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Abstract

Although pre-trained language models have
exhibited great flexibility and versatility with
prompt-based few-shot learning, they suffer
from the extensive parameter size and limited
applicability for inference. Recent studies have
suggested that PLMs be used as dataset gener-
ators and a tiny task-specific model be trained
to achieve efficient inference. However, their
applicability to various domains is limited be-
cause they tend to generate domain-specific
datasets. In this work, we propose a novel ap-
proach to universal domain generalization that
generates a dataset regardless of the target do-
main. This allows for generalization of the tiny
task model to any domain that shares the label
space, thus enhancing the real-world applica-
bility of the dataset generation paradigm. Our
experiments indicate that the proposed method
accomplishes generalizability across various
domains while using a parameter set that is
orders of magnitude smaller than PLMs.

1 Introduction

As the size and performance of pre-trained lan-
guage models (PLMs) increase, generation of new
data by using PLMs has attracted the attention of
many researchers (Anaby-Tavor et al., 2020; Ku-
mar et al., 2020; Yoo et al., 2021). While scholars
have applied this method to solve data augmenta-
tion problems, in recent studies, they have started to
explore zero-shot dataset generation settings (Meng
et al., 2022; Ye et al., 2022a, 2023). This novel ap-
proach first generates training data from a PLM
based on a specific prompt and trains a tiny task
model (TAM) by using the dataset generated in the
first step. This strategy facilitates effective distilla-
tion of the knowledge pertaining to the desired task
from the PLM and helps train the TAM without
the need for guidance from human-annotated data,
thereby enabling zero-shot learning and achieving
low-cost inference compared to the case in which
PLMs are used directly for inference.

However, the approaches proposed thus far have
relied on domain-specific prompts, for example,
“The movie review in positive sentiment is:.” Be-
cause the data generated using this prompt are re-
lated only to the domain of movie reviews, the
TAM trained on these data has limited general-
ization ability across other domains. This is the
primary limitation of the TAM-based approach
compared to prompt-based zero-shot learning that
directly uses PLMs (PROMPTING), which allows
for generalizability across diverse domains. This
restricts the real-world applicability of the TAM-
based approach because it requires many separately
trained TAMs for various domains. Moreover, as
the costs of dataset generation and TAM training
increase, the cost-efficiency of the TAM-based ap-
proach may decrease. Hence, a novel strategy is
desired to effectively distill the domain generaliz-
ability of large-scale PLMs into TAMs while main-
taining the cost-efficiency of TAMs.

Meanwhile, the existing approaches to domain
generalization often require multiple source do-
mains (Wang et al., 2022; Zhou et al., 2022). This
requirement limits the application of these meth-
ods because it is difficult to gather the required
data from multiple domains. Although the concept
of single-domain generalization, which achieves
domain generalizability by using data from only
one source domain, has been proposed in recent
computer vision studies, such a concept is yet to
be explored for natural language processing (Qiao
et al., 2020; Wang et al., 2021).

In this study, we propose a simple but effective
method called UNIGEN to solve the problem of
domain generalizability between PLMs and TAMs.
Table 1 presents a comparison between UNIGEN

and the existing approaches. UNIGEN first fo-
cuses on generating a domain-invariant training
dataset that is not restricted to specific domains.
This allows TAMs to achieve domain generalizabil-
ity without the need for multiple source domains.
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Learning without
Human-annotated Data

Domain
Generalizability

Light
Inference

Handling Noise
of Generated Data

Task-specific Fine-tuning ✗ ✗ ✓

Previous Domain Generalization
(Tan et al., 2022)

✗ ✓ ✓

PROMPTING ✓ ✓ ✗

ZEROGEN (Ye et al., 2022a) ✓ ✗ ✓ ✗

PROGEN & SUNGEN

(Ye et al., 2022b; Gao et al., 2023)
✓ ✗ ✓ ✓

UNIGEN (Ours) ✓ ✓ ✓ ✓

Table 1: Comparison between previous approaches and UNIGEN.

We extend domain generalization strategies based
on supervised contrastive learning (Khosla et al.,
2020), as suggested in a previous work (Tan et al.,
2022). Moreover, we employ additional tactics
such as momentum encoder (He et al., 2020) and
denoised memory bank, in addition to the method
suggested by the previous work (Tan et al., 2022).
Furthermore, because the PLM-based dataset gen-
eration method can generate noisy data (Ye et al.,
2022b; Gao et al., 2023; Zou et al., 2024), we pro-
pose a pseudo-relabeling-based additional denois-
ing method.

Our experiments show that UNIGEN achieves
generalizability across various domains and out-
performs PROMPTING. This indicates that smaller
TAMs can be used universally in various domains,
thereby reducing the costs of PROMPTING, dataset
generation, and TAM training.

Our contributions are summarized as follows:

• We propose UNIGEN, a universal domain gen-
eralization strategy by using zero-shot dataset
generation.

• We develop a pseudo-relabeling-based
method for denoising the generated data.

• Our extensive experiment reveals that the
TAM trained using UNIGEN has domain gen-
eralizability, and it can outperform the PLM
with considerably fewer parameters.

2 Related Work

2.1 Dataset Generation for Efficient Zero-shot
Learning

The evolution of PLMs in terms of parameter size
and performance has facilitated zero-shot learning
through the use of well-designed prompts (Radford
et al., 2019; Brown et al., 2020). However, it is
expensive to directly deploy these massive models

into daily services because the process requires
numerous rounds of inference. Dataset generation
mitigates this problem through the generation of
training datasets by using PLMs and training a
small TAM on the generated datasets (Meng et al.,
2022; Ye et al., 2022a). This TAM is deployed
in downstream tasks to reduce inference costs and
improve performance compared to PROMPTING.

However, mere generation, that is, ZEROGEN,
yields noisy data, such as incorrectly labeled data
or irrelevant data (Ye et al., 2022b; Gao et al.,
2023). PROGEN (Ye et al., 2022b) proposed to al-
leviate this problem by adding examples based on
in-context feedback. Meanwhile, SUNGEN (Gao
et al., 2023) proposed to re-weigh the generated
samples during training using noise-robust loss.
Additionally, a concurrent study suggested to lever-
age multiple PLMs as data generator and assign
weight to generated samples in single training pro-
cedure, different from SUNGEN (Zou et al., 2024).

In this work, we propose a novel approach to
extend dataset generation for universal domain gen-
eralization that is not restricted to specific training
source data, as well as a pseudo-relabeling-based
method to denoise the generated dataset.

2.2 Methods for Learning from Noisy Data
Researchers have explored various methods to mit-
igate noisy label data, which is wrongly labeled
from ground-truth labels (Song et al., 2023). A rel-
evant study in this field defined two types of noisy
labels and evaluated the effectiveness of various
methods with respect to BERT model (Agro and
Aldarmaki, 2023). Another study proposed to lever-
age GPT-4 to provide the guidance to noisy labeled
data (Wang et al., 2023). However, they suffer from
the necessity of massive LLMs that demand cost.
Moreover, these studies primarily focused on the
human-crafted noisy label, rather than the noisy
label of data generated by PLMs.
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In this work, we suggest a straightforward
method to handle noisy data based on pseudo-
relabeling, particularly designed for synthetic data.

2.3 Domain Generalization for Text
Classification

Domain generalization aims to improve the gener-
alization ability in the target domain by employing
source data from multiple domains to mitigate the
domain shift problem (Wang et al., 2022; Zhou
et al., 2022). This domain shift can be observed in
natural language processing tasks, such as restau-
rant reviews and reviews of consumer electronics.
For example, long waiting time in a restaurant’s
reviews can represent a negative sentiment about
the restaurant, while long battery life in a laptop’s
reviews can represent a positive sentiment of the
laptop (Tan et al., 2022).

