Step-by-Step Reasoning to Solve Grid Puzzles: Where do LLMs Falter?
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Abstract

Solving grid puzzles involves a significant
amount of logical reasoning. Hence, it is a good
domain to evaluate the reasoning capability of
a model which can then guide us to improve
the reasoning ability of models. However, most
existing works evaluate only the final predicted
answer of a puzzle, without delving into an in-
depth analysis of the LLMs’ reasoning chains
(such as where they falter) or providing any
finer metrics to evaluate them. Since LLMs
may rely on simple heuristics or artifacts to pre-
dict the final answer, it is crucial to evaluate
the generated reasoning chain beyond overall
correctness measures, for accurately evaluat-
ing the reasoning abilities of LLMs. To this
end, we first develop GridPuzzle, an evalua-
tion dataset comprising 274 grid-based puzzles
with different complexities. Second, we pro-
pose a new error taxonomy derived from man-
ual analysis of reasoning chains from LLMs
including GPT-4, Claude-3, Gemini, Mistral,
and Llama-2. Then, we develop an LLM-based
framework for large-scale subjective evaluation
(i.e., identifying errors) and an objective met-
ric, PuzzleEval, to evaluate the correctness of
reasoning chains. Evaluating reasoning chains
from LLMs leads to several interesting find-
ings. We further show that existing prompting
methods used for enhancing models’ reasoning
abilities do not improve performance on Grid-
Puzzle. This highlights the importance of un-
derstanding fine-grained errors and presents a
challenge for future research to enhance LLMs’
puzzle-solving abilities by developing methods

that address these errors!.

1 Introduction

Recent advancements in LLMs such as GPT-4,
Gemini, Claude-3 (Anthropic, 2024), Llama-2
(Touvron et al., 2023), and Mistral (Jiang et al.,

'Data and source code are available at https://github.
com/Mihir3009/GridPuzzle
“Equal Contribution

2023) have achieved remarkable performance on
a wide range of Natural Language Understanding
(NLU) tasks previously thought to be exclusive to
humans. Beyond NLU, exploring LL.Ms’ logical
reasoning abilities (Liu et al., 2021; Saparov and
He, 2022; Parmar et al., 2024; Patel et al., 2024)
on complex tasks such as puzzle-solving is under-
explored. Past attempts have been made to eval-
uate models on logic-intensive grid-based puzzle-
solving. However, they either do not focus on eval-
uating LLMs (Mitra and Baral, 2015; Jabrayilzade
and Tekir, 2020) or do not evaluate LLMs indepen-
dently, but rather use neuro-symbolic approaches
(Ishay et al., 2023) that use external specialized
solvers on LLM outputs. Here, we aim to evaluate
the puzzle-solving abilities of LLMs by themselves,
without the use of any external logic solvers.

To understand the reasoning capabilities of
LLMs, it is important to evaluate reasoning chains,
rather than the final predicted answer. There have
been works that evaluate reasoning chains using ob-
jective metrics such as ROSCOE (Golovneva et al.,
2022), CTC (Deng et al., 2021), and BARTScore
(Yuan et al., 2021), however, they do not focus
specifically on evaluating reasoning. Some prior
works propose metrics for specific reasoning tasks,
such as FOLIO (Han et al., 2022) and ProntoQA
(Saparov and He, 2022). However, these methods
rely on reference-based evaluation, do not focus
on puzzle-solving, and do not aim to identify fine-
grained errors in reasoning chains. To address these
limitations, we propose a reference-free manual
and automated subjective evaluation of reasoning
chains to understand various fine-grained errors in
reasoning chains for grid-based puzzle-solving.

Motivated by Mitra and Baral (2015), we first
develop GridPuzzle (Figure 1), a comprehensive
evaluation dataset consisting of grid-based puzzles
with grid-size of 3 x4, 3 x5,4x4,4x5,and 4 X 6
with three levels of difficulty (easy, medium, and
hard). Then, we evaluate LLMs including GPT-
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3x4 3x5 4x4 4x5 4x6 - Grid Sizes

Puzzle

Agroup of friends has decided to try several different weight-loss diets and exercises to see who amongst them
can lose the most weight in 3 months. Using only the clues below, match the pounds lost to the options from
names and diets. Remember, as with all grid-based logic puzzles, no option in any category will ever be used
more than once.

Pounds lost: 3,5, 7, 9.

Names: Raymond, Stuart, Tom, Wesley.

Diets: caveman, dairy-free, gluten-free, vegan

Clues

1. Stuart lost 4 more pounds than the person who used the vegan diet.

2. The dieter who used the gluten-free diet lost 2 more pounds than Raymond.
3. Stuart lost 7 Ibs.

4. The dieter who lost 7 Ibs is either the person who used the caveman diet

or Raymond

5. Wesley lost 5 Ibs. GridPuzzle Dataset
While answering use the following format: Size Puzzles
Step-by-step solution: [Your steps show how you are solving the puzzle] 3x4 60
Final Answer 3x8 60
Fill the following table to show your final answer. 4x4 60
3| correct option from names | correct option from diets

f i 4x5 60
5| correct option from names | correct option from diets
7 | correct option from names | correct option from diets 4x6 34

9] correct option from names | correct option from diets

|
A
B

> Reasoning chains

Human-Evaluation:

l
i

1. Clue 3 says Stuart lost 7 Ibs.

2. Clue 4 specifies that the dieter who lost 7 Ibs is either the person who used the
caveman diet or Raymond.

3. Since Stuart lost 7 Ibs (from Clue 3), he either used the caveman diet or is
named Raymond,

4. Clue 5 states Wesley lost 5 Ibs.

5. Therefore, Wesley cannot have used the caveman diet or lost 7 Ibs.

i

6. We don't know his diet yet. —

20. That leaves 9 Ibs to be the only unassigned number, and since it can't be q-
—D

Wesley (5 Ibs) or Stuart (7 Ibs), Tom must have lost 9 lbs. [RES)

21. The only remaining diet for Tom is gluten-free.

[LLMS:

1
N LA
kr.\ e
\’J - L 2
Reasoning Chain:
Let's solve the puzzle using the given clues:
2. Clue 4 specifies that the dieter who lost 7 Ibs is either the 3 Raymond | Vegan

1. Clue 3 says Stuart lost 7 Ibs.
person who used the caveman diet or Raymond.
*Since Stuart lost 7 Ibs (from Clue 3), he either used the

5 Wesl Dairy-Fr
caveman diet or is named Raymond. ) AL
3. Clue 5 states Wesley lost 5 Ibs. ; oot | Covemen
“Therefore, Wesley cannot have used the caveman diet or lost
7 Ibs. We don't yet know his diet.

3 Raymond Vegan

That leaves 9 Ibs to be the only unassigned number, and since
it can't be Wesley (5 Ibs) or Stuart (7 Ibs), Tom musthave lost9 | Incorrect @
Ibs. The only remaining diet for Tom is gluten-free.

Inst. :>

)

} Reasoning chains @

-

[> [ Auto-Evaluated Reasoning Chains ]

"Clue 3 says Stuart lost 7 Ibs.",

tuart lost 7 Ibs.™,
ration of the clue.",
o

""""" ‘Clue 4 specifies that the dieter who lost 7 Ibs is either the person who
an diet or Raymond.™,
i

tuart must be on the caveman diet or be Raymond."",
hat is the right reasoning from the given clue.",
R™

U "Sub Category™:
Phreccen

Figure 1: Schematic representation of proposed pipeline. Begins with the data collection of GridPuzzle dataset
(top left) and evaluating various LLMs in zero-shot CoT setting (bottom left), then analyzing reasoning chains of
LLMs manually to find various error types (top right) and automate this analysis process using LLM to check the
correctness of reasoning chain by finding errors (bottom right).

4, Gemini-Pro, Claude-3, Llama-2, and Mistral
on GridPuzzle in zero-shot-CoT setting (Figure 1).
Experimental results show that LI1.Ms do not fare
well and achieve a maximum of 5.1% accuracy.

