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Abstract

Detecting hallucinations, where Large Lan-
guage Models (LLMs) are not factually con-
sistent with a Knowledge Base (KB), is a
challenge for Retrieval-Augmented Generation
(RAG) systems. Current solutions rely on pub-
lic datasets to develop prompts or fine-tune
a Natural Language Inference (NLI) model.
However, these approaches are not focused on
developing an enterprise RAG system; they do
not consider latency, train or evaluate on pro-
duction data, nor do they handle non-verifiable
statements such as small talk or questions. To
address this, we leverage the customer service
conversation data of four large brands to evalu-
ate existing solutions and propose a set of small
encoder models trained on a new dataset. We
find the proposed models to outperform exist-
ing methods and highlight the value of com-
bining a small amount of in-domain data with
public datasets.

1 Introduction

In the last year, Large Language Models (LLMs)
have exploded in popularity, in part due to their
ability to convincingly answer arbitrary questions.
Retrieval-Augmented Generation (RAG), which
injects portions of external knowledge bases into
the prompt, is an effective method for introduc-
ing specific information for a given brand or use
case. However, hallucinations, where the system
provides an ungrounded response, threatens the
viability of this application in an industry setting.

This paper proposes and evaluates a novel
encoder-based classifier for hallucination detec-
tion tailored for enterprise customers. Our model,
RAGHalu, is an encoder-based two-tiered solu-
tion that leverages one binary classifier in each
tier. RAGHalu first identifies factually verifiable
statements and then determines whether each ver-
ifiable statement is supported or unsupported by
the KB. Whereas other works either do not handle

Figure 1: RAG customer service system with RAGHalu,
the two-tiered hallucination detection service, and hu-
man agent in the loop.

non-verifiable (e.g. small talk or information gath-
ering) statements (Honovich et al., 2022; Gekhman
et al., 2023; Muhlgay et al., 2023), or group them
with other types of verifiable claims (Gupta et al.,
2022), we developed a 3-label taxonomy to distin-
guish between the two. Our model is trained on
both re-annotated and original public datasets, and
internal in-domain data. Although there are recent
studies such as Wang et al. (2023) using ChatGPT
in a similar two-tiered solution, to the best of our
knowledge, this is the first hallucination detection
solution developed that explicitly identifies verifi-
able claims and leverages them as atomic claims
(cf. Min et al. 2023).

We compare RAGHalu against a number of
baselines: prompt-engineering OpenAI’s GPT-3.5-
turbo-06131 (OpenAI, 2023), a hallucination detec-
tion fine-tuned Mistral-7B-Instruct LLM, and open
source hallucination detection models by Google
Honovich et al., 2022 and Vectara.2 We find our
two-tiered solution which further fine-tunes a natu-
ral language inference (NLI) 3 DeBERTa (He et al.,
2021) cross-encoder model performs best and gen-
eralizes both across customer service domains and
open source data. Figure 1 shows RAGHalu inte-

1We refer to this model as ChatGPT throughout.
2Mistral-7B-Instruct-v0.1, t5_xxl_true_nli_

mixture,hallucination_evaluation_model
3cross-encoder/nli-deberta-v3-large
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grated into a customer service RAG system.

The paper is organized as follows. We first
present our model architecture and the data used to
train it. We then outline the baselines, followed by
the results and discussion.

2 Related Work

Hallucination Detection in Language Model
Generated Text Recently there has been work
around factual consistency detection in relation to
LLM summarization (Gekhman et al., 2023; Wu
et al., 2023). In these works they discuss the short-
age of annotated data for this task and attempt to
mitigate the issue by using model-generated soft la-
bels. In Gekhman et al. (2023) they improved upon
the 11B parameter T5 model in Honovich et al.
(2022), and speculate that LLM-produced data
leads to improved performance over the human-
perturbed data that was used for the original model.

There has also been work aimed at judging
the factual precision of LLMs without retrieval.
Muhlgay et al. (2023) assess LM factualness as re-
lated to generated token perplexity. They find that
while perplexity is related to factualness, it is not
enough to identify hallucinations on its own. Tian
et al. (2023) fine-tunes LLMs for factualness using
model uncertainty.

Within the area of question-answering and RAG,
there has been a variety of work aimed at us-
ing LLMs to self-verify factual consistency with
prompting (Min et al., 2023; Wang et al., 2023;
Manakul et al., 2023). Though these prompts were
shown to be effective, using an LLM to self-judge
remains impractical and expensive in a large scale
industry setting.

Fact Verification Similar to other works, we
judge factual consistency on a sentence level
(Thorne et al., 2018; Honovich et al., 2022), we
consider a "checkworthiness"/verifiable statement
type (Wang et al., 2023; Gupta et al., 2022; Mishra
et al., 2024), and we fine-tune an NLI model. How-
ever, unlike the aforementioned works, we train
and evaluate on real commercial data, we train a
model to distinguish between verifiable and non-
verifiable claims, we fine-tune our model on a new
collection of LLM generated texts, and we pro-
duce an end-to-end solution that does not rely on
prompting of an LLM for classification.