Previous studies to alleviate domain shift in
text classification have focused primarily on do-
main adaptation setting, for which training data
are needed in the target domain (Chen and Cardie,
2018; Ye et al., 2020; Guo et al., 2020). Recently,
researchers have explored the application of do-
main generalization to natural language processing
tasks. A representative study applied supervised
contrastive learning (Khosla et al., 2020) to achieve
domain generalizability in text classification tasks
(Tan et al., 2022).

In this work, we extend an existing method for
domain generalization to generate datasets, includ-
ing the adoption of momentum encoder (He et al.,
2020), in addition to proposing a denoising mem-
ory bank to further enhance its effectiveness and
handle noisy data.

3 Method

3.1 Preliminaries

3.1.1 Dataset Generation

First, we briefly explain the concept and notation
of the preliminary dataset generation method, that
is, ZEROGEN (Ye et al., 2022a). ZEROGEN aims
to create a synthetic dataset Ssyn = (Xsyn,Ysyn)
by using a large-scale PLM P and task-specific
prompt Ttask. For a text classification problem,
a desired pseudo-label ysyn is first sampled from
the uniform distribution across every class. Next,
ysyn is passed to the prompt Ttask to construct
Ttask(ysyn), that is, the final prompt for P . There-
after, synthesized input data xsyn are generated

using xsyn ∼ P(·|Ttask(ysyn)). Finally, Ssyn is com-
posed of these pairs of generated (xsyn, ysyn). No-
tably, the domain of Ssyn is defined by the structure
of Ttask. For example, a Tbook = “The book review
in <y> sentiment is: ” would harness P to gener-
ate xsyn about book reviews. The TAM is trained
on the generated Ssyn and deployed for inference
instead of directly using PLMs with PROMPTING.

3.1.2 Supervised Contrastive Learning
Supervised contrastive learning (Khosla et al.,
2020) is a variant of contrastive learning (Chen
et al., 2020) that utilizes label values. It allows
for explicit pulling of the representation of positive
(i.e., same class) samples to the anchor representa-
tion while pushing negative representations away
from the anchor. Studies have reported that this
characteristic is valuable for domain generalization,
which aims to group the representations of different
domains (Kim et al., 2021; Tan et al., 2022). The
supervised contrastive loss is expressed as follows:

LSCL = −∑
zi∈B

1
|P (i)| log

exp(zi·zp/τSCL)∑
za∈A(i) exp(zi·za/τSCL)

(1)
where z denotes an encoded representation, and

zi is an anchor. P (i) ≡ zj ∈ B, yj = yi is the
set of positive samples for each anchor i, and zp
symbolizes a positive representation from P (i).
A(i) ≡ zj ∈ B, j ̸= i refers to the union of every
sample, except the anchor, including positive and
negative samples. za indicates each representation
from A(i). B denotes a mini-batch, and τSCL is the
temperature of supervised contrastive learning.

Although supervised contrastive learning is ef-
fective, the introduction of a memory bank and
momentum encoder may augment the advantages
of the method (Wu et al., 2018; He et al., 2020).
The potency of contrastive learning is often influ-
enced by the size of B because a larger B may
introduce more diverse negative samples. How-
ever, increasing the size of B can introduce con-
cerns related to memory consumption. A mem-
ory bank is a mechanism that fulfills this demand
for a greater number of negative samples by stor-
ing previously processed samples within the dic-
tionary M . Memory-efficient contrastive learning
can be achieved using this dictionary with the cur-
rent batch, that is, establishing a union of B and
M instead of solely using B to construct P (i) and
A(i). Momentum encoder is another technique that
smooths the process of updating the representations
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Figure 1: Overall framework for generating a dataset and training a TAM using UNIGEN.

stored in M . The momentum encoder θk is trained
by momentum update, θk ← mθk + (1 − m)θq,
where m is a coefficient for momentum update,
and θq is a normal encoder that is updated through
backpropagation. By using the momentum encoder,
the representations in M are processed by θk.

3.2 UNIGEN

To build a TAM that can be applied universally
to various target domains, UNIGEN generates a
domain-invariant dataset by using the universal
prompt Tuni, instead of task-specific Ttask. Consider
“The text in <y> sentiment is:” as an example of
Tuni. Next, the final input prompt for P is con-
structed as Tuni(ysyn). The synthesized input data
xsyn are generated by following the same process
as that of ZEROGEN:

xsyn ∼ P(·|Tuni(ysyn)) (2)

This configuration of prompt design allows us to
generate a sentence with the desired label without
being restricted to any specific domain. Therefore,
it steers P to generate various sentences within a
predefined label space. This domain-invariant data
generation allows the TAM trained using UNIGEN

to learn the domain-invariant characteristics of the
desired label space, thereby resulting in generaliz-
ability across the domains that share the label space.
Supervised contrastive loss is applied along with
conventional cross entropy loss to aid this process.
The training loss is defined as follows:

L = LCE + αLSCL (3)

where α is a hyperparameter that balances the
ratio between the two losses.

3.3 Handling Noisy Data through Relabeling

However, the application of Tuni instead of Ttask

might lead to the generation of noisy sentences,
which was noted as a drawback of ZEROGEN. This
is because Tuni does not have a specific topic to
guide the generation process. Furthermore, a pre-
viously developed approach to effectively mitigate
this problem is applied in the training phase but not
the generation phase. Therefore, there is scope to
improve the quality of Ssyn (Gao et al., 2023). This
problem highlights the necessity to use a denoising
scheme in the generation procedure. In the present
work, we propose a pseudo-relabeling-based de-
noising process for dataset generation. In a previ-
ous study, the approach of relabeling the generated
data and assigning soft labels for data augmenta-
tion was proposed (Yoo et al., 2021). Herein, we
first perform pseudo-relabeling by using P:

ℓ(yi|xsyn) = P(M(yi)|Tuni(xsyn)) (4)

whereM(·) denotes a verbalizer that transforms
each label yi into a word. We share Tuni between
this process and the generation process. These
logit values yielded by P are normalized using the
softmax function with the temperature τRE :
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ŷi = p(yi|xsyn) =
exp(ℓ(yi|xsyn)/τRE)∑
j exp(ℓ(yj |xsyn)/τRE)

(5)

Finally, we assign ŷi instead of the predefined
ysyn to the generated xsyn. This provides two dis-
tinct advantages: (1) because ŷi is a soft label rather
than a hard label, it contains richer information
about xsyn, such as the degree of the desired la-
bel, which enhances the effectiveness of training
(Szegedy et al., 2016). (2) Because it relabels the
generated xsyn and replaces the predefined ysyn, it
can solve the noisy label issue, which results in the
generation of xsyn that does not correspond to the
designated ysyn, as pointed out in previous work
(Gao et al., 2023). We validate the effectiveness
of this relabeling strategy in the ablation study de-
scribed in Section 4.5.1.

Furthermore, we discard xsyn if its pseudo-label
ŷi does not exceed the threshold TRE to enhance
the quality of Ssyn. This guarantees that only those
data that have the desired degree of each label are
maintained.

3.4 Denoising Memory Bank
In addition to the relabeling strategy, we propose a
denoising memory bank mechanism to further alle-
viate the issue of noisy data. We first use SUNGEN

(Gao et al., 2023) that learns weights of each train-
ing sample w for loss function within the training
process to assign small weights to noisy data by
employing a noise-robust loss function. We aim
to ensure that the memory bank M contains clean
samples, rather than noisy samples. We utilize the
weights w learned from the noise-robust loss func-
tion for this purpose. In the process of updating
M , we store only those samples whose weights are
larger than the threshold TMB. This organization of
the memory bank ensures the exclusion of noisy
samples from the comparison, resulting in higher-
quality negative and positive samples (Robinson
et al., 2021).

