A More Discussions

Our main experiments on entailment classification
task assume that the LLMs have the specific knowl-
edge necessary to answer the questions. While this
is a fair implication, given that their training data
are known to contain essentially anything available
on the web, one may also worry that the model’s
handling of such knowledge is impacted by the
memorization of this knowledge. As knowledge
gets more long-tail , it means it appears in the train-
ing data less and is thus harder to memorize. Given
the imperfect memorization of current LLMs, this
may impact their performance on such knowledge,
and our current experiments suggest that. To ver-
ify this, for future experiments one can count the
frequency of this long-tail knowledge in the train-
ing data to measure how imperfect memorization
makes certain knowledge long-tail .

B Symbolic Rule Creation

Following the criteria mentioned in § 2.2, we cu-
rated 417 symbolic rules using the following steps:

1. Select Compatibility (conclusion will be pos-
itive) or Mutual Exclusivity (conclusion will
be negative).

2. Defining Constraints. Our constraints can
be categorized as temporal, locational, nat-
ural properties, and desirable/undesirable out-
comes and effects. Temporal constraints refer
to time period or age, locational constraints
refer to geographic location such as countries
or cities as well as climates (tropical or po-
lar, etc), natural properties refer to physical
properties of objects such as temperature, size,
density, speed, and outcomes and effects in-
clude allergies, cure of disease, etc.

3. Selecting argument types. We either use
Person-Object or Object-Object as key argu-
ments.

4. Defining interactions between arguments.
Person-Object interactions include “using”,
“operating”, “buying”, “consuming”, and
Object-Object are more type-specific (eg.
“scratching” when the constraint is “hardness”
in natural property).

5. Expanding data types for Person or Object.
We prompt InstructGPT to generate more
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specific data types under Person (eg. Histori-
cal Figure) or Object (eg. Vehicle, Tool).

6. Optimize the verb describing the interaction.
We prompt InstructGPT to generate a more
accurate verb for the expanded data types.

Table 5 shows how an example symbolic rule is
constructed.

Constraint Temporal (Age)

Arguments Person-Object

Constraint
Predicate

is_of_age(Person A, Age X) & requires_a_
minimal_age_of(Object B, Age Y)
& is_smaller_than(Age X, Age Y)

Principle Mutual Exclusivity

Interaction cannot_operate(Person A, Object B)

Prompt for
Data Type
Expansion

In rule “requires_a_minimal_age_of(Object
B, Age Y) & cannot_operate(Person A,
Object B)", B is a variable representing an
object. List 10 subcategories of object that
B could be that also make the rule true.

Expanded
Data Types

Vehicle, Machinery, Alcohol, Firearm,
Tattoo Equipment, Tobacco Product

Prompt for
Verb Opti-
mization

cannot_operate(Person A, Object B) is equal
to [mask](Person A, Vehicle B). Write the
best predicate that could fit in [mask] token.

Expanded
Rule Exam-
ple

is_of_age(Person A, Age X) & requires_a_
minimal_operating_age_of(Object B, Age
Y) & is_smaller_than(Age X, Age Y)
→ cannot_drive(Person A, Vehicle B)

Table 5: Illustration of our process for creating an ex-
ample symbolic rule.

C Critic Model

We find that while the critic model usually verifies
data type conformity with high accuracy, it often
creates false negatives when verifying factual cor-
rectness. Moreover, even within false negatives
that result from the same predicate, the correct
values get higher yes token probabilities than the
incorrect values. We hypothesize that while the
critic model is less confident about certain knowl-
edge because it is trained on a smaller portion of
the knowledge than text-davinvi-003, it can still
rank the values inherently. Therefore, we extract
the probability of the yes token instead of taking
the argmax. We also implement a dynamic critic
threshold that adjusts the threshold for accepting
values for different predicates. The algorithm is as
follows:

1. We start with a threshold of 0.85.

2. If no correct values are found, we decrease
the threshold by 0.05.

3. If some correct values are found, we set
the threshold for the predicate to the current
threshold and do not decrease it in further
calls.

4. If the threshold is set but we find some values
with a higher yes token probability than the
threshold, we increase the threshold by an
increment of 0.05 to accommodate the higher
probability. Then we retrospectively reject
previous accepted values with a lower yes
token probability than the new threshold.

5. For data type conformity, we set a minimum
threshold of 0.65 because we expect the model
to be more confident.

In this way, we can find the maximum available
threshold for each beam, which guarantees preci-
sion while reducing false negatives.

