Predicting Entity Salience in Extremely Short Documents

Benjamin L. Bullough, Harrison Lundberg, Chen Hu, Weihang Xiao
Amazon / USA
{bullough, lundbh, chenwho, weihanx } @amazon.com

Abstract

A frequent challenge in applications that use
entities extracted from text documents is se-
lecting the most salient entities when only a
small number can be used by the application
(e.g., displayed to a user). Solving this chal-
lenge is particularly difficult in the setting of ex-
tremely short documents, such as the response
from a digital assistant, where traditional sig-
nals of salience such as position and frequency
are less likely to be useful. In this paper, we
propose a lightweight and data-efficient ap-
proach for entity salience detection on short
text documents. Our experiments show that our
approach achieves competitive performance
with respect to complex state-of-the-art models,
such as GPT-4, at a significant advantage in
latency and cost. In limited data settings, we
show that a semi-supervised fine-tuning pro-
cess can improve performance further. Fur-
thermore, we introduce a novel human-labeled
dataset for evaluating entity salience on short
question-answer pair documents.

1 Introduction

Entity salience (ES) is a natural language under-
standing task concerned with determining which
entities mentioned in a passage of text are most
salient to the passage. Salience refers to the cen-
trality of an entity to the content of a text rather
than the intrinsic importance of the entity beyond
the text or its relevance to the perspective of a par-
ticular reader (Gamon et al., 2013). If entities are
to be automatically extracted from the text, entity
recognition and linking is performed before apply-
ing an entity salience model. The role of the ES
model is to score the entities so they can be filtered
(or ranked) by downstream applications.

In the example in Figure 1, there are three enti-
ties extracted from the question-answer (Q/A) pair:
Popsicle, Frank Epperson and San Francisco. The
entity salience task is to classify the entities in the
Q/A pair as salient or non-salient. The ground truth

50

labels for this example indicate that Popsicle and
Frank Epperson are salient while San Francisco is
non-salient. Note that the extraction and linking of
the entities is done by a separate entity recognition
and linking model and is not considered part of the
entity salience task.

Question: Who invented the Popsicle?
Answer: The Popsicle was invented by Frank
Epperson, an 11-year-old from San Francisco.
Entities:

* Name: Popsicle, Salience: True

* Name: Frank Epperson, Salience: True

e Name: San Francisco, Salience: False

Figure 1: Entity Salience Task Example

Compared to long studied NLP tasks such as
named entity recognition and linking (Sevgili et al.,
2020), ES has received less attention in the litera-
ture. Even less studied is the problem of determin-
ing salience in the context of very short documents.
However, very short documents have become an
increasingly important type of data in many online
applications such as social media posts, customer
reviews and question answering systems, and deter-
mining entity salience plays a crucial role in many
applications where focusing on a subset of entities
from a document is required.

In extremely short documents, many of the
signals that are useful features for determining
salience in longer documents, such as position, fre-
quency and co-occurrence patterns are likely to be
absent or attenuated (Sharma and Li, 2019). In this
setting, a semantic understanding of the document
and the entities is more critical. Large language
models and their ability to represent text through
dense embeddings are a natural fit in this situation.

In this paper, we propose to model the salience
of an entity as the similarity of its embedding to the

Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track, pages 50-64
November 12-16, 2024 ©2024 Association for Computational Linguistics

Embedding Context
Context Text —_—
ontext Tex Model Embedding \
Salience
Scores
i i Entit
Entity Feature Text —_, | Embedding y /
-) > —H Model Embedding
L

Figure 2: Entity salience model with biencoder embedding model

embedding of the overall text passage, where each
embedding is generated by a common sentence en-
coder. Specifically, this paper makes the following
contributions:

1. We propose an approach for ES prediction
suitable for extremely short documents us-
ing a sentence encoder applied to both the
document and text representations of each en-
tity. This approach can leverage powerful,
pre-trained language models to generate the
embeddings and requires no labeled training
data. Despite being lightweight, data-efficient
and low-latency, it achieves competitive per-
formance with respect to more heavyweight
models such as GPT-4.

2. We describe how pre-trained sentence en-
coders can be further improved in limited
data settings by fine-tuning on unlabeled in-
domain data using a two step semi-supervised
training approach where a cross-encoder
teacher model is bootstrapped from pseudo-
labels derived from the pre-trained sentence
encoder.

3. We create a novel human-labeled dataset for
ES evaluation on extremely short documents,
which to the best of our knowledge is the first
labeled entity salience dataset that focuses on
short documents. To facilitate further research,

we open source our dataset.

2 Entity Salience Model

2.1 Biencoder model

We model the salience of an entity extracted from a
passage as the similarity (i.e. cosine similarity) of
the entity embedding to the context passage embed-
ding. Given a text embedding function f.,,; and a
similarity function f;,,, we calculate the salience
score Sgqrience Of an entity represented by entity

"https://github.com/amazon-science/entity-salience-short-
documents

51

feature text x.,; With respect to a context passage
Lcontext AS,

Ssalience = fsim(femb(ment)a femb(xcontem)) (D

To get a binary salience classification cgqjient,
we apply a simple threshold ¢ to the salience score,
which can be tuned to control the trade-off between
type I and II errors.

(@)

We calculate the passage and entity embeddings
using a sentence embedding Transformer network
(Vaswani et al., 2017; Reimers and Gurevych,
2019). One of the advantages of such a model
is the flexibility in choosing the text that will rep-
resent the entity and be the input to the sentence
embedding model (i.e., the entity feature text). A
minimal approach would be to use only the en-
tity name or mention text, but other sources of
information include the entity description from a
knowledge base or the entity type labels from a
named entity recognition (NER) system. Text from
various sources can be concatenated to form the
entity feature text. Figure 2 illustrates the proposed
modeling approach, which is similar to other works
that have used used bi-encoder models for text clas-
sification and scoring tasks such as Schopf et al.
(2022); Gao et al. (2021); Reimers and Gurevych
(2019).

Csalient = Ssalience > T

2.2 Semi-supervised fine-tuning with
cross-encoder teacher

While pre-trained sentence encoder models can be
used with the above model of entity salience, per-
formance can be improved by adapting the encoder
to the ES task and the target domain. If labeled ex-
amples are available, they can be used directly for
supervised fine-tuning, however in practice there
are often few labeled examples readily available
and avoiding expensive labeling efforts (in terms

ST
o A

Pseudo-
labeled
data
N~

Pre-trained
Bi-encoder

— —|
label

~

train

¥

Fine-tuned Cross-encoder

Bi-encoder

[y
.

AT
I

Pseudo-
labeled
data
~—

_ train label -

le—

Figure 3: Semi-supervised fine-tuning training flow

of time and money) is desirable. To this end, we
describe a semi-supervised approach to fine-tuning
that does not require any labeled training exam-
ples (and only a few hundred labeled evaluation
examples) but instead bootstraps a cross-encoder
teacher model using the initial pre-trained model
to label training examples. This teacher model is
then used to fine-tune the final biencoder model.
Our approach is inspired by the iterative process of
bootstrapping models described in Liu et al. (2021)
and the data augmentation strategies described in
Thakur et al. (2021).

