
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 1930–1949
November 12-16, 2024 ©2024 Association for Computational Linguistics

CMD: a framework for Context-aware Model self-Detoxification

Zecheng Tang1∗ Keyan Zhou1∗ Juntao Li1† Yuyang Ding1 Pinzheng Wang1

Bowen Yan2 Renjie Hua3 Min Zhang1

1Soochow University 2Tsinghua University 3Soochow Securities
{zctang,kyzhou49}@stu.suda.edu.cn, {ljt,minzhang}@suda.edu.cn,

yanbw@mail.tsinghua.edu.cn, huarj@dwzq.com.cn

Abstract

Text detoxification aims to minimize the risk
of language models producing toxic content.
However, existing detoxification methods fail
to balance the detoxification effectiveness and
generation quality. This issue arises from ne-
glecting the constraints imposed by the con-
text: language models are designed to gener-
ate output that closely matches the given con-
text, while detoxification methods strive to en-
sure the safety of the output, even if it de-
viates semantically from the context. Given
this, we introduce a Context-aware Model self-
Detoxification (CMD) framework that pays at-
tention to both the context and the detoxifica-
tion process, i.e., first detoxifying the context
and then making the language model gener-
ate along the safe context. Specifically, CMD
framework involves two phases: utilizing lan-
guage models to synthesize data and applying
these data for training. We also introduce a
toxic contrastive loss that encourages the model
generation away from the negative toxic sam-
ples. Experiments on various LLMs have veri-
fied the effectiveness of our MSD framework,
which can yield the best performance compared
to baselines.1 Warning: cases in this paper
may contain offensive content.

1 Introduction

Large Language Models (LLMs) have exhibited
remarkable performance in various NLP tasks and
applications (Brown et al., 2020; Chowdhery et al.,
2022; Anil et al., 2023). However, when prompted
with toxic context, LLMs tend to generate texts
that contain toxicity and bias (Liang et al., 2022;
Shaikh et al., 2022), which poses a significant risk
when interfacing directly with users.

To mitigate such a concern for LLMs, one could
adopt the response rejection strategy (Zhang et al.,

∗Equal Contribution
†Corresponding Author

1Code & Data: https://github.com/ZetangForward/
CMD-Context-aware-Model-self-Detoxification.git

2023) to ignore the unsafe context. However, such
a strategy is unfriendly to the users under some
specific scenarios, such as mediation or conflict
resolution (Löhr et al., 2017). Alternately, text
detoxification prevents the model from generating
toxic content following any given context with-
out rejection. Along this line, non-negligible ef-
forts have recently been devoted to two main as-
pects: output-intervention methods like manipulat-
ing output probability distribution during inference
time (Dale et al., 2021; Xu et al., 2021; Leong et al.,
2023) and trainable methods that update model pa-
rameters on the detoxification datasets (Wang et al.,
2022; Park and Rudzicz, 2022; Niu et al., 2024).

However, when applying the output-intervention
methods, the generated text tends to exhibit low
quality, e.g., semantic incoherence with the con-
text, due to some unexpected perturbations to the
outputs; while trainable methods are constrained
by the available detoxification dataset, which may
lead to poor detoxification effectiveness2. In other
words, although detoxification methods allow lan-
guage models to generate along the unsafe con-
text, existing methods still face a dilemma, i.e.,
the imbalance between detoxification effectiveness
and the generation quality. This issue stems from
the conflicting objectives of model generation and
existing detoxification methods: language mod-
els aim to generate content along the context, but
detoxification methods strive to ensure the safety
of the output even if it exhibits subpar quality, e.g.,
semantically deviating from the context.

To tackle this issue, we need to consider both
the context and the model generation in detoxifi-
cation. Intuitively, if the context is non-toxic, the
generated content will also likely be safe. There-
fore, we decompose the detoxification into two
steps: first detoxifying the context and then making
the language model generate along the safe con-
tent, thus ensuring the generated text’s quality and

2We conduct the preliminary study in Sec. 2.2.

1930

https://github.com/ZetangForward/CMD-Context-aware-Model-self-Detoxification.git
https://github.com/ZetangForward/CMD-Context-aware-Model-self-Detoxification.git


safety. However, it is also worth noting that even
a safe context can induce toxic content occasion-
ally (Zhang et al., 2022). Hence, we add an extra
constraint on the language model to generate safe
content while still in line with the given context.

Drawing from the strategies delineated above,
we introduce a Context-aware Model self-
Detoxification (CMD) framework, which first uti-
lizes language models to synthesize data and then
applies these data for training, aiming to enable
the model self-detoxification. Specifically, the data
synthesis phase involves (1) Fine-Grained Context
Detoxification step that builds data for eliminat-
ing the toxic within the context, and (2) Context-
Following Generation step that builds data to con-
strain language models to generate safe content
along the given context. The crux of Fine-Grained
Context Detoxification is to preserve the original
context semantics. Hence, it includes detecting the
toxic segments within the context and detoxifying
these segments. Our experiment shows that elim-
inating the toxic segments within the context can
preserve the original context semantics and signifi-
cantly reduce the toxicity of the continuously gen-
erated content. For Context-Following Generation
step, the model is guided by the detoxified context
to generate multiple candidates. Furthermore, to
prevent the model from generating toxic content
when provided with a safe context, we introduce a
contrastive loss that encourages the model’s gener-
ation away from the negative toxic samples during
the model training phase.

Experiments on four open-source LLMs, each
featuring distinct architectures, parameters, and ca-
pabilities for the detoxification task, have validated
the effectiveness of our CMD framework, which
outperforms strong baseline models. Additionally,
we demonstrate the robustness of the CMD frame-
work by scaling the model parameters up to 13B,
showing superior performance compared to the tra-
ditional multi-module ensemble pipeline method.

2 Preliminary Study

The auto-regressive generation manner allows lan-
guage models to generate along the given context,
ensuring the output text is coherent and consistent.
However, such a paradigm is risky when models
encounter a toxic context. Existing detoxification
methods are designed to redirect the model genera-
tion toward a non-toxic direction while neglecting
the constrain imposed by context. In this section:

(1) We first rethink the existing detoxification meth-
ods from two aspects: detoxification effectiveness
and the generation quality; (2) Then, we take safe
context into consideration and analyze the effective-
ness of safe context by first detoxifying the context
and subsequently guiding LLMs to generate along
the safe context; (3) Detoxifying the context during
the detoxification process entails the usage of exter-
nal modules, which requires extra efforts to align
modules with language models and can lead to per-
formance degradation. Thus, we seek to simplify
the detoxification process by evaluating whether
the open-source LLMs can self-detoxify.

2.1 Study Settings

We utilize three LLMs (GPT2-XL (Radford et al.,
2019), LLaMA2-7B (Touvron et al., 2023), and
Mistral-7B-Instruct (Jiang et al., 2023)) and three
representative detoxification approaches (output-
intervention methods DExperts (Liu et al., 2021)
and Gedi (Krause et al., 2020) that manipu-
late the output distribution, and trainable method
SGEAT (Wang et al., 2022) that fine-tunes model
on the detoxification dataset3) for preliminary
study. For evaluation, we utilize REALTOXICI-
TYPROMPTS (RTP) dataset (Gehman et al., 2020)
that contains toxic prompts to induce models gener-
ation with toxic text and JIGSAW TOXIC COM-
MENT (JigSaw) dataset4 for toxic classification.
We evaluate the toxicity of model outputs with Per-
spectiveAPI5 and apply Perplexity (PPL) as well as
semantic similarity (SIM) (Reimers and Gurevych,
2019) to reflect the coherence and the input-output
semantic consistency, respectively.

2.2 Rethinking of Existing Methods

We feed the model with toxic context from RTP
testing data and evaluate the generated text from
three perspectives: coherence, consistency, and
toxicity. We plot the evaluation results in Fig. 1,
which indicates that the methods directly manip-
ulating the output distribution (Gedi and DEx-
perts) tend to generate safe content, but the text
quality is significantly worse than that of the
LLMs (GPT2-XL and LLaMA2-7B). For the fine-
tuning method (SGEAT), text quality (coherence
and consistency) is significantly improved com-
pared to the LLMs. However, the generated toxicity

3All detoxification methods adopt GPT2-XL as backbone.
4https://www.kaggle.com/c/

jigsaw-toxic-comment-classification-challenge
5www.perspectiveapi.org, accessed 11, 2022.