To investigate the reasoning chains, we manu-
ally analyze them (Figure 1) to find fine-grained
errors (further details in section 3.3). Based on
this, we propose a new error taxonomy comprising
five broad categories, and nine fine-grained sub-
categories (Tables 1 and 2), providing deeper in-
sights into the primary causes of the LLMs’ reason-
ing failures. However, scaling manual analysis to a
larger set is time-consuming and laborious. Hence,
we propose to leverage LLMs as auto-evaluators
by creating prompts that utilize error taxonomy to
automate the analysis of reasoning chains and help
in identifying errors (Figure 1). While evaluating
w.r.t. manual annotation, our auto-evaluator model
achieves ~ 86% agreement, hence providing qual-
ity error categorization.

Beyond identifying errors and the accuracy of
the final answer, we propose PuzzleEval, an LLM-
based framework to evaluate reasoning chains for
grid-based puzzles. PuzzleEval involves a multi-

stage evaluation using GPT-4o. First, we identify
key logical conclusions from the reasoning chain;
second, we extract key logical concepts from these
conclusions; and finally, we measure the presence
of these logical concepts in the final gold answer
to assess the correctness of the reasoning chain.
Evaluating reasoning chains based on error catego-
rization and PuzzleEval reveals interesting findings
such as LLMs show lower accuracy despite having
more error-free reasoning steps, open-source mod-
els lack reasoning skills compared to closed-source
models, and the most dominant error categories
are wrong reasoning and elimination. Additionally,
we employ existing prompting methods such as
Plan-and-Solve and Self-discover, demonstrating
that these methods do not improve performance
on GridPuzzle. We believe that our findings will
inspire future work in the automated in-depth eval-
uation of reasoning chains for broader reasoning
tasks and enhance the reasoning abilities of models.

2 Related Work

Puzzle-solving Task Puzzle-solving task pro-
vides insights into LLMs’ logical reasoning. Gi-
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adikiaroglou et al. (2024) categorize puzzles into
(1) rule-based and (2) rule-less puzzles. Rule-less
puzzles include riddles (Lin et al., 2021), MCQs
(Zhao and Anderson, 2023), programming puzzles
(Schuster et al., 2021), and commonsense reason-
ing puzzles (Gu et al., 2023); however, in our work
we focus on rule-based puzzles. In rule-based
puzzles, past attempts have explored Sudoku (No-
ever and Burdick, 2021), Rubik’s Cube, 8-puzzle,
Game of 24 (Yao et al., 2024), crosswords (Yao
et al., 2024), chess puzzles (Feng et al., 2024),
card games (Gupta, 2023), BoardgameQA (Kazemi
et al., 2024), and Lateral Thinking Puzzles (Huang
et al., 2024). However, grid-based puzzle solving is
under-explored. Mitra and Baral (2015) proposed
a grid-based puzzle dataset and Dziri et al. (2023)
studied compositionality in LLMs using Grid Puz-
zle, but these works do not provide any insights
into the performance of recent LLMs. Motivated
by this, we propose a systematically curated grid-
based puzzle dataset, GridPuzzle, and provide an
evaluation of various LLMs in puzzle-solving.

Automatic Evaluation of Reasoning Chains
Previous works (Dalvi et al., 2021; Saparov and He,
2022; Han et al., 2022) have focused on reference-
free evaluation, which is not reliant on gold-
reasoning chains. Recently, ROSCOE (Golovneva
et al., 2022) proposed a suite of metrics to measure
the semantic consistency, logicality, informative-
ness, fluency, and factuality of reasoning chains,
while the ReCEval framework (Prasad et al., 2023)
evaluates reasoning chains based on two key prop-
erties: correctness and informativeness. Recent
evaluation methods such as LLM evaluation (Chi-
ang and Lee, 2023) and G-Eval (Liu et al., 2023)
leverage LLMs to measure the quality of reasoning
chains. LLM evaluation involves presenting task
instructions and a text sample to LLMs, asking
them to rate the sample’s quality on a 5-point Lik-
ert scale, whereas the latter incorporates automatic
chain-of-thought generated by the LLM describing
the detailed evaluation steps. Additionally, Tyen
et al. (2023)’s attempt to use GPT-4 as an evaluator
in a few-shot setting, shows that evaluating reason-
ing chains remains a challenge. Furthermore, Au-
toRace (Automatic Reasoning Chain Evaluation)
(Hao et al., 2024) proposed a fully automated ap-
proach for evaluating reasoning chains that adapt
to different tasks without human effort. However,
these methods do not evaluate reasoning chains at
the level of fine-grained error types and do not pro-

vide detailed task-specific insights. To address this,
we propose LL.M-based reference-free evaluation
methods that identify fine-grained errors and assess
the correctness of generated reasoning chains.

3 Evaluation of Reasoning Chains

3.1 GridPuzzle

To develop this dataset, we extract logic grid puz-
zles of various grid sizes from Puzzle Baron’s
Logic Puzzles®. Specifically, we compile logic
grid puzzles of size 3 x 4,3 x 5,4 x 4,4 x 5, and
4 x 6. Each grid size has three levels of difficulty
(easy, medium, and hard) except 4 x 6. This partic-
ular grid size has only two difficulty levels (Easy
and Medium). Statistics corresponding to each grid
size are presented in Figure 1 (top left).

Error Description
Category
WwWw Wrong Premise and Wrong Conclusion
WR Wrong Premise and Right Conclusion
RW Right Premise and Wrong Conclusion
RR Right Premise and Right Conclusion
NC No Conclusion statement or no reasoning involved

Table 1: Proposed error taxonomy for broad categories
based on manual analysis. If a statement starts with “so,
therefore, hence, this means, this implies, etc.” and/or is
not followed by any premise, consider the previous state-
ment’s conclusion or the previous NC as the premise.

3.2 Manual Evaluation

To explore where exactly these LLMs falter in per-
forming reasoning, we conduct a detailed manual
analysis of the reasoning chains generated by them
while solving grid-based puzzles. Details of the
annotation guidelines provided to the human eval-
uators are given in the Appendix D. Our manual
analysis process consists of three steps. First, we
begin by segmenting the reasoning chains into in-
dividual sentences, allowing us to categorize errors
more precisely. Second, we identify the premise
and conclusion for each sentence and determine
their respective correctness. We refrain from sub-
dividing sentences into multiple premises or con-
clusions to maintain simplicity for finding errors.
At last, each sentence is categorized as either con-
taining a single premise and conclusion or being a
declarative statement without a conclusion. Then,
we begin assessing potential issues or errors in the
reasoning chains. Now, we follow an exhaustive

2https://logic.puzzlebaron.com/
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Category Source Sub-Category

| Description

‘ When information is completely out of context and not present in clues.

\
‘ (1) Hallucination
\

From the clues

(2) Incomplete Information ‘

Lacks necessary information to make a particular conclusion.

Wrong Premise or (Example: From clue 4.....) (3) Assumptions

Statements not derived from clues directly; might include assumed
information relevant to the clue.

No Conclusion - - -
‘ Derived Conclusions using ‘

(4) Error Propagation

Premise derived from a previous incorrect conclusion.

‘ clues given in puzzle
which was not inherently

| (5) Incomplete Information

Lacks necessary information to make a particular conclusion.

‘ given in the clues. ‘

(6) Wrong Assumption

The derived assumption is incorrect.

‘ Derived using the premise ‘

(a) Wrong Reasoning

The reasoning is incorrect, regardless of the premise’s accuracy.

Wrong Conclusion ‘ (which itself is either ‘

(b) Error propagation

Conclusion is incorrect due to an erroneous premise.

taken directly from the
‘ clues or derived) ‘

(c) Wrong Elimination

All premises are present, but not all conclusions are correctly derived.