4 Experiment

4.1 Experimental Setup
In this section, we briefly explain the experimen-
tal setup used herein to validate the effectiveness
of UNIGEN. We employ seven different senti-
ment classification datasets in our main experiment.
Among them, IMDB (Maas et al., 2011), SST-2
(Socher et al., 2013), and Rotten Tomatoes (Pang

and Lee, 2005) are datasets comprising movie re-
views. Meanwhile, the Amazon (McAuley and
Leskovec, 2013) dataset consists of customer re-
views of various products, and the Yelp (Zhang
et al., 2015) dataset is composed of restaurant re-
views. CR (Ding et al., 2008) is another customer
review dataset focusing on consumer electronics.
Lastly, Tweet (Rosenthal et al., 2017) is composed
of messages from Twitter. This configuration al-
lows us to evaluate the ability of UNIGEN, which
can be applied to various domains without pro-
viding any prior information or domain-specific
training. Following the previous study, we adapted
long short-term memory (LSTM) (Hochreiter and
Schmidhuber, 1997) and DistilBERT (Sanh et al.,
2019), and we included RoBERTa (Liu et al., 2019)
as our TAM. We compared our approach to ZE-
ROGEN and SUNGEN, as well as to PROMPTING

using GPT2-XL (Radford et al., 2019), to ensure
a fair comparison. We did not include other larger
PLMs in the experiments because the previous
work discovered that larger PLMs did not offer
performance gains (Ye et al., 2022a). We report the
average of the performance results obtained across
five different random seeds.

4.2 Comparison with Task-specific TAMs

Table 2 presents a comparison between the exper-
imental results of UNIGEN and PROMPTING and
task-specific TAMs trained by ZEROGEN and SUN-
GEN. The comparison results suggest that UNI-
GEN can generalize across various domains using
a single model without requiring any prior infor-
mation about the test domain. Nonetheless, UNI-
GEN underperformed compared to the task-specific
baselines in each domain. However, the primary
benefit of UNIGEN lies in its unique domain gener-
alizability while using orders-of-magnitude fewer
parameters than PLMs. Additionally, its training
procedure is more efficient than those of other TAM
training strategies. As can be inferred from Ta-
ble 3, SUNGEN generates and synthesizes 1,000k
data for each task domain. This means that 5,000k
data would be required for our experiment, which
involves five different domains, in addition to in-
dividual denoising processes for finding the best
weights of the samples in each of these domains.
By contrast, UNIGEN is not limited by such restric-
tions and requires only a single data generation and
denoising process, as well as a single training pro-
cess. This is extremely beneficial when a novel test
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Model #Param Training Domain Setup SST-2 IMDB Rotten Amazon Yelp CR Tweet Average
Test Domain Movie Products Restaurant Electronics Tweet

GPT2-XL 1.5B - PROMPTING 82.15 70.26 77.56 79.06 78.04 80.30 80.38 78.25

LSTM 7M

Movie
ZEROGEN 75.11 66.39 69.85 67.24 70.25 69.32 63.43 68.80
SUNGEN 78.79 69.97 73.76 72.15 73.21 70.39 66.84 72.16

Products
ZEROGEN 64.26 61.82 60.13 70.32 67.78 69.46 62.29 65.15
SUNGEN 67.83 63.87 63.46 74.43 73.71 73.35 63.51 68.59

Restaurant
ZEROGEN 67.41 63.01 62.74 68.73 75.51 69.23 66.35 63.28
SUNGEN 69.15 66.62 64.56 73.22 79.56 70.12 67.43 70.09

Electronics
ZEROGEN 64.69 59.13 60.20 66.34 67.72 72.50 60.25 64.40
SUNGEN 68.38 64.33 63.25 72.61 73.01 76.18 66.78 69.22

Tweet
ZEROGEN 61.84 60.17 59.43 64.13 63.68 65.02 74.10 64.05
SUNGEN 66.57 63.96 64.21 69.36 71.68 72.57 81.29 69.95

- UNIGEN 64.15 60.02 60.51 63.82 63.20 69.61 70.32 64.52

DistilBERT 66M

Movie
ZEROGEN 80.06 69.13 74.73 73.02 72.77 73.59 74.83 74.02
SUNGEN 82.43 70.59 76.37 74.13 73.56 75.14 75.96 75.45

Products
ZEROGEN 71.04 64.99 65.57 74.54 71.89 74.57 71.93 70.65
SUNGEN 72.35 65.95 66.84 76.92 74.98 75.84 73.01 72.27

Restaurant
ZEROGEN 77.32 65.47 68.86 74.01 77.94 74.89 73.74 73.18
SUNGEN 78.93 67.12 69.92 74.93 80.67 76.06 75.28 74.70

Electronics
ZEROGEN 73.77 66.14 66.78 72.38 73.21 78.82 74.58 72.24
SUNGEN 74.49 67.19 68.29 73.49 75.34 80.49 75.37 73.52

Tweet
ZEROGEN 73.98 66.58 67.43 72.88 71.86 75.68 80.86 72.75
SUNGEN 75.12 67.53 69.06 73.64 72.73 78.17 82.46 74.10

- UNIGEN 77.67 67.81 73.16 75.06 74.81 79.86 81.41 75.68

RoBERTa 110M

Movie
ZEROGEN 84.38 73.03 78.38 77.38 76.83 77.36 77.94 77.90
SUNGEN 85.24 74.09 79.19 78.56 77.61 78.21 79.72 78.95

Products
ZEROGEN 79.14 71.16 70.92 79.94 75.79 76.35 80.17 76.21
SUNGEN 81.51 71.28 72.67 81.50 77.76 78.55 81.94 77.87

Restaurant
ZEROGEN 82.87 70.71 69.58 78.61 81.47 76.43 79.51 77.03
SUNGEN 83.65 71.40 71.05 79.42 82.72 77.60 80.92 78.11

Electronics
ZEROGEN 76.82 69.42 67.89 75.02 76.53 81.24 76.51 74.78
SUNGEN 77.51 71.23 68.77 76.91 78.33 83.49 79.03 76.47

Tweet
ZEROGEN 78.43 68.31 72.25 78.09 74.61 79.08 82.96 76.25
SUNGEN 82.19 70.62 73.21 79.84 76.27 81.46 83.25 78.12

- UNIGEN 84.86 72.24 78.82 80.79 79.15 86.37 87.89 81.45

Table 2: Experimental results of UNIGEN and baselines across various datasets and training domains. The
performance of TAM, which is superior to that of PROMPTING, is underlined, and the best result in each test dataset
within the group for each TAM is presented in boldface.

Amount of generated data Number of trained TAMs
ZEROGEN 1,000k 5
SUNGEN 5,000k 5
UNIGEN 1,000k 1

Table 3: Amount of data generated for training TAMs
by using each method, and number of trained TAMs per
method.

domain is introduced, where ZEROGEN and SUN-
GEN necessitate a separate procedure for the new
domain, but UNIGEN directly reuses the already
trained TAM.

Notably, the performance of the LSTM-based
TAM trained using UNIGEN was significantly
lower than that of ZEROGEN and SUNGEN. This
implies that while a small-sized TAM can be
trained effectively for a single, specific domain,
but suffers from generalizing to a universal domain
that requires a broad understanding of generated
data, as evidenced by detailed study in Appendix E.

Accordingly, the performance of the TAM trained
using UNIGEN improves significantly as the model
size increases. For instance, the DistilBERT-based
TAM trained using UNIGEN exhibited the best av-
erage performance against each task-specific base-
line. This is particularly remarkable as it outper-
formed the SUNGEN baseline in the movie do-
main, which has three in-domain datasets, giving
it an inherent advantage for average performance.
Moreover, the RoBERTa-based TAM trained using
UNIGEN not only yielded the best average per-
formance against these baselines but also outper-
formed PROMPTING in every domain. This result
indicates that it can surpass the zero-shot perfor-
mance of its PLM counterpart (e.g., GPT2-XL)
while using less than 10% of the number of param-
eters and securing the domain generalizability of
the PLM, extending the achievement of the pre-
vious study that leveraged small TAMs in single
domain (Ye et al., 2022a).
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RoBERTa DVD Electronics Kitchen Book Average
PROMPTING

w/ GPT2-XL
77.73 78.71 81.64 80.27 79.59

UNIGEN 78.14 80.68 82.31 80.93 80.52
SUPERVISED

(Tan et al., 2022)
91.40 95.10 95.05 93.25 93.70

Table 4: Experiments conducted using multi-domain
review dataset. The experimental result of SUPERVISED
was reported in a previous study (Tan et al., 2022) with
the memory bank size of 64.