As illustrated in Figure 3, the first step is to
initialize the biencoder ES model with a pre-
trained sentence embedding model such as SBERT
(Reimers and Gurevych, 2019) or GTE (Li et al.,
2023). This initial model is used to generate entity
salience scores for each context-entity pair in the
dataset.

Next, we initialize a cross-encoder model
(Reimers and Gurevych, 2019) with a pre-trained
language model such as RoBERTa (Liu et al.,
2019), and fine-tune it with Binary Cross Entropy
(BCE) loss using the scores generated in the previ-
ous step 2. We use the fine-tuned model to relabel
the training dataset.

Finally, we fine-tune a pre-trained biencoder
model using our training dataset with labels gener-
ated by the cross-encoder’. We train using Multiple
Negatives Ranking Loss (MNRL) with presumed
positive examples (Henderson et al., 2017). MNRL
creates in-batch negatives by re-pairing the entities

2We experimented with both binary cross entropy (BCE)
loss and mean squared error (MSE) loss and found that BCE
worked better for training the cross-encoder. This aligns with
the observations of Liu et al. (2021), which concluded that
BCE is a “temperature-sharpened version of MSE, which is
more tolerant towards numerical discrepancies”

3See Appendix A.1 for an explanation of our choice to
target a biencoder architecture for deployment.

52

with context from other pairs. Previous work has
shown that MNRL is superior to cross-entropy loss
for training sentence embedding models (Reimers,
2022). To select the positive examples, we set a
threshold on the scores from the cross-encoder and
tune this threshold as a hyper-parameter.

3 WikiQA-Salience dataset

Existing ES datasets (Gamon et al., 2013; Duni-
etz and Gillick, 2014; Wu et al., 2020) focus on
longer documents such as web pages and news ar-
ticles (with many hundreds of words) rather than
the short texts that are the focus of this work. In
this section, we describe the creation of a dataset,
WikiQA-Salience, for evaluating entity salience on
extremely short question-answer pair passages.

We leveraged the WikiQA dataset as a starting
point to create a new ES dataset from publicly avail-
able data. The WikiQA corpus is an answer sen-
tence selection (AS2) dataset where the questions
are derived from query logs of the Bing search en-
gine, and the answer candidates are extracted from
Wikipedia (Yang et al., 2015). The examples are
Q/A pairs in natural language with full-sentence
(non-factoid) answers, which resemble the type of
responses provided by conversational assistants.

We first selected the Q/A pairs in the corpus
where the answer is labeled as correctly answering
the question (positive pairs). Then we applied the
ReFinED named entity resolution model (Ayoola
et al., 2022) to the combined question-answer text
to extract named entities®.

We augment each entity with the name, descrip-
tion and aliases of the entity from WikiData. Since
WikiData descriptions are typically extremely brief,
we further augment the entities in the dataset
with more detailed information from Wikipedia
pages (wherever these are available) including the
Wikipedia summary (i.e., the first section of the
page) and the first 100 noun-phrases from the arti-

*The extraction of entities is performed as a distinct pre-
processing step before the entity salience model by a state-
of-the-art entity extraction model (ReFinED), which was de-
veloped independently (prior to our work). Since our work
focuses only on identifying the degree of salience of entities,
an entity being tagged does not imply salience. The usage
scenarios we envision for our entity salience model include
automated extraction of entities. We consider this aspect of the
data generation process to add a degree of realism to the eval-
uation data. The manual salience annotation step performed
after the automated entity extraction provided an opportunity
for human review of the entities, and erroneously extracted
entities would be expected to be tagged as low-salience by
annotators.

cle extracted with the spaCy NLP library.

Ground truth labels were generated by crowd
workers on the Amazon Mechanical Turk platform
who rated the relevance of each entity to the Q/A
pair it was extracted from on a three level scale
(“High”, “Moderate”, “Low”). Five independent
passes of annotation were performed for each entity.
The finished dataset consists of 687 annotated Q/A
pairs with the linked entity data from ReFinED, en-
tity details from WikiData, and the (5-pass) crowd
worker salience ratings. To aggregate the multiple
annotator passes, we take the median rating (after
mapping to numeric values), which unlike majority
vote considers the inherent ordering of the labels.
The 687 Q/A pairs contain 2113 entities (unique
at the Q/A pair level), and the mean length of the
question-answer text is just 190.6 characters and
32.9 words. The distribution of the ES labels is
significantly skewed towards salient entities with
1089 rated “High”, 535 rated “Moderate” and 489
rated “Low”. For the purpose of using the labels
in a binary classification task, in this work we map
High and Moderate ratings to "salient" and Low
to "non-salient". The inter-rater agreement of the
binary labels measured by the Fleiss’ kappa score
is 0.230, which indicates "fair agreement" between
the annotators (Hartling, 2012). Additional details
on the construction of the dataset can be found in
Appendix A.6.

4 Experiments

In the first set of experiments, we evaluate four
pre-trained models in combination with several
sets of entity text features. The four pre-trained
models are composed of two model sizes selected
from two families of sentence embedding models:
all-MiniLM-v2 (SBERT) (Reimers and Gurevych,
2019; Wang et al., 2020) and GTE (Li et al., 2023).
Table 1 lists the pre-trained sentence embedding
models used in this paper along with the number of
parameters, word embedding dimension and maxi-
mum sequence length for each model. We access
the base models from the HuggingFace Model Hub
with the SentenceTransformers library and evalu-
ate performance on the WikiQA-Salience dataset
described above.

We treat the concatenated question and answer
text for entries in the dataset as the context for
predicting salience. For entity text features, we
consider the entity name (name), Wikidata entity
description (desc), the first section of the entity

53

Wikipedia page (f£s) and the first 100 noun-phrases
from Wikipedia (np), as well as combinations of
these. Table 2 gives the details for each set of entity
text features used.

We measure performance using macro averaged
F1 score (macro-F1) where the operating point of
each model has been tuned to maximize the macro-
F1 score. Our reason for using macro averaging in
this case, rather than the more conventional binary
F1 score, is that the classes are highly imbalanced
and we consider classification accuracy on the neg-
ative (“non-salient”) class as important as classifi-
cation on the positive class (“salient”). Macro-F1
balances these considerations and makes the metric
invariant to the assignment of labels to the classes.

In the second set of experiments, we look at the
performance benefits from fine-tuning the model.
As a source of unlabeled training data, we use
23,843 Q/A pairs published on the Alexa Answer
crowd sourcing platform (AlexaAnswers, 2023).
We also use 500 manually labeled examples from
Alexa Answers as our validation dataset for select-
ing the best model checkpoint during fine-tuning.
We evaluate these models using the same test set
and metrics as in the first set of experiments. Addi-
tional details about the model training process are
included in Appendix A.4.