Table 2: Proposed error taxonomy for sub-categories based on manual analysis. These sub-categories are defined
for cases where either the conclusion or premise is incorrect (“RW” or “WR”) or both are incorrect (“WW?). For
“WW?, the error sub-categories might appear in any combinations between (1-6) and (a-c) such as ‘1a’, ‘4b’, or ‘6¢’.

approach to create fine-grained error categories.
We begin with 30 reasoning chains (6 puzzles x 5
reasoning chains from LLMs) to manually identify
potential errors. Next, we categorize these errors
in a structured format. We then add another 30
reasoning chains to see if any new types of errors
emerge. If new errors are identified, we refine our
categories accordingly. This process is repeated
until we evaluate a total of 150 reasoning chains
and no new types of errors are found. Based on this
method, we have carefully filtered and categorized
several errors made by LLMs, presenting them as
five broad categories and nine sub-categories.

3.3 Proposed Error Taxonomy

Broad Categories As shown in Table 1, we
present five main categories: “WW” - Wrong
Premise Wrong Conclusion, “WR” - Wrong
Premise Right Conclusion, “RW” - Right Premise
Wrong Conclusion, “RR” - Right Premise Right
Conclusion, and “NC” - No Conclusion. These
acronyms of broad categories are self-explanatory.
For instance, the category “WW” comprises sen-
tences where the sentence consists of a wrong
premise as well as a wrong conclusion. Interest-
ingly, we also find the “WR” category consists of
instances where a wrong premise still leads to a
correct conclusion. Additionally, sentences con-
taining only information from clues or premises
from previous steps fall under “NC”. We conduct
further investigation as to why the premises and
conclusions become incorrect.

Sub-categories: Wrong Premise As shown in
Table 2, we identified the source of the premise to
determine the origin of errors: (i) ‘From Clues’ —
where the premise is directly borrowed from one

of the clues without any further reasoning, and (ii)
‘Derived’ — where the premise is inferred from ei-
ther the clues or the previous conclusions. From
Table 2, there are six possible reasons associated
with two different sources for the wrong premise.
When the premise originates from the source (i), we
find three types of errors: Hallucination — When
some factual information from the clues is distorted
or completely made up; Incomplete information —
When the information is correctly borrowed from
the clues but it is not sufficient to make a partic-
ular conclusion; Assumptions — This is a special
category where the premise is not derived but also
not given exactly in the clues. It is often related to
one of the clues and is of the form, “Let’s assume”
or “Assuming that.” When source is derived, we
find three different errors: Error Propagation —
This occurs when a previously incorrect conclusion
becomes the basis for a flawed premise, thereby
extending the error from one conclusion to the
next; Incomplete information — When the derived
premise is not sufficient to make a particular con-
clusion; and lastly, Wrong Assumption — When
the LLM reasoner clearly states that a premise was
an assumption but it was incorrectly derived.

Sub-categories: Wrong Conclusion As shown
in Table 2 (source), conclusions are always log-
ically derived from a fixed set of premises. For
having a wrong conclusion in any reasoning step,
we find 3 errors responsible: Error Propagation —
When a conclusion is wrong strictly due to some er-
ror in the preceding premise; Wrong Elimination
— When the conclusion is wrong because the LLM
reasoner failed to eliminate all the unfit choices cor-
rectly. This case is specific to the grid-based puzzle
task but is inherently an erroneous deduction on the
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Examples of reasoning chain evaluated by GPT-
40

Sentence:"Therefore, Zeno must be 69%, and UCLA
must be 62%.",

Premise: "If Zeno were 55%, there would be no
score 7% lower than 55% for UCLA.",
Conclusion: "Zeno must be 69%, and UCLA must
be 62%",

Explanation: "The conclusion is incorrect as UCLA
is already known to be 62% from clue 2.",

Error Category: "RW.",

Premise: "A",

Sentence:"Since the third performer used flashlights,
it must be either Lora or Carmen.",

Premise: "The performer who used flashlights was
either Lora or Carmen.",

Conclusion: "The third performer must be either
Lora or Carmen.",

Explanation: "The conclusion is based on the in-
correct premise that the third performer used flash-
lights.",

Error Category: "WW",

Sub Category "4B",

Table 3: Examples of reasoning chain evaluated by
Auto-evaluator (GPT-40).

LLM’s end; Wrong reasoning — The remaining
incorrect conclusions that did not fit in the above
categories are classified under this label.

3.4 Automated Evaluation

Manual analysis of reasoning chains provides a
detailed categorization of errors; however, it is te-
dious and, therefore, challenging to scale for the
entire dataset. However, analyzing the distribu-
tion of errors from our proposed taxonomy on the
whole dataset is also crucial in understanding the
shortcomings of LLMSs’ reasoning ability. Thus
we develop an LLM-based auto-evaluator to auto-
mate the process of error evaluation. To this end,
we prompt the GPT-40 model to identify and cat-
egorize errors in the given reasoning chain. Our
prompt consists of a system instruction followed
by a user prompt containing the reasoning chain
to be evaluated along with the original puzzle and
its gold solution. The system prompt can be fur-
ther dissected into 3 key components: the instruc-
tions, the knowledge, and an exemplar. The in-
struction contains all the rules that the GPT-40
needs to follow to conduct accurate evaluation and
error categorization of the reasoning chains. It in-
corporates similar sequential steps used during the
manual evaluation of reasoning chains along with
the required output format. The knowledge has a
detailed description of our error taxonomy includ-
ing the broad and sub-categories. We also provide

a preference order for selecting categories along
with the description to minimize any ambiguity in
the evaluation process. Lastly, the exemplar con-
sists of a puzzle, its correct solution, the original
model-produced reasoning chain, and the manu-
ally evaluated reasoning chain with our error cat-
egories. We termed this LLM-based evaluator as
“Auto-evaluator”. Appendix B provides the struc-
ture of the Auto-evaluator prompt.

Using the Auto-evaluator, we evaluated a total of
1,370 reasoning chains generated by five different
LLMs for solving 274 puzzles. The application of
our Auto-evaluator to this large dataset allowed us
to analyze the distribution of error categories on
a broader scale. To validate the accuracy of the
evaluations performed by the Auto-evaluator, we
randomly sampled 20 reasoning chains from the
manually evaluated set. The authors then compared
their error category assignments to those given by
the Auto-evaluator. The agreement score for the to-
tal number of reasoning steps between the manual
evaluation and the GPT-40 evaluation is ~ 86%.
Table 3 shows the example of reasoning steps eval-
uated by GPT-4o.

4 Experimental Setup

4.1 Experiments

We evaluate a range of closed-source LLMs includ-
ing GPT-4-Turbo, Claude-3-Opus, and Gemini-Pro,
and open-source models Llama-2-13B, and Mistral-
7B-Instruct on GridPuzzle in the Zero-shot-CoT
setting (Kojima et al., 2022). We also conducted
a scaling experiment on Llama-2-70B and the re-
sults are given in the Appendix F. Our GridPuz-
zle dataset consists of a set of instances denoted
as P = < pn?,a, >, where p;,’ is n'" puzzle
instance with grid size of ¢ X j and a, as a gold
answer. We prompt each LLM to generate a reason-
ing chain before predicting answer a. To evaluate
each model in the Zero-shot-CoT setting, we pro-
vide < I,p;,? > as input to the model and predict
an answer ¢ where [ is a natural language instruc-
tion. The evaluation is conducted on the OpenAl,
Google, and Anthropic model versions released in
April 2024 with temperature setting O for determin-
istic predictions. NVIDIA A100 GPUs are used for
conducting the inference of open-source models
with a batch size of 4. The example prompts used
for these experiments are provided in Appendix A.