4.3 Comparison with Supervised Domain
Generalization Method

Next, we analyzed the performance of UNIGEN

against that of a domain generalization method
that uses human-annotated data (Tan et al., 2022).
For this purpose, we used a multi-domain review
dataset comprising four domains: DVD, books,
kitchen and housewares, and consumer electronics
(Blitzer et al., 2007). Following the previous study,
we split the dataset into 1,600 training data and
400 testing data for each domain. Table 4 presents
the comparison results. These results suggest that
UNIGEN can be applied to various domains, and its
performance is superior to that of its PLM counter-
part. Notably, the SUPERVISED baseline relies on
three source domains with human-annotated data
to generalize to a target domain, while UNIGEN is
based on zero-shot dataset generation and does not
require any human-annotated data, which greatly
improves its real-world applicability.

4.4 Domain Generalizability of UNIGEN

To intuitively examine the domain generalizability
of UNIGEN, we plotted the T-SNE (Van der Maaten
and Hinton, 2008) visualization of the features in-
terpreted by the RoBERTa-based TAM trained us-
ing UNIGEN. Figure 2 depicts the visualization
results. These results suggest that the single TAM
classified the given data from every domain with-
out explicit training or prior information about the
domains, thus demonstrating the unique efficiency
of UNIGEN.

Table 5 presents examples of the sentences gen-
erated using UNIGEN. These examples showcase
that UNIGEN can generate domain-invariant sen-
tences with the designated labels. By training
TAMs on these data, it is possible to distill the
domain generalizability of PLMs into TAMs.

Figure 2: T-SNE visualization of the encoded represen-
tation of the RoBERTa model trained using UNIGEN.
The model was trained only on the data generated using
UNIGEN, which is shown in gray color. We used the
test set of the multi-domain review dataset.

4.5 Ablation Study

This section describes the ablation studies con-
ducted to offer rationales for the engineering
choices made in this study. We used the
DistilBERT-based TAM for these experiments.

4.5.1 Effectiveness of Relabeling Strategy
First, we performed an ablation study to validate
the effectiveness of the relabeling strategy dis-
cussed in Section 3.3. We compared the basic ap-
proach that uses soft labels to the two other options.
The first option utilizes the pseudo-relabeling pro-
cess, but it assigns hard labels instead of soft labels.
In other words, it only reflects the decision emanat-
ing from the PLM, not the probability. The second
option completely excludes the relabeling process.
While this option would generate the dataset faster
than the other options, it might generate text with
noisy labels, as already discussed in previous works
(Ye et al., 2022a,b; Gao et al., 2023).

The experimental results are presented in the
second and third rows of Table 6. They suggest
that the use of soft labels offers practical benefits
in terms of performance. This finding is consistent
with that of a previous study in which the strength
of soft labels was demonstrated (Yoo et al., 2021;
Fang et al., 2024). Therefore, according to the re-
sults of this ablation study, relabeling the generated
data with the assignment of soft labels is effective
for mitigating the issue of noisy labels.
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Positive Examples Labels
You are a person who is hardworking, honest, and reliable. You have a good sense of humor, and you love being in charge. [0.19, 0.81]
You are beautiful, you are powerful, you are amazing. [0.29, 0.71]
In a city full of great ideas and creativity, I’ve met a few people who have done things you wouldn’t believe. [0.26, 0.74]
The American Dream is alive in this great city. As a new generation of American heroes begins to realize their own American Dream. [0.24, 0.76]

Negative Examples Labels
No one likes it. Nobody wants it. It is a disgrace. [0.7, 0.3]
The company is no longer in business and has ceased operations. [0.71, 0.29]
Please don’t use this feature to communicate with customers [0.74, 0.26]
Do not buy from this seller. [0.79, 0.21]

Table 5: Examples of the data generated using UNIGEN.

DistilBERT SST-2 IMDB Rotten Amazon Yelp CR Tweet Average
UNIGEN 77.67 67.81 73.16 75.06 74.81 79.86 81.41 75.68
UNIGEN

w/ Hard Relabeling
77.18 67.18 72.37 72.91 72.95 78.14 80.39 74.45

UNIGEN

w/o Relabeling
76.34 66.58 71.78 70.63 70.97 76.59 79.62 73.22

UNIGEN

w/o Denoising MB
77.06 67.13 72.04 74.69 73.66 78.47 80.84 74.84

UNIGEN

w/o SCL
75.53 66.10 69.63 71.43 69.58 77.22 79.31 72.69

Combined Prompts 74.19 63.16 71.08 73.62 72.93 78.05 78.02 73.01

Table 6: Results of ablation studies on methodological
choices in Section 4.5.1, 4.5.2, and 4.5.3.

DistilBERT SST-2 IMDB Rotten Amazon Yelp CR Tweet Average
UNIGEN

w/ GPT2-XL
77.67 67.81 73.16 75.06 74.81 79.86 81.41 75.68

UNIGEN

w/ Gemma-2b
71.50 69.40 67.04 76.48 76.89 77.24 52.03 70.08

UNIGEN

w/ Qwen2-1.5B
66.37 63.19 63.76 71.69 72.44 66.06 63.49 66.71

UNIGEN

w/ Phi-1.5
74.98 68.35 70.82 73.86 75.11 71.82 84.01 74.13

Table 7: Results of ablation studies on comparison be-
tween various PLMs in Section 4.5.4.

4.5.2 Effectiveness of Supervised Contrastive
Learning and Denoising Memory Bank

Second, we conducted a comparison to investigate
the effectiveness of supervised contrastive learn-
ing, which was discussed in Section 3.1.2, and
denoising memory bank, which was discussed in
Section 3.4. The results of the comparison are
presented in fourth and fifth rows of Table 6. In-
tuitively, if the quality of each of the data in the
dataset is given as a weight, it would be effective to
employ only high-quality samples for comparing
contrastive learning rather than utilizing all data,
regardless of their quality. The experimental result
in the fourth row demonstrated that the use of a de-
noising memory bank yielded a performance gain,
which was consistent with our intuition. Similarly,
the result in the fifth row suggests that supervised
contrastive learning plays a crucial role in UNI-
GEN.

4.5.3 Comparison with Combined
Domain-specific Datasets

Third, we compared the performance of the TAMs
trained with two different synthetic datasets. The
first uses the synthetic dataset generated with the
prompt of UNIGEN, and the second uses the con-
catenation of datasets generated with five different
domain-specific prompts used in the other experi-
ments. For this experiment, we only differentiated
the synthetic dataset used for training and set every
other configuration identical, such as the usage of
pseudo-relabeling and denoised memory bank, as
well as other hyperparameters. The result of the ab-
lation study is presented in the last row of Table 6.
The result indicates that the model trained with
the dataset generated by the universal prompt in
UNIGEN demonstrated better average performance.
This suggests that the broad understanding of the
label space offered by the synthetic dataset gener-
ated by UNIGEN plays an important role in domain
generalization.

4.5.4 Comparison between PLMs for Data
Generation

Lastly, we evaluated the performance of TAMs
trained using various PLMs. Initially, we utilized
GPT2-XL as the PLM for data generation. In
this experiment, we extended the evaluation by
incorporating more recent models as data genera-
tors. Specifically, we compared the performance
of TAMs trained with UNIGEN using Gemma-
2b (Team et al., 2024), Qwen2-1.5B (Yang et al.,
2024), and Phi-1.5 (Li et al., 2023), which are more
recent models with parameter sizes comparable to
GPT2-XL. All other configurations, aside from the
PLM used for data generation, were kept consistent
with the original GPT2-XL-based TAM.