As a baseline, we compare our method to the
entity salience prediction methods used in Wu
et al. (2020), which were adapted from Duni-
etz and Gillick (2014). We focus on the posi-
tion and frequency oriented features that previ-
ous works found to be useful but adapt them to
the context of extremely short documents. We
use the character position of the start of the first
mention (first-mention-position) as a
feature instead of the sentence of the first men-
tion. We also use the rank order of the first men-
tion (first-mention-order) and the number
of times that the entity is explicitly mentioned
(mention-count). We use a random forest
classification model which we train and evaluate
using three-fold cross-validation on the WikiQA-
Salience dataset.

To provide additional benchmarks for assessing
model performance, we also evaluate the following:

* predict-positive: Always predict ma-
jority class label (i.e. “salient”). This unin-
formed classifier provides a lower bound for
performance.

* human—annotator: Response of a single

model name

| model parameters | word embedding dimension | max seq length

all-MiniLM-L6-v2 22 7TM 384 256
all-MiniLM-L12-v2 334 M 384 128
gte-small 334M 384 512
gte-base 109.5 M 768 512
Table 1: Base biencoder models
feature set name | feature set description
desc Entity description from Wikidata
name Entity name from Wikidata
fs First section of Wikipedia
np First 100 noun-phrases from Wikipedia
name-desc name + desc
name-desc—-fs | name +desc+ fs
name—-desc—np | name +desc +np
Table 2: Entity text feature sets
randomly selected human rater (1-pass) evalu- nodel macro-Fl
ated against the ground truth labels based on - —
) predict-positive 0.435
the consensus of a 5-pass annotation process. first-mention-position (baseline) 0.505
This serves as a benchmark for what a model + first-mention-order 0.547
ith human level abilities would score on this * mention-count 0.538
w u 3 v R W u ; gte-small-name 0.703
dataset. Given the variation in human labeling, gte-small-finetuned—name 0.718
we do not see 100% agreement in the human gte'smaﬁ—ffilame'dzsc . 8;;%:1#.
. . 1qe . gte-small-finetuned—name-desc .
ratlr}gs. It serves.to hlghhght the difficulty and rossencoder-Toberia-base—name-desc 0716
the inherent subjectivity of the task. crossencoder-roberta-base—name-desc-fs 0.725
A _ _ . gpt-4-zero-shot-name 0.721
* gpt-4-zero-shot-name: Prompted human-annofator 0756

GPT-4 LLM model (OpenAl, 2023) with
zero-shot inference (using entity name as
feature text). Additional details about this
model including the prompt used are provide
in Appendix A.5.
crossencoder—-roberta—«*: Two cross-
encoder models based on RoBERTa, with
and without the first section of the entity
Wikipedia page in the feature text. The for-
mer is the teacher model for the fine-tuned
biencoders.

5 Results

5.1 Overall performance compared to
baselines

Table 3 summarizes the performance of our
ES models in the context of the baselines.
The pre-trained gte-small sentence transformer
model using entity name as the feature text
(gte—small—-name) achieves an macro-F1 score
of 70.3%, which far exceeds the 54.7% obtained
by the best baseline using position and frequency
features. However, gte—small-name lags GPT-
4 on this task by 1.8% (absolute) and lags human
performance by 5.2%. Fine-tuning the model im-
proves macro-F1 by 1.5% while a similar amount

54

Table 3: Comparison to baselines (macro-F1)

of improvement (1.8%) comes from adding the
Wikidata entity description to the entity name
(still using the pre-trained model). Fine-tuning
and adding entity descriptions in combination
(gte-small-finetuned-name-desc)adds
3.0%, which exceed zero-shot GPT-4° by 1.2% and
is only 2.3% below human annotator performance.
We see that this biencoder model also achieves par-
ity with the cross-encoder teacher model.

5.2 Pre-trained models

We compare the performance of four pre-trained
models (two sizes of two model families) using
four different source of entity feature text (indi-
vidually) and three additive combinations. These
experiments show how the different sources of in-
formation about entities as well as the size and
quality of the text embedding model impact per-
formance on the entity salience task. The results

SWe find that the latency and cost of using a generative
LLM for this tasks is substantially higher than our approach -
roughly a two orders of magnitude difference. See Appendix
A.2 for a comparison of the latency and cost.

feature-set desc | name fs np | name-desc | name-desc-fs | name-desc-np
base-model ‘

all-minilm-16-v2 0.681 | 0.692 | 0.713 | 0.713 0.707 0.713 0.716
all-minilm-112-v2 | 0.673 | 0.686 | 0.711 | 0.708 0.707 0.708 0.709
gte-small 0.675 | 0.703 | 0.726 | 0.721 0.721 0.723 0.725
gte-base 0.659 | 0.702 | 0.732 | 0.725 0.717 0.726 0.721

Table 4: Pre-trained models with different feature sets (macro-F1)

in Table 4 show that using the very concise Wiki-
data entity descriptions alone perform worse then
using the entity name alone while using the first
section of the Wikipedia entry performed best. Us-
ing a summary of Wikipedia articles based on the
first 100 noun-phrases performed about the same
as using the first section without any further sum-
marization. The combination of entity name and
Wikidata description was much better then either
alone and is nearly as good as the first Wikipedia
section.

We see that the newer GTE family of models
consistently outperforms the older SBERT (all-
MiniLM) models. However there does not appear
to be a consistent improvement from using a larger
model size within the same model family.

5.3 Fine-tuned models

feature-set-name name | name-desc | name-desc-fs
student-model

all-minilm-16-v2 0.692 0.707 0.713
all-minilm-16-v2-ft 0.715 0.728 0.728
all-minilm-112-v2 0.686 0.707 0.708
all-minilm-112-v2-ft | 0.712 0.721 0.717
gte-small 0.703 0.721 0.723
gte-small-ft 0.718 0.733 0.734
gte-base 0.702 0.717 0.726
gte-base-ft 0.704 0.724 0.724

Table 5: Pre-trained vs fine-tuned on different feature
sets (macro-F1). Fine-tuned models are indicated
with a "ft" suffix.

Next, we measure the impact of fine-tuning on
all four pre-trained sentence encoder models with
three progressively larger sets of entity features®.
Table 5 shows the results with fine-tuning relative
to the pre-trained versions of each model. We see
that fine-tuning improves performance in almost
every case. The benefits of fine-tuning appear to
be the greatest where the pre-trained model-feature
set combinations are weakest. The clear gap be-
tween the all-MiniLM and GTE model families is
substantially reduced after fine-tuning.

®We use the same cross-encoder teacher model with entity

name, Wikidata description and the first section of the entity
Wikipedia page as the entity feature text

55

Appendix A.3 describes additional ablation ex-
periments that show the performance of different
cross-encoder models and their impact as teacher
models for fine-tuning the final biencoder.

6 Discussion

6.1 Diminishing returns from using longer
entity descriptions

The results from our experiments show that using
more details about entities improves ES predic-
tions, but we observe diminishing marginal returns
to increasing the amount of feature text. For exam-
ple using the gte-small model, adding very brief
Wikidata descriptions to the entity name adds 1.8%
(absolute) to the macro-F1 score, but adding the
full Wikipedia summary only adds another 0.2%.
This trend is seen with other models and with the
fine-tuned versions as well. This observation is
important given the additional compute and latency
costs associated with processing longer sequences,
and it suggests using information-dense descrip-
tions that maximize the amount of information per
token processed.