19902



Stage 1: Conclusion
Extraction

Stage 2: Pair-wise Extraction

Stage 3: Validation of Pairs

[ Reasoning Chain ]

Gold solution

5 Sam

i

Sequential
Labeling

Exemplar:

Pair-wise relation:

1. Sam is assigned to the year 2013 or 2015.

Extracted-Pairs |
v
Correctness Score

* From Step 1:

Step 1. From clue 1, we... Sam - 2013
Step 2. Since Stuart is the... Sam - 2015
étep n. So the remaining... l

* From Step 1:
Pairwise relation:
Stuart - 7 Ibs

Final
Conclusion

Step 1. The vegan is assig...
Step 2. Tom is the dairy...

* From Step 2:
. Pairwise relation:
Step n. The last diet is...

l Extracting Pairs

Wesley - not Caveman diet

Correctness score: 1.0

* From Step n:
Correctness score: 0.33

Average Correctness
—>

The Average Correctness = 0.235

Figure 2: The process of calculating PuzzleEval metrics is described above. The reasoning chains are produced by
our five LLMs and the gold solution is taken from our GridPuzzle dataset.

4.2 Metrics

Accuracy We use accuracy to demonstrate the
capability of LLMs in solving grid-based puzzles
based on their ability to predict the final answer. To
calculate this metric, we use the LLM-generated
final answers and compare them with the available
gold solution. The predicted answers and the gold
solution are in the form of tables with the number
of rows and columns equal to the grid size of the
puzzle. We perform an Exact Match (EM) to com-
pare the two tables and mark them as correct only
when all the entries of the tables match. See the
example of the final answer table in Appendix C.

PuzzleEval We developed this LLM-based met-
ric to assess step-by-step reasoning chains and pro-
vide a correctness score for each step, as well as
the Average Correctness Score (ACS) for the entire
chain. PuzzleEval is a reference-free metric specif-
ically designed for assessing reasoning chains gen-
erated for grid-based puzzle tasks. It evaluates the
correctness of each step in the reasoning chain and
reports the score using only the final answer table
provided as the gold solution, without requiring
any comparison to a gold reasoning chain.

As shown in Figure 2, PuzzleEval consists of a
three-stage pipeline to evaluate any reasoning chain.

=
[«)]

14

=R e
o N b

Number of Correct Final Answers
[ee)

0

0
Llama 2 Mistral Claude 3 Gemini GPT-4

Figure 3: Performance of five different LLMs in terms
of accuracy on the GridPuzzle dataset.

First, we prompt GPT-40 to label all the steps se-
quentially to account for any discrepancies in the
different formats of reasoning chains produced by
various models, and to extract only the final con-
clusions from each step. This stage is crucial as
it removes the portion of a step where the models
just reiterated clues or previous conclusions. Sec-
ond, we instruct the model to extract the pair-wise
relation of elements from the puzzle that have been
either accepted or rejected in the extracted final
conclusions. If the extracted conclusion is "Sam
is assigned to the year 2015 but not 2014.", these
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pairs are of the form “Sam — 2015 or “Sam — not
2014”. Third, we provide the gold solution table
and ask the model to check if these accepted or
rejected pairs match the given information. As per
the validation, the pairs extracted from every step
are marked as correct or incorrect. After obtaining
this information for each step the correctness score
is calculated by adding up all the correct and incor-
rect steps (correct pairs are marked 1 and incorrect
pairs are marked 0) divided by the total number of
pairs in each step. Finally, the ACS is determined
by adding up all the correctness scores from each
step and dividing by the number of steps to capture
the overall quality of the reasoning chain. Hence,
PuzzleEval provides ACS for each reasoning chain
in range of O to 1.

5 Results and Analysis

5.1 Objective Evaluation

To evaluate the performance of LLMs when solv-
ing grid-based puzzles, we assess the outputs of
5 LLMs using the accuracy and PuzzleEval. As
shown in Figure 3, we found that all the models
have low performance on the GridPuzzle dataset in
terms of accuracy. The smaller open-source LLMs
completely failed at the puzzle-solving task, with
Llama-2 solving only one puzzle correctly. Close-
source models with significantly larger parameter
sizes also exhibited poor performance. GPT-4 had
the highest accuracy at only 5.11% (14 puzzles
out of 274). Despite the overall low performance
of all LLMs, the closed-source models perform
marginally better. We evaluate the quality of the
reasoning chains using PuzzleEval. Table 4 pro-
vides the ACS for each grid size available in the
GridPuzzle. Surprisingly, compared to the accu-
racy, the performance of the models with PuzzleE-
val was significantly better as shown in Table 4.
The ACS lie in the range of 0.26 to 0.64 across all
grid sizes. This higher score can be attributed to
the partial correctness of reasoning chains when
solving the grid-puzzle task. The disparity between
metrics shows that evaluating only final answers
doesn’t fully capture LLMs’ effectiveness in com-
plex logical tasks like grid puzzles.

With the increase in the sizes of the grids, the
complexity of the puzzles also rises, leading to a
depreciating performance by the LLMs with larger
grids. Overall the performance of larger LLMs
was much better than the small open-source mod-
els. Mistral-7B performed the worst in PuzzleE-

Model | 3x4 3x5 4x4 4x5 4x6 | Avg
Llama 045 046 046 042 028 | 041
Mistral | 0.29 026 027 026 027 | 0.27
Claude | 0.60 0.56 052 0.55 046 | 0.54
Gemini | 0.60 0.64 0.54 052 0.62 | 0.58
GPT-4 | 0.61 062 056 054 0.60 | 0.59

Table 4: The results for PuzzleEval on the different grid
sizes available in GridPuzzle dataset in terms of ACS.

0 NC = RR [ RW [ WW [ WR
0 0.37 0.85 0.82 0.23 0.34
o 6.46
= 61 14.00 14.96
<] 22.91 11.02
> 17.21
= 10.83 15.40
9 23.82
= .
S | |3350 46.67 1413
iy 28.38
© 16.63
0
=
a 55.17
()
& |t 36.94 35.82 35.62
-
o
*

Claude-3 Llama-2 Mistral GPT-4 Gemini

(4295) (6491) (4287) (5662) (4084)

Figure 4: The percentage distribution of the broad error
categories across the combined reasoning steps of all
five LLMs. The total number of steps generated by each
model is provided inside the round brackets below the
model names.

val which is in accordance with its low accuracy
score. GPT-4 and Gemini models surprisingly have
similar PuzzleEval scores (0.59 and 0.58 respec-
tively) despite their large difference in accuracy.
This difference in PuzzleEval could be attributed
to the relatively shorter reasoning chains (fewer
reasoning steps) produced by Gemini (an average
of 14.91 steps) compared to GPT-4 (an average of
20.66 steps). Shorter reasoning chains may reduce
the number of errors that occur while solving the
puzzle. It is interesting to note that the smaller
LLMs have consistently low performance with the
increase in the grid size of the puzzles but the larger
LLMs have mixed performance.

5.2 Reasoning Chain Evaluation

The relative distribution of the broad error cate-
gories over the collective reasoning steps for each
model is given in Figure 4. It is important to note
that, despite using the same zero-shot-CoT setting,
the GPT-4 and Llama-2 used significantly more
reasoning steps (> 5.5k steps) to solve the 274
puzzles compared to the other three models (~ 4k
steps). The distribution of error sub-categories for
each model is presented as heatmaps in the first five
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Figure 5: The first five sub-figures in the above section show the error Sub-category distribution over five LLMS.
The last sub-figure denotes the top 10 error Sub category distribution across all model reasoning steps.

sub-figures in Figure 5. Here, we present several
findings based on the evaluation of different error
category distributions across GridPuzzle.

Majority of reasoning steps are error-free. Fig-
ure 4 shows that most reasoning steps for each
model fall into the “NC” error category, indicating
that many steps reiterate the facts or clues from
the initial puzzle rather than focusing on reasoning.
Over 55% of Gemini-Pro’s reasoning steps fall into
this category, the most among all models, suggest-
ing that Gemini spends the fewest steps on actual
reasoning. The "RR" category comprises over 46%
of GPT-4’s reasoning steps, highlighting its strong
reasoning ability. This higher number of correct
reasoning steps correlates with GPT-4’s higher Puz-
zleEval score, reflecting its overall effectiveness.