3 RAGHalu

3.1 Architecture

RAGHalu input includes the user question, re-
trieved knowledge articles, and LLM response and
outputs a prediction of whether each sentence in the
LLM response is supported by the knowledge arti-
cles. See Table 1 for an example4. RAGHalu uses
two sequential classifiers involving binary models
where the first acts as a filter to the second. The first
model (RAGHalu-1) classifies statements accord-
ing to whether they contain information that can be
proven true or false, resulting in two labels: VER-
IFIABLE and NO-INFO. Statements such as "we
can look into that for you," "please visit a branch
for assistance," or small talk, would be classified
as NO-INFO since they do not contain informa-
tion that can be checked for validity. The second
model (RAGHalu-2) classifies all VERIFIABLE
statements as SUPPORTED or UNSUPPORTED
based on whether there is corroborating informa-
tion in the retrieved articles. We considered a single
3-label encoder model, however it often confused
UNSUPPORTED and NO-INFO claims.5

We chose to use a DeBERTa encoder model for
each binary model for several reasons. First, from
an industry practicality standpoint - they are much
smaller and faster. Further, encoders are known
to be more powerful than decoder-only models be-
cause they encode relative context both in front of
and behind each token (Devlin et al., 2019). While
LLMs are often preferred for their high token limits,
the relative position embeddings of the DeBERTa
encoder model allows for a theoretical maximum
token limit of 24,528.6

3.2 Data

RAGHalu is trained on both public and private
brand data. Data statistics are shown in Table 2.
Test-train splits for the data are shown, all of which
involved a random stratified split across labels.7

All fine-tuned model results use the same training
splits described in Table 2 unless explicitly stated.

Public Data Between 2022 and 2023, sev-
eral LLM hallucination datasets have been re-
leased including TruthfulQA(Lin et al., 2022),

4Exact input formatting in A.3
5Details in A.5.3
6See section A.5 of He et al. (2021))
7In addition to the train-test split, a random 2% was taken

from the train set for model evaluation/monitoring during
training making for a 78.4-1.6-20 train-eval-test split.
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Conversation
History

USER: loan assistance
ASSISTANT: Ok great, is this for a new loan?
USER: Yes
ASSISTANT: OK, what kind of loan?
USER: i need an auto loan

Question i need an auto loan

KB
We offer various low interest home, auto, and personal loans. As of January
2024, a typical 30-year mortgage rate for first time home owners is 5.5%. To
learn more and apply for a loan, visit us at www.yourbank.com/loans

LLM
Response

Sure I can help with that. As of January 2024 you can expect an auto loan
with interest rates as low as 5.5%. To learn more check out our website at
www.yourbank.com/loans.

Classification
NO-INFO
UNSUPPORTED
SUPPORTED

Table 1: Synthetic example inputs (question, KB), LLM response, and expected sentence-level classification. The
formatting of the LLM Response matches that of its respective classification.

Data Set Name NO-INFO SUPPORTED UNSUPPORTED Train/Test Split Avg. Input Length
(tokens)± std

FactScore (fs) 0 10,106 4,419 80/20 1219±311
HaluEval (halu) 0 10,000 10,000 80/20 105±39
TruthfulQA (tqa) 35 406 1226 80/20 630±374
Dolly 62 415 414 80/20 207±288
TRUE** 0 47,680 57,441 0/100 48±151
wiki-bio-gpt3 0 516 1392 0/100 285±147
Bank 70 64 68 80/20 144±63
Credit Union 180 53 78 80/20 106±131
Telecom 330 71 159 80/20 322±121
FinTech 230 104 168 80/20 204±137

Table 2: Open-source and brand data statistics showing support numbers per label. Brand statistics are below the
horizontal line with italicized names. The relative train-test split used for model development and testing, along
with the average input lengths in tokens are also show (DeBERTa-v3 tokenizer). **For more information about the
breakdown of the TRUE dataset see Honovich et al. (2022)

FactScore(Min et al., 2023), HaluEval(Li et al.,
2023a), ExpertQA(Malaviya et al., 2023), and
Wiki-Bio-GPT3(Manakul et al., 2023). The com-
bined dataset TRUE described in Honovich et al.
(2022), consists of data across domains including
paraphrasing, summarization, dialogue, and QA.

We used four public datasets for model devel-
opment: FactScore, HaluEval, TruthfulQA and
Databricks Dolly(Conover et al., 2023). We filtered
and re-annotated subsets of data from TruthfulQA
and Dolly to align with our taxonomy and better
reflect an emphasis on hallucinations relative to
retrieved knowledge instead of absolute truth. We
released this data including formatted training/test

sets.8 For more details on the changes made to
these datasets see Appendix.A.1.

Brand Data We annotated conversations across
four large brands: a bank (Bank), broadband
provider (Telecom), credit union (Credit Union),
and a crypto-currency software company (FinTech),
all using RAG in production today. For each brand,
we annotated ∼50 historical conversations each
with one or more retrieved (KB) and LLM gen-
erated response in the conversation.9 Data pro-
curement and annotation consisted of several steps.
First we queried for historical conversations where

8github.com/ilanazim/RAGHalu_public_data
9KBs are only used for RAG when the article has an em-

bedding match score above a brand-specified threshold
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the brand used LLM suggestions in a RAG set-
ting. Currently, all brands in production use GPT-
3.5-turbo, however, to get more variation in LLM
responses that are also usable for commercialize-
able model development (e.g. RAGHalu), we
prompted Xwin-LM-70b, llama2-70b-chat, falcon-
7b-instruct, and llama2-13b to respond as the AI
Assistant given the conversation history and KBs.10

The historical brand conversation along with re-
trieved articles and the generated LLM responses
were span-annotated by three domain expert an-
notators. Annotators were instructed to annotate
sentences according to the above taxonomy, and
to skip any incomplete sentences that may have
arisen due to LLM token limits. Across the four
brands, the average Fleiss’ kappa (Fleiss, 1971) for
inter-annotator agreement was 0.79, indicating sub-
stantial agreement. Brand data is proprietary and
will not be released.