6.2 Strong performance of pre-trained models

Another finding is the relatively strong perfor-
mance of using pre-trained sentence transformer
models. While we see consistent gains from fine-
tuning these models, the gains are relatively mod-
est. This speaks to the strong cross-task and cross-
domain generalization of these models and is con-
sistent with the findings of Wang et al. (2021) who
found that the best “out-of-the-box”” models (which
are fully trained with available supervised data in-
cluding STS and NLI datasets) are hard to beat for
most tasks.

6.3 Impact of embedding dimension, max
sequence length and model size

It is also interesting that the most consistent pattern
in performance of the pre-trained models across
different sets of features is that the GTE models
outperform the all-MiniLM models while there is
relatively little difference within each family of

models. The gte-base model has over three times
as many parameters and twice the word embedding
dimension as the gte-small (see Table 1) suggesting
that model capacity is not a limitation for these
models in the ES task.

One significant difference between the model
families is that the GTE models have double (or
more) the maximum sequence length. While this
could certainly be a factor when we use larger
amounts of entity feature text, the performance
gap is also clearly present when only the entity
name is used, which suggest another factor, such
as the data and tasks with which they are trained,
is responsible for the difference.

7 Deployed Application

Our use case is for a conversational assistant, where
entity salience is used to identify the most im-
portant entities in the current question-answer in-
teraction. The most salient entity is used for re-
trieving explorable content to show on the screen
accompanying the spoken answer. Our base-
line system relied on simple heuristics of entity
count and position in the context with respect
to a predicted answer span. We selected the
gte-small-finetuned-name model to de-
ploy due to runtime constraints on the availability
of features and tuned the operating point, using a
labeled dataset, to primarily improve the recall of
salient entities while not harming the precision.

We deployed the new model alongside the base-
line system in an A/B test and monitored perfor-
mance for two weeks. Our key online perfor-
mance indicators were the percentage of question-
answer interactions where we identified at least one
salient entity (salient entity coverage) and the click-
through-rate of explorable content shown on screen
(CTR). Compared to the baseline system, the entity
salience model increased salient entity coverage by
25.7% (relative) and the CTR of explorable content
increased 2%.

8 Related Work

A few previous studies have looked at the topic of
entity salience. Most have focused on longer doc-
uments and found that structural features (such as
position, use in title, etc.) or statistical features (fre-
quency of occurrence) are the most useful features
for their models (Gamon et al., 2013; Dunietz and
Gillick, 2014; Wu et al., 2020). Some more recent
works have also incorporated word or entity embed-

56

dings as features (Ponza et al., 2018; Xiong et al.,
2018). Contemporaneous work by Asgarieh et al.
(2024) explored entity salience detection in news
articles by fine-tuning pre-trained transformer mod-
els with classification heads that use contextualized
entity embeddings.

A closely related research area to ES is keyword
extraction - selecting a small number of words (or
phrases) from a document which can concisely de-
scribe most important topics in the document. ES
can be conceived of as a keyword extraction task
where the set of keywords to be considered is lim-
ited to the named entities in the document.

While there is a large and diverse body of litera-
ture on keyword extraction techniques (Hasan and
Ng, 2014), prior methods typically employ differ-
ent combinations of statistical, graph-based, and
embedding-based features (Rose et al., 2010; Cam-
pos et al., 2020; Mihalcea and Tarau, 2004; Wan
and Xiao, 2008; Bougouin et al., 2013; Wang et al.,
2015). Embedding based methods of keyword ex-
traction generally work by comparing the similarly
of keyword embedding to a passage embedding.
This category of methods is most closely related to
the work described in this paper. Notable, exam-
ples include EmbedRank (Bennani-Smires et al.,
2018) and KeyBERT (Grootendorst, 2023). Also,
Sharma and Li (2019) uses an unsupervised embed-
ding based approach to generate (noisily) labeled
examples which are used to train a model.

9 Conclusion

In this work, we propose a model for entity salience
that works in the context of extremely short docu-
ments and introduce a new dataset for evaluating
entity salience based on WikiQA. We show that
this simple model can perform well in conjunction
with pre-trained sentence transformers. We also
demonstrate a data efficient approach to fine-tuning
the model that achieves performance on-par with
the far larger GPT-4 model on the entity salience
task, while achieving far lower latency and cost,
and is within a few percentage points of human
performance on our dataset.

References

AlexaAnswers. 2023. Alexa answers website. https:
//alexaanswers.amazon.com/about.

Eliyar Asgarieh, Kapil Thadani, and Neil O’Hare. 2024.
Scalable detection of salient entities in news articles.

https://alexaanswers.amazon.com/about
https://alexaanswers.amazon.com/about
https://alexaanswers.amazon.com/about
https://doi.org/10.48550/ARXIV.2405.20461

Tom Ayoola, Shubhi Tyagi, Joseph Fisher, Christos
Christodoulopoulos, and Andrea Pierleoni. 2022. Re-
FinED: An efficient zero-shot-capable approach to
end-to-end entity linking. In Proceedings of the 2022
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies: Industry Track. Association
for Computational Linguistics.

Kamil Bennani-Smires, Claudiu Musat, Andreea Hoss-
mann, Michael Baeriswyl, and Martin Jaggi. 2018.
Simple unsupervised keyphrase extraction using sen-
tence embeddings. In Proceedings of the 22nd Con-
ference on Computational Natural Language Learn-
ing. Association for Computational Linguistics.

Adrien Bougouin, Florian Boudin, and B. Daille. 2013.
Topicrank: Graph-based topic ranking for keyphrase
extraction. International Joint Conference on Natu-
ral Language Processing, page 543-551.

Ricardo Campos, Vitor Mangaravite, Arian Pasquali,
Alipio Jorge, Célia Nunes, and Adam Jatowt. 2020.
YAKE! keyword extraction from single documents
using multiple local features. Information Sciences,
509:257-289.

Jesse Dunietz and Daniel Gillick. 2014. A new entity
salience task with millions of training examples. In
Proceedings of the 14th Conference of the European
Chapter of the Association for Computational Lin-
guistics, volume 2: Short Papers. Association for
Computational Linguistics.

Michael Gamon, Tae Yano, Xinying Song, Johnson
Apacible, and Patrick Pantel. 2013. Identifying
salient entities in web pages. In Proceedings of the
22nd ACM international conference on Conference
on information and knowledge management - CIKM
'13. ACM Press.

Tianyu Gao, Xingcheng Yao, and Dangi Chen. 2021.
SimCSE: Simple contrastive learning of sentence em-
beddings. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing.
Association for Computational Linguistics.

Maarten Grootendorst. 2023. Maartengr/keybert: v0.8.