The accuracy is low despite the reasoning chains
being mostly error-free. The disparity between
accuracy and PuzzleEval arises from the relative lo-
cation of errors within the reasoning chains. It has
been observed that “RR” category reasoning steps
mainly occur in the initial half of the chain, leading
to a high overall PuzzleEval score. Conversely, er-
rors in the “RW”, “WR”, and “WW? categories typ-
ically occur in the latter half, resulting in incorrect
final answers and lower accuracy scores. Based on
error taxonomy, “RW”, “WR”, and “WW” broad
error categories have been further dissected into
6 x 3 error sub-categories, with their distribution
across reasoning steps shown in Figure 5.

Dominant broad categories: RW and WW.
The most common error sub-category across all

6 9

heatmaps appears to be the “-”, the absence of er-
rors. All the reasoning steps with “NC” and “RR”
classifications fall in this category. To observe the
actual overall trend across all 5 LLMs, the top 10
most common error sub-categories have been listed
in the last sub-figure of Figure 5. The top cate-
gories ‘a’ and ‘c’ refer to the Wrong Reasoning
and the Wrong Elimination sub-categories under
the “RW” category. These errors arise when the
premise is correct but the LLMs fail to make ac-
curate deductions from it. A number of the top
10 sub-error categories (‘1a’, ‘4a’, ‘4b’, ‘4c’, *5a’,
‘5¢’, and ‘6a’) emerge from the “WW” category.

For the categories, ‘4a’, ‘4b’, and, ‘4c’ the er-
rors in the premise are propagated from errors in
previous reasoning steps showing how initially oc-
curring errors in the chain can lead to more de-
pendent errors. The ‘4b’ error category is the one
where this behavior is maximized as here both the
premise and conclusions were wrong because of
previously propagated errors. The ‘5a’ and ‘5¢’
errors occurred due to the incompleteness or lack
of information in the premise and wrong reasoning
or elimination in the corresponding conclusions.
The ‘1a’ kind of error occurred when the premise
consisted of hallucinated information. The only
sub-category from the “WR” category making it
in the top 10 is the ‘3’ category which is caused
due to wrong assumptions in the premise. It can
be noted here that the reasoning steps of the “WR”
category do not deteriorate either of the evaluation
metrics, as the conclusions ended up being correct,
but rather indicate the inconsistency of the LLMs
in reasoning over puzzle-solving.
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Mitigation Strategy Accuracy  PuzzleEval

Baseline 12 0.61
Plan-and-Solve 9 0.62
Self-correct 10 0.59
Self-discover 13 0.65
Feedback-Learning 10 0.59
Program-of-Thought 10 -

Table 5: The results for accuracy and PuzzleEval using
GPT-4-Turbo, with and without mitigation strategies for
the 60 samples of 3 x 4 grid-size.

Proprietary LLMs are way better at GridPuzzle
than Open-Source LLMs. From the results of
objective and subjective metrics, it is evident that
the open-source models have lower performance
on the grid-puzzle-solving task than the proprietary
models. The Llama-2 and Mistral models have the
lowest accuracy values and their low performance
on the PuzzleEval consistently degrades with the
increase in the size and complexity of the grids.
The Claude-3, Gemini, and GPT-4 models have
higher values of accuracy but their performance
across the grid sizes in the PuzzleEval is inconsis-
tent. The disparity in the performance of both kinds
of models can be attributed to the difference in their
parameter sizes and the low instruction following
capabilities of small open-source models.

Popular reasoning error mitigation strategies do
not improve LLMs on GridPuzzle. We conduct
a case study on a subset of GridPuzzle, focusing
on a 3x4 grid size, utilizing commonly employed
prompting techniques to enhance the reasoning ca-
pabilities of LLMs. In particular, we use five strate-
gies: (1) Plan-and-Solve (Wang et al., 2023), (2)
Self-correct (Zhang et al., 2024), (3) Self-discover
(Zhou et al., 2024), (4) Feedback-Learning, and (5)
Program of Thought prompting (Chen et al., 2023).
We updated the prompts corresponding to these
techniques to include some of our major findings
from the reasoning chain evaluations and error cat-
egorization analysis as precautionary instructions.

The first strategy Plan-and-Solve prompts the
model to first generate a plan to solve the given
problem and then follow those steps. The sec-
ond strategy is inspired by the Self-correct method
which uses a combination of self-verification and
self-refine to improve reasoning. Next, we used
the Self-discover technique which is a 2-step struc-
tured reasoning process. We created our prompting
technique called “Feedback-Learning” by provid-
ing specific feedback system instructions to the

LLM based on our error taxonomy. Lastly, we also
implemented a code-style prompting technique that
implements a code to solve the puzzle but does not
give a reasoning chain. The detailed prompt struc-
ture is described in Appendix E and the results of
these strategies are in Table 5. It is evident from the
results that prompting-based strategies are not suf-
ficient to significantly improve the LLM reasoning
on the grid-puzzle-solving task. Compared to the
rest of the strategies, Self-Discover marginally im-
proves the performance on both accuracy and Puz-
zleEval. These results indicate the need to develop
techniques beyond prompting by having deeper
insights from LLMs’ reasoning chains.

6 Conclusion

In this work, we evaluated the logical reasoning
abilities of LLMs through the lens of a grid-based
puzzle-solving task. We introduced GridPuzzle,
an evaluation dataset of 274 puzzles with various
grid sizes. From a manual evaluation of reason-
ing chains generated by five different LLMs on
GridPuzzle, we developed a fine-grained error tax-
onomy with five broad categories and nine sub-
categories. We then created an Auto-evaluator
to automate the identification of error categories,
providing broader insights into error distributions
across the dataset. Additionally, we proposed Puz-
zleEval, a reference-free metric to objectively eval-
uate the correctness of reasoning chains for grid-
based puzzles. Our analysis of error distributions
in GridPuzzle revealed several interesting findings
and insights into the logical reasoning abilities
of different LLMs. We further evaluated exist-
ing reasoning-specific prompting methods, such
as self-discover and self-correct, finding that they
do not improve results on GridPuzzle. We believe
our work offers a challenging dataset, highlights
where these LLMs make mistakes, and provides
insights to develop better logical reasoning systems
for complex tasks such as grid puzzle-solving.

Limitations

While GridPuzzle facilitates the evaluation of
LLMs’ logical reasoning abilities, the complexity
of the puzzles can be enhanced by incorporating
further complex grid sizes beyond 4x6. Addition-
ally, this study can be extended to different types
of puzzles, such as Sudoku, Game of 24, and com-
monsense puzzles. Though our study provides fine-
grained error categories, it can be further refined by
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mapping to formal logic to identify more detailed
and atomic errors, offering a deeper understand-
ing of LLMs’ reasoning failures. Although we
propose an effective automatic method for error
identification to reduce manual analysis, explor-
ing other automated methods using smaller-scale
supervised learning could be a promising future
research direction. We also note that this research
is currently limited to the English language and can
be extended to multilingual scenarios to evaluate
the logical reasoning abilities of LLMs.

Ethics Statement

The dataset, GridPuzzle, used for this study is
based on 274 puzzles from the open-source plat-
form (more details in section 3.1). No personal
information from data creators has been collected
during the creation of the dataset. The data collec-
tion process strictly adheres to the terms of use and
privacy policies of the platform. Furthermore, the
use of proprietary LLMs such as GPT-4, Gemini,
and Claude-3 in this study adheres to their policies
of usage. We have used Al assistants (Grammarly
and ChatGPT) to address the grammatical errors
and rephrase the sentences.
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A GridPuzzle Dataset - Sample Puzzle

The GridPuzzle dataset contains 274 puzzles of
various grid sizes and complexity. A sample puz-
zle from the dataset along with the Zero-shot-CoT
prompt is described in Figure 6. All the puzzles
in the dataset have a similar structure with varying
numbers of clues.