1931

https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge
https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge
www.perspectiveapi.org


Poor

Good

Go
od

Good

LLMs

Existing
Detoxification
Methods

Figure 1: Comparison of detoxification methods for
LLMs. More details are shown in Appendix A.1.

is similar to that of LLMs. The above experimental
results indicate that current detoxification methods
either markedly compromise the text quality or re-
sult in poor detoxification effectiveness. This is be-
cause existing detoxification methods focus solely
on detoxifying generated text while neglecting the
constraint imposed by context even if generated
text semantically deviates from the context.

2.3 Effectiveness of Safe Context
To mitigate the aforementioned issue, we pay more
attention to the context rather than solely to detoxi-
fying the generated text. To this end, we first detox-
ify the context and then utilize the safe context to
guide model generation. Specifically, we manu-
ally detect the toxic segments in the context with
PerspectiveAPI and replace them with the sentinel
token “[MASK]” based on their toxicity scores in
descending order6. We can obtain context with
various toxicity levels by controlling the granular-
ity of detection and the number of sentinel tokens.
Then, the models are guided with these manually
detoxified data for continual generation. As shown
in Fig. 2a, before detoxifying the context, there is
a positive correlation between the context toxicity
and the generation toxicity—as the toxicity of the
context increases, so does the toxicity of the gen-
erated texts from LLMs (yellow line graph). After
detoxifying the context, the toxicity of the gener-
ated texts significantly reduces (bar graph), and the
results obtained from the detoxification methods
also indicate a consistently stable trend in reducing
toxicity. From Fig. 2b, we can find a significant
positive correlation between the generation toxi-
city and the semantic similarity between context

6More details can be referred to Appendix A.2

(a) Context toxicity distribution.

(b) Input-output semantic similarity distribution.

Figure 2: Model performance when fed with the context
of different toxicity levels.

and generated text (line graph), indicating that the
generation toxicity is considerably influenced by
the context. After detoxifying the context, such
a correlation notably reduces (bar graph). More
concretely, for generated content that exhibits a
high semantic similarity to the context, there is a
significant reduction in toxicity. In addition, the
generation quality is improved after the context
detoxification. We present more evaluation results
in Appendix A.1. Based on the above findings, a
safe context is critical for reducing toxicity and
improving generation quality.

2.4 Detoxification Process Simplification

Although safe context can reduce toxicity and im-
prove the generation quality, the above detoxifica-
tion process involves external modules, e.g., con-
text detoxification module requiring additional ef-
fects to align with models (Krause et al., 2020). To
avoid the tedious alignment process, we explore
whether the LLMs can self-detoxify without re-
lying on external modules by detecting the toxic
segments within the context and detoxifying those

1932



segments. We evaluate LLMs from two aspects7:

Toxic Segment Detection Capability We apply
the in-context learning (Brown et al., 2020) method
to guide the model in detecting the toxic segments
within the context. As shown in Tab. 1, all LLMs
can hardly detect the toxic segments within the
context (Recall score lower than 20%), indicating
that LLMs fall short in toxic segment detection.

Toxic Segment Detoxification Capability We
provide the LLMs with the toxic text and prompt
LLMs to detoxify them. We utilize EDIT score to
reflect the modification degree of the original con-
text, indicating whether LLMs exhibit insufficient
detoxification. As shown in Tab. 1, all LLMs fail
to effectively detoxify the context, indicated by the
high Toxicity score and low EDIT score, i.e., most
of the toxic segments remains unchanged.

2.5 Takeaway
1) Existing detoxification methods fail to satisfy

both the detoxification effectiveness and the gen-
eration quality since those methods neglect the
constrain imposed by context. By utilizing the
safe context, the generation toxicity is notably
reduced, and the text quality is improved. There-
fore, safe context is critical for reducing the gen-
eration toxicity and improving the text quality.

2) To avoid the tedious alignment training caused
by introducing extra modules, LLMs can self-
detoxify. However, experimental results indi-
cate that open-source LLMs are incapable of
self-detoxification, particularly struggling to de-
tect toxic segments and failing to detoxify the
toxic contexts. Therefore, synthesis dataset is
significant for training LLMs to address defi-
ciencies in their self-detoxification capability.

3 CMD Framework

According to the above analysis, we introduce
CMD (Context-aware Model self-Detoxification),
a framework for LLMs to self-detoxify. As shown
in Fig. 3, the CMD framework includes two phases:
the dataset Synthesis phase that interacts with the
LLMs to synthesize data, and the Model Training
phase that applies the synthesis data to enable the
LLMs to self-detoxify. We list all the used prompts
and templates in Appendix C.1.

7Implementation details of in-context learning and evalua-
tion are shown in Appendix B.

Model / API Detection Detoxification

Recall(↑) Toxicity(↓) EDIT

GPT2-XL 3.80% 0.58 6.86
LLaMA2-7B 12.50% 0.63 3.94
Mistral-7B-Instruct 13.10% 0.49 5.31

PerpectiveAPI 100% 0.18 8.29

Table 1: Results of model self-detoxification, where
“Recall” reflects the ratio of toxic segments being de-
tected, “EDIT” reflects the modification degree.

3.1 Dataset Synthesis Phase
The purpose of Dataset Synthesis phase is to syn-
thesize the data reflecting the process of context
detoxification without compromising the original
semantic (Fine-Grained Context Detoxification)
and allow LLMs to generate along the detoxified
context (Context-Following Generation). There-
fore, it involves three steps: (1) Toxic Segment
Detection that detects the toxic segments in the
context, (2) Toxic Segment Detoxification that re-
places the toxic segments with synonymous safe
text, and (3) Context-Following Generation that
makes the LLMs generate along the safe context.

Toxic Segment Detection We first employ ex-
isting methods (Khan et al., 2021; Schouten et al.,
2023) for toxic segment detection, but discover that
these approaches may lead to either excessive or
incomplete toxicity detection. Therefore, we de-
sign a Segment-CNN model Gθ which fuses the
global and local features of the toxic context for
toxic segment detection. With Segment-CNN, we
can detect the toxic segments within each context
x = {xi}ni=1 according to the predicted toxicity
scores of each segments s = {sj}mj=1 = Gθ(x),
where sj denotes the toxicity score of text segment
xi:i+a(a = L, i ∈ [0, n − L)) and L is the pre-
defined segment length. We calculate the average
toxicity of the dataset as λ and treat xi:i+a as the
toxic segment if sj ≥ λ. Details of Segment-CNN
model can be referred to Appendix C.2.

Toxic Segment Detoxification To detoxify the
detected toxic segments, we replace these segments
with the synonymous safe text. Specifically, it in-
volves a segment masking step that replaces the
detected toxic segments with a special placeholder
p and a segment full-filling step that replaces p with
the synonymous safe text. To ensure the detoxified
context is safe and semantically relevant to the orig-
inal context text, we employ an iterative generation
algorithm, which is shown in Appendix C.3.

1933



You are the stupid one for trying

Language
Model

You are the stupid
one for trying

Context ⓵ 😈

In fact, garbage is
already flooding

Context ⓶ 🤖

You are the stupid
one for trying

Toxic

In fact, garbage is
already flooding

Safe

Toxic Segment Detection

You are the not sm-
art one for trying

In fact, garbage is
already flooding

Safe

Toxic Segment Detoxification

Safe

Context-Following Generation

Mask-Filling
Model

Fulfill the
mask place

Language
Model

Continually generate
along the given context

Segment-
CNN

Detect and mask
toxic span:

Models /
Prompts

to make sense […]. It’s a futile endeavor […]

Contrastive Loss

to break away from government control […]

to be a good Jew if you’re a dump […]

to suicide due to one’s poor mood […]

✅

Risky

Risky

Risky

Safe0.03

0.12

0.49

1.03

Dataset Synthesis

Model Training

CMD = Dataset Synthesis (Fine-Grained Context Detoxification + Context-Following Generation) + Model Training

+ +=

Cross-Entropy Loss

In fact, garbage is already flo-
oding our oceans at a rate of
8 million metric tons […]

You are the not smart one for
trying to break away from
government control, […]You are the not smart one for
trying to make sense of it all.
It’s a futile endeavor, […]

…

…

Prediction

Candidates from Context-Following Generation

#Toxic #Detect: You are the <MASK>
one for trying #Context Detoxify: You
are the not smart one for trying #G-
eneration: make sense of it all. It’s a
futile endeavor, […]

😈

(Case of Toxic Context)

Synthesis Data 𝒙!

Original Context 𝒙

Figure 3: Overview of CMD framework that involves a Dataset Synthesis phase and a Model Training phase. After
training with CMD framework, language models can self-detoxify without the requirement of any external modules.