Table 7 presents the results of this experiment.
Interestingly, the findings suggest that employing
more recent PLMs does not necessarily lead to bet-
ter performance in UNIGEN. The TAM trained
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with GPT2-XL, our original choice for data gen-
eration, achieved the highest average performance.
This aligns with previous studies, which indicate
that using larger PLM does not always result in
superior outcomes (Ye et al., 2022a). However, de-
spite using identical hyperparameters and prompts
to ensure a fair comparison, it is important to rec-
ognize that optimal hyperparameters, such as top-k,
top-p, and τRE, as well as the prompt configurations,
may vary for each PLM. Future research could fo-
cus on developing a unified framework to optimize
hyperparameters and prompts for each PLMs, akin
to methods like AutoAugment (Cubuk et al., 2019;
Ren et al., 2021).

5 Conclusion

In this study, we proposed UNIGEN in an attempt
to achieve universal domain generalization. UNI-
GEN successfully transferred the domain generaliz-
ability of PLMs into orders-of-magnitude smaller
TAMs. Moreover, human annotation was not re-
quired for UNIGEN, which significantly reduced
the burden of acquiring labeled data from multi-
ple source domains. Our relabeling method and
denoising memory bank offered additional perfor-
mance gains. Furthermore, our extensive experi-
ments demonstrated that UNIGEN outperformed
PROMPTING, facilitating light inference while pre-
serving the domain generalizability of PLMs.

Although we explored an interesting framework
for zero-shot, lightweight domain generalization,
the performance of UNIGEN appears weaker than
those of baseline models that are trained on each
domain in several cases. It is desirable to achieve
a higher level of performance than those of the in-
domain baselines, which we will attempt in future
work. To this end, the generation of small task-
specific data for additional training of the TAM
trained using UNIGEN is a possible approach, es-
pecially when a downstream task domain is intro-
duced. By employing TAMs that are pre-trained
using UNIGEN as a warm start, high performance
could be achieved in the target domain with a small
amount of task-specific data, which would reduce
the total amount of data generated compared to
that when individually training each TAM by using
ZEROGEN or SUNGEN from scratch. Another pos-
sible approach may involve combining UNIGEN

with the concept of test-time learning (Jeong et al.,
2023). Similar to the first strategy, it may generate
small amounts of test domain-specific data given

test-time data as in-context examples. We are com-
mitted to exploring these possible strategies, which
will enhance the effectiveness of UNIGEN.

Limitations

The primary limitation of UNIGEN is its relatively
weaker in-domain performance than those of base-
lines that are trained with domain-specific datasets.
While it is beneficial for its smaller parameter set
and lower inference cost while maintaining the
domain generalizability of PLMs, there exists a
tradeoff between in-domain performance and effi-
ciency, unlike ZEROGEN and SUNGEN. Therefore,
a method for further enhancing the performance
of UNIGEN should be explored, as stated in the
Conclusion section. A possible solution is a proper
prompt designed for UNIGEN because the quality
of the generated sentences is affected by prompt de-
sign. Even though we adapted an effective prompt
designed in a previous work (Ye et al., 2022a), a
more effective prompt for UNIGEN that aims to
generate diverse and general expressions could ex-
ist.
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Acknowledgements

This research was supported by Basic Science Re-
search Program through the National Research
Foundation of Korea(NRF) funded by the Ministry
of Education(NRF-2022R1C1C1008534), and In-
stitute for Information & communications Tech-
nology Planning & Evaluation (IITP) through the
Korea government (MSIT) under Grant No. 2021-
0-01341 (Artificial Intelligence Graduate School
Program, Chung-Ang University).

References
Maha Agro and Hanan Aldarmaki. 2023. Handling

realistic label noise in bert text classification. In
Proceedings of ICNLSP, pages 11–20.

Ateret Anaby-Tavor, Boaz Carmeli, Esther Goldbraich,
Amir Kantor, George Kour, Segev Shlomov, Naama
Tepper, and Naama Zwerdling. 2020. Do not have
enough data? deep learning to the rescue! In Pro-
ceedings of AAAI, pages 7383–7390.

9

https://aclanthology.org/2023.icnlsp-1.2
https://aclanthology.org/2023.icnlsp-1.2
https://ojs.aaai.org/index.php/AAAI/article/view/6233
https://ojs.aaai.org/index.php/AAAI/article/view/6233


John Blitzer, Mark Dredze, and Fernando Pereira. 2007.
Biographies, bollywood, boom-boxes and blenders:
Domain adaptation for sentiment classification. In
Proceedings of ACL, pages 440–447.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. In Proceedings of NeurIPS, pages 1877–
1901.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey Hinton. 2020. A simple framework for
contrastive learning of visual representations. In Pro-
ceedings of ICML, pages 1597–1607.

Xilun Chen and Claire Cardie. 2018. Multinomial adver-
sarial networks for multi-domain text classification.
In Proceedings of NAACL, pages 1226–1240.

Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay
Vasudevan, and Quoc V Le. 2019. Autoaugment:
Learning augmentation strategies from data. In Pro-
ceedings of CVPR, pages 113–123.

Xiaowen Ding, Bing Liu, and Philip S Yu. 2008. A
holistic lexicon-based approach to opinion mining.
In Proceedings of WSDM, pages 231–240.

Tianqing Fang, Wenxuan Zhou, Fangyu Liu, Hongming
Zhang, Yangqiu Song, and Muhao Chen. 2024. On-
the-fly denoising for data augmentation in natural
language understanding. In Findings of EACL, pages
766–781.

Jiahui Gao, Renjie Pi, Lin Yong, Hang Xu, Jiacheng
Ye, Zhiyong Wu, Weizhong Zhang, Xiaodan Liang,
Zhenguo Li, and Lingpeng Kong. 2023. Self-guided
noise-free data generation for efficient zero-shot
learning. In Proceedings of ICLR.

Han Guo, Ramakanth Pasunuru, and Mohit Bansal.
2020. Multi-source domain adaptation for text clas-
sification via distancenet-bandits. In Proceedings of
AAAI, pages 7830–7838.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and
Ross Girshick. 2020. Momentum contrast for unsu-
pervised visual representation learning. In Proceed-
ings of CVPR, pages 9729–9738.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Soyeong Jeong, Jinheon Baek, Sukmin Cho, Sung
Hwang, and Jong Park. 2023. Test-time self-adaptive
small language models for question answering. In
Findings of EMNLP, pages 15459–15469.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao
Chen, Linlin Li, Fang Wang, and Qun Liu. 2020.
Tinybert: Distilling bert for natural language under-
standing. In Findings of EMNLP, pages 4163–4174.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron
Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. 2020. Su-
pervised contrastive learning. In Proceedings of
NeurIPS, pages 18661–18673.

Daehee Kim, Youngjun Yoo, Seunghyun Park, Jinkyu
Kim, and Jaekoo Lee. 2021. Selfreg: Self-supervised
contrastive regularization for domain generalization.
In Proceedings of ICCV, pages 9619–9628.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of EMNLP,
pages 1746–1751.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceedings
of ICLR.

Varun Kumar, Ashutosh Choudhary, and Eunah Cho.
2020. Data augmentation using pre-trained trans-
former models. In Proceedings AACL 2020 Work-
shop on Life-long Learning for Spoken Language
Systems, pages 18–26.

Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie
Del Giorno, Suriya Gunasekar, and Yin Tat Lee. 2023.
Textbooks are all you need ii: phi-1.5 technical report.
arXiv preprint arXiv:2309.05463.

Ruibo Liu, Chenyan Jia, Jason Wei, Guangxuan Xu,
and Soroush Vosoughi. 2022. Quantifying and alle-
viating political bias in language models. Artificial
Intelligence, 304:103654.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Andrew Maas, Raymond E Daly, Peter T Pham, Dan
Huang, Andrew Y Ng, and Christopher Potts. 2011.
Learning word vectors for sentiment analysis. In
Proceedings of ACL, pages 142–150.

Julian McAuley and Jure Leskovec. 2013. Hidden fac-
tors and hidden topics: understanding rating dimen-
sions with review text. In Proceedings of RecSys,
pages 165–172.