Lisa Hartling, editor. 2012. Validity and inter-rater re-
liability testing of quality assessment instruments.
Number no. 12-EHCO039-EF in AHRQ publica-
tion. Agency for Healthcare Research and Quality,
Rockville, MD. "March 2012.". - Includes biblio-
graphical references. - Description based on online
resource; title from PDF title page (viewed June 6,
2012).

Kazi Saidul Hasan and Vincent Ng. 2014. Automatic
keyphrase extraction: A survey of the state of the
art. In Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers). Association for Computational
Linguistics.

57

Matthew Henderson, Rami Al-Rfou, Brian Strope, Yun-
hsuan Sung, Laszlo Lukacs, Ruiqi Guo, Sanjiv Ku-
mar, Balint Miklos, and Ray Kurzweil. 2017. Effi-
cient natural language response suggestion for smart

reply.

Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long,
Pengjun Xie, and Meishan Zhang. 2023. Towards
general text embeddings with multi-stage contrastive
learning.

Fangyu Liu, Yunlong Jiao, Jordan Massiah, Emine Yil-
maz, and Serhii Havrylov. 2021. Trans-encoder: Un-
supervised sentence-pair modelling through self- and
mutual-distillations.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach.

Rada Mihalcea and Paul Tarau. 2004. Textrank: Bring-
ing order into text.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari,
Henryk Michalewski, Jacob Austin, David Bieber,
David Dohan, Aitor Lewkowycz, Maarten Bosma,
David Luan, Charles Sutton, and Augustus Odena.
2021. Show your work: Scratchpads for intermediate
computation with language models.

OpenAl. 2023. Gpt-4 technical report.

Marco Ponza, Paolo Ferragina, and Francesco Piccinno.
2018. Swat: A system for detecting salient wikipedia
entities in texts.

Nils Reimers. 2022. Sentencetransformers docu-
mentation. https://github.com/UKPLab/
sentence—-transformers. Accessed: 2023-
10-31.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.

Stuart Rose, Dave Engel, Nick Cramer, and Wendy
Cowley. 2010. Automatic keyword extraction from
individual documents.

Tim Schopf, Daniel Braun, and Florian Matthes. 2022.
Evaluating unsupervised text classification: Zero-
shot and similarity-based approaches.

Ozge Sevgili, Artem Shelmanov, Mikhail Arkhipov,
Alexander Panchenko, and Chris Biemann. 2020.
Neural entity linking: A survey of models based on
deep learning.

Prafull Sharma and Yingbo Li. 2019. Self-supervised
contextual keyword and keyphrase retrieval with self-
labelling.

https://doi.org/10.18653/v1/2022.naacl-industry.24
https://doi.org/10.18653/v1/2022.naacl-industry.24
https://doi.org/10.18653/v1/2022.naacl-industry.24
https://doi.org/10.18653/v1/k18-1022
https://doi.org/10.18653/v1/k18-1022
https://www.semanticscholar.org/paper/4eb78d9230d21c0ec8b590d5408b60b8da015986
https://www.semanticscholar.org/paper/4eb78d9230d21c0ec8b590d5408b60b8da015986
https://doi.org/10.1016/j.ins.2019.09.013
https://doi.org/10.1016/j.ins.2019.09.013
https://doi.org/10.3115/v1/e14-4040
https://doi.org/10.3115/v1/e14-4040
https://doi.org/10.1145/2505515.2505602
https://doi.org/10.1145/2505515.2505602
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.5281/zenodo.8388690
https://doi.org/10.3115/v1/p14-1119
https://doi.org/10.3115/v1/p14-1119
https://doi.org/10.3115/v1/p14-1119
https://doi.org/10.48550/ARXIV.1705.00652
https://doi.org/10.48550/ARXIV.1705.00652
https://doi.org/10.48550/ARXIV.1705.00652
http://arxiv.org/abs/2308.03281
http://arxiv.org/abs/2308.03281
http://arxiv.org/abs/2308.03281
https://doi.org/10.48550/ARXIV.2109.13059
https://doi.org/10.48550/ARXIV.2109.13059
https://doi.org/10.48550/ARXIV.2109.13059
https://doi.org/10.48550/ARXIV.1907.11692
https://doi.org/10.48550/ARXIV.1907.11692
https://www.semanticscholar.org/paper/7b95d389bc6affe6a127d53b04bcfd68138f1a1a
https://www.semanticscholar.org/paper/7b95d389bc6affe6a127d53b04bcfd68138f1a1a
https://doi.org/10.48550/ARXIV.2112.00114
https://doi.org/10.48550/ARXIV.2112.00114
https://doi.org/10.48550/ARXIV.2303.08774
https://doi.org/10.48550/ARXIV.1804.03580
https://doi.org/10.48550/ARXIV.1804.03580
https://github.com/UKPLab/sentence-transformers
https://github.com/UKPLab/sentence-transformers
https://github.com/UKPLab/sentence-transformers
https://github.com/UKPLab/sentence-transformers
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://doi.org/10.1002/9780470689646.ch1
https://doi.org/10.1002/9780470689646.ch1
https://doi.org/10.1145/3582768.3582795
https://doi.org/10.1145/3582768.3582795
https://doi.org/10.48550/ARXIV.2006.00575
https://doi.org/10.48550/ARXIV.2006.00575
https://doi.org/10.20944/preprints201908.0073.v1
https://doi.org/10.20944/preprints201908.0073.v1
https://doi.org/10.20944/preprints201908.0073.v1

Nandan Thakur, Nils Reimers, Johannes Daxenberger,
and Iryna Gurevych. 2021. Augmented SBERT: Data
augmentation method for improving bi-encoders for
pairwise sentence scoring tasks. In Proceedings of
the 2021 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies, pages 296-310, Online.
Association for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, 1. ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Xiaojun Wan and Jianguo Xiao. 2008. Single document
keyphrase extraction using neighborhood knowledge.

Kexin Wang, Nils Reimers, and Iryna Gurevych. 2021.
Tsdae: Using transformer-based sequential denoising
auto-encoderfor unsupervised sentence embedding
learning. arXiv preprint arXiv:2104.06979.

Rui Wang, Wei Liu, and Chris Mcdonald. 2015. Corpus-
independent generic keyphrase extraction using word
embedding vectors.

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan
Yang, and Ming Zhou. 2020. Minilm: Deep self-
attention distillation for task-agnostic compression
of pre-trained transformers.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2022. Chain-of-thought prompting elic-
its reasoning in large language models.

Chuan Wu, Evangelos Kanoulas, Maarten de Rijke, and
Wei Lu. 2020. Wn-salience: A corpus of news ar-
ticles with entity salience annotations. In Proceed-
ings of The 12th Language Resources and Evaluation
Conference, LREC 2020, Marseille, France, May
11-16, 2020, pages 2095-2102. European Language
Resources Association.

Chenyan Xiong, Zhengzhong Liu, Jamie Callan, and
Tie-Yan Liu. 2018. Towards better text understanding
and retrieval through kernel entity salience modeling.

Yi Yang, Wen tau Yih, and Christopher Meek. 2015.
WikiQA: A challenge dataset for open-domain ques-
tion answering. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing. Association for Computational Linguis-
tics.