Context-Following Generation The Context-
Following Generation step is designed to direct
model outputs towards safety, aligning with the
detoxified context. During the Context-Following
Generation process, the detoxified context is pro-
vided to the model, which then generates K po-
tential outputs o′ as candidates. It is worth noting
that the iterative generation algorithm is employed
to guarantee the coherence of the generated text
with the detoxified context. Subsequently, the can-
didates are scored by PerspectiveAPI, with the one
receiving the lowest toxicity score being selected
as the final output of the model and others with
toxicity as the negative samples for the subsequent
Model Training phase.

Integration Through Reasoning Chain After
obtaining the synthesis data for each step, to allow
LLMs to self-detoxify along the given steps, we
employ the Chain-of-Thought (CoT) (Wei et al.,
2022) technique to gather all the synthesis data.
Specifically, as shown in Fig. 3, we add an ex-
tra reasoning step between two adjacent steps to
transform the synthesis data x′ into a step-by-step
reasoning format with the pre-defined template.

3.2 Model Training Phase

The purpose of Model Training phase is to enable
LLMs fθ to learn self-detoxification without com-
promising the generation quality. Therefore, we
adopt synthesis data x′ to train LLMs. To pre-
vent the possibility that even safe contexts can lead
to the generation of toxic content, we employ the

contrastive loss (An et al., 2022) by treating the can-
didate with the lowest toxicity score as the positive
sample o′

+ and others with toxicity as the negative
samples o′

−. Formally, for each sample, the loss
function can be written as:



ℓcl = − log

exp (cos(zh, zo′
+
)/τ)

∑
o′
i∈o′ exp (cos(zh, zo′

i
)/τ)

ℓtotal = ℓce(fθ(x),x
′) + αℓcl,

(1)

where zh, zo′
+
, zo′

i
∈ Rd denote the vector repre-

sentation of model generation, positive sample with
the lowest toxicity score, and candidates o′, respec-
tively. τ is the temperature and cos(·, ·) defines the
cosine similarity. ℓce denotes the cross-entropy loss
and α is the re-weight hyper-parameter. Intuitively,
ℓce seeks to learn the self-detoxification process,
and ℓcl prevents the situation where the safe context
leads to toxic generation.

4 Experiments

4.1 Experimental Settings

Models & Baselines We first compare our
method with four existing detoxification baselines,
including DExperts, Gedi, SGEAT, and ToxicRe-
versal (Leong et al., 2023). Then, we apply our
framework to four prevalent open-source LLMs,
including Flan-T5 (Chung et al., 2022), Mistral-7B-
Instruct (Jiang et al., 2023), and LLaMA2 (7B and
13B), which feature different model architectures,
parameters, and capabilities (foundation model and
instruct-following model (Chung et al., 2022)). We

1934



Methods Trainable
Param.

Exp. Max. Toxicity (↓) Toxicity Prob. (↓) Quality

Full Toxic Non-Toxic Full Toxic Non-Toxic PPL(↓)

GPT2-XL - 0.40±0.24 0.70±0.20 0.37±0.22 31.10% 80.50% 25.61% 41.29
+ DExperts † 3.2B 0.31±0.21 0.55±0.22 0.28±0.19 16.96%↓45.47% 56.13%↓30.27% 12.61%↓50.76% 65.90
+ Gedi † 1.6B 0.28±0.19 0.64±0.12 0.24±0.14 5.15%↓83.44% 3.50%↓95.65% 5.33%↓79.19% 200.12
+ ToxicReversal † - 0.28±0.23 0.71±0.13 0.23±0.18 17.25%↓44.53% 62.50%↓22.36% 12.22%↓52.28% 46.31
+ SGEAT ‡ 1.6B 0.30±0.24 0.73±0.13 0.25±0.20 22.25%↓28.46% 68.00%↓15.53% 17.17%↓32.96% 32.98
+ CMD ‡ 2.5M 0.18±0.17 0.26±0.21 0.17±0.16 5.50%↓82.32% 17.00%↓78.89% 4.22%↓83.52% 30.38

Table 2: Comparison among different detoxification methods, where ↓ denotes the Toxicity Prob decrease against
the backbone model (GPT2-XL, 1.6B). The bold font and underline indicate the best and the second performance,
respectively. † denotes the output-intervention methods, and ‡ denotes the trainable methods.

Models Param. Exp. Max. Toxicity (↓) Toxicity Prob. (↓) Quality

Full Toxic Non-Toxic Full Toxic Non-Toxic PPL(↓)

Flan-T5-XL 2.8B 0.39±0.24 0.74±0.15 0.36±0.22 30.90% 93.00% 24.00% 55.00
+ CMD + 4.7M 0.22±0.14 0.26±0.17 0.21±0.14 3.85%↓87.54% 9.00%↓90.32% 3.28%↓86.33% 37.04

Mistral-7B-Instruct-v0.3 7.2B 0.37±0.23 0.64±0.22 0.34±0.21 26.25% 74.50% 20.89% 47.73
+ CMD + 3.4M 0.17±0.16 0.23±0.18 0.16±0.15 4.30%↓83.62% 9.50%↓87.25% 3.72%↓82.19% 41.73

Llama 2-7B 6.7B 0.40±0.24 0.68±0.20 0.36±0.22 29.80% 79.00% 24.33% 55.42
+ CMD + 4.2M 0.17±0.16 0.20±0.17 0.17±0.15 4.30%↓85.57% 6.00%↓92.41% 4.11%↓83.11% 46.07

Llama 2-13B 13.0B 0.40±0.24 0.70±0.19 0.36±0.22 30.70% 84.50% 24.72% 56.32
+ CMD + 6.6M 0.17±0.16 0.20±0.18 0.17±0.16 4.90%↓84.04% 7.50%↓91.12% 4.61%↓81.35% 48.04

Table 3: CMD performance on LLMs, featuring different architectures, parameters, and capabilities.

apply parameter-efficient methods LoRA (Hu et al.,
2021) for fine-tuning. For Segment-CNN model,
we set L = 2 and apply BERT model (Devlin
et al., 2018) as the global feature extractor and
feed-forward neural network as the local feature
extractor. We set λ = 0.3 for the Toxic Segment
Detection step and apply the Sketch-Generation
model GENIUS (Guo et al., 2022) for the Toxic
Segment Detoxification step. For the Model Train-
ing phase, we set α = 1 and τ = 1 in Equation (1).

Tasks & Datasets We experiment on both toxic-
induced generation task (RTP) and parallel detoxi-
fication task (ParaDetox (Logacheva et al., 2022)
and APPDIA (Atwell et al., 2022)). Due to the
space limitation, we report the results of the paral-
lel detoxification task in Appendix E.2. Following
the previous work (An et al., 2022), we split the
RTP dataset with a 9:1 ratio for the Data Synthe-
sis phase in CMD framework and testing, respec-
tively. The testing set contains 9,000 toxic (toxicity
score higher than 0.5) and 1,000 safe (toxicity score
lower than 0.5) prompts. To train Segment-CNN
model, we leverage JigSaw data.

Evaluation Metrics We evaluate the generation
results from two aspects: text quality and detoxi-
fication effectiveness. For text quality, we report
the PPL score and conduct human evaluation8 to
reflect the coherence and consistency of the gen-

8Details of human evaluation are shown in Appendix E.1.

erated text. For detoxification effectiveness, we
report Expected Maximum Toxicity and Toxicity
Probability of the generated text (Gehman et al.,
2020). Specifically, we follow previous work (Liu
et al., 2021; Wang et al., 2022) by adopting the
nucleus sampling strategy (Holtzman et al., 2019)
to generate 25 candidate continuations with 20 to-
kens for the same prompt. We calculate the average
maximum toxicity of each prompt as the Expected
Maximum Toxicity and calculate the probability
of generating toxic continuations (toxicity score
higher than 0.5) in 25 candidate continuations as
the Toxicity Probability score. We report and dis-
cuss more evaluation metrics in Appendix E.2.

4.2 Main Results

Comparison with Baselines We present the per-
formance of CMD and existing detoxification base-
lines in Table 2, where we can observe that CMD
achieves superior performance among all the meth-
ods. It is worth noting that, while the output-
intervention methods such as DExperts and Gedi
can achieve satisfactory detoxification effects, they
tend to produce text that lacks fluency, as indicated
by high PPL scores (65.90 for DExperts and 200.12
for Gedi). In contrast, as illustrated in Figure 4,
CMD can consistently generate high-quality text.
On the other hand, although trainable methods like
SGEAT achieve high-quality text generation with
a low PPL score (32.98), their detoxification effec-

1935



Figure 4: Human evaluation results on text quality, where our method achieves the best performance.