Yu Meng, Jiaxin Huang, Yu Zhang, and Jiawei Han.
2022. Generating training data with language mod-
els: Towards zero-shot language understanding. In
Proceedings of NeurIPS, pages 462–477.

Jianmo Ni, Jiacheng Li, and Julian McAuley. 2019. Jus-
tifying recommendations using distantly-labeled re-
views and fine-grained aspects. In Proceedings of
EMNLP, pages 188–197.

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploiting
class relationships for sentiment categorization with
respect to rating scales. In Proceedings of ACL, pages
115–124.

10

https://aclanthology.org/P07-1056/
https://aclanthology.org/P07-1056/
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.mlr.press/v119/chen20j.html
https://proceedings.mlr.press/v119/chen20j.html
https://aclanthology.org/N18-1111
https://aclanthology.org/N18-1111
https://openaccess.thecvf.com/content_CVPR_2019/html/Cubuk_AutoAugment_Learning_Augmentation_Strategies_From_Data_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Cubuk_AutoAugment_Learning_Augmentation_Strategies_From_Data_CVPR_2019_paper.html
https://dl.acm.org/doi/10.1145/1341531.1341561
https://dl.acm.org/doi/10.1145/1341531.1341561
https://aclanthology.org/2024.findings-eacl.51
https://aclanthology.org/2024.findings-eacl.51
https://aclanthology.org/2024.findings-eacl.51
https://openreview.net/forum?id=h5OpjGd_lo6
https://openreview.net/forum?id=h5OpjGd_lo6
https://openreview.net/forum?id=h5OpjGd_lo6
https://ojs.aaai.org/index.php/AAAI/article/view/6288
https://ojs.aaai.org/index.php/AAAI/article/view/6288
https://openaccess.thecvf.com/content_CVPR_2020/html/He_Momentum_Contrast_for_Unsupervised_Visual_Representation_Learning_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/He_Momentum_Contrast_for_Unsupervised_Visual_Representation_Learning_CVPR_2020_paper.html
https://direct.mit.edu/neco/article-abstract/9/8/1735/6109/Long-Short-Term-Memory?redirectedFrom=fulltext
https://direct.mit.edu/neco/article-abstract/9/8/1735/6109/Long-Short-Term-Memory?redirectedFrom=fulltext
https://aclanthology.org/2023.findings-emnlp.1033
https://aclanthology.org/2023.findings-emnlp.1033
https://aclanthology.org/2020.findings-emnlp.372
https://aclanthology.org/2020.findings-emnlp.372
https://proceedings.neurips.cc/paper/2020/hash/d89a66c7c80a29b1bdbab0f2a1a94af8-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/d89a66c7c80a29b1bdbab0f2a1a94af8-Abstract.html
https://openaccess.thecvf.com/content/ICCV2021/html/Kim_SelfReg_Self-Supervised_Contrastive_Regularization_for_Domain_Generalization_ICCV_2021_paper.html
https://openaccess.thecvf.com/content/ICCV2021/html/Kim_SelfReg_Self-Supervised_Contrastive_Regularization_for_Domain_Generalization_ICCV_2021_paper.html
https://aclanthology.org/D14-1181
https://aclanthology.org/D14-1181
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://aclanthology.org/2020.lifelongnlp-1.3
https://aclanthology.org/2020.lifelongnlp-1.3
https://arxiv.org/abs/2309.05463
https://www.sciencedirect.com/science/article/abs/pii/S0004370221002058
https://www.sciencedirect.com/science/article/abs/pii/S0004370221002058
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://aclanthology.org/P11-1015/
https://dl.acm.org/doi/10.1145/2507157.2507163
https://dl.acm.org/doi/10.1145/2507157.2507163
https://dl.acm.org/doi/10.1145/2507157.2507163
https://proceedings.neurips.cc/paper_files/paper/2022/hash/0346c148ba1c21c6b4780a961ea141dc-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/0346c148ba1c21c6b4780a961ea141dc-Abstract-Conference.html
https://aclanthology.org/D19-1018/
https://aclanthology.org/D19-1018/
https://aclanthology.org/D19-1018/
https://aclanthology.org/P05-1015/
https://aclanthology.org/P05-1015/
https://aclanthology.org/P05-1015/


Fengchun Qiao, Long Zhao, and Xi Peng. 2020. Learn-
ing to learn single domain generalization. In Pro-
ceedings of CVPR, pages 12556–12565.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Shuhuai Ren, Jinchao Zhang, Lei Li, Xu Sun, and Jie
Zhou. 2021. Text autoaugment: Learning composi-
tional augmentation policy for text classification. In
Proceedings of EMNLP, pages 9029–9043.

Joshua David Robinson, Ching-Yao Chuang, Suvrit Sra,
and Stefanie Jegelka. 2021. Contrastive learning with
hard negative samples. In Proceedings of ICLR.

Sara Rosenthal, Noura Farra, and Preslav Nakov. 2017.
Semeval-2017 task 4: Sentiment analysis in twitter.
In Proceedings of SemEval, pages 502–518.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of EMNLP, pages 1631–1642.

Hwanjun Song, Minseok Kim, Dongmin Park, Yooju
Shin, and Jae-Gil Lee. 2023. Learning from noisy
labels with deep neural networks: A survey. IEEE
Transactions on Neural Networks and Learning Sys-
tems, 34(11):8135–8153.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jon Shlens, and Zbigniew Wojna. 2016. Rethinking
the inception architecture for computer vision. In
Proceedings of CVPR, pages 2818–2826.

Qingyu Tan, Ruidan He, Lidong Bing, and Hwee Tou
Ng. 2022. Domain generalization for text classifica-
tion with memory-based supervised contrastive learn-
ing. In Proceedings of COLING, pages 6916–6926.

Gemma Team, Thomas Mesnard, Cassidy Hardin,
Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale,
Juliette Love, et al. 2024. Gemma: Open models
based on gemini research and technology. arXiv
preprint arXiv:2403.08295.

Laurens Van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of machine
learning research, 9(86):2579–2605.

Jindong Wang, Cuiling Lan, Chang Liu, Yidong
Ouyang, Tao Qin, Wang Lu, Yiqiang Chen, Wenjun
Zeng, and Philip Yu. 2022. Generalizing to unseen
domains: A survey on domain generalization. IEEE
Transactions on Knowledge and Data Engineering,
35(8):8052–8072.

Song Wang, Zhen Tan, Ruocheng Guo, and Jundong
Li. 2023. Noise-robust fine-tuning of pretrained lan-
guage models via external guidance. In Findings of
EMNLP, pages 12528–12540.

Zijian Wang, Yadan Luo, Ruihong Qiu, Zi Huang, and
Mahsa Baktashmotlagh. 2021. Learning to diversify
for single domain generalization. In Proceedings of
ICCV, pages 834–843.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, et al. 2020. Transformers: State-of-the-art natu-
ral language processing. In Proceedings of EMNLP
(Demo Track), pages 38–45.

Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua
Lin. 2018. Unsupervised feature learning via non-
parametric instance discrimination. In Proceedings
of CVPR, pages 3733–3742.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, et al. 2024. Qwen2
technical report. arXiv preprint arXiv:2407.10671.

Hai Ye, Qingyu Tan, Ruidan He, Juntao Li, Hwee Tou
Ng, and Lidong Bing. 2020. Feature adaptation of
pre-trained language models across languages and
domains with robust self-training. In Proceedings of
EMNLP, pages 7386–7399.

Jiacheng Ye, Jiahui Gao, Qintong Li, Hang Xu, Jiangtao
Feng, Zhiyong Wu, Tao Yu, and Lingpeng Kong.
2022a. Zerogen: Efficient zero-shot learning via
dataset generation. In Proceedings of EMNLP, pages
11653–11669.

Jiacheng Ye, Jiahui Gao, Zhiyong Wu, Jiangtao Feng,
Tao Yu, and Lingpeng Kong. 2022b. Progen: Pro-
gressive zero-shot dataset generation via in-context
feedback. In Findings of EMNLP, pages 3671–3683.