4 Experimental Setup

In addition to evaluating three open
source NLI-based models on the SUP-
PORTED/UNSUPPORTED examples, we
compare the performance of RAGHalu with
prompting ChatGPT and fine-tuning Mistral-7b.
Similar to other works (Thorne et al., 2018; Hon-
ovich et al., 2022; Wang et al., 2023) we split the
response into sentences using the NLTK sentence
tokenizer(Bird et al., 2009) for classification.

4.1 Baselines

Prompt Engineering ChatGPT’s zero-shot per-
formance has proven to be a competitive baseline
for hallucination detection systems (Huang et al.,
2023). Though cost and latency remain a concern,
we chose to use prompt-engineering as a baseline
and interim production solution.

We developed both a 3-label (SUPPORTED, UN-
SUPPORTED, NO-INFO) prompt and a similar
binary prompt (SUPPORTED, UNSUPPORTED)
to classify LLM sentences with respect to a set
of retrieved KBs11. All prompt-engineered results
shown are for GPT-3.5-turbo. While generative
models like ChatGPT have the ability to classify
more than one statement at a time, we found that
performance is significantly better when the model

10Xwin-LM/Xwin-LM-70B-V0.1, meta-llama/
Llama-2-70b-chat-hf, tiiuae/falcon-7b-instruct,
meta-llama/Llama-2-13b-chat-hf

11Prompts found in A.2

classifies a single statement at a time.12 For this
reason, all ChatGPT results shown in Section 4.2
are for single-sentence classification.

Decoder LLM Fine-tuning In addition to
prompt-engineering instruction-following LLMs,
there has been recent work such as Li et al. (2023b)
which researches the affect of fine-tuning LLMs
for classification. LLMs are acclaimed for their
learned world knowledge and large token limits.
Because grounding context for hallucination detec-
tion can vary widely in length, we chose to compare
fine-tuned LLMs to an encoder based solution in
order to judge if the fine-tuned LLM would outper-
form the encoder on longer inputs.

Using the same prompts developed for zero-shot
prompting, we experimented with fine-tuning sev-
eral open source LLMs. In the context of RAG,
the model was given the input prompt including
the user’s question, retrieved KBs, and a sentence
from the LLM Response (the statement being clas-
sified for factual consistency, see Table 1), and was
trained to produce one of the labels from our tax-
onomy. The mistral model was fine-tuned using
Deepspeed Zero Stage 1 optimization (Rajbhandari
et al., 2020), batch size of 1, gradient accumulation
steps of 4, floating point 16 precision, a learning
rate of 5e-6, and 4 epochs. The maximum token
limit for this model is 8000.

4.2 Results
As shown in Table 3 our tier two (RAGHalu-2)
model performs best on production brand data
with an average UNSUPPORTED F1 of 0.93,
followed closely by the fine-tuned binary Mis-
tral model (mistral-7b-ft-binary). Surprisingly,
google/t5_xxl_true_nli_mixture outperforms all
other models on the Bank test set with a high
score of 0.96, and RoBERTa-large-mnli performs
best on Credit Union data by a significant margin
with an F1 of 0.97. While zero-shot prompting
(ChatGPT-binary) performs well on brand data, the
fine-tuned LLM and encoder models show signifi-
cant improvements (10% F1 on UNSUPPORTED
claim detection on average). RAGHalu-2 also per-
forms best across the board on open source data
with an average UNSUPPORTED F1 of 0.82.

Our model’s largest performance gain relative
to other models on open source data is on the
FactScore test set. We hypothesize this is due
to the long grounding context/KB lengths in the

12For details see A.5.2
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Data Set ChatGPT
-binary§ Vectara§ google/t5_xxl_

true_nli_mixture§
mistral-7b
-ft-binary†

RoBERTa
-mnli**§ RAGHalu-2†

HaluEval 0.71 0.8 0.79 0.79 0.68 0.95
FactScore 0.66 0.6 0.35 0.73 0.45 0.8
TruthfulQA 0.81 0.84 0.68 0.87 0.85 0.84
Dolly 0.68 0.77 0.8 0.63 0.74 0.65
Wiki-Bio-GPT3 0.9 0.88 0.81 0.85 0.85 0.88
PAWS 0.74 - - 0.15 0.57 0.64
VitaminC 0.76 - - 0.71 0.74 0.71
FEVER 0.91 - - 0.73 0.89 0.86
TRUE* 0.85 0.87 0.78 0.81 0.78 0.79
Avg* 0.77 0.79 0.70 0.78 0.73 0.82
Avg (open source all) 0.78 - - 0.70 0.73 0.79
Bank 0.8 0.83 0.96 0.87 0.61 0.95
Telecom 0.85 0.81 0.9 0.96 0.83 0.97
FinTech 0.82 0.7 0.73 0.86 0.55 0.87
Credit Union 0.86 0.85 0.87 0.95 0.97 0.92
Avg (brand data) 0.83 0.8 0.87 0.91 0.74 0.93

Table 3: Binary SUPPORTED/UNSUPPORTED model results. F1 score for the UNSUPPORTED class shown.
*Vectara and google/t5_xxl_true_nli_mixture were trained using PAWS, VitaminC, and FEVER so we calculate
average scores without those results. TRUE performance is TRUE data minus FEVER,PAWS,VitaminC. **Note:
RoBERTa-NLI "neutral" predictions were mapped to "UNSUPPORTED". † Indicates the model was fine-tuned in
this work. § Indicates the model was used without fine-tuning, either with prompting or following expected input
format.