Puzzle

Jamie never misses an opportunity to watch the night sky for falling stars.
Using only the clues below, match the shooting stars to the options from
dates and locations. Remember, as with all grid-based logic puzzles, no
option in any category will ever be used more than once.

shooting stars: 2, 9, 16, 23.
dates: April 7, April 10, April 17, April 22.

locations: Eastbrook, Gilmore City, Isleton, Manchester.

Clues

1. The outing to Eastbrook logged 7 fewer shooting stars than the trip to
Isleton.

2. The April 17 outing was in Gilmore City.

3. The outing where they saw 16 shooting stars was in Gilmore City.

4. The April 10 outing logged 7 more shooting stars than the April 22 outing.

Attached Instruction Prompt

While answering use the following format:

Step-by-step solution: [Your steps show how you are solving the puzzle]
Final Answer:

Fill the following table to show your final answer.

2 | correct option from dates | correct option from locations

9 | correct option from dates | correct option from locations

16 | correct option from dates | correct option from locations

23 | correct option from dates | correct option from locations

A

Gold Answer

2 | April 22 | Eastbrook

9 | April 10 | Isleton

16 | April 17 | Gilmore City
23 | April 7 | Manchester

.

Figure 6: The prompt structure of a 4 x 4 grid size puzzle
from GridPuzzle dataset. Every Zero-shot-CoT prompt
from the dataset consists of Puzzle, its corresponding
Clues, the Instruction for solving the puzzle, along with
the Gold solution of the Puzzle.

B Auto Evaluator: GPT-40

To expand the reasoning chain evaluation process
we prompt the GPT-40 model with a detailed sys-
tem prompt. The structure of this system prompt
is elaborated in Figure 7. The 3 main components
of this system prompt are the Instruction - similar
to the ones given to human evaluators, the Knowl-
edge - obtained from the error taxonomy, and an
Exemplar - consisting of a Puzzle, its Gold Solu-
tion, the LLM-generated Reasoning chain, and the
evaluated Reasoning Chain.

Instruction

Task Definition:
Analyze and evaluate the given reasoning chains into specific
reasoning error categories.

Evaluation Instructions:

Analyze each sentence by dividing it into a premise and
conclusion, evaluate errors based on the correct solution, and
classify according to specific error categories and subcategories.

Formatting Instructions:

Follow a JSON format for the output, detailing each sentence with
its premise, conclusion, explanation, error category, and
subcategory.

Knowledge

Error Taxonomy Description:

Detailed description of each of the error categories and their
subcategories.

Main Categories:

Wrong Premise Wrong Conclusion (WW), Wrong Premise Right
Conclusion (WR), Right Premise Wrong Conclusion (RW), Right
Premise Right Conclusion (RR), and No Conclusion (NC).
Subcategories:

Hallucination, Incomplete Information, Assumptions, Error
Propagation, Incomplete Information, Wrong Assumption, Wrong
reasoning, wrong elimination.

Evaluation Example

Puzzle:

Nicholas and Edith are having a small dinner party...
Categories:

vintages : 1984, 1988, 1992, 1996.

wines : Annata Branco, Bianca Flaux, Ece Suss, Vendemmia.
types : gewurztraminer, merlot, pinot noir, riesling.

Clues:

1. The Ece Suss was bottled sometime after the Annata Branco.
2. The Bianca Flaux was bottled 4 years before the Vendemmia.
3. ..

~

Gold Solution: R
1984 | Annata Branco | gewurztraminer

1988 | Ece Suss | pinot noir

1992 | Bianca Flaux | merlot

1996 | Vendemmia | riesling

-
LLM Reasoning Chain:

1. From clue 6, we know that the 1984 bottle is a gewurztraminer.

So,...

( i .
Human-evaluated reasoning chain:

[

"Sentence": "From clue 6, we know that the 1984 bottle is a
gewurztraminer.",

"Premise": "clue 6",

"Conclusion": "We know that the 1984 bottle is a
gewurztraminer.",
"Explanation”: "Reiteration of the clue.",
"Error Category": "NC",
"Sub Category": "-"

)
> ,

Figure 7: The prompt structure of auto-evaluator. The
prompt consists of instructions to evaluate reasoning
chains, Knowledge of the error category descriptions,
and a human-evaluated reasoning chain example. This
system prompt is followed by a user prompt with the
puzzle, its gold solution, and the reasoning chain to be
evaluated.
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Prompt

Model Response

Puzzle:

A group of friends has decided to try several different weight-loss diets
and exercises to see who amongst them can lose the most weight in 3
months. Using only the clues below, match the pounds lost to the options
from names and diets. Remember, as with all grid-based logic puzzles, no
option in any category will ever be used more than once.

pounds lost : 3,5,7,9.
names : Raymond, Stuart, Tom, Wesley.
diets : caveman, dairy-free, gluten-free, vegan.

Clues:

1. Stuart lost 4 more pounds than the person who used the vegan diet.
2. The dieter who used the gluten-free diet lost 2 more pounds than
Raymond.

Step-by-step solution:

1. From clue 3, we know Stuart lost 7 Ibs.

2. From clue 1, since Stuart lost 7 Ibs, the person on the vegan diet lost 3
Ibs (7-4=3).

3. From clue 4, since Stuart lost 7 Ibs, he is either on the caveman diet or
he is Raymond. But we know Stuart's name, so he must be on the
caveman diet.

4. From clue 2, the person on the gluten-free diet lost 2 more pounds
than Raymond. Since we have the pounds lost as 3, 5, 7, and 9, and
Stuart already lost 7 Ibs, the only way for someone to lose 2 more
pounds than another (excluding the 7 Ibs already accounted for) is for
the gluten-free dieter to have lost 9 1bs and Raymond to have lost 7 Ibs.
However, since Stuart lost 7 Ibs and is not Raymond, this clue helps us
deduce the sequence of weight loss but needs to be revisited for exact

3. Stuart lost 7 Ibs.

4. The dieter who lost 7 Ibs is either the person who used the caveman
diet or Raymond.

5. Wesley lost 5 Ibs.

matching once we have more information.

5. From clue 5, Wesley lost 5 Ibs.

6. Now, knowing Wesley lost 5 Ibs, Stuart lost 7 Ibs, and the vegan diet
resulted in a 3 Ibs loss, we can deduce that Tom, being the only person
left, lost 9 Ibs.

7. Since Tom lost 9 Ibs and the gluten-free diet is associated with losing
2 more pounds than Raymond, and the only diet left for Wesley (who
lost 5 1bs) is dairy-free, it fits that Tom is on the gluten-free diet.

8. This leaves the vegan diet for the person who lost 3 Ibs, which hasn't
been directly matched to a name yet. Since Stuart is on the caveman diet
and lost 7 Ibs, Wesley is left with dairy-free and lost 5 Ibs, and Tom is on
the gluten-free diet and lost 9 Ibs, Raymond must be the one who lost 3
Ibs and is on the vegan diet.

‘While answering use the following format:
Step-by-step solution: [Your steps show how you are solving the puzzle]
Final Answer:

Fill the following table to show your final answer.