Jiacheng Ye, Chengzu Li, Lingpeng Kong, and Tao Yu.
2023. Generating data for symbolic language with
large language models. In Proceedings of EMNLP,
pages 8418–8443.

Kang Min Yoo, Dongju Park, Jaewook Kang, Sang-Woo
Lee, and Woomyoung Park. 2021. Gpt3mix: Lever-
aging large-scale language models for text augmenta-
tion. In Findings of EMNLP, pages 2225–2239.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Proceedings of NeurIPS.

Kaiyang Zhou, Ziwei Liu, Yu Qiao, Tao Xiang, and
Chen Change Loy. 2022. Domain generalization: A
survey. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 45(4):4396–4415.

Tianyuan Zou, Yang Liu, Peng Li, Jianqing Zhang,
Jingjing Liu, and Ya-Qin Zhang. 2024. Fusegen: Plm
fusion for data-generation based zero-shot learning.
arXiv preprint arXiv:2406.12527.

11

https://openaccess.thecvf.com/content_CVPR_2020/html/Qiao_Learning_to_Learn_Single_Domain_Generalization_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Qiao_Learning_to_Learn_Single_Domain_Generalization_CVPR_2020_paper.html
https://openai.com/index/better-language-models/
https://openai.com/index/better-language-models/
https://aclanthology.org/2021.emnlp-main.711/
https://aclanthology.org/2021.emnlp-main.711/
https://openreview.net/forum?id=CR1XOQ0UTh-
https://openreview.net/forum?id=CR1XOQ0UTh-
https://aclanthology.org/S17-2088/
https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/1910.01108
https://aclanthology.org/D13-1170/
https://aclanthology.org/D13-1170/
https://ieeexplore.ieee.org/abstract/document/9729424
https://ieeexplore.ieee.org/abstract/document/9729424
https://openaccess.thecvf.com/content_cvpr_2016/html/Szegedy_Rethinking_the_Inception_CVPR_2016_paper.html
https://openaccess.thecvf.com/content_cvpr_2016/html/Szegedy_Rethinking_the_Inception_CVPR_2016_paper.html
https://aclanthology.org/2022.coling-1.602/
https://aclanthology.org/2022.coling-1.602/
https://aclanthology.org/2022.coling-1.602/
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2403.08295
https://jmlr.org/papers/v9/vandermaaten08a.html
https://ieeexplore.ieee.org/document/9782500
https://ieeexplore.ieee.org/document/9782500
https://aclanthology.org/2023.findings-emnlp.834/
https://aclanthology.org/2023.findings-emnlp.834/
https://openaccess.thecvf.com/content/ICCV2021/html/Wang_Learning_To_Diversify_for_Single_Domain_Generalization_ICCV_2021_paper.html
https://openaccess.thecvf.com/content/ICCV2021/html/Wang_Learning_To_Diversify_for_Single_Domain_Generalization_ICCV_2021_paper.html
https://aclanthology.org/2020.emnlp-demos.6/
https://aclanthology.org/2020.emnlp-demos.6/
https://openaccess.thecvf.com/content_cvpr_2018/html/Wu_Unsupervised_Feature_Learning_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Wu_Unsupervised_Feature_Learning_CVPR_2018_paper.html
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2407.10671
https://aclanthology.org/2020.emnlp-main.599/
https://aclanthology.org/2020.emnlp-main.599/
https://aclanthology.org/2020.emnlp-main.599/
https://aclanthology.org/2022.emnlp-main.801/
https://aclanthology.org/2022.emnlp-main.801/
https://aclanthology.org/2022.findings-emnlp.269/
https://aclanthology.org/2022.findings-emnlp.269/
https://aclanthology.org/2022.findings-emnlp.269/
https://aclanthology.org/2023.emnlp-main.523/
https://aclanthology.org/2023.emnlp-main.523/
https://aclanthology.org/2021.findings-emnlp.192/
https://aclanthology.org/2021.findings-emnlp.192/
https://aclanthology.org/2021.findings-emnlp.192/
https://papers.nips.cc/paper_files/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html
https://papers.nips.cc/paper_files/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html
https://ieeexplore.ieee.org/document/9847099/
https://ieeexplore.ieee.org/document/9847099/
https://arxiv.org/abs/2406.12527
https://arxiv.org/abs/2406.12527


A Prompt for Each Domain

Domain Prompt
Movie The movie review in [positive/negative] sentiment is:

Products The product review in [positive/negative] sentiment is:
Restaurant The restaurant review in [positive/negative] sentiment is:
Electronics The electronics product review in [positive/negative] sentiment is:

Tweet The tweet in [positive/negative] sentiment is:
UNIGEN &
PROMPTING

The text in [positive/negative] sentiment is:

Table 8: The prompt used for each domain in ZEROGEN
and SUNGEN, as well as the prompt used for UNIGEN
and PROMPTING.

B Implementation Detail

For UNIGEN, we first generated 1,000k data from
the 1.5B GPT2-XL model asP by using the prompt
Tuni “The text in positive/negative sentiment is: ”,
which is a slightly modified version of the best
prompt suggested in a previous study. Top-k and
top-p were set to 40 and 0.9 during the generation
procedure, respectively. The soft relabeling process
was performed using a τRE of 0.1. After obtaining
the soft labels of each of the generated samples, we
filtered them using TRE of 0.2. This required the
largest value from the soft labels to be larger than
the sum of the uniform distribution and TRE, for
instance, 0.7 in binary classification with TRE of
0.2. As an example, the sentence corresponding to
the soft label [0.64, 0.36] was discarded because it
did not exceed the threshold.

After generation, we followed the bi-level opti-
mization approach proposed in SUNGEN to cleanse
the generated dataset and find the sample weights
for 50 epochs. The outer learning rate was set
to 5e-2, and we randomly sampled 50k data for
each outer validation process. Then, we selected
200k data with high weights, which represent high-
quality data, to train the TAMs.

We used a one-layer bi-LSTM model for
the LSTM-based TAM and the distilbert-base-
uncased and roberta-base from Transformers (Wolf
et al., 2020) for the DistilBERT-based TAM and
RoBERTa-based TAM, respectively. We trained the
LSTM-based TAM for 5 epochs with the learning
rate of 1e-3 by using the Adam (Kingma and Ba,
2015) optimizer. The DistilBERT-based TAM was
trained for 3 epochs with a learning rate of 2e-5 by
using the Adam optimizer. The RoBERTa-based
TAM was trained for 3 epochs with a learning rate
of 2e-5 by using the Adam optimizer. During the
training process, α for supervised contrastive learn-
ing loss was set to 0.5, with a projection size of

256. The temperature τSCL was set to 0.2, and the
memory bank size M was set to 64. The coefficient
m for updating the momentum encoder was set to
0.999, and the threshold of the denoising memory
bank TMB was set to 0.8. The dataset generation
and training procedures were executed using on a
single NVIDIA A100 40GB GPU. Please refer to
attached source code for further details.1

C Extensibility of Relabeling Strategy

DistilBERT SST-2 IMDB Rotten Amazon Yelp CR Tweet Average
ZEROGEN 80.06 69.13 74.73 73.02 72.77 73.59 74.83 74.02
ZEROGEN

w/ Hard Relabeling
80.72 69.25 73.98 73.41 73.18 73.76 74.91 74.17

ZEROGEN

w/ Soft Relabeling
81.79 70.40 75.32 73.65 73.31 74.72 75.14 74.90

Table 9: Experimental result on the extensibility of rela-
beling strategy. We trained the TAM using ZEROGEN
based on the movie domain.