58

https://www.aclweb.org/anthology/2021.naacl-main.28
https://www.aclweb.org/anthology/2021.naacl-main.28
https://www.aclweb.org/anthology/2021.naacl-main.28
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://www.semanticscholar.org/paper/8a99634e0b418ee61c9bd81f61d334b80486dc53
https://www.semanticscholar.org/paper/8a99634e0b418ee61c9bd81f61d334b80486dc53
https://arxiv.org/abs/2104.06979
https://arxiv.org/abs/2104.06979
https://arxiv.org/abs/2104.06979
https://www.semanticscholar.org/paper/bd3794c777af5ba363abae5708050ea78ecc97e2
https://www.semanticscholar.org/paper/bd3794c777af5ba363abae5708050ea78ecc97e2
https://www.semanticscholar.org/paper/bd3794c777af5ba363abae5708050ea78ecc97e2
https://doi.org/10.48550/ARXIV.2002.10957
https://doi.org/10.48550/ARXIV.2002.10957
https://doi.org/10.48550/ARXIV.2002.10957
https://doi.org/10.48550/ARXIV.2201.11903
https://doi.org/10.48550/ARXIV.2201.11903
https://aclanthology.org/2020.lrec-1.257/
https://aclanthology.org/2020.lrec-1.257/
https://doi.org/10.48550/ARXIV.1805.01334
https://doi.org/10.48550/ARXIV.1805.01334
https://doi.org/10.18653/v1/d15-1237
https://doi.org/10.18653/v1/d15-1237

A Appendix

A.1 Deployment considerations and selection
of biencoder architecture

Biencoders are traditionally considered the most
efficient option when comparisons need to be made
between a large number of items, as in retrieval
tasks. When a smaller number of comparisons are
required, as in a re-ranking task, cross-encoders are
often used because of their ability to model token
level interactions between pairs of items with the
self-attention mechanism (Reimers and Gurevych,
2019).

In this paper, we focus on using a biencoder
architecture for the entity salience task, despite
its similarity to the re-ranking tasks. One practi-
cal reason is that using a biencoder allows us to
cache or pre-compute entity embeddings, which
reduces compute requirements and decreases la-
tency. Additionally, we found that we were ac-
tually able to achieve similar performance with
a fine-tuned biencoder architecture compared to a
cross-encoder teacher model (as noted in the results
section). However, the overall model bootstrapping
approach and the dataset presented in this paper
could easily be adapted to produce a final cross-
encoder student model if desired.

A.2 Latency and cost comparison

We show that GPT-4 achieves performance similar
to our model with no fine-tuning, thus it could be
considered as an alternative to the approach we
describe in this paper in some situations. However,
the latency of the GPT-4 API (at the present time) is
on the order of several seconds for our task, which
is too slow for our conversational voice assistant
use case.

One of the benefits of the simplicity of our ap-
proach is the relatively low latency and cost. While
any comparisons are likely to become quickly
dated, given the rapid changes in computing in-
frastructure and LLM technology, here we provide
some "back-of-the-envelop" calculations to illus-
trate the stark difference in latency and cost be-
tween our approach and a "state-of-the-art" LLM.
(The cost and latency estimates below are current
as of October 2024).

To make the comparison as fair as possible, we
make some changes to the evaluated GPT-4 setup.
We simplify the prompt in Table 9 to remove the
explanations and numeric score from the output,
which substantially reduces the number of output

59

tokens that contribute the most to latency and cost.
We also use the gpt—-3.5-turbo-0125 model
from OpenAl as a more competitive option in terms
of cost and latency. Over the WikiQA-Salience
dataset, we observed a median latency of 1.12 sec-
onds for each example. The median number of
input and output tokens were 188 and 49, respec-
tively. Assuming an average cost per million tokens
of $0.5 (input) and $1.5 (output), the average cost
per entity salience example is $0.0001675.

In contrast, when running our proposed method
with the GTE-small model on a AWS EC2
g4dn.xlarge GPU host, we observe an aver-
age latency of 0.013 seconds per example. As-
suming, an hourly on-demand rate of $0.526 for
a g4dn.xlarge instance, sequential processing
of each example, and a constant demand that fully
utilizes the host, the average cost per example with
our approach is a mere $0.00000189. (In a realistic
deployment, actual costs could vary based on op-
portunities to process multiple requests in parallel
as well the need to scale for peak traffic loads.)

While simplified, this analysis shows that the
proposed entity salience approach using sentence
embeddings is roughly two orders of magnitude
lower in latency and two orders of magintude more
cost efficient compared to using an LLM such as
GPT-3.5.

A.3 Comparing different teacher models

We experiment with using different teacher models
with different sets of features. (Table 6 describes
the base teacher models used.) In addition to us-
ing two cross-encoder models, we experiment with
a simplification of the two-step fine-tuning proce-
dure, where we used the initial scores from the
all-MiniLM-L6-v2 biencoder to directly in fine-
tuning the biencoder, removing the cross-encoder
from the process. We also attempt to make the
cross-encoder more robust to specific entity featur-
izations by training with multiple copies of each
training example where each uses a different fea-
turization (labled “multiple”).

Table 7 shows the performance on the test
dataset of cross-encoders models fine-tuned from
RoBERTa-base using different sets of entity text
features (at training and inference time). We see
that performance improves with more extensive en-
tity descriptions, as was the case with the biencoder
models (see section 5.2).

Table 8, shows the performance of student bi-

model name | model type

| model parameters | max seq length

RoBERTa-base
DistillRoBERTA
all-MiniLM-L6-v2

cross-encoder
cross-encoder
biencoder

124.6M 512
82.1M 512
22.7TM 256

Table 6: Base teacher models

model

crossencoder-roberta-base—name
crossencoder-roberta-base—name-desc
crossencoder-roberta-base—name-desc-fs
crossencoder-roberta-base-multiple—name-desc-fs

0.691
0.716
0.725
0.724

Table 7: Crossencoder teacher performance (macro-F1)

encoder models fine-tuned with different teacher
models. In all cases the base student model is the
gte-small model using entity name and Wikidata
descriptions as feature text. We see do not find a
consistent improvement in the performance of the
student model from using a larger teacher model or
one with access to enhanced features.

A.4 Training parameter details

Crossencoder training:

* weight decay: 0.01
* batch size: 16
* epochs: 1

* loss function: Binary Cross Entropy

Biencoder training:

» weight decay: 0.01
* batch size: 16
* epochs: 1

* loss function: Multiple Negatives Ranking Loss

A.5 Prompt for GPT-4 Baseline

The prompt template used with GPT-4 is shown
in Table 9. The predictions were generated using
the OpenAl ChatCompletion API on July 14, 2023
with the temperature parameter set to zero.

We prompt the model to provide an explana-
tion for the rating of each entity before generat-
ing the categorical rating and the numeric score
as a form of "scratchpad" (Nye et al., 2021) or
"chain-of-thought" (Wei et al., 2022) reasoning.
We found that the numeric score (using a threshold
for salience of greater than 5) was better for pre-
dicting entity salience than the categorical rating
and use this in our results.