3| correct option from names | correct option from diets

5| correct option from names | correct option from diets

7 | correct option from names | correct option from diets

9| correct option from names | correct option from diets

Gold Solution: Final Answer:
3| Raymond | vegan
5| Wesley | gluten-free
7 | Stuart | caveman

9 | Tom | dairy-free

3| Raymond | vegan
5| Wesley | dairy-free
7 | Stuart | caveman
9| Tom | gluten-free

Manually Evaluated Reasoning Steps Error Categories
1. From clue 3, we know Stuart lost 7 Ibs. RR
2. From clue 1, since Stuart lost 7 Ibs, the person on the vegan diet lost 3 Ibs (7 - 4 = 3). RR
From clue 4, since Stuart lost 7 Ibs, he is either on the caveman diet or he is Raymond RR
But we know Stuart's name, so he must be on the caveman diet. RR
4. From clue 2, the person on the gluten-free diet lost 2 more pounds than Raymond. RR
Since we have the pounds lost as 3, 5, 7, and 9, and Stuart already lost 7 Ibs, the only way for someone RW-C
to lose 2 more pounds than another (excluding the 7 Ibs already accounted for) is for the gluten-free
dieter to have lost 9 Ibs and Raymond to have lost 7 Ibs.
However, since Stuart lost 7 Ibs and is not Raymond, this clue helps us deduce the sequence of weight RR
loss but needs to be revisited for exact matching once we have more information.
5. From clue 5, Wesley lost 5 Ibs. RR
6. Now, knowing Wesley lost 5 Ibs, Stuart lost 7 Ibs, and the vegan diet resulted in a 3 Ibs loss, we can WR-2
deduce that Tom, being the only person left, lost 9 Ibs.
7. Since Tom lost 9 Ibs and the gluten-free diet is associated with losing 2 more pounds than RW-C
Raymond, and the only diet left for Wesley (who lost 5 Ibs) is dairy-free, it fits that Tom is on the
gluten-free diet.
8. This leaves the vegan diet for the person who lost 3 Ibs, which hasn't been directly matched to a RR
name yet.
Since Stuart is on the caveman diet and lost 7 Ibs, Wesley is left with dairy-free and lost 5 Ibs, and WW-4B
Tom is on the gluten-free diet and lost 9 Ibs, Raymond must be the one who lost 3 Ibs and is on the
vegan diet.

Figure 8: The top left section of the figure consists of a 3x4 sample puzzle from the GridPuzzle dataset along
with the Zero-shot-CoT prompt. Right below the prompt, we have the Gold solution for the corresponding puzzle.
In the top right section of the figure, we have the Model-generated Reasoning chain to solve this puzzle along
with the Final Answer. In this particular instance, the reasoning chain was generated by the GPT-4 model. In the
bottom half of the figure, we have the manually evaluated reasoning chain, split into individual sentences. The
corresponding error categories found in each step is given the bottom right column called ‘Error Categories.’
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Prompt Llama2-13B Response

Puzzle: Let's break down the clues and solve the puzzle step by step.

Using only the clues below, match the days to the options

from guests and rooms. Remember, as with all grid-based Step 1:

logic puzzles, no option in any category will ever be used From clue 1, we know Underwood is in room 114. Since Underwood is staying for

more than once. 2 days (as the days are 2, 3, 4, 5), we can conclude that Underwood is staying for
2 days.

days:2,3,4,5. Step 2:

guests : Owens, Parker, Underwood, Zamora. From clue 2, we know the guest in room 320 is staying 1 day fewer than

rooms : 114, 124, 314, 320. Underwood. Since Underwood is staying for 2 days, the guest in room 320 is
staying for 1 day. This means the guest in room 320 is staying for day 2.

Clues: Step 3:

1. Underwood is in room 114. From clue 3, we know Owens is staying for 3 days. Since Owens is staying for 3

2. The guest in room 320 is staying 1 day fewer than days, Owens must be staying for day 3.

Underwood. Step 4:

3. Owens is staying for 3 days. From clue 4, we know Parker is staying 1 day longer than the client in room 314.

4. Parker is staying 1 day longer than the client in room 314. | Since the days are 2, 3, 4, 5, the client in room 314 must be staying for day 4.
Parker is staying 1 day longer, so Parker is staying for day 5.

While answering use the following format: Step 5:

Step-by-step solution: Now that we have the days for each guest, we can fill in the table:
Your steps showing how you are solving the puzzle 2 | Zamora | 320

Final Answer: 3 | Owens | (not mentioned)

Fill the following table to show your final answer. 4| (not mentioned) | 314

2 | correct option from guests | correct option from rooms 5 | Parker | (not mentioned)

3 | correct option from guests | correct option from rooms
4 | correct option from guests | correct option from rooms
5 | correct option from guests | correct option from rooms

Gold Solution: Final Answer:

2| Zamora | 124 2| Zamora | 320

3| Owens | 314 3| Owens | 124

4 | Parker | 320 4| Underwood | 314
5| Underwood | 114 5 | Parker | 114

Note: The rooms for days 3, 4, and 5 are not explicitly mentioned
in the clues, but we can deduce them based on the information provided.

Auto-Evaluated Reasoning Steps Error Categories | Sub Categories

NC -

"Sentence'": "From clue 1, we know Underwood is in room 114.",

"Conclusion": "we know Underwood is in room 114.",
"Explanation': "Reiteration of the clue.",

"Error Category": "NC",

""Sub Category': "-"

}

{ RW a
""Sentence": "Since Underwood is staying for 2 days (as the days are 2, 3, 4, 5), we can conclude that
Underwood is staying for 2 days.",

"Premise'": "Underwood is in room 114.",

"Conclusion': "Underwood is staying for 2 days.",

"Explanation": "The conclusion is incorrect as it assumes Underwood is staying for 2 days without
sufficient information.",

"Error Category': "RW",

"Sub Category": "a"

}

{ WW 4b
"Sentence": "Parker is staying 1 day longer, so Parker is staying for day 5.",

"Premise': "the client in room 314 must be staying for day 4.",

"Conclusion': "Parker is staying for day 5.",

"Explanation": "The conclusion is incorrect as it is based on the wrong premise that the client in room
314 is staying for day 4.",

"Error Category": "WW",

"Sub Category": "4b"

}

Figure 9: The top left section of the figure consists of a 3x4 sample puzzle from the GridPuzzle dataset along with
the Zero-shot-CoT prompt. Right below the prompt, we have the Gold solution for the corresponding puzzle. In the
top right section of the figure, we have the Model-generated Reasoning chain to solve this puzzle along with the
Final Answer. In this instance, the reasoning chain was generated by the Llama2-13b model. In the bottom half of
the figure, we have the GPT-40 Auto-Evaluated Reasoning chain.The auto-evaluation is done sentence-wise and the
output is in a JSON-structured format consisting of 5 components: the Sentence, the Premise, the Conclusion, the
Error category and the Sub-category. The corresponding error categories found in each sentence are given in the
bottom right columns called ‘Error Categories’ and ‘Sub Categories.’
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C Evaluation of Reasoning Chains

In order to identify the error categories from the
erroneous reasoning chains we conducted manual
and auto-evaluation of the reasoning chains. The
process of manual evaluation has been described
in figure 8 and the process of auto-evaluation using
GPT-40 has been described in Figure 9.

D Annotation Guideline

To conduct the manual analysis of the reasoning
chains, the annotators were provided the guidelines
described in figure 10. The same guideline was
also used to create the system prompt for the GPT-
40 Auto-evaluator. The annotation process was
conducted by 5 annotators and the annotations were
also cross-examined to resolve any discrepancies.

4 R
12-step Annotation Guideline }

1. Take your time to refer to the annotation example provided.

2. Make sure to break every step into individual sentences before
doing the annotations and categorizations.

3. Analyze every sentence separated by a full stop and divide it into
premise and conclusion (the conclusion is the derived information).
If a sentence starts with words like "so" or "therefore", the premise
will be the previous conclusion.

4. Take your time to refer to the error categories described in the
Error Categories knowledge section below and Classify the derived
information into specific error categories.

5. When classifying into the main Error Categories, the premise and
conclusion correctness are determined independently from each
other and it is only based on the answer given in the correct
solution.

6. Compare the premise and conclusions with the correct solution
first to determine if they are wrong or right.

7. Do not use the sub-category explanations to justify your main
category (WW, WR, RR, RW, NC) classifications. Only after the
error categories have been assigned you will ook into the sub
categories.

8. The premise is declared wrong only when it violates the data
given in the correct solution. The conclusion is declared wrong only
when it violates the data given in the correct solution.