Label ChatGPT RAGHalu
NO-INFO 0.71 0.92
VERIFIABLE 0.85 0.91
SUPPORTED 0.84 0.94
UNSUPPORTED 0.75 0.93
NO-INFO 0.71 0.91
SUPPORTED 0.77 0.89
UNSUPPORTED 0.60 0.85

Table 4: End-to-end systems: Average F1 scores across
brand test sets comparing RAGHalu to GPT-3.5-turbo
using the 3-label prompt. 3-label model performance is
mapped to the 2 binary label sets by converting (SUP-
PORTED/UNSUPPORTED) labels to VERIFIABLE.

FactScore dataset relative to others as shown in
Table 2. We explore the relationship between input
length and model correctness/max token limits in
the Discussion 4.3 below.13

End-to-end model performance including filter-
ing of NO-INFO labels in the first tier of RAGHalu
resulted in a performance gain of 0.25 relative to
the 3-label ChatGPT baseline for flagging unsup-
ported claims as shown in Table 4.

4.3 Discussion

Training Data and Model Generalization We
further explored the effects of training data by
comparing performance of three further fine-tuned

13Additional error analysis found in A.6.

DeBERTa-based NLI models: one trained on only
production brand data, one trained on only the open
source data specified in Table 2, and finally one
trained first on the open source data and further
fine-tuned on brand data.

We found that the model trained on brand only
data does not generalize to the open source data,
but performs equally as well if not better across
the four brand test sets. The open source only
model performs well on brand data, but the addition
of brand data pushed performance up across all
brand test sets. These results again highlight the
importance of domain specific training data.14

Input Length Analysis As shown in Figure 2
there is a clear relationship between model cor-
rectness and input length - the longer the input,
the more incorrect predictions. The models with
lower token limits such as RoBERTa-large-mnli,
google/t5_xxl_true_nli_mixture, and Vectara all
suffer more than the models that have longer max
token limits. RoBERTa-large-mnli likely suffers
the most due to a combination of input lengths seen
at training time, domain,15 and token limits. The
Spearman’s correlation16 between the number of
input tokens and proportion incorrect predictions
is statistically significant across all models.17

14Appendix Figure 3 shows the ROC plots of these results
15See information about the MNLI training data here
16scipy.stats.spearmanr
17correlations range from 0.76–0.97 with p-values ≤ 0.0017
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Figure 2: Plot showing prompt length bins (tokens)
versus fraction incorrect prediction by model for the test
set of the FactScore dataset.

Impact of Model Size and Architecture
RAGHalu-2, a 304M parameter encoder-based
model, outperforms the 7B parameter decoder-only
mistral-7b-ft on almost all datasets tested. These
findings are consistent with Zhang et al. (2023);
Benayas et al. (2024) which highlight the short-
comings of decoder-based LLMs for classification
tasks that smaller encoder models excel in and the
importance of relative position encoding.

Error Analysis We found three types of re-
curring errors in RAGHalu predictions: mostly-
supported statements, inconsistent taxonomies, and
incorrect labels. Mostly-supported statement errors
occur when a majority of the information is correct
save for minor details, and in statements where the
information is technically all supported but there is
implied information that would be unsupported. An
example of the latter is: "After the Revolutionary
War, Blair returned to South Carolina and served
in the state legislature." This statement implies that
Blair was alive during the Revolutionary War when
in fact they were not. Others have used an LLM
to generate atomic claims to avoid classifying sen-
tences with multiple statements like these, however
that approach is less practical in production.18

Practicality in Production The relative cost of
using an in-house model versus a third party such
as OpenAI is multi-faceted: one must consider
performance, inference speeds, costs, and model
monitoring (Howell et al., 2023). In addition to

18See A.6 for more error analysis examples

performance gains, we estimated the cost savings
of using RAGHalu versus ChatGPT as a halluci-
nation classifier and find that RAGHalu is at least
5x less expensive per inference. For a real telecom
brand with 2 million conversations per month and
an average of 5 LLM responses per conversation,
expected savings is upwards of $105k per year.19

The same framework can be used to compare self-
hosted LLMs to smaller encoders.

5 Future Work

Future work could include developing a more fine-
grained hallucination detection model as done in
Mishra et al. (2024). Examples include distinguish-
ing between unsupported and contradicting claims
and identifying statements of action such as "I
found your account number", which could indicate
a need for an API integration. Correcting or miti-
gating hallucinations by improving KB chunking
are also important considerations.