Models Data
Source

Max.
Toxicity

Toxicity
Prob. PPL

GPT2-XL ChatGPT 0.21±0.16 0.50% 26.61
CMD 0.18±0.17 0.32% 30.38

Flan-T5-XL ChatGPT 0.25±0.16 0.72% 31.33
CMD 0.22±0.14 0.20% 37.04

LLaMA2-7B ChatGPT 0.19±0.15 0.41% 28.92
CMD 0.17±0.16 0.31% 46.07

Table 4: Comparison between LLMs trained with the
dataset from ChatGPT and CMD.

tiveness is less impressive. By integrating context,
CMD can balance detoxification and generation.

Performance on LLMs As shown in Tab. 3, we
report the CMD performance on different LLMs.
By utilizing the CMD, toxicity of the generated
text is significantly reduced, and the generation
quality is improved (lower PPL compared to that
of the LLMs). Besides, we can also observe two
other intriguing findings: (1) For LLaMA2-7B
and LLaMA2-13B models, which feature different
model parameters, their “Exp. Max. Toxicity” and
“Toxicity Prob.” do not significantly differ, indicat-
ing that the toxicity probability is more related to
the training data than the model size. This observa-
tion is consistent with the previous research (Wang
et al., 2022); (2) Compared to Instruct-tuning mod-
els (Flan-T5 and Mistral-7B-Instruct), foundation
models (LLaMA2-7B and LLaMA2-13B) gener-
ally obtain a better detoxification effectiveness, in-
dicating that it’s easier to detoxify the foundation
models than the instruction-tuned models.

5 Ablation Study

We first explore an alternative dataset synthesis
approach—applying ChatGPT to create detoxifica-
tion data in Sec. 5.1. Then, we analyze the influ-
ence of the toxic contrastive training objective in

Figure 5: Influence of Toxic Contrastive Training.

Sec. 5.2. We analyze the intermediate steps dur-
ing the model generation process and compare the
results with those obtained from a detoxification
pipeline that employs multiple modules in Sec.5.3.

5.1 Dataset Synthesis with ChatGPT
We prompt ChatGPT to synthesize data for each
detoxification step and utilize these data to train
LLMs. We provide more dataset construction de-
tails with ChatGPT in Appendix H. As shown in
Tab. 4, we can observe that LLMs trained with data
obtained from the CMD framework can generate
content with a lower toxicity and probability. How-
ever, for the text quality, the data obtained from
ChatGPT can make LLMs generate more fluent
text with a lower PPL. This is because the data
of Context-Following Generation from ChatGPT
exhibits a higher quality than the data from LLMs.

5.2 Influence of Toxic Contrastive Training
We compare the performance between LLMs
trained without and with toxic contrastive loss in
Fig. 5, which implies that after training with toxic
contrastive loss, the generation toxicity from LLMs
is significantly reduced, with the text quality be-

1936



Step Metric CMD Pipeline1
(Mask-Filling)

Pipeline2
(Paraphrase)

Toxic Segment
Detection Recall 92.65% 100% /

Toxic Segment
Detoxification

Edit 6.47 7.47 11.14
SIM 85.71 74.51 72.95
Avg. Toxicity 0.15 0.12 0.16

Continual
Generation

PPL 30.38 44.58 32.84
SIM 43.96 46.68 44.63
Max. Toxicity 0.18 0.38 0.32
Toxicity Prob. 0.32% 2.89% 1.20%

Table 5: Model performance in each intermediate step.
More pipeline details are shown in Appendix G.

ing slightly affected. This indicates that toxic con-
trastive training is crucial for model generation
toward a safer direction.

5.3 Intermediate Detoxification Step Analysis
We evaluate the result of each intermediate step and
compare the performance with the pipeline meth-
ods which utilize additional modules to execute
every intermediate step in Tab. 5. We can find that
the pipelines can achieve a better performance for
context detoxification with a lower “Avg. Toxicity”
score. However, the high “Edit” and “SIM” scores
indicate that there exists an excessive paraphrase
of the context. As for the continual generation
step, CMD achieves the best performance for the
generation toxicity and text quality. In contrast,
the pipeline methods achieve subpar performance
since the excessive paraphrasing leads to semantic
deviation from the original context and a lack of ex-
tra training to unify all the modules in the pipeline.
Intermediate results are shown in Appendix F.

6 Related Work

6.1 Detoxification for LLMs
The potential of LLMs to produce toxic content
poses a significant risk when interfacing directly
with users (Sheng et al., 2019; Wallace et al., 2019;
May et al., 2019; Zhao et al., 2019; Deshpande
et al., 2023). Existing works detoxifying the LLMs
primarily unfold along two lines: (1) constraining
the model output through manipulating the prob-
ability distribution (Xu et al., 2021; Schick et al.,
2021; Hu et al., 2023), post-processing the gener-
ated texts (Moskovskiy et al., 2022; Dementieva
et al., 2021), etc, and (2) further training mod-
els on non-toxic datasets (Raffel et al., 2020; So-
laiman and Dennison, 2021; Xu et al., 2022; Floto
et al., 2023; Prabhumoye et al., 2023) or corpus
aligned with human preferences (Ouyang et al.,
2022). However, existing methods fail to achieve a
trade-off between detoxification effectiveness and

generation quality. Specifically, methods that con-
strain the model output can result in safe but unread-
able text. In contrast, training models on non-toxic
datasets can produce coherent and consistent con-
tent, but the detoxification effectiveness is inferior.
Such an issue stems from the conflicting objectives
of language model generation and existing detoxifi-
cation methods: while language models aim to pro-
duce text that aligns with the provided context, cur-
rent detoxification approaches strive to prioritize
the output’s safety, even at the expense of semantic
consistency with the context. Thus, we introduce
the CMD framework that considers both the con-
text and the generation process, which can achieve
a balance between detoxification effectiveness and
generation quality. Experimental results indicate
that, by adopting the CMD framework, LLMs can
yield the best detoxification performance.

6.2 Model Augmentation via CoT

Chain-of-Thought (CoT) (Wei et al., 2022), involv-
ing a series of rationale steps leading to the final
answer, has been widely applied to LLMs to en-
hance the model’s reasoning capability (Zhu et al.,
2022; Kojima et al., 2022). By decomposing the
complex problem into sequential intermediate steps
before producing the final answer, LLMs can solve
more complex problems (Singh et al., 2022; Ding
et al., 2023; Lin et al., 2023; Hao et al., 2023). In
this paper, to enable LLMs to self-detoxify along
the given detoxification steps, we adopt the CoT ap-
proach to integrate the synthesis data by adding the
pre-defined templates between two adjacent steps.

7 Conclusion

We reveal that existing detoxification methods fail
to balance the detoxification effectiveness and text
quality since these methods strive to prioritize the
safety of generated content while neglecting the
constraints imposed by the context. To mitigate
this issue, we introduce a Context-aware Model
self-Detoxification (CMD) framework, which first
detoxifies the context and then makes the model
generate along the safe context. Within this frame-
work, we synthesize the data with language models
and design a toxic contrastive training objective to
guide the model’s generation away from the neg-
ative toxic samples. Experiments reveal that, by
applying the CMD framework, LLMs can achieve
the best performance in text detoxification tasks.

1937



Limitations

Although the CMD framework can achieve impres-
sive results, there remain limitations and space for
improvement in model detoxification:
(1) It must be acknowledged that the CMD frame-
work is not the sole approach to model detoxifica-
tion; rather, our framework provides another view
for model detoxification, which makes the detoxifi-
cation process aware of the context to address the
balance between detoxification effectiveness and
the quality of the generated text. There is also room
for improvement in the design of our framework.
(2) In the evaluation, we find that the toxicity gen-
erated by the model poses a significant challenge to
the traditional semantic similarity metrics. That is,
when the model produces toxic content, the seman-
tic similarity actually increases due to the proximity
to toxic content in the context. In this case, a higher
semantic similarity score is counterintuitively detri-
mental. Therefore, there is considerable room for
improvement in the evaluation of model generation
along the toxic context.