To verify the effectiveness of our critic model,
we use crowd workers from AMT to evaluate
the data type conformity and factual correctness
of predicates. Specifically, for each symbolic
predicate that contains two variables (e.g., ex-
ist_during(Location X, Historical Time Period Y)),
we will present a statement in natural language
(e.g., Saigon existed during The Cold War.) with
3 types of questions: (1) clear reference: Q1 and
Q2. (2) factual correctness: Q3. (3) data type
conformity: Q4 and Q5.

• Q1: Does “Value A” in the Statement “State-
ment” have a clear reference?

• Q2: Does “Value B” in the Statement “State-
ment” have a clear reference?

• Q3: Is the Statement “Statement” factually
correct, with very high probability?

• Q4: Is the Statement “Value A is a Data Type
A.” factually correct, with very high probabil-
ity?

• Q5: Is the Statement “Value B is a Data Type
B.” factually correct, with very high probabil-
ity?

2359



We sample 3 rules from our data and requested
human annotators to rate the data type conformity
and factual correctness of statements. Table 6
shows the error rate of each question. Only if all the
questions are answered with “Yes” do we consider
the statement as correct. The overall correctness of
statements in head distribution and long-tail distri-
bution are 0.8567 and 0.8467 respectively, which
indicates a high quality of statements accepted by
our critic model.

Q1 Q2 Q3 Q4 Q5

Error Rate 0.0004 0 0.0639 0.0011 0

Table 6: The error rate of each question in human verifi-
cation. Most errors occur on factual correctness.

D Ablation Studies on LINK

D.1 Hyperparameters on Knowledge Model
When constructing LINT, we used InstructGPT as
the knowledge model with temperature=0.7 and
top_p=1. Since top_p=1 maximizes sampling diver-
sity and top_k is hidden from the OpenAI API, we
conduct ablation studies on whether temperature
affects the result of knowledge search, comparing
temperature of 0.5 (low diversity), 0.7 (medium
diversity) and 1.0 (high diversity), using a few
sampled rules. In this ablation study, we use
gpt-3.5-turbo-instruct checkpoint as knowl-
edge model and llama-2-70b as the approxima-
tion of the language distribution.

Temperature Data Type Factuality Overall

0.5 89.05 93.21 82.94
0.7 89.00 92.33 82.25
1.0 88.08 91.75 81.00

Table 7: Different temperatures result in similar data
type conformity and factual correctness.

Table 7 shows similar data type conformity and
factual correctness among the three ablated tem-
perature, with temperature=1.0 having the lowest
accuracy among the three settings.

Figure 5 shows that all three temperature settings
can successfully generate knowledge statements in
the long-tail distribution, except for when tempera-
ture=0.5 in one of the six sampled rules.

This phenomenon reflects that higher tempera-
ture helps generating more diverse values and there-
fore more likely to generate long-tail values, while
risking lowering factual salience.

D.2 Effect of Critic on LINK
To investigate the effectiveness of the critic, we
provide an ablation study on a few sampled rules
by removing the critic in LINK. Table 8 shows
the generation quality of LINK and several vari-
ants in long-tail distribution. Without the critic, the
generation quality decreases significantly. How-
ever, the performance drop is less significant in the
head distribution Table 9. Besides, if we replace
the reranker with a random sampling method, the
generated statements cannot lie in the long-tail dis-
tribution (which will be further explained in § D.3)
and have higher correctness without the critic. It
indicates that it is harder for models to generate
correct statements from the long-tail distribution
than the head distribution without LINK.

Data Type Factuality Overall

LINK 93.42 97.50 91.33
w/o critic 52.58 52.08 33.00
w/o critic+reranker 75.42 73.92 58.25

LINK with GPT4 92.75 96.17 89.25
w/o critic 63.00 58.17 40.00
w/o critic+reranker 88.33 83.50 74.50

Table 8: Ablation study on the critic model in the long-
tail distribution. Removing the critic from LINK will
significantly decrease the generation quality. Using a
critic is necessary to guarantee the correctness of gener-
ated statements, especially in the long-tail distribution.

Data Type Factuality Overall

LINK 95.17 97.75 93.00
w/o critic 80.33 73.50 59.75
w/o critic+reranker 76.66 74.83 59.33

LINK with GPT4 92.17 98.08 90.83
w/o critic 91.00 80.42 72.08
w/o critic+reranker 88.17 85.33 75.58

Table 9: Ablation study on the critic model in the head
distribution. Removing the critic decreases the data
quality, but not as much as in the long-tail distribution.
LINK w/o critic+reranker has the same performance
between head and long-tail distribution, demonstrating
that without a reranker all generations are in the same
distribution.