6 Conclusion

We developed a novel encoder-based hallucination
classifier optimized for performance on customer
service RAG bots in enterprise. Our models are
trained on a new collection of open source and pri-
vate data that generalizes and outperforms other
models tested. We demonstrated the need for do-
main specific training data for hallucination detec-
tion, as well as the importance of KB lengths used
in RAG.

Limitations

The relevance of the hallucination detection model
for RAG systems is only as useful as the KB articles
and their retrieval system. If all retrieved articles
are ill-fitting to the conversation, most all state-
ments will be flagged for hallucination. Further,
this model was developed specifically for customer
service RAG systems and has been shown to under-
perform on other types of data such as paraphrases
or summarization.

Ethics Statement

While the hallucination detection system is devel-
oped to act as a safety net/guardrail for information
produced by LLMs, if the model fails to detect a
hallucination, it is possible that misinformation is

19Details on calculations are found in A.7
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spread to users. Privacy concerns related to per-
sonally identifiable information (PII) are also very
important when using customer service chat data.
We pseudo-anonymized all customer data prior to
model training and evaluation.
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A Appendix

A.1 Data Annotation

We filtered the original TruthfulQA dataset of 817
unique questions to a set of 206 questions based
on: a) our ability to retrieve the related Wikipedia
articles, and b) examples within the 2048 token
limit that many LLMs are restricted to. The resul-
tant dataset consists of 206 unique questions, their
related Wikipedia articles, and a list of responses to
the question. We annotated the responses accord-
ing to our taxonomy and resulting support numbers
are shown in Table 2.

Data from Dolly was procured as follows. First
we sampled from the closed_qa portion of the Dolly
dataset. This data was generated by crowd workers
who were given a context and instructed to generate
questions and answers based on that context. To
generate examples of hallucinations, we split each
response into individual sentences. Then we made
each sentence an example of a hallucination by
altering the context so that it either contradicts the
answer or does not contain the answer. This is the
only dataset used for training where LLMs did not
produce the hallucinations.

The content of the remaining datasets was un-
modified, save for formatting as described in Ap-
pendix A.2 and A.3

A.2 Prompts

VERIFIABLE/NO-INFO Prompt:
The "Fact List" below repre-

sents responses to a user ques-
tion. Your job is to determine
whether each response in the
"Fact List" can be factually ver-
ified. If the response can be
factually verified mark the re-
sponse 'VERIFIABLE', otherwise
mark the response 'NO-INFO'. 'NO-
INFO'statements include responses
like "Is there anything else I
can help you with?", as well as
greetings and small talk that is
not intended to convey verifiable
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Figure 3: Receiver-operator curve showing the impact of various training data on performance by Brand. Opensource
data here is performance on (HaluEval, FactScore, TruthfulQA, Dolly test splits, combined)

truths or falsehoods.

"Fact List": {agent_turn}

Fact Check:

SUPPORTED/UNSUPPORTED Prompt:
The "Fact List" below repre-

sents responses to a user ques-
tion. Your job is to deter-
mine whether each response in
the "Fact List" is supported by
the information in the "Provided
Text". Apply one of the follow-
ing labels to each response in
the "Fact List":

* SUPPORTED: use this label
if the response is found in the
"Provided Text".

* UNSUPPORTED: use this la-
bel if the response is either
not found or contradicted in the
"Provided Text".

"Question": {user_turn}

"Provided Text": {re-
trieved_knowledge}

"Fact List": {agent_turn}

Fact Check:

3-Label Prompt:
The "Fact List" below represents

responses to a user question.
Your job is to determine whether
each response in the "Fact List"
is supported by the information
in the "Provided Text". Apply
one of the following labels to
each response in the "Fact List":

* SUPPORTED: use this label
if the response is found in the
"Provided Text".

* UNSUPPORTED: use this la-
bel if the response is either
not found or contradicted in the
"Provided Text".

* NO-INFO: use if the response
does not present information that
can be factually verified. This
includes responses like "Is there
anything else I can help you
with?", as well as greetings and
small talk that is not intended
to convey verifiable truths or
falsehoods.

Examples:
1. How are you today? - NO-INFO

"Question": {user_turn}

"Provided Text": {re-
trieved_knowledge}

"Fact List": {agent_turn}

Fact Check:
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Training Data Bank Telecom FinTech Credit Union
fs-halu-dolly-tqa 0.99 0.94 0.93 0.93
fs-halu-dolly 0.88 0.81 0.88 0.73
fs-halu-tqa 0.73 0.83 0.81 0.56
fs-dolly-tqa 0.97 0.91 0.94 0.97
halu-dolly-tqa 0.87 0.83 0.87 0.76
Telecom-FinTech-Credit Union 0.97 0.92 0.99 0.98
Bank-FinTech-Credit Union 0.99 0.92 0.97 0.98
Bank-Telecom-Credit Union 0.97 0.99 0.96 0.96
Bank-Telecom-FinTech 0.97 0.95 0.96 0.95

Table 5: Ablation Study: Comparing ROC-AUC on Brand data - ablating one training data source at a time. Models
trained are binary (SUPPORTED/UNSUPPORTED) DeBERTa cross-encoder (similar to RAGHalu-2).