60

A.6 Details of WikiQA-Salience dataset
construction and labeling

A.6.1 The WikiQA dataset

The WikiQA corpus (Yang et al., 2015) is an an-
swer sentence selection (AS2) dataset where the
questions are derived from query logs of the Bing
search engine, and the answer candidate are ex-
tracted from Wikipedia.

As described in the WikiQA download page,
"the WikiQA corpus is a new publicly available
set of question and sentence pairs, collected and
annotated for research on open-domain question
answering. In order to reflect the true information
need of general users, we used Bing query logs
as the question source. Each question is linked to
a Wikipedia page that potentially has the answer.
Because the summary section of a Wikipedia page
provides the basic and usually most important in-
formation about the topic, we used sentences in
this section as the candidate answers. With the
help of crowdsourcing, we included 3,047 ques-
tions and 29,258 sentences in the dataset, where
1,473 sentences were labeled as answer sentences
to their corresponding questions." Table 10 shows
examples of question-answer pairs from WikiQA.

We assessed that the WikiQA corpus would be
a suitable starting point for offline evaluation of
ES models (in the context of question/answer pairs
from a voice assistant) because it had the following
properties:

* The examples are question answer pairs (QA
domain)

* The questions are posed in natural language

* The answers are short sentences (with poten-
tially multiple entities) rather than “factoid”
answers.

teacher-features name | name-desc | name-desc-fs | multiple
teacher-model ‘

biencoder 0.732 0.734 0.740 0.738
distilroberta-base | 0.731 0.740 0.730 0.736
roberta-base 0.731 0.740 0.734 0.734

Table 8: Comparing biencoder student models fine-tuned with different teacher models (macro-F1)

* The question are “self-contained” and do not
explicitly reference a “context” document.

A.6.2 Subsampling and Data Preparation

We start with the full WikiQA corpus in the
WikiQA.tsv file. This file contains 29208 ques-
tion/answer (QA) pairs with one or more candidate
answers for each question. The candidate answers
in the corpus are assigned a binary label based on
whether the they answer the question. We select for
use only the QA pairs with positive labels (1469)
since these are most similar to the answers served
to Alexa users. We combine the question and an-
swer into a single passage of text by concatenating
the question and answer text. We join the ques-
tion and answer with just two spaces separating
them, avoiding the inclusion of additional punctu-
ation which might influence the subsequent entity
extraction process.

A.6.3 Extracting linked entities with
ReFinED and augmenting extracted
entities with WikiData

We next apply the ReFinED entity detection and
linking model to each combined text passage to
derive the candidate entities that are part of each
QA pair. Of the initial 1469 QA pairs, 282 have
no named entities mentions and 246 have only one.
Since these are not likely to provide useful exam-
ples to assessing the capacity of a model to select
the most salient entities in a QA pair, we exclude
these examples.

We exclude examples with seven or more entity
mentions (110 cases) and also exclude cases where
there is not more than one unique entity and re-
move duplicate questions from the dataset, giving
preference to the question/answer pairs with the
most entities. After filtering based on the number
and uniqueness of entities and questions we are left
with 696 example QA pairs.

For each entity in the dataset we retrieve the
following additional information (when available)
from WikiData based on the WikiData entity ID
produced by the ReFinED entity linker: entity
name, entity description, entity aliases. We used

61

the pywikibot library to assist with this task. This
information is stored with each entity in the dataset.

Table 12 shows the statistics for the length of the
question-answer text (i.e. the context). Table 13
shows the distribution of the number of entities in
the Q/A pairs.

A.6.4 Wikipedia summaries

Since Wikidata descriptions are typically extremely
brief, we further augment the entities in the dataset
with more detailed information from Wikipedia
pages (wherever these are available). We include
the Wikipedia page summary from the first section
of the page, the first 100 non-phrases from the
article and the first 100 key phrases obtained using
two different key phrase extraction algorithms.

We use the wikipedia python package to down-
load Wikipedia pages from the internet for each
entity. We extract noun phrases using spacy with
the en_core_web_sm model. For extracting key
phrases we also use spacy and rake-nltk.

A.6.5 Annotation with Amazon Mechanical
Turk (mTurk)

Given the dataset of question/answer pairs with
entities linked, we want a ground truth rating of the
salience of each entity that we can use to evaluate
the performance of a model on this task. To obtain
this final piece of information for our evaluation
dataset, we rely on human annotation (i.e. ground
truth labeling).

Amazon Mechanical Turk (mTurk) is a cloud-
based service which allows “requesters” with “hu-
man intelligence tasks” (HITs) to submit tasks to be
performed by “workers” who are paid a monetary
reward for each task they complete. The requester
provide the tasks via a user defined HTML form
which includes the instructions, the information
about the specific task and the mechanism to col-
lect the data from the worker. The requester also
specifies the size of the reward.

To prepare the dataset for annotation, where each
entity mention will be labeled independently for
its salience (i.e. relevance to the QA pair), we “ex-
plode” each row (containing all the entity mentions

prompt_template = """
You are an editor for a newspaper who has to identify the most critical pieces of
— information when writing the headline for an article.

For this task you are given a question-answer pair as Context and a list of

— entities from the text. Read the Context given in triple backticks and rate
— how salient each entity is to the Context. Before answering provide a short
— Justification for your answer.

Provide a salience score in the range of 0 to 10 where 0 is least salient and 10 is
— the most salient.

Provide a categorical rating from the following options:
High - The entity is strongly related to the main point of the question-answer
— pair or is the answer itself.
Moderate — The entity is related to the question-answer pair but it is not the
— most important part.
Low — The entity not related or is only tangentially or superficially related
— to the question—-answer pair.

Countries (especially in reference to nationality) are frequently incidental to the
— answer and are most often “Low” salience unless directly related to the
— question.

Give your answer as valid JSON in the following format:
[
{{

"entity": <entity_name>,

"explanation": <explanation of the rating>,
"rating": <rating>,

"score": <score>,

I

]

Context: """ {context_str} "~

List of entities: {entity_str}

Answer:

nun

Table 9: GPT-4 prompt template for entity salience task

for a QA pair) into multiple rows with one row of the 19 gold entity mentions, 6 were chosen to ad-
for each entity mention. This yields a dataset with ditionally serve as qualification tasks. These were
2573 entity mentions. selected due to the uniformity (i.e. low variance) of
From this dataset we selected 5 QA pairs with the labels given by the gold annotators (to ensure a
19 entity mentions for “gold” annotation by mem- minimum of ambiguity in assessing potential crowd
bers of the research team. These were selected workers) and to cover both salient and non-salient
non-randomly by the investigator with the goal of ~ examples. The gold examples were combined with
choosing examples that contained both salient and the other non-gold examples to form the the final
non-salient examples in each sentence. Seven mem- set of 2573 ES annotation tasks.
bers of the research team completed the annotation The labeling task was defined in a templated
task in which they rated each entity on a three level =~ HTML form that displayed the task instructions,
scale of relevance to the QA pair: Low, Moder- the question text, the answer text, the entity men-
ate, High. The results of the gold annotation were tion text, the resolved entity name from WikiData,
included in “control” tasks used to evaluate the ac- and the entity description from WikiData. The
curacy of crowd workers. In the four cases where ~ workers were asked to select a relevance rating for
there was substantial variance in label assigned by the entity of Low, Moderate or High and optionally
the annotators, the “gold” answer was given asaset to leave a comment about the task. The full text of
of correct answers (e.g. “Low”, “Moderate”. Out the annotation instructions is shown in Table 11.