Ethic and Policy

It is worth noting that all the corpora mentioned in
this paper, including the constructed dataset, are
only used for scientific research. As for the alter-
native method of dataset synthesis with ChatGPT
and evaluation with PerspectiveAPI, we strictly fol-
low the OpenAI Terms of Use 9 and Google APIs
Terms of Service 10. Although our methods can
substantially detoxify the LLMs, we still urge the
users to examine the generation results carefully
and cautiously use our method in real-world appli-
cations.

Acknowledgments

We want to thank all the anonymous reviewers
for their valuable comments. This work was sup-
ported by the National Science Foundation of
China (NSFC No. 62206194 and 62276077), the
Natural Science Foundation of Jiangsu Province,
China (Grant No. BK20220488), and Young
Elite Scientists Sponsorship Program by CAST
(2023QNRC001).

9https://openai.com/policies/terms-of-use
10https://developers.google.com/terms/

References
Chenxin An, Jiangtao Feng, Kai Lv, Lingpeng Kong,

Xipeng Qiu, and Xuanjing Huang. 2022. Cont: Con-
trastive neural text generation. Advances in Neural
Information Processing Systems, 35:2197–2210.

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin John-
son, Dmitry Lepikhin, Alexandre Passos, Siamak
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng
Chen, et al. 2023. Palm 2 technical report. arXiv
preprint arXiv:2305.10403.

Katherine Atwell, Sabit Hassan, and Malihe Alikhani.
2022. Appdia: A discourse-aware transformer-based
style transfer model for offensive social media con-
versations. arXiv preprint arXiv:2209.08207.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2022. Palm: Scaling
language modeling with pathways. arXiv preprint
arXiv:2204.02311.

Hyung Won Chung, Le Hou, Shayne Longpre, Bar-
ret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2022. Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416.

David Dale, Anton Voronov, Daryna Dementieva, Var-
vara Logacheva, Olga Kozlova, Nikita Semenov, and
Alexander Panchenko. 2021. Text detoxification us-
ing large pre-trained neural models. arXiv preprint
arXiv:2109.08914.

Daryna Dementieva, Sergey Ustyantsev, David
Dale, Olga Kozlova, Nikita Semenov, Alexander
Panchenko, and Varvara Logacheva. 2021. Crowd-
sourcing of parallel corpora: the case of style transfer
for detoxification. In Proceedings of the 2nd Crowd
Science Workshop: Trust, Ethics, and Excellence in
Crowdsourced Data Management at Scale co-located
with 47th International Conference on Very Large
Data Bases (VLDB 2021 (https://vldb. org/2021/)),
pages 35–49.

Ameet Deshpande, Vishvak Murahari, Tanmay Rajpuro-
hit, Ashwin Kalyan, and Karthik Narasimhan. 2023.
Toxicity in chatgpt: Analyzing persona-assigned lan-
guage models. arXiv preprint arXiv:2304.05335.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

1938

https://openai.com/policies/terms-of-use
https://developers.google.com/terms/


Yan Ding, Xiaohan Zhang, Chris Paxton, and Shiqi
Zhang. 2023. Task and motion planning with large
language models for object rearrangement. arXiv
preprint arXiv:2303.06247.

Joseph L Fleiss. 1971. Measuring nominal scale agree-
ment among many raters. Psychological bulletin,
76(5):378.

Griffin Floto, Mohammad Mahdi Abdollah Pour, Parsa
Farinneya, Zhenwei Tang, Ali Pesaranghader, Man-
asa Bharadwaj, and Scott Sanner. 2023. Diffudetox:
A mixed diffusion model for text detoxification.
arXiv preprint arXiv:2306.08505.

Samuel Gehman, Suchin Gururangan, Maarten Sap,
Yejin Choi, and Noah A Smith. 2020. Realtoxici-
typrompts: Evaluating neural toxic degeneration in
language models. arXiv preprint arXiv:2009.11462.

Biyang Guo, Yeyun Gong, Yelong Shen, Songqiao Han,
Hailiang Huang, Nan Duan, and Weizhu Chen. 2022.
Genius: Sketch-based language model pre-training
via extreme and selective masking for text generation
and augmentation. arXiv preprint arXiv:2211.10330.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong,
Zhen Wang, Daisy Zhe Wang, and Zhiting Hu. 2023.
Reasoning with language model is planning with
world model. arXiv preprint arXiv:2305.14992.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2019. The curious case of neural text
degeneration. arXiv preprint arXiv:1904.09751.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Xinshuo Hu, Dongfang Li, Zihao Zheng, Zhenyu Liu,
Baotian Hu, and Min Zhang. 2023. Separate the
wheat from the chaff: Model deficiency unlearn-
ing via parameter-efficient module operation. arXiv
preprint arXiv:2308.08090.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Yakoob Khan, Weicheng Ma, and Soroush Vosoughi.
2021. Lone pine at semeval-2021 task 5: Fine-
grained detection of hate speech using bertoxic.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. arXiv preprint
arXiv:2205.11916.

Ben Krause, Akhilesh Deepak Gotmare, Bryan McCann,
Nitish Shirish Keskar, Shafiq Joty, Richard Socher,
and Nazneen Fatema Rajani. 2020. Gedi: Generative
discriminator guided sequence generation. arXiv
preprint arXiv:2009.06367.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. 2017. Imagenet classification with deep convolu-
tional neural networks. Communications of the ACM,
60(6):84–90.

Chak Tou Leong, Yi Cheng, Jiashuo Wang, Jian Wang,
and Wenjie Li. 2023. Self-detoxifying language
models via toxification reversal. arXiv preprint
arXiv:2310.09573.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris
Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Ku-
mar, et al. 2022. Holistic evaluation of language
models. arXiv preprint arXiv:2211.09110.

Kevin Lin, Christopher Agia, Toki Migimatsu, Marco
Pavone, and Jeannette Bohg. 2023. Text2motion:
From natural language instructions to feasible plans.
arXiv preprint arXiv:2303.12153.

Alisa Liu, Maarten Sap, Ximing Lu, Swabha
Swayamdipta, Chandra Bhagavatula, Noah A Smith,
and Yejin Choi. 2021. Dexperts: Decoding-time con-
trolled text generation with experts and anti-experts.
arXiv preprint arXiv:2105.03023.

Varvara Logacheva, Daryna Dementieva, Sergey
Ustyantsev, Daniil Moskovskiy, David Dale, Irina
Krotova, Nikita Semenov, and Alexander Panchenko.
2022. Paradetox: Detoxification with parallel data.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 6804–6818.

Katharina Löhr, Frieder Graef, Michelle Bonatti,
Henry F Mahoo, Jane Wambura, and Stefan Sieber.
2017. Conflict management systems for large sci-
entific research projects. International Journal of
Conflict Management, 28(3):322–345.

Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut,
Younes Belkada, and Sayak Paul. 2022. Peft: State-
of-the-art parameter-efficient fine-tuning methods.
https://github.com/huggingface/peft.

Chandler May, Alex Wang, Shikha Bordia, Samuel R
Bowman, and Rachel Rudinger. 2019. On measuring
social biases in sentence encoders. arXiv preprint
arXiv:1903.10561.

Daniil Moskovskiy, Daryna Dementieva, and Alexander
Panchenko. 2022. Exploring cross-lingual textual
style transfer with large multilingual language mod-
els. arXiv preprint arXiv:2206.02252.

Tong Niu, Caiming Xiong, Semih Yavuz, and
Yingbo Zhou. 2024. Parameter-efficient detoxifi-
cation with contrastive decoding. arXiv preprint
arXiv:2401.06947.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems, 35:27730–27744.

1939

http://arxiv.org/abs/2104.03506
http://arxiv.org/abs/2104.03506
https://github.com/huggingface/peft


Yoon A Park and Frank Rudzicz. 2022. Detoxifying
language models with a toxic corpus. LTEDI 2022,
page 41.

Mohammad Mahdi Abdollah Pour, Parsa Farinneya,
Manasa Bharadwaj, Nikhil Verma, Ali Pesarang-
hader, and Scott Sanner. 2023. COUNT: COntrastive
UNlikelihood text style transfer for text detoxifica-
tion. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2023, pages 8658–8666,
Singapore. Association for Computational Linguis-
tics.

Shrimai Prabhumoye, Mostofa Patwary, Mohammad
Shoeybi, and Bryan Catanzaro. 2023. Adding in-
structions during pretraining: Effective way of con-
trolling toxicity in language models. arXiv preprint
arXiv:2302.07388.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research,
21(1):5485–5551.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
arXiv preprint arXiv:1908.10084.

Timo Schick, Sahana Udupa, and Hinrich Schütze. 2021.
Self-diagnosis and self-debiasing: A proposal for re-
ducing corpus-based bias in nlp. Transactions of the
Association for Computational Linguistics, 9:1408–
1424.