D.3 Effect of Reranker on LINK
To investigate the effectiveness of the reranker, we
provide an ablation study on a few sampled rules by
replacing the reranker step with a random sampling
method. Figure 6 presents the distribution com-
parison of generated statements by LINK and the
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Figure 5: All three temperature settings of LINK can successfully generate knowledge statements in the long-
tail distribution, except for when temperature=0.5 in one of the six sampled rules.

variant without the reranker. Without the reranker,
the generated statements for both head distribution
and long-tail distribution are pulled towards the
center of the distribution, making them completely
inseparable.

D.4 Ineffectiveness of Post-hoc Reranking for
LLM generated knowledge.

To further highlight the importance of perform-
ing step-wise reranking in LINK, we confirm that
applying a post-hoc reranker on the GPT4 gener-
ations from instructions does not have the same
effect as LINK. We use InstructGPT to rerank
the GPT4 generations from the lowest to the high-
est likelihood and take the top 75% results as the
long-tail distribution. For the head distribution,
we rerank the generations from the highest to the
lowest likelihood and take the top 75% results.

We evaluate on the same set of rules as in § 3.2
as an example. Figure 7 illustrates the distribution
of generated statements by LINK, prompt-based
GPT4 and prompt-based GPT4 with reranker. We
observe that using post-hoc reranker still cannot
achieve a separation between the generation of the
head distribution and the long-tail distribution, even
with the same model as the evaluation. It demon-
strates that maneuvering the distribution during the
searching process is necessary and more effective
than post-hoc filtering.

D.5 Applying GPT4 as the knowledge model

Table 10 shows the generation quality of GPT4 us-
ing baseline prompting method, LINK and
LINK with GPT4 as the knowledge model over 6
sample rules. Using a stronger model as the knowl-

edge model has marginal effect on the quality of
generations compared to LINK. Figure 8 shows
that whatever the knowledge model is, the distribu-
tion of generations by LINK can correctly fall in
the long-tail distribution.

Data Type Factuality Overall

Zero-shot GPT4 85.44 88.42 74.39
LINK 93.42 97.50 91.33

LINK with GPT4 92.75 96.17 89.25

Table 10: Using a stronger model as the knowledge
model does not improve generation qualities for LINK,
but using LINK with a language model has significant
improvement over zero-shot performance.

E Addendum on Distribution

E.1 Additional distribution plots for symbolic
rules

As an extension on § 3.2, we show the distribu-
tion of statements sampled by LINK, ChatGPT and
GPT4 from 6 symbolic rules on InstructGPT in
Figure 9.

E.2 Distribution Comparison of Different
Models

In this section, we show that the long-tail distri-
bution of different language models overlap, and
that this evidence supports our assumption that a
universal natural language distribution exists; sub-
sequently, the long-tail distribution of a language
model can be used to approximate the long-tail dis-
tribution of other language models.

We sample knowledge statements generated by
LINK from six rules and calculate their proba-
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Figure 6: When we remove reranker from LINK, the distribution of the resulting head and long-tail statements are
pulled towards the center. Using reranker is essential for separating the head and long-tail distribution.
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Figure 7: Post-hoc reranking of GPT4 does not help
move the distribution towards the long-tail distribution.

bilities with llama-7b, llama2-7b, llama-2-70b,
and InstructGPT. Figure 10, Figure 11 and Fig-
ure 12 respectively show the distribution compar-
ison between InstructGPT and the three open-
source models over the sampled statements from
each rule.

For every rule, we note that if a set of state-
ments falls into the low-probability distribution of
InstructGPT, it also falls into the low-probability
distribution of the open-source model. Therefore,
the categorization on long-tail distribution by one
language model can effectively approximate the
categorization on long-tail distribution by other
models; hence, we use InstructGPT as the approx-
imation of the written natural language distribution
in our distribution evaluation.

F Long-tail Prompts for LLMs

We tried 10 prompts when prompting LLMs to
generate knowledge statements in the long-tail dis-
tribution directly with instructions. Table 11 shows
the 10 prompts which are appended to the original
instruction.