A.3 Encoder Inputs

Input format with only single user turn of context:
"Question": {user_turn}

{context}[SEP]{claim}

Input format with 3 previous turns of context20:
"Conversation":
USER:{prev_user_turn}
ASSISTANT:{agent_turn}
USER:{user_turn}

{context}[SEP]{claim}

A.4 Ablation Study

We performed an ablation study in which we sys-
tematically held-out different open source and
brand data. Results are shown in Table 5. We
found that all open source datasets used for train-
ing plays a role in model performance on brand
test sets. Surprisingly, the biggest change in per-
formance we see is when holding out the Dolly
dataset. Performance drops over 10 points across
the brand test sets. We hypothesize that Dolly has
a big impact on performance because it was man-
ually annotated according to our taxonomy and is
less likely to deviate from our strict definition than
other datasets used.

Finally, we found that the best performance on
each of the four brands occurs when using training
data from the respective brand. While the general-
ized model performs well, this result supports the
opportunity to train brand-optimized hallucination
detection models for improved performance.

20We experimented with using conversation context in train-
ing and saw no meaningful impact on model performance.

A.5 Additional Experimentation

A.5.1 Multi-Staged Fine-Tuning

Given that the volume of brand data annotated is
quite small for model fine-tuning, especially rela-
tive to the volume of open source data, we eval-
uated the impact of training with a mixture of
brand and open source data versus a multi-stage
fine-tuning approach of first fine-tuning with open
source data followed by fine-tuning on brand data.
A concern with this method is related to the issue
of "catastrophic forgetting" (Xu et al., 2020); the
further fine-tuned model tends to unlearn and under-
perform on tasks relative to the original model. Our
findings, summarized in Table 6 below, reinforce
this known issue.

The model fine-tuned on open source data only
(stage 1) outperforms the same model that is then
further fine-tuned on customer service brand data
(stage 2) on FactScore, HaluEval, Dolly, and Truth-
fulQA test sets. When comparing the multi-stage
fine-tuning to a single stage, multi-stage fine-tuning
does however improve domain specific perfor-
mance on our customer service brand datasets, and
is statistically significant.21

Test Data Singe-Stage Multi-Stage
Bank 0.95 0.97
FinTech 0.9 0.92
Telecom 0.9 0.96
Credit Union 0.9 0.89
fs-halu-dolly-tqa 0.93 0.91

Table 6: Comparing performance of single vs multi-
stage RAGHalu-2 fine-tuning. Single-stage was trained
with a mixture of the open source and brand data
whereas multi-stage was trained with only open source
data first, then further with only brand data. Micro F1
score reported.

21Both the Wilcoxon Signed Rank Test and McNemar’s
t-test result in p-values < 0.05
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A.5.2 Single Versus Multi-Sentence
Prompting

To reduce inference time and overall cost, we also
prompted/trained and evaluated the decoder models
(GPT-3.5-Turbo and Mistral-7b) to classify mul-
tiple sentences at a time. Most generated mes-
sages consist of multiple sentences, each requiring
hallucination classification. Classifying multiple
sentences at once reduces the amount of required
model calls and thus decreases inference time per
message. We found, however, that classifying a
single sentence at a time consistently outperformed
classifying multiple sentences in one call for both
Turbo and Mistral. Further, with multi-sentence
classification we found the decoder model failed to
produce a classification for all statements more of-
ten. Preferring high performance over latency, we
ultimately chose to move forward with single sen-
tence classification only. Examples of statements
that were misclassified by multi-sentence models
but correctly classified by single-sentence models
can be seen in Appendix A.6.5.

Model F1 (Average across brands)
Mistral Single-Sentence 0.94
Mistral Multi-Sentence 0.87
ChatGPT Single-Sentence 0.88
ChatGPT Multi-Sentence 0.83

Table 7: Micro average F1 performance comparison of
models trained to classify single sentences vs. multiple
sentences in a single model call.

A.5.3 Two-Tier vs 3-Label Model

We experimented with a single 3-label model in-
stead of the two-tiered RAGHalu solution pre-
sented in this paper. We found that the 3-label so-
lution consistently under-performed relative to the
two-tiered approach. After performing error analy-
sis comparing the two systems we found this was
mainly because NO-INFO and UNSUPPORTED
claims were confused with one another. A compari-
son is of end-to-end performance is shown in Table
8.

A.6 Error Analysis

Fine-grained error analysis helps provide insight
as to where our model is under-performing. This
analysis is helpful to understand where our model
under-performs, and whether or not incorrect clas-
sifications are a fault of the model or simply due
to annotation errors or differences in taxonomy.

Label RAGHalu RAGHalu-3-label
NO-INFO 0.92 0.91
VERIFIABLE 0.91 0.89
SUPPORTED 0.94 0.90
UNSUPPORTED 0.93 0.82
NO-INFO 0.91 0.89
SUPPORTED 0.89 0.90
UNSUPPORTED 0.85 0.79

Table 8: Comparing end-to-end systems: Average F1
scores across brand test sets for double binary vs 3-label
solutions. We extrapolate 3-label model performance
across the 3 labels to the 2 binary label sets by convert-
ing (SUPPORTED/UNSUPPORTED) labels to VERI-
FIABLE.

Below are are various type of errors we analyzed
along with examples from selected datasets.