62

Question Answer

how big is bmc software in houston, tx

Employing over 6,000, BMC is often credited with pioneering the BSM concept
as a way to help better align IT operations with business needs.

how much is jk rowling worth

The 2008 Sunday Times Rich List estimated Rowling’s fortune at £560 million
($798 million), ranking her as the twelfth richest woman in the United Kingdom.

how long was frank sinatra famous

Beginning his musical career in the swing era with Harry James and Tommy
Dorsey , Sinatra found unprecedented success as a solo artist from the early to
mid-1940s after being signed to Columbia Records in 1943.

Table 10: Example QA pairs from WikiQA

Before working on the task workers were re-
quired to complete the six qualification tasks with
an accuracy of at least 5 out of 6 correct. Workers
were eligible to qualify if they were from an En-
glish speaking country (US, GB, AU, NZ, CA) and
had completed at least 100 previous HITs with an
approval rate of 95% or higher. Up to 300 workers
were allowed to attempt qualification. 21 qualified
before the maximum number of qualification at-
tempts was reached. (This took on the order of 15
minutes after publishing the qualification tasks.)

The workers were offered a total compensation
of $0.10 per task ($0.06 reward + $0.04 bonus) and
expected to take at least 20 seconds for each task.
The 2573 HITs were split into four batches of up
to 650 tasks. To increase the quality of the final
labels used in evaluation, each task was assigned
to 5 different workers, resulting in five indepen-
dent labels for each task, which can be aggregated
to get a “consensus” label (as described below).
The batches were completed from 15-16 December
2022, with each batch being completed within 1-2
hours of being published. On average, the workers
took more than 60 seconds per task.

A.6.6 Post-processing and analysis

After the mTurk annotation jobs were completed,
the results of each job were merged into a single
dataset for post-processing and analysis. Nine tasks
were missing annotation due to task submission er-
rors related to missing entity descriptions. The nine
QA pairs with unlabeled entities were removed
from the dataset leaving 687 fully annotated QA
pairs.

While we include the full set of annotator ratings
for each entity, in the final dataset we also include
two aggregations of the ratings which make it easier
to work with the data. First we convert the ratings
levels to numeric values ("low": 0, "moderate": 1
and "high": 2) and normalize them to be in the
range [0, 1]. Then we take the median and mean
average of the normalized numeric rating. (Note
that we do not use “majority vote” because the rat-

63

ing values have an inherent ordering that should
be considered. With five pass annotation, the me-
dian is a close analog to selection by majority vote,
but it handles "ties" between two levels rationally.)
Table 14 shows the distribution of entities median
salience ratings in the final dataset.

Using the mean rating value for binary classifi-
cation requires settings a threshold below which
the score is considered to indicate a non-salient
rating. A reasonable choice for this would be 0.25
(half way between "Low" and "Moderate"). How-
ever, a choice of 0.33 results in a minimum number
of disagreements with using the median (where
0.0/"Low" maps to "non-salient"). Ultimately, the
choice of which aggregation and threshold to use
can be made by the user of the dataset and both
aggregations and the raw ratings are included.

The inter-rater agreement of the binary labels
(derived from median annotator ratings) measured
by the Fleiss’ kappa score is .230, which indicates
"fair agreement" between the annotators (Hartling,
2012). To get an additional indication of inter-
rater agreement and establish a goalpost for human-
level performance on the ES task, we compare the
individual ratings to that of the (median) average
rating. Over 500 runs of Monte Carlo simulation,
for each entity in the dataset we randomly select
a single rating and compare it to the consensus
rating. We perform a binary comparison, whether
both labels agree that it is relevant or non-relevant,
which allows us to calculate accuracy for a single
label vs the consensus label. Using this process
we measure the human level accuracy as 82.2%
(std=0.68).

A.6.7 Finished dataset

The dataset includes the following fields, which
can be joined with the original WikiQA data using
the QuestionID and SentencelD fields:

* QuestionID: QuestionID from the original
WikiQA dataset

Please indicate the level of relevance of the following entity to the question and answer pair.

You are given the question and answer pair, the text of the entity mention (as it appears in the question/answer pair), the
name of the entity (which may different than the entity text), and a brief description of the entity.

Please rate the relevance of the entity to the question/answer pair according to the following scale.

¢ Low - The entity is not meaningfully related to the question/answer pair or is only tangentially or superficially

related.

* Moderate - The entity is meaningfully related to the question/answer pair but is not the most important part.
* High - The entity is highly relevant to the main point of the question/answer pair or is the answer itself.

Optionally, please leave any comment about this task that you feel would be helpful to understanding your rating in the

"comment" column.

Table 11: mTurk Annotation Guidelines

‘ mean ‘ std ‘ min ‘ max

characters

words 329 | 11.2 8 89

190.6 | 68.4 | 49 | 589

Table 12: Context size

number of entities | count
2 281
3 188
4 125
5 71
6 22
Total 687

Table 13: Distribution of number of entities

* SentencelD: SentencelD from the original
WikiQA dataset

* entities: a list of entity objects
Each entity object contains the following fields:

* text: the mention text

* category: the coarse mention type (from Re-
FinED)

* predicted-entity-types: the predicted entity
types

* wikidata-entity-id: the WikiData entity ID

¢ el-score: the ReFinED entity linking model
confidence score

e start-char: the start character of the mention
text within the passage

¢ end-char: the end character of the mention
text within the passage

* backend: the name of the entity linking model
(i.e. "refined")

64

median rating | count
High 1089
Moderate 535
Low 489
Total 2113

Table 14: Distribution of ground truth labels

 wikidata-entity-name: the canonical name of
the entity in WikiData

*» wikidata-entity-description: a short textual de-
scription of the entity from WikiData

 wikidata-entity-aliases: a list of aliases for the
entity from WikiData

* gt-rating-mean: the mean normalized numeric
rating in the range [0, 1]

* gt-rating-std: the standard deviation of the
normalized numeric ratings.

* gt-rating-median: the median normalized nu-
meric rating in the range [0, 1]

* gt-ratings-raw: a list of strings containing the
ratings from each pass of annotation from the
set "High", "Moderate", "Low".

* sum-first-section: Wikipedia page summary
from the first section of the page

* sum-noun-phrase-spacy: the first 100 noun-
phrases from the article

* sum-keywords-spacy: first 100 key phrases
using Spacy

* sum-keywords-rake: first 100 key phrases us-
ing Rake