Prompt

1 Use less frequent terms of A and B and Z.
2 Use terms of A and B and Z that are less

common.
3 Use terms with lower frequency for A and

B and Z.
4 Use terms of A and B and Z that have lower

probability in language model distribution.
5 Use less frequent words of A and B and Z.
6 Use words of A and B and Z that are less

common.
7 Use words with lower frequency for A and

B and Z.
8 Use less frequent entities of A and B and Z.
9 Use entities of A and B and Z that are less

common.
10 Use entities with lower frequency for A and

B and Z.

Table 11: An illustration of 10 prompts that instruct
LLMs to generate knowledge statements in the long-
tail distribution.

Following Section 3.2, Figure 13 shows the δ
value for GPT4 baselines with these prompts and
LINT. These prompts have a similar effect on the
distribution of generated statements on most rules
and LINT consistently has a higher δ, indicating
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Figure 8: LINK using GPT4 creates statements that fall in a roughly similar long-tail distribution as the origi-
nal LINK with InstructGPT.
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Figure 9: An illustration on the distribution of generated statements by LINK, ChatGPT and GPT4. While LINK’s
long-tail generations fall into a lower probability distribution than those of GPT4, GPT4’s “long-tail distribution"
overlaps with the head distribution, indicating that these generations are not truly long-tail.
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Figure 10: An illustration of the distribution comparison between llama-7B and InstructGPT of generated
statements by LINK.
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Figure 11: An illustration of the distribution comparison between llama2-7B and InstructGPT of generated
statements by LINK.
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Figure 12: An illustration of the distribution comparison between llama2-70B and InstructGPT of generated
statements by LINK.
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Figure 13: LINT has a higher δ than GPT4 baselines
with 10 different prompts.

that no matter the prompt we use, LLMs cannot
directly generate long-tail statements by following
instructions. Though these prompts have different
δ values on some rules, no one can consistently
achieve a higher δ among them.

G Entailment Classification Probing

G.1 Probing template

Table 12 shows templates we used for the entail-
ment classification task. As mentioned in § 4, we
divide the templates into positive templates and
negative templates. Positive templates are those
with a positive label (i.e., Yes, Right and True) and
negative templates are those with a negative label
(i.e., No, Wrong and False).

Most of the templates have definite labels across
all rules. However, the label of Template 7 depends

on the rules. If the rule has a positive conclusion
(e.g., Person X can use ChatGPT), the answer to
the question should be positive, i.e., Yes. On the
contrary, if the rule has a negative conclusion(e.g.,
Person X cannot use ChatGPT), the answer to the
question should be negative, i.e., No.

G.2 Accuracy averaged over templates

One main concern of not using accuracy of our
main metric is because accuracy is not favorable
for label imbalance. Because we have 13 templates
where for each knowledge statement we will have
an uneven number of positive or negative answers,
the negative label rate in total is around 51.58%.
Therefore, we decide to consider the template bi-
ases and deem a model correct only if it answers
all templates of a statement correctly, as our goal
is to test the true knowledge of models.

When evaluating the accuracy across all tem-
plates, the model’s performance also drops over
long-tail knowledge. Table 13 shows the accuracy
across all templates of GPT4. Even if LLMs are brit-
tle to templates, they exhibit a performance drop in
the long-tail distribution among all domains.

G.3 Model and human error analysis

Table 14 shows probing examples in which models
and humans make error. For those from the head
distribution, the entailment can be easy if humans
can use search engines. For example, humans can
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Template Label

1 Is it true that if premise, conclusion. Yes
2 Yes or no: if premise, conclusion. Yes
3 True or false: if premise, conclusion. True
4 Right or Wrong: if premise,

conclusion.
Right

5 Premise: premise.
Conclusion: conclusion.
Does premise entail conclusion?

Yes

6 Premise: premise.
Conclusion: conclusion_negation.
Does premise contradict the conclusion?

Yes

7 Answer the question with yes or no:
if premise, conclusion_question?

Depends

8 Is it true that if premise,
conclusion_negation.

No

9 Yes or no: if premise,
conclusion_negation.

No

10 True or false: if premise,
conclusion_negation.

False

11 Right or Wrong: if premise,
conclusion_negation.

Wrong

12 Premise: premise.
Conclusion: conclusion_negation.
Does premise entail conclusion?

No

13 Premise: premise.
Conclusion: conclusion.
Does premise contradict the conclusion?

No

Table 12: Templates used for machine entailment classi-
fication task.