A.6.1 KB Similarity Score
Each KB article retrieved in the brand datasets, has
a score (KAI score) based on its similarity and/or
relevance to the consumer’s question which the AI
Assistant is responding to. In Figure 4a we can
see that a majority of the examples our model pre-
dicted incorrectly fall under a KAI score threshold
of roughly 0.85. Corroborating this observation,
we show in Figure 4b that there is a strong, statisti-
cally significant negative correlation (r = −0.95,
p = 0.001) between KAI scores and the fraction of
incorrect classifications. This correlation supports
the possibility that we can improve hallucination
detection model performance by introducing more
relevant KBs to each brand’s RAG database result-
ing in higher scoring articles.

A.6.2 Mostly-Supported Statements
Errors due to mostly-supported statements occur
when the provided statement contains multiple ver-
ifiable independent pieces of information within a
single sentence. Mostly-supported statement errors
tend to come in two types: statements where a ma-
jority of the information is correct save for a few
minor details and statements where the information
is technically all supported but the language implies
information that would be unsupported. Examples
for both versions of this error can be seen in Table
9. In the first example, it can be verified through
the evidence that information about the subjects
racing career is correct, the only inaccuracies here
are the dates spanning the subject’s life. In the
second example, the entire statement is technically
true and supported in the text, however, there is an
implication in the statement (that Blair was alive
during the Revolutionary War) that is unsupported
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(a) Article retrieval match scores for all examples.

(b) Correlation of article retrieval match scores compared with
the fraction of examples classified incorrectly.

Figure 4: Article match scores compared to incorrect
classifications.

and actually refuted by the provided evidence. Any
single inaccuracy in either of these statements qual-
ifies them for an UNSUPPORTED label, however
our models tend to predict these as SUPPORTED
given the prevalence of correct information.

A.6.3 Inconsistent Taxonomies
Another common source of errors are inconsisten-
cies between the taxonomy we used to train our
model and those used to create other datasets. A
good example is the DialFact dataset which pro-
vides two classes of labels which do not have
enough information for judgement, one for veri-
fiable statements that do not have enough evidence
to support or refute the claim, and another for per-
sonal statements (such as opinions) that are factu-
ally verifiable. For our purposes, we classify both
of these statements as VERIFIABLE in tier one,
and further classify each statement as supported or
unsupported according to the evidence. For our use

Error Type: Mostly-Supported (from wiki-bio-
gpt3)

Statement: Freddie Frith (1917–1994) was an
English motorcycle racer who competed in the Isle
of Man TT races and other international events.
Evidence: “Frederick Lee "Freddie" Frith OBE
(born 30 May 1909 in Grimsby, Lincolnshire, Eng-
land – 24 May 1988) . . . five-time winner of the
Isle of Man TT. . . Freddie also has the distinction
of being the first ever 350 cc World Champion in
1949”
Gold Label: UNSUPPORTED
Prediction: SUPPORTED
Justification: The information about his racing
accomplishments is correct, the only inaccuracy
are the birth and death dates.
Statement: After the Revolutionary War, Blair
returned to South Carolina and served in the state
legislature.
Evidence: “James Blair (September 26, 1786 -
April 1, 1834) was a United States Representative
from South Carolina.”
Gold Label: UNSUPPORTED
Prediction: SUPPORTED
Justification: Blair did serve in the South Car-
olina legislature, and although this did occur after
the revolutionary war, the implication is that he
fought in the war hen he was actually born 3 years
after its conclusion.

Table 9: Examples of mostly-supported statements.

case, NO-INFO statements (greetings, small-talk,
etc.) are not flagged as hallucinations because they
do not effect the factual accuracy of the message as
a whole. However, we do not want LLM responses
to include opinionated statements which may bias
a consumer. By classifying opinionated statements
as VERIFIABLE, we allow them to be flagged as
UNSUPPORTED by the second binary model, and
possibly removed from the original LLM response.
For reference, see the first example in Table 10.

Another example of inconsistent taxonomies are
samples where one label is applied to a message
with multiple statements. In these examples, the
individual statements could potentially have con-
flicting labels, but by applying one to the entire
message, we are unable to accurately evaluate the
true performance of our model. For an example of
a multi-statement message that should have con-
flicting labels see the second example in Table 10.
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Error Type: Inconsistent Taxonomies (from Dial-
Fact)

Statement: I would have to say olive green is the
worst. olive green and lavender are very closely
related and look nothing alike.
DialFact Label: NOT ENOUGH INFO
Gold Label: NO-INFO
Prediction: VERIFIABLE
Justification: The statement is a personal opinion
stated like a fact. Our taxonomy does not have a
distinction for these types of messages and so it
would be labeled as an UNSUPPORTED VERIFI-
ABLE statement in our taxonomy.
Statement: I’ve never been to an actual blues
festival, but i do like jazz. it’s influenced by blues,
country, folk, and many other genres.
DialFact Label: NOT ENOUGH INFO
Gold Label: NO-INFO
Prediction: VERIFIABLE
Justification: Our taxonomy is built to classify
single sentences at a time and this example con-
tains multiple sentences; one is a personal opinion
stated similarly to a fact and another is a factual
statement. Multiple sentences with potentially dif-
ferent labels can confuse a model built to classify
single sentences at a time.

Table 10: Examples of inconsistent taxonomy errors.

A.6.4 Incorrect Labels
Incorrect labelling errors are a simple case where
the original label provided for the sample is deemed
to be incorrect. These incorrect labels can some-
times come from information that is factually cor-
rect but not provided in the evidence (see the first
examples in Table 11) or alternatively from infor-
mation that was perhaps misinterpreted by the an-
notator (see the second example in Table 11). In
these examples our model is scored as being incor-
rect in the automatic evaluation process, however
we found it to be correct during manual evaluation.
The presence of these examples artificially low-
ers the evaluation metrics for our model in certain
datasets.