Stefan F Schouten, Baran Barbarestani, Wondimagegn-
hue Tufa, Piek Vossen, and Ilia Markov. 2023. Cross-
domain toxic spans detection. In International Con-
ference on Applications of Natural Language to In-
formation Systems, pages 533–545. Springer.

Omar Shaikh, Hongxin Zhang, William Held, Michael
Bernstein, and Diyi Yang. 2022. On second thought,
let’s not think step by step! bias and toxicity in zero-
shot reasoning. arXiv preprint arXiv:2212.08061.

Emily Sheng, Kai-Wei Chang, Premkumar Natarajan,
and Nanyun Peng. 2019. The woman worked as a
babysitter: On biases in language generation. arXiv
preprint arXiv:1909.01326.

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit
Goyal, Danfei Xu, Jonathan Tremblay, Dieter
Fox, Jesse Thomason, and Animesh Garg. 2022.
Progprompt: Generating situated robot task plans
using large language models. arXiv preprint
arXiv:2209.11302.

Irene Solaiman and Christy Dennison. 2021. Process
for adapting language models to society (palms) with
values-targeted datasets. Advances in Neural Infor-
mation Processing Systems, 34:5861–5873.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gardner,
and Sameer Singh. 2019. Universal adversarial trig-
gers for attacking and analyzing nlp. arXiv preprint
arXiv:1908.07125.

Boxin Wang, Wei Ping, Chaowei Xiao, Peng Xu,
Mostofa Patwary, Mohammad Shoeybi, Bo Li, An-
ima Anandkumar, and Bryan Catanzaro. 2022. Ex-
ploring the limits of domain-adaptive training for
detoxifying large-scale language models. arXiv
preprint arXiv:2202.04173.

Alex Warstadt, Amanpreet Singh, and Samuel R Bow-
man. 2019. Neural network acceptability judgments.
Transactions of the Association for Computational
Linguistics, 7:625–641.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Ed Chi, Quoc Le, and Denny Zhou. 2022.
Chain of thought prompting elicits reasoning in large
language models. arXiv preprint arXiv:2201.11903.

John Wieting, Taylor Berg-Kirkpatrick, Kevin Gimpel,
and Graham Neubig. 2019. Beyond BLEU:training
neural machine translation with semantic similarity.
In Proceedings of the 57th Annual Meeting of the As-
sociation for Computational Linguistics, pages 4344–
4355, Florence, Italy. Association for Computational
Linguistics.

Albert Xu, Eshaan Pathak, Eric Wallace, Suchin Guru-
rangan, Maarten Sap, and Dan Klein. 2021. Detoxi-
fying language models risks marginalizing minority
voices. arXiv preprint arXiv:2104.06390.

Canwen Xu, Zexue He, Zhankui He, and Julian
McAuley. 2022. Leashing the inner demons: Self-
detoxification for language models. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 36, pages 11530–11537.

Mian Zhang, Lifeng Jin, Linfeng Song, Haitao Mi, Wen-
liang Chen, and Dong Yu. 2023. Safeconv: Explain-
ing and correcting conversational unsafe behavior. In
Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 22–35.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q
Weinberger, and Yoav Artzi. 2019. Bertscore: Eval-
uating text generation with bert. arXiv preprint
arXiv:1904.09675.

1940

https://doi.org/10.18653/v1/2023.findings-emnlp.579
https://doi.org/10.18653/v1/2023.findings-emnlp.579
https://doi.org/10.18653/v1/2023.findings-emnlp.579
https://doi.org/10.18653/v1/P19-1427
https://doi.org/10.18653/v1/P19-1427


Zhexin Zhang, Jiale Cheng, Hao Sun, Jiawen Deng, Fei
Mi, Yasheng Wang, Lifeng Shang, and Minlie Huang.
2022. Constructing highly inductive contexts for dia-
logue safety through controllable reverse generation.
arXiv preprint arXiv:2212.01810.

Jieyu Zhao, Tianlu Wang, Mark Yatskar, Ryan Cotterell,
Vicente Ordonez, and Kai-Wei Chang. 2019. Gen-
der bias in contextualized word embeddings. arXiv
preprint arXiv:1904.03310.

Xinyu Zhu, Junjie Wang, Lin Zhang, Yuxiang Zhang,
Ruyi Gan, Jiaxing Zhang, and Yujiu Yang. 2022.
Solving math word problem via cooperative rea-
soning induced language models. arXiv preprint
arXiv:2210.16257.

1941



A Extension of Preliminary Study

A.1 Full Preliminary Evaluation Results of
LLMs and Detoxification Methods

We show the full evaluation results of different
detoxification methods and LLMs fed with differ-
ent types of context (toxic and non-toxic) in Fig. 10.

A.2 Illustration of PerspectiveAPI

PerspectiveAPI can score the toxicity of the toxic
segments in the given text. We leverage Per-
spectiveAPI to pinpoint specific segments of the
input that are flagged as potentially toxic. In
the model training phase, these segments, which
have a toxicity score greater than a predefined
threshold (i.e., 0.5), are considered toxic parts
that need to be masked by the sentinel token
"[MASK]". For example, for the toxic context
“What are you motherfckers going to do about
the...”, the PerspectiveAPI can detect the toxic seg-
ment “motherfckers” in the context. Then, since
the toxic score of “motherfckers” is greater than
0.5, we replace this segment with “[MASK]”.

B Details of Detoxification Process
Simplification

B.1 In-Context Learning For Toxic Segment
Detection

We show the in-context templates that guides LLMs
to detect toxic segments in Fig. 6 and detoxify the
context in Fig. 7. More concretely, we prepend the
in-context templates before the toxic context and
feed them to the LLMs for continual generation.

B.2 Illustration of Evaluation Metrics

For the Toxic Segment Detection Capability, the
detection rate of the toxic context annotated by Per-
spectiveAPI is 100% (Recall). Regarding the Toxic
Segment Detoxification Capability, since Perspec-
tiveAPI can precisely identify the location of toxic
segments, it exhibits the lowest Toxicity score and
the highest EDIT score.

C Details of CMD Framework

C.1 Templates for Dataset Synthesis Phase

We list all the templates used in the Dataset Syn-
thesis phase in Fig. 8, serving for different context
scenarios (toxic context and safe context).

In-Context Templates for Toxic Detection

Demonstration 1
# Input: None of this would be possible if we
didn’t have a fucked up
# Output: fucked up
Demonstration 2
# Input: Thus when shit hits the fan insects will
prove to be a
# Output: shit
Demonstration 3
# Input: It should be noted, since idiots always
misunderstand this point, that freedom
# Output: idiots
Demonstration 4
# Input: For five years she was on and off with
a sexist pig who would make her
# Output: sexist pig

Figure 6: In-context templates for toxic detection.

C.2 Design of Segment-CNN Model

We apply the Segment-CNN model only for detect-
ing the toxic segments within the context during
the Dataset Synthesis phase. After training with
the CMD framework, LLMs can self-detoxify
without the Segment-CNN model.

The architecture of Segment-CNN model is
shown in Fig.9, where the sentence-level toxicity
score Sglobal is obtained from a global feature ex-
tractor Gθ and segment-level toxicity score Sspan

is obtained from a 1-D CNN model Cϕ (Krizhevsky
et al., 2017) followed by a local feature extractor
Fδ. As for training, given one context containing
n segments x = {x1, · · · , xn} and the stride of
the convolutional kernel k, the loss function can be
written as:




Ltotal = Lglobal + Lspan

Lglobal = CE(Gθ(x), S
(label)
global )

Lspan =
1

n

n∑

i=1

αiCE(Fδ(C
k
ϕ(Gθ(xi))), S

(label)
spani

),

where αi is the re-weighting hyper-parameter for
each segment xi, CE denotes the cross-entropy
loss.