Head Long-tail

Natural Properties 67.07 63.40
Temporal 83.14 78.97
Outcomes and Effects 81.79 80.19
Locational 68.90 67.07

Table 13: Accuracy over all templates, GPT4

search the periods of “The Paleolithic Era” and
“Lion Gate of Mycenae”, and answer easily. Thus
the human errors in the head distribution may be
due to carelessness. For those containing long-
tail knowledge, even with search engines, it is not
so easy to infer the answer for human annotators. It
is also likely that models do not have such knowl-
edge either.

G.4 Rationale analysis

As mentioned in § 4, we examine the rationale
the model generated during COT in the entailment
classification task and found that the models tend
to avoid drawing a “definite conclusion”. Table 15
shows an example.

H Domain-wise statistics of LINT

Table 16 shows the detailed statistics of LINT.

H.1 Domain-wise human evaluation

As mentioned in § 3.3, we uniformly sample 4,000
statements from LINT for human evaluation. Ta-
ble 17 provides more detailed domain-wise statis-
tics on the data type conformity and factual cor-
rectness performance of LINT long-tail knowledge
generation. While “Natural Properties” has the
highest overall accuracy and factuality, model per-
formance on positive templates in Table 4 is the
lowest while model performance on negative tem-
plates is the highest in this domain. This suggests
that these LLMs might have been most aligned in
this domain during pre-training.

H.2 Rule definitions

Table 18 shows the definitions of the 6 sampled
rules.

I Amazon Mechanic Turk

I.1 Recruiting Workers

We recruit workers from all English-speaking coun-
tries (US, UK, New Zealand, Australia, Canada),
although AMT workers are mostly US-based. We
use a qualification task to recruit AMT workers. In
the qualification task, all workers will be presented
with three manually selected statements, which are
clear and representative. Each statement has five
related questions as described in Appendix C. Only
workers who answer all the questions correctly will
be recruited. In the end, we recruited 38 workers to
evaluate the quality of generation and 17 workers
as human baselines for the entailment classification
task. We paid the workers $0.47 per annotation for
evaluating the quality of generations and $0.11 per
annotation for the entailment classification task, to
match $15 per hour based on their working time.

I.2 Templates

Figure 14 and Figure 15 show the template we use
for the evaluation of generation quality and the
entailment classification task.

I.3 Agreement statistics

Table 19 shows the agreement of annotations in
the evaluation task. The high agreement of the
data type conformity and factual correctness for
LINT ensures the reliability of our results. The
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Statement: Yes or no: if Plant X vanished in Paleolithic Era, Plant X cannot surround
Lion Gate of Mycenae. (Head)

True label: Yes
Human answer: No
Model answer (GPT4 + COT): Yes. The Paleolithic Era ended around 10,000 BC and the Lion Gate of

Mycenae was built around 1250 BC. If PlantX vanished in the Paleolithic
Era, it could not have surrounded the Lion Gate of Mycenae which was built
much later.

Statement: Yes or no: if Bag X has trouble containing Pandeiro, Dhak cannot fit in Bag
X. (Long-tail )

True label: Yes
Human answer: No
Model answer (GPT4 + COT): No. The size of the Pandeiro does not directly relate to the size of the Dhak.

They are different objects and may have different shapes and sizes. Therefore,
just because BagX has trouble containing a Pandeiro doesn’t necessarily
mean that a Dhak cannot fit in BagX.

Table 14: Examples that human and model make mistakes.

Input Premise: PersonX is of age 17 years
8 months.
Conclusion: PersonX cannot consume
Bourbon.
Does premise entail conclusion?

Label Yes

Answer No

Rationale In many countries, the legal drinking
age is 18 or 21. If we do not know the
specific country PersonX is in, we
cannot definitively conclude that they
cannot consume Bourbon.

Table 15: A rationale generated by GPT4 with COT
shows that even though the model is able to cite the
relevant information, it inclines to answer “No" because
it cannot “definitively conclude".

Rule Head Long-tail

Temporal 81 15,143 15,317
Outcomes and Effects 132 14,966 15,010

Natural Properties 139 16,788 16,669
Locational 65 7,323 7,370

Total 417 54,220 54,366

Table 16: The number of symbolic rules and knowledge
statements in different domains in LINT.

agreement for baselines is lower, which also indi-
cates that the generated statements of baselines are
of low quality and confusing for human annotators.

I.4 Failure Case Examples
We analyze some failure cases that are labeled as in-
correct in the human evaluation. Table 20 presents
some examples.