We examined the extensibility of the relabeling
strategy discussed in Section 3.3. We applied two
different options for relabeling, namely assigning
hard labels and soft labels to ZEROGEN. Table 9
summarizes the results. These results suggest that
the relabeling strategy is beneficial for the perfor-
mance of the TAM trained using ZEROGEN. There-
fore, filtering the generated data through the relabel-
ing strategy is an extensive strategy for enhancing
zero-shot learning methods based on dataset gener-
ation. Furthermore, the assignment of soft labels
was more beneficial compared to the assignment
of hard labels, which is consistent with the results
of the ablation study described in Section 4.5.1.
We will further investigate the relabeling-based ap-
proach to enhance ZEROGEN and SUNGEN in fu-
ture works.

D Additional Experiment on Domain
Generalizability

To further reveal the domain generalizability of
UNIGEN, we conducted an additional experiment
on Amazon Review dataset (Ni et al., 2019). We
used 5-core data for 29 domains and reported the
performance of PROMPTING using GPT2-XL (Rad-
ford et al., 2019) and RoBERTa-based TAM trained
by UNIGEN. The result in Table 10 demonstrates
the performance of UNIGEN that is comparable
with PROMPTING, with parameters less than 10%.
Additionally, this experiment showcases the univer-
sality of UNIGEN, the characteristics that distin-

1https://github.com/c-juhwan/unigen
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Domain PROMPTING UNIGEN

Fashion 93.29 91.16
Beauty 95.63 92.87

Appliances 68.27 79.10
Arts, Crafts and Sewing 91.05 92.08

Automotive 91.07 88.23
Books 89.18 91.26

CDs and Vinyl 82.44 86.42
Cell Phones and Accessories 90.47 88.65
Clothing, Shoes and Jewelry 91.83 90.80

Digital Music 93.72 90.62
Electronics 88.68 88.34
Gift Cards 94.03 92.50

Grocery and Gourmet Food 92.31 91.09
Home and Kitchen 92.11 91.53

Industrial and Scientific 91.07 92.34
Kindle Store 89.49 92.76

Luxury Beauty 90.03 91.82
Magazine Subscriptions 85.97 89.64

Movies and TV 86.39 88.19
Musical Instruments 90.72 90.20

Office Products 91.74 89.60
Patio, Lawn and Garden 89.96 87.87

Pet Supplies 90.60 89.91
Prime Pantry 93.64 88.15

Software 82.55 83.39
Sports and Outdoors 88.63 90.36

Tools and Home Improvement 87.41 88.90
Toys and Games 91.54 92.02

Video Games 85.79 86.07
Average 89.30 89.51

Table 10: The result of the experiment on the Amazon
Review dataset.

guish UNIGEN from previous ZEROGEN and SUN-
GEN. Compared to previous methods that would
require 29 separately trained TAMs to conduct this
experiment, UNIGEN only used one single TAM
to perform the experiment, which exhibits the real-
world applicability of UNIGEN.

E Additional Study on the Performance
of UNIGEN on Small-sized TAMs

We found that UNIGEN suffers to exhibit its perfor-
mance on the LSTM model from the experiment
in Table 2. To further investigate this phenomenon,
we expand our experiment into two different small-
sized TAMs: TextCNN (Kim, 2014) and TinyBERT
(Jiao et al., 2020). Table 11 showcases the result of
the additional experiment. In the case of TextCNN-
based TAM, baseline methods such as ZEROGEN

and SUNGEN demonstrated comparable or slightly
higher performance compared to that of LSTM-
based TAM. Nonetheless, TextCNN-based TAM
trained on UNIGEN reported slightly worse per-

formance compared to LSTM-based TAM despite
increased parameter size. We hypothesize that
this phenomenon is owing to the architecture of
TextCNN, which leverages CNN layers that have
fixed window size, leading to limited ability to
understand the context of diverse expression gen-
erated by UNIGEN. On the contrary, TinyBERT-
based TAM trained on UNIGEN exhibited the best
average performance among the baselines. Fur-
thermore, its average performance is comparable
to DistilBERT-based TAM despite a much smaller
parameter size. It is noteworthy that TinyBERT is
also a model that has a general understanding of
the language through knowledge distillation from
BERT. Through this investigation, we reveal that
the pre-trained knowledge of the TAM aids the
successful training of the TAM through UNIGEN.
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Model #Param Training Domain Setup SST-2 IMDB Rotten Amazon Yelp CR Tweet Average
Test Domain Movie Products Restaurant Electronics Tweet

GPT2-XL 1.5B - PROMPTING 82.15 70.26 77.56 79.06 78.04 80.30 80.38 78.25

LSTM 7M

Movie
ZEROGEN 75.11 66.39 69.85 67.24 70.25 69.32 63.43 68.80
SUNGEN 78.79 69.97 73.76 72.15 73.21 70.39 66.84 72.16

Products
ZEROGEN 64.26 61.82 60.13 70.32 67.78 69.46 62.29 65.15
SUNGEN 67.83 63.87 63.46 74.43 73.71 73.35 63.51 68.59

Restaurant
ZEROGEN 67.41 63.01 62.74 68.73 75.51 69.23 66.35 63.28
SUNGEN 69.15 66.62 64.56 73.22 79.56 70.12 67.43 70.09

Electronics
ZEROGEN 64.69 59.13 60.20 66.34 67.72 72.50 60.25 64.40
SUNGEN 68.38 64.33 63.25 72.61 73.01 76.18 66.78 69.22

Tweet
ZEROGEN 61.84 60.17 59.43 64.13 63.68 65.02 74.10 64.05
SUNGEN 66.57 63.96 64.21 69.36 71.68 72.57 81.29 69.95

- UNIGEN 64.15 60.02 60.51 63.82 63.20 69.61 70.32 64.52

CNN 10M

Movie
ZEROGEN 74.34 67.91 70.22 68.69 71.03 70.89 64.77 69.69
SUNGEN 76.98 68.97 73.49 73.04 73.97 71.55 69.43 72.49

Products
ZEROGEN 63.46 62.13 60.35 70.94 68.34 72.34 65.71 66.18
SUNGEN 65.89 63.27 61.97 73.98 72.81 74.02 67.38 68.47

Restaurant
ZEROGEN 67.76 64.18 62.16 70.17 76.65 71.27 65.43 68.23
SUNGEN 68.86 65.62 64.96 73.20 77.87 72.43 68.36 70.19

Electronics
ZEROGEN 65.05 63.04 62.13 67.19 69.50 73.66 63.23 66.26
SUNGEN 67.43 65.13 63.25 70.82 72.79 77.42 67.19 69.15

Tweet
ZEROGEN 60.56 60.68 61.33 64.91 64.37 66.86 75.62 64.90
SUNGEN 65.12 61.56 63.42 66.45 68.46 68.71 80.17 67.70

- UNIGEN 62.31 60.48 61.82 61.08 61.63 68.24 65.95 63.07

TinyBERT 14.5M

Movie
ZEROGEN 78.95 68.37 71.34 70.59 71.35 71.18 68.94 71.53
SUNGEN 80.78 69.86 73.47 72.36 72.42 73.75 70.81 73.35

Products
ZEROGEN 69.22 62.79 63.44 72.57 69.70 73.22 71.21 68.88
SUNGEN 71.74 64.38 64.51 75.81 73.76 74.17 72.86 71.03

Restaurant
ZEROGEN 75.79 64.62 65.53 71.33 77.10 73.52 70.84 71.25
SUNGEN 77.45 67.41 68.01 74.41 79.16 75.86 72.11 73.49

Electronics
ZEROGEN 71.22 64.37 63.06 69.51 70.75 75.71 69.49 69.16
SUNGEN 73.10 65.81 66.71 71.33 74.86 78.43 73.88 72.02

Tweet
ZEROGEN 70.76 63.40 64.43 68.74 70.44 73.72 78.14 69.95
SUNGEN 73.94 64.87 66.31 71.39 72.21 78.16 81.23 72.59

- UNIGEN 76.74 66.88 69.63 73.29 72.10 78.64 80.52 73.97

Table 11: Result of ablation study that examines the performance of UNIGEN and baselines on small-sized TAMs.
The performance of TAM, which is superior to that of PROMPTING, is underlined, and the best result in each test
dataset within the group for each TAM is presented in boldface.
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