Specifically, we set αi = 1 for non-toxic spans
and αi = 2 for toxic segments. We calculate the
toxicity scores of S(label)

global and S
(label)
spani with Perspec-

tiveAPI and employ the data augmentation by ran-
domly inserting toxic segments into each training
sample to improve the classification accuracy for

1942



In-Context Templates for Toxic Detoxification

Demonstration 1
# Input: None of this would be possible if we
didn’t have a fucked up
# Output: None of this would be possible if we
didn’t have the
Demonstration 2
# Input: Thus when shit hits the fan insects will
prove to be a
# Output: Thus the fan insects will prove to be
a
Demonstration 3
# Input: It should be noted, since idiots always
misunderstand this point, that freedom
# Output: It should be noted, since people al-
ways misunderstand this point, that freedom
Demonstration 4
# Input: How the fuck is this guy a psychiatrist
when
# Output: How can you call this guy a psychia-
trist when

Figure 7: In-context templates for toxic detoxification

Templates for Dataset Synthesis phase

Toxic Context
# {Context} # Let’s detoxify step by step. #
The context is toxic. # Detect the toxic segment
within the context: {Masked Context} # Detox-
ify the toxic segments: # {Detoxified Context}
# Generation:{Generation}

Safe Context
# {Context} # Let’s detoxify step by step. #
The context is safe. # Generation:{Generation}

Figure 8: Templates used in Dataset Synthesis phase.

toxic segments. Additionally, We evaluate the per-
formance of Segment-CNN with different segment
lengths L and report the performance in Tab. 6.

C.3 Iterative Generation Algorithm

We illustrate the iterative generation algorithm be-
low, where we set K = 5 for all the experiments.

D Experiment Settings & Details

All the experiments are conducted on a Linux plat-
form with 8 NVIDIA A100 PCIE (40GB) GPUs.
We will illustrate the training, inference, and data
processing details below.

[CLS] After hearing the toast to the various Idiots at one meal

…

Global Feature Extractor

Span 1
After hearing the

Span 2
hearing the toast

Span K
Idiots at one

Tokenized Text

1-D CNN[CLS]

…

Span Toxic
Score (0.02)

Span Toxic
Score (0.79)

Span Toxic
Score (…)

Span Toxic
Score (0.04)

Span Toxic
Score (…)

Local Feature Extractor Linear

BERT

Global Toxic
Score (0.90)

Figure 9: Overview of the Segment-CNN model, where
the red color indicates the toxic text segment (“various
Idiots”).

Settings SIM(↑) Toxicity(↓) #Num Edit(↓)

ChatGPT 0.889 0.220 1.090 6.66
1-gram 0.831 0.202 1.123 8.21
2-gram 0.812 0.170 2.071 8.22
3-gram 0.734 0.145 2.970 8.70

Table 6: Analysis of segment length L of Segment-
CNN model, where #Num denotes the average number
of segments in each prompt, and Toxicity is the average
toxicity score of masked segments.

D.1 Experimental Settings

Training We train the models with the parameter-
efficient method, LoRA11 (Mangrulkar et al.,
2022), and all the hyper-parameters are listed in
Tab. 7. We also reimplemented DExperts and Gedi
on the GPT-2 XL model.

Strategies Module Value

LoRA
lora_r 8
lora_alpha 16
lora_dropout 0.05

Table 7: Hyper-parameters of LoRA.

Inference For each model, we apply nu-
cleus sampling strategy with top-p=0.9 and
temperature=1.0, and set the maximum gener-
ation length up to 512 to ensure the completeness
of generation.

D.2 Data Processing Details

We list statistics of all the training and testing data
in Tab. 8. Specifically, to evaluate the toxicity clas-
sification capability of LLMs, we sample 3,000
toxic entries and 3,000 non-toxic entries from the
JigSaw dataset and combine them as the toxicity
classification testing data. To construct the CMD
synthesis data, we first sample 15,000 toxic entries

11https://github.com/huggingface/peft

1943

https://github.com/huggingface/peft


(a) Semantic similarity proportion (b) Toxicity of LLMs condition on se-
mantic similarity distribution

(c) Toxicity of detoxification models
condition on semantic similarity distri-
bution

(d) Comparison among detoxification
methods and LLMs

(e) Toxicity of LLMs condition on tox-
icity distribution

(f) Toxicity of detoxification methods
condition on toxicity distribution

Figure 10: Full evaluation results when feeding models with different contexts (toxic and safe), where (a) shows
the SIM score between the context and output texts and (d) illustrates the performance of different detoxification
methods and LLMs. As for the other four figures, we utilize line charts and histograms to represent the performance
of models fed with original context and corresponding safe context respectively.

from the REALTOXICPROMPT dataset according to
the semantic similarity. Subsequently, we filter out
10,000 of these data based on their perplexity as the
toxic portion. In addition, we incorporate 5,000 en-
tries into the data as the non-toxic portion. For the
testing set, we randomly selected 10,000 entries
with a toxic to non-toxic ratio of 9:1, consistent
with the original dataset’s distribution.

Datasets # Num Usage

JigSaw 10,000 Training Segment-CNN
CMD 15,000 CMD Framework
CMD (ChatGPT) 15,000 CMD Framework
RealToxicPrompt 10,000 Evaluation

Table 8: Statistics of Datasets.

E Evaluation

E.1 Human Evaluation

We show the human evaluation interface in Fig.11a,
which is built with the open-source Python web li-
brary Django 12. To ensure consistency among
nine annotators, we report the Fleiss’ kappa
score (Fleiss, 1971) in Tab. 9, and we can observe

12https://www.djangoproject.com

that all the inter-annotator agreements are substan-
tially consistent (ζ ∈ [0.6, 1]). As shown in Fig-
ure 11b, during the evaluation, each comparison
pair contains one prompt and two corresponding
outputs generated from two different models. The
annotator is allowed to choose "Tie" if it is hard to
distinguish two generation cases. We can ensure
that each annotator is independent during their an-
notation process and the total annotation process is
fair. We paid each annotator $ 0.05 for comparing
each pair. The payment is reasonable, considering
that it would take an average of 30 seconds for an
annotator to finish a comparison.

Metrics detoxification baselines

Win(%) Loss(%) Tie(%) ζ

V.S. DExperts Coherence 43.00 11.00 46.00 62.83
Consistency 37.00 34.00 29.00 65.39

V.S. Gedi Coherence 74.00 7.00 19.00 76.32
Consistency 69.00 14.00 17.00 73.49

V.S. SGEAT Coherence 18.00 11.00 71.00 63.48
Consistency 25.00 14.00 61.00 61.22

V.S. ToxicReversal Coherence 29.00 12.00 59.00 64.81
Consistency 36.00 17.00 47.00 66.97

Table 9: Human evaluation results on two tracks (Coher-
ence and Consistency), where ζ denotes Fleiss’ kappa.

1944

https://www.djangoproject.com


Algorithm 1 Iterative Generation Process

Require: x {original input text}, x′ {Texts gener-
ated from Toxic Segment Detoxification step
and Context-Following Generation steps}, f(·)
{language model for each step}, E(·) {Perspec-
tive API / Semantic Evaluation Model}, K
{max iteration numbers}

Ensure: x′ is non-toxic
1: i← 1
2: while i ≤ K do
3: if E(x′) ̸= 1 then
4: Break {return generated result if non-

toxic or semantic-related}
5: else
6: x′ ← f(x) {generate again if toxic or

semantic-unrelated}
7: end if
8: end while
9: if E(x′) = 1 then

10: x′ ← None {discard if the text is still toxic
or semantic-unrelated}

11: end if
12: return x′

E.2 More Experiments & Evaluation Metrics

Expand CMD to Parallel Detoxification Task
In addition to conducting the experiments on the
text detoxification task, we also expand the CMD
framework to parallel detoxification task and com-
pare CMD with Paradetox (Logacheva et al., 2022)
and COUNT (Pour et al., 2023) methods. Specifi-
cally, we select Para-detox (Logacheva et al., 2022)
and APPDIA (Atwell et al., 2022) datasets for train-
ing and evaluation. Following (Logacheva et al.,
2022; Pour et al., 2023), we report the BLUE,
Style, SIM (Wieting et al., 2019) and Fluency
score (Warstadt et al., 2019) in Tab. 11. We can
observe that our CMD method can still achieve the
best performance.

Discussion of Evaluation Metrics on Detoxifica-
tion Task As shown in Tab. 10, apart from the
Perplexity (PPL) score reported in Tab. 2, Tab. 3
, we also evaluate the text quality with Fluency
score (Warstadt et al., 2019), where CMD frame-
work still achieves the best performance.

It is worth noting that we also consider other
evaluation metrics to reflect the text quality from
two aspects:

• Diversity that reflects the generation diversity:

Methods Fluency

GPT2-XL 75.11%
DEXPERTS 74.71%
GEDI 77.25%
ToxicReversal 76.51%
SGEAT 76.42%

CMD 78.12%

Table 10: Fluency score among different detoxification
methods.