A.6.5 Single Statement vs. Multi Statement
Generated responses often consist of multiple state-
ments making up a single message. While develop-
ing our model training and evaluation strategy for
decoder-based models, we compared the results of
models when they either classify a single statement
at a time, or provide classifications for all of the

Error Type: Incorrectly Labeled (from wiki-bio-
gpt3)

Statement: He also oversaw the introduction of
the FedEx Cup, a season-long points competition
that culminates in a four-tournament playoff.
Evidence: Timothy W. Finchem (born April 19,
1947) is the current Commissioner of Golf’s PGA
Tour. Finchem was born... received the 2001 Old
Tom Morris Award from the Golf Course Superin-
tendents Association of America, GCSAA’s high-
est honor. He is a single-figure handicap golfer.
Gold Label: SUPPORTED
Prediction: UNSUPPORTED
Justification: There is no indication in the evi-
dence that he had anything to do with the FedEx
cup and thus the correct gold label should actually
be UNSUPPORTED.
Statement: Mahler was drafted by the Braves in
the first round of the 1975 amateur draft.
Evidence: Richard Keith Mahler... signed by the
Braves as an amateur free agent in 1975... He
was survived by his wife, Sheryl, and five children
Ricky, Robby, Timothy, Tyler and Shannon.
Gold Label: SUPPORTED
Prediction: UNSUPPORTED
Justification: Mahler was signed to the braves as
an unsigned free agent and was not in the 1975
amateur draft, thus the correct gold label should
be UNSUPPORTED.

Table 11: Examples of errors due to incorrect data la-
belling.

statements comprising the message at once. We
found that the single-sentence case outperformed
the multi-sentence case and provide a few examples
in Table 9 where classifying single statements at a
time resulted in better predictions than classifying
all statements at once.

A.7 Cost Analysis

We estimated the cost per inference of our
RAGHalu model by determining the price of de-
ploying one instance of a Google Kubernetes En-
gine (GKE) Node Pool with a NVIDIA L4 GPU
using the Google Cloud Pricing Calculator22 for
a G2 accelerator-optimized machine. We approx-
imate 8hr/day of consistent use which results in a
cost of $172/month at 243.33 hours/month which
equates to $0.707/hour.

22https://cloud.google.com/products/calculator
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Error Type: Single Statement vs. Multi State-
ment Classification (Internal Datasets)

Statement List: [’For security reasons, we are
unable to provide account numbers over the phone
or online’, ’To obtain your account number, please
contact our call centre on <PHONE NUMBER>
or visit your nearest branch’]
Gold Labels: [’UNSUPPORTED’, ’UNSUP-
PORTED’]
Single Sentence Predictions: [’UNSUP-
PORTED’, ’UNSUPPORTED’]
Multi Statement Predictions: [’UNSUP-
PORTED’, ’SUPPORTED’]
Statement List: [’You can return online purchases
at any of our Sporting Goods store locations or
through the mail’, ’We offer free returns on most
items, but some exclusions do apply’]
Gold Labels: [’SUPPORTED’, ’UNSUP-
PORTED’]
Single Statement Prediction: [’SUPPORTED’,
’UNSUPPORTED’]
Multi Statement Prediction: [’UNSUP-
PORTED’, ’SUPPORTED’]

Table 12: Examples of performance differences between
single-sentence and multi-sentence models.

To estimate GPT-3.5-Turbo cost, we use the av-
erage input prompt length and output tokens across
the four brands test sets. Each brand prompt input
is approximately ∼360 tokens23 with an average of
5 output tokens, resulting in $0.00037/inference.24

Inference speeds and cost estimates are shown in
Table 13.

We estimate each RAG event to have three factu-
ally verifiable claims, so, letting S denote savings
per year, C denote cost, and V denote events/year
we can estimate savings is as follows:

S = (CChatGPT − CRAGHalu)(3V )

Using inference cost estimates on a real brand with
2 million monthly conversations and roughly 5
LLM responses per conversation, relative to zero-
shot GPT-3.5-Turbo hallucination detection, each
year RAGHalu will save the brand:

S = (0.00037−0.000077)×3(2, 000, 000×5×12) = $105, 480

23The prompt template itself without KBs or LLM state-
ments is 184 tokens

24We assume 1x concurrent requests evenly distributed
across 8 hours/day. One NVIDIA L4 meets throughput de-
mands. RAGHalu model throughput is ∼5.2 requests/second
per tier
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Model Inference Speed (ms)
± std Model Cost Cost/Inference ($)

ChatGPT* 295± 131
0.0010$/1k tokens Input
0.0020$/1k tokens Out 0.00037

mistral-7b-ft* 1023± 83 $0.707/hr 0.0002
RAGHalu 391± 77 $0.707/hr 0.000077

Table 13: Inference speed in milliseconds/iteration - tests performed using either OpenAI API, Huggingface TGI or
MLServer for Inference on 1xNVIDIA-L4 GPU on GCP. Both RAGHalu models can fit on the same GPU. *Both
models are end-to-end and use the 3-label prompt in Appendix A.2
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