9. If the category has a wrong premise, classify it further into a
subcategory for the wrong premise.

10. If the category has a wrong conclusion, classify it further into a
subcategory for the wrong conclusion.

11. Check your work and see if the chosen category is indeed the
most appropriate category.

12. You are not required to solve the entire puzzle or correct any
mistakes. You can take the help from the correct solution to conduct
your analysis.

Figure 10: The 12-step guideline provided to the an-
notators to conduct manual evaluation of the reasoning
chains.

E Mitigation Strategy Prompts

We conducted a study on the 60, 3x4 puzzles
present in GridPuzzle dataset to try and improve the
reasoning abilities of LLMs when solving the grid-
puzzle task. We used prompt-based methods, such
as the Plan-and-Solve technique, which divides
puzzle-solving into planning and solving steps. We
also enhanced the solver with insights from our

error taxonomy. The prompt structure for this tech-
nique is given in figure 11.

{

First Prompt

System Prompt:
You are a grid-puzzle solving assistant.

User Prompt:
Let's first understand the problem and devise a plan to
solve the problem.

<Puzzle>

Plan:

Second Prompt

System Prompt:

Make sure you do not make these errors while solving
the problem:

<Instructions based on Error Taxonomy>

User Prompt:

Let's carry out the plan and solve the problem step-by-
step.

Plan:

<Response from First Prompt>

<Puzzle>

Solution:

- /

Figure 11: The prompt structure for the Plan-and-Solve
strategy which is split into two prompts one for planning
and the other for solving the puzzle.

Next, we devised our own strategy to improve
LLM reasoning by using the top error categories
from our findings and teaching the LLM to rectify
those mistakes. This strategy termed as Feedback-
learning makes use of a detailed system prompt
that acts as a feedback-providing unit followed by
a basic user prompt to solve the puzzle. The prompt
structure for this strategy is shown in figure 12.

We also implemented a code-based technique
to sole GridPuzzle. We borrowed the PoT prompt
from the original implementation to create a solver
function to solve the puzzles. Next, we asked an
LLM to implement this code and produce the Final
Answer. Since the codes produced by the LLM
may contain some errors we utilized the LLM’s
compiler to implement the code instead of a rigid
Python compiler. The prompt structure is provided
in figure 13. Next is the Self-correct strategy which
merges Self-verify and Self-refine qualities to min-
imize LLM reasoning errors. It starts with solving
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System Prompt

You are an excellent puzzle solver. However, we have
analyzed how you solve the puzzle before and we found
that you make the following mistakes more often while
reasoning:

1. Wrong Reasoning........

2. Error Propagation.........

Now, you understand where the problem is. To solve this
problem, | am giving you some guidelines that you can
use.

1. To solve the wrong reasoning problem,......

2. To solve the error propagation problem,.....

Now you have some hints as to how to remove such
errors. Using all the above knowledge, please solve the
puzzle step-by-step. However, make sure to verify each
step again to see if you are making any above errors.
Then, re-generate those particular steps if you think they
are erroneous.

Based on your evaluations, refine the answer and
provide the final solution.

User Prompt

Read the Puzzle given below and follow the instructions:
<Puzzle>

Final answer:

Figure 12: The prompt structure for the Feedback-
learning strategy. The system prompts consist of in-
structions regarding the major errors as well as ways to
rectify those errors.

the puzzle using a Zero-shot-CoT prompt, followed
by prompting the LLM to verify and refine the solu-
tion. Finally, it integrates the model’s suggestions
with insights from our error taxonomy to enhance
the puzzle-solving response. The prompt struc-
ture for this strategy is shown in figure 14. Lastly,
the Self-Discover strategy, depicted in figure 15,
proved most effective in reducing LLM reasoning
errors in puzzle-solving. This approach begins by
having the model analyze the problem and potential
errors, follows with a list of prescribed reasoning
modules, prompts the LLM to select and apply the
most suitable module, and concludes by using a
structured prompt to solve the puzzle.

F Model Scaling Effect: Llama-70B

We conducted a case study on the Llama models
to analyze their performance on GridPuzzle with
increasing model parameter size. We repeated the
same experiment in the Zeo-shot-CoT setting with
the Llama-70B model. We found that the perfor-

First Prompt

System Prompt:
You are a grid-puzzle solving assistant that uses code to
solve the puzzle.

User Prompt:
<Puzzle>

Answer this question by implementing a solver()
function.
def solver():

#Let's write a python program step by step and then
return the answer

#Firstly we need to define the following variables:

Second Prompt

System Prompt:
You are a grid-puzzle-solving assistant

User Prompt:
Implement the code given below in python and only
return the final answer in the desired format:

<solver code>

(Make sure to follow the final answer format while
answering)

Figure 13: The prompt structure for the Program of
Thought prompting technique. In the first part, we asked
the LLM to generate a code to solve the given puzzle. In
the second part, an LLM is prompted to implement the
code produced in the first part to get the Final Answer
table.

mance of the bigger model was marginally higher
than the 13B model. The Accuracy went up from
1 correct final answer in the 13B model to 2 in the
70B model. The scores on PuzzleEval also went
up 11% on average. However, despite the slight
improvement, the Llama model’s performance was
still inferior to GPT-4, Gemini, and Claude. The
experimental findings are presented in Table 6. We
infer that even with the increasing model parameter
size, the LLLMs lack the intrinsic reasoning capa-
bilities required to solve complex logic problems
such as GridPuzzle.

Model | 3x4 3x5 4x4 4x5
Llama-70B | 0.51 051 052  0.58

4x6 | Avg
042 | 0.52

Table 6: The results for PuzzleEval on the different grid
sizes available in GridPuzzle dataset in terms of ACS
for Llama-70B. The Accuracy of Llama-70B was 2/274
puzzles.
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First Prompt

System Prompt:
You are a grid-puzzle solving assistant.

User Prompt:
<Zero-shot-CoT Puzzle Prompt>

Final Answer:

Second Prompt

System Prompt:
You are a grid-puzzle-solving assistant

User Prompt:

Let's verify the solution of the given puzzle below and
suggest some corrections:

<Puzzle>

Solution:

<Previous Response>

Suggestion:

Third Prompt

System Prompt:
You are a grid-puzzle-solving assistant

User Prompt:
Now let's use the suggestions to solve the puzzle again:

<Previous Suggestion Response>
<Instructions based on Error Taxonomy>
<Puzzle>

Solution:

Figure 14: The prompt structure for the Self-Correct
strategy is split into 3 parts. The first prompt solves
the puzzle, the second prompt verifies the solution
and gives suggestions to improve the solution, and the
third prompt uses these suggestions along with error
taxonomy-based instructions to refine the final solution.

( 7
First Prompt

Read the Puzzle given below and follow the instructions:
Following are the mistakes that you should be careful of
before solving the puzzle:

<Instructions based on Error Taxonomy>

<Puzzle>

Before solving the puzzle, Select several reasoning
modules that are crucial to utilize in order to solve the
given task:

<Self-Discover Reasoning Modules>

Second Prompt

For the given puzzle:
<Puzzle>

Rephrase and specify each reasoning module so it

better helps solve the task:
<Previous Response>

Third Prompt

For the given puzzle:
<Puzzle>

Operationalize the reasoning modules into a step-by-

step reasoning plan in JSON format:
<Previous Response>

Fourth Prompt

For the given puzzle:
<Puzzle>

Follow the step-by-step reasoning plan in JSON to
correctly solve the task. Fill in the values following the
keys by reasoning specifically about the task. Do not
simply rephrase the keys:

<Previous Response>

& %

Figure 15: The prompt structure for the Self-Discover
strategy. In the first part of this prompt the model is
prompted to assess the problem and select the appro-
priate reasoning module to solve it. Then the module
is modified to give a structured plan to solve the puz-
zle. In the second part, the model uses this structured
plan along with instructions from our error taxonomy to
solve the puzzle.
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