Data Type Factuality Overall

Temporal 90.18 85.27 77.38
Outcomes and Effects 94.97 80.73 75.98

Natural Properties 96.61 96.61 93.81
Locational 98.88 70.79 70.79

Table 17: The factual and data type accuracy of each
domain in human evaluation.
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Figure 14: AMT template for the evaluation of
generation quality.

Figure 15: AMT template for the human base-
line of the entailment classification task.
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Rule0 lived_in(Person P, Geographic Location A) & lived_during(Person P, Historical Time
Period D) & existed_during(Geographic Location A, Historical Time Period D) &
was_invented_in(Product or Technology C, Year Y) & is_more_than_a_century_earlier_
than(Historical Time Period D, Year Y)
→ is_not_able_to_use(Person P, Product or Technology C)

Rule32 has_trouble_lifting(Person X, Name of Appliance B) & is_heavier_than(Object A,
Name of Appliance B)
→ cannot_lift(Person X, Object A)

Rule46 is_allergic_to(Person A, Substance X) & includes(Name of Cosmetics B, Substance X)
→ cannot_use(Person A, Name of Cosmetics B)

Rule88 died_in(Historical Figure A, Historical Time Period X) & was_created_during(Artifact B,
Historical Time Period Y) & is_earlier_than( Historical Time Period X, Historical Time
Period Y)
→ cannot_create(Historical Figure A, Artifact B)

Rule112 has_trouble_containing(Room B, Furniture C) & is_larger_than(Furniture A, Furniture C)
→ cannot_fit_in(Furniture A, Room B)

Rule122 has_trouble_containing(Trunk B, Furniture C) & is_larger_than(Furniture A, Furniture C)
→ cannot_fit_in(Furniture A, Trunk B)

Table 18: Rule definitions of six sampled rules.

Accuracy ChatGPT GPT4 LINK

Data Type 79.29 83.16 87.54
Factuality 38.35 58.48 75.10

Overall 65.64 74.93 83.39

Table 19: Agreement of annotations in the evaluation
task.
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Rule 172 Locational Rule: is_located_in(Person A, Location X) & is_forbidden_in(Food
Item B, Location X) → cannot_eat(Person A, Food Item B)
Premise: Person X is located in Houston
Conclusion: Person X cannot eat Chocolate
Is Houston a location? Annotation: Yes
Is Chocolate a food item? Annotation: Yes
Does the premise entail the conclusion? Annotation: No
Reason: It is a factual error. Chocolate is not actually forbidden
in Houston, so People in Houston can eat chocolate.

Rule 371 Capability
and Advice

Rule: can_treat(Drug B, Name of Disease X) & has(Person A,
Name of Disease X) → should_take(Person A, Drug B)
Premise: Person X has Hepatitis
Conclusion: Person X should take Sofosbuvir
Is Hepatitis a name of disease? Annotation: Yes
Is Sofosbuvir a drug? Annotation: Yes
Does the premise entail the conclusion? Annotation: No
Reason: It is a factual error. There are different types of hepatitis
viruses. Sofosbuvir is a medication used primarily for the treatment
of hepatitis C. For other types of hepatitis, different medications or
treatments may be necessary.

Rule 274 Temporal Rule: vanished_in(Plant A, Historical Time Period X) &
was_invented_in(Weapon B, Historical Time Period Y) &
is_earlier_than(Historical Time Period X, Historical Time Period Y)
→ cannot_be_used_to_conceal(Plant A, Weapon B)
Premise: Plant X vanished in Mongol
Conclusion: Plant X cannot be used to conceal M92 Zolja
Is Mongol a historical time period? Annotation: No
Is M92 Zolja a weapon? Annotation: Yes
Does the premise entail the conclusion? Annotation: Yes
Reason: It is a data type error. The Mongols are an East Asian ethnic
group native to Mongolia, not a time period. The Mongol Empire may
refer to a period of the 13th and 14th centuries, but Mongol cannot.

Rule 204 Natural
Properties

Rule: has_trouble_containing(Drawer B, Tool C) & is_larger_than
(Tool A, Tool C) → cannot_be_placed_in(Tool A, Drawer B)
Premise: Drawer X has trouble containing Scroll saw
Conclusion: Car cannot be placed in Drawer X
Is Scroll saw a Tool? Annotation: Yes
Is Car a Tool? Annotation: No
Does the premise entail the conclusion? Annotation: Yes
Reason: It is a data type error. Car is a vehicle instead of a tool.

Table 20: Examples that are labeled as incorrect during human evaluation. Note that the reasons are analyzed by the
authors instead of annotators.
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