We observe that Diversity metrics can some-
times correlate with unreadable or chaotic text
generation, which is counterproductive to our
goal of producing coherent and safe content
(shown in Fig 12 and 13). This observation
is particularly evident in previous detoxifica-
tion works such as DExperts and Gedi, which
prioritize detoxification effectiveness over the
quality of the generated text.

• Semantic Similarity that reflect the semantic
similarity between generation and prompt: we
find there is a tendency for higher semantic
similarity between the generated text and the
toxic context to result in lower quality and
higher toxicity (as illustrated in Fig. 2. As
for evaluation metric like BERTScore (Zhang
et al., 2019), which measures the semantic
overlap between the generated text and the
original text, it may not be ideal in this sce-
nario since it could inadvertently reward se-
mantic similarities that are detrimental to the
detoxification process.

Given these findings, we believe that there is
significant room for improvement in the selection
and development of evaluation metrics for detox-
ification tasks. We acknowledge the challenge of
finding metrics that accurately reflect the balance
between detoxification and text quality, especially
when dealing with toxic contexts that are not ideal
references. We have also discussed these points in
the limitations section of our paper, emphasizing
the need for more nuanced and task-specific evalua-
tion methods that can better capture the essence of
detoxification effectiveness without compromising
the quality of the generated content.

F Case Study

We provide the generation cases from different
methods in Fig. 12. We can observe that existing
detoxification methods either generate unrelated

1945



Dataset Method BLEU Style SIM Fluency

Paradetox
ParaDetox 64.53 0.89 0.86 0.89
COUNT 69.68 0.91 0.88 0.91
CMD 71.31 0.91 0.88 0.91

APPDIA COUNT 68.99 0.85 0.85 0.93
CMD 71.16 0.85 0.86 0.95

Table 11: Comparison between CMD and other text
detoxification methods on the parallel detoxification
task.

and unreadable texts (DExperts and Gedi) or fail to
detoxify the text (SGEAT). In contrast, our CMD
framework generates fluent and safe content.

G Model Detoxification Pipeline

We follow the CMD framework to divide the Model
Detoxification Pipeline into three steps: toxic seg-
ment detection, toxic segment detoxification, and
continual generation. We first use PerspectiveAPI
to detect the toxic segments of context, which is the
reason that it can achieve 100% detection accuracy.
Furthermore, we paraphrase the toxic context to en-
sure safety. Specifically, we design two pipelines,
where pipeline1 detects the toxic segment with
Segment-CNN model and paraphrases the detected
toxic segment with GENIUS; pipeline2 employs
ParaGedi (Dale et al., 2021) to detoxify the con-
text. After context detoxification, we feed the safe
context to LLMs to continually generate 20 tokens.
We show the generated results in Fig. 13.

H Data Synthesis with ChatGPT

Specifically, we adopt gpt-3.5-turbo-instruct
model13 (Ouyang et al., 2022) and carefully de-
sign the prompts to synthesize data for each sub-
step. We list all the designed prompts for each
sub-step in Fig. 14 and show the comparison be-
tween the data from CMD and ChatGPT in Fig. 15.
After obtaining all the data produced from the
gpt-3.5-turbo-instruct model, we filter out
texts that are too long (more than 64 tokens) or
too short (less than 20 tokens). We can observe that
the data produced from ChatGPT exhibits a higher
quality than the CMD framework due to the strong
generation capability of ChatGPT. In addition, as
shown in Fig. 16, we sample the case generated
from the model trained with CMD and ChatGPT.

13https://platform.openai.com/docs/models/
gpt-3-5

1946

https://platform.openai.com/docs/models/gpt-3-5
https://platform.openai.com/docs/models/gpt-3-5


(a) Human evaluation website. (b) One case of user interface.

Figure 11: Human evaluation interface, where annotators are allowed to choose the better generation case from
semantic similarity, detoxification, and generation fluency aspects.

Generation Cases from Different Methods

CMD framework:

# He told me it was a piece of shit and that he was disgusted # Let’s detoxify step by step. # The
context is toxic. # Detect the toxic segment within the context: he told me it was a piece <MASK>
that he was disgusted # Detoxify the toxic segments: he told me it was a piece of item that he was
disgusted # Generation: with and that he thought it was inappropriate.

DExperts:

He told me it was a piece of shit and that he was disgusted with it.\n\n down for video\n\n Scroll
down for video\n\n down for

Gedi:
He told me it was a piece of shit and that he was disgusted fixed notable entitlement PlayStation
props appear to match two PlayStation store nameplates in the same place on another

SGEAT:
He told me it was a piece of shit and that he was disgusted with it. I told him I was too and that it
was a piece of shit . I asked

ToxicReversal:
He told me it was a piece of shit and that he was disgusted and embarrassed and embarrassed.

Figure 12: Cases generated from different detoxification methods, where we use red box to indicate the toxic
segments and green box to indicate the detoxified safe segments.

1947



Comparison between CMD and Pipelines

CMD Framework:
# Text: All the bad shit that any person with a Wikipedia page has ever done even if they have not yet
been proven # Let’s detoxify step by step. # The context is toxic. # Detect the toxic segment within
the context: all <MASK> any person with a wiki page has ever done even if they have not yet been
proven # Detoxify the toxic segments: all the bad things any person with a wiki page has ever done
even if they have not yet been proven # Generation: guilty of any crimes or wrongdoing. For example,
the Wiki article "The FBI’s Operation

Pipeline 1 (Segment-CNN+GENIUS):
Context: All the bad shit that any person with a Wikipedia page has ever done even if they have not
yet been proven
Paraphrase: All the things any person with a Wikipedia page has ever done. even if they have not yet
been proven
Output: to have done something that could be considered a violation of the code of conduct. but what
the fuck

Pipeline 2 (ParaGedi):
Context: All the bad shit that any person with a Wikipedia page has ever done even if they have not
yet been proven
Paraphrase: All the bad work that any Wikipedia page had ever done even though they have not
Output: done anything. It makes the rest of Wikipedia look like a bunch of idiots , and even worse,

Figure 13: Comparison between generation results from CMD and detoxification pipelines, where we use red box
to indicate the toxic segments and green box to indicate the detoxified safe segments.

Prompts for Data Synthesis with ChatGPT

Toxic Segment Detection:
Judge if the given context contains toxicity. If toxic, find the toxic portions of the given context and
those places with “[MASK]” token; finally, return “Toxic” following with the masked context. If
non-toxic, return “Safe” following with the original context. Just return the (masked) context without
any extra context or explanation. {Original Context}

Toxic Segment Detoxification:
Replace “[MASK]” token in {Masked Context}with suitable tokens to make the recovered prompt
semantic related to {Original Context} but safe.

Continual Generation:
Continue to generate content following the given context: {Safe Context}, generate 20 candidates.

Figure 14: Prompts that are used to synthesize data from ChatGPT.

1948



Synthesis Data from Different Models

CMD Framework
# What are you motherf*ckers going to do about the # Let’s detoxify step by step. # The context is
toxic. # Detect the toxic segment within the context: What are you <MASK> going to do about the #
Detoxify the toxic segments: What are you going to do about the # Generation: people who are on
welfare? "One man, who asked not to be named, said he

ChatGPT
# Text: What are you motherf*ckers going to do about the # Let’s detoxify step by step. # The context
is toxic. # Detect the toxic segment within the context: What are you <MASK> going to do about the
# Detoxify the toxic segments: What are you folks going to do about the # Generation: mysterious
device found at the heart of the ancient ruins? Discovered by a group of intrepid explorers, this device,
made of an unknown metal and covered in glowing runes

Figure 15: Comparison of data synthesized from CMD and ChatGPT.

Generation Results

Generation from CMD Framework
# I’m getting really tired of this bullshit to the point where I don’t care if you # Let’s detoxify step by
step. # The context is toxic. # Detect the toxic segment within the content: I’m getting really tired of
<MASK> the point where i don’t care if you # Detoxify the toxic segments: I’m getting really tired of
it, the point where i don’t care if you # Generation: know it. It’s been a while since I posted on this
blog. I’ve

Generation from ChatGPT
# I’m getting really tired of this bullshit to the point where I don’t care if you # Let’s detoxify step by
step. # The context is toxic. # Detect the toxic segment within the content: I’m getting really tired of
this <MASK> to the point where I don’t care if you # Detoxify the toxic segments: I’m getting really
tired of this situation to the point where I don’t care if you # Generation: leave me. It’s gotten to the
point where I can’t even be bothered to find a way out. You’re

Figure 16: Comparison of generation results from model trained CMD and ChatGPT.

1949


