Efficient Answer Retrieval System (EARS): Combining Local DB Search
and Web Search for Generative QA

Nikita Krayko! Ivan Sidorov!? Fedor Laputin

L2 Daria Galimzianoval

Vasily Konovalov>*
'MTS AI HSE University *AIRI, Moscow, Russia
“Moscow Institute of Physics and Technology, Russia
n.kraiko@mts.ai

Abstract

In this work, we propose an efficient answer
retrieval system (EARS): a production-ready,
factual question answering (QA) system that
combines local knowledge base search with
generative, context-based QA. To assess the
quality of the generated content, we devise
comprehensive metrics for both manual and
automatic evaluation of the answers to ques-
tions. A distinctive feature of our system is the
Ranker component, which ranks answer can-
didates based on their relevance. This feature
enhances the effectiveness of local knowledge
base retrieval by 23%. Another crucial aspect
of our system is the LLM, which utilizes con-
textual information from a web search API to
generate responses. This results in substantial
92.8% boost in the usefulness of voice-based
responses. EARS is language-agnostic and can
be applied to any data domain.

1 Introduction

Developing a virtual assistant is crucial for support-
ing clients as it provides 24/7 assistance, enhanc-
ing customer experience with instant responses and
personalized interactions. It helps businesses scale
their operations efficiently, reducing workload on
human support teams and enabling them to focus
on more complex issues. One of the essential com-
ponents of a virtual assistant is a factual question-
answering (QA) system. This system is capable
of handling all user queries, providing answers to
factual requests, whether domain-specific (related
to the services of a particular company) or open-
domain.

In this paper, we present a factual QA skill as
one of the components of the virtual assistant, de-
signed for the clients of Mobile TeleSystems (MTS)
company'. The developed QA skill is proficient in
addressing domain-specific inquiries about our ser-
vices and products, along with open-domain ques-

"More than 84 million subscribers

Question
J Local Base Search &5

)
Retriever

aA
TrueCase Model —>

Top N candidates‘l
Ranker

Local knowledge
base (question-
answer pairs)

Best candid:

[

Generative Search %

&

Web Seach Engine

Answer 1 Answer 3

Top N snippets as context———

LLM GQA

4
Answer for the user Answer l

Figure 1: Combined search pipeline of EARS.

tions. Our production-ready QA system seamlessly
integrates two QA methodologies: knowledge base
search and an LLLM-based solution, enriched with
context from a search engine. The system has been
incorporated into both a chat-based interface and a
voice interface.

Given that the skill accepts input from both chat
and Automatic Speech Recognition (ASR), the
query goes through extensive preprocessing (§3).
After preprocessing, the user’s query is processed
by the Retriever (§4.1), which retrieves the top-n
semantically relevant answer candidates from the
knowledge base. Next, the Ranker (§4.2) selects
the most appropriate answer from these candidates.
However, if the Ranker lacks sufficient confidence

1584

Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track, pages 1584-1594
November 12-16, 2024 ©2024 Association for Computational Linguistics

mailto:n.kraiko@mts.ai

in its choice, the question is passed to the Gener-
ative Search (§4.3). This component employs a
Large Language Model (LLM) that is prompted to
generate an answer based on relevant context from
a web search APL

Our approach can be followed to develop your
own factual QA system, capable of effectively as-
sisting users with both domain-specific and open-
domain inquiries. Our contribution consists of two
key aspects:

1. We demonstrate how to effectively integrate
knowledge base search with advanced LLM-
based search techniques.

2. Our pipeline is language agnostic, enabling
development of factual QA systems for any
language.

2 Related work

Earlier QA systems were based on BM25 (Robert-
son and Zaragoza, 2009), a ranking function
that estimates the relevance of documents to a
given search query. Subsequently, BM25F (Pérez-
Agiiera et al., 2010) was developed, which en-
hances text relevance calculation by considering
query terms across multiple specific fields. The
BM25F class integrates the BM25 scores of the
query term in these various fields.

The introduction of word embedding methods
sparked the development of pipelines where prox-
imity in the latent space serves as a metric for se-
mantic retrieval. Cakaloglu et al. (2020) evaluated
various text embeddings, including ELMo (Peters
et al., 2018) and GloVe (Pennington et al., 2014),
for question and paragraph embeddings. The
Transformer encoder-based architecture (Vaswani
et al., 2017) led to the introduction of multilingual
E5 (Wang et al., 2024) text embeddings, which
are trained through a multi-stage pipeline. When
both the question and the context are provided (in
reading comprehension), BERT-based models have
brought about substantial improvements (Kono-
valov et al., 2020). In our pipeline, the local
knowledge-based component relies on embeddings
derived from the multilingual E5 model.

Knowledge Base Question Answering (KBQA)
relies on knowledge graphs (KGs) to find the cor-
rect answer. KBQA involves applying two main
approaches: semantic parsing (translating the ques-
tion into an executable logical form) and retrieval-
based methods (inferring answers from KG). The

WQAQqua (Diefenbach et al., 2017) pipeline starts
with knowledge base grounding, after which the
possible SPARQL queries are constructed that re-
turn non-empty answers when executed. Turganbay
et al. (2023) outlines a generative model for QA
that draws on textual content and knowledge graphs
to uncover supportive information. Salnikov et al.
(2023) proposed an algorithm for extracting sub-
graphs from a KG, based on question entities and
answer candidates. Then the Transformer-based
model is provided with linearized subgraph to gen-
erate response.

LLMs, when equipped with retrieval augmented
generation (RAG), perform exceptionally well
across a variety of tasks (Izacard et al., 2023; Shao
et al., 2023). RAG improves the accuracy of LLMs’
outputs by retrieving supplementary knowledge
through specialized retrievers. This process en-
riches the prompts given to LLMs with relevant
information from retrieved documents, enabling
them to generate more precise and detailed content.
Belikova et al. (2024) proposed a method to select
a context for RAG-based system that is retrieved
from different sources, including KGs. The selec-
tion method is based on Uncertainty Estimation
(UE) techniques.

3 Preprocessing

The quality of search can be affected by the format
of users’ requests, which can stem from diverse
sources such as chatbots, search bar widgets, or
voice-based interfaces. These requests can be typed
in lowercase, mixed case, or have capitalization er-
rors. This is significant because the E5 (Wang et al.,
2024) embedder model we employ is case-sensitive.
The optimal performance is achieved when the
user’s input is orthographically correct. Therefore
we develop the BERT-based (Devlin et al., 2019)
Truecase component that fixes word casing. We
train the model in token classification manner. For
training, we utilize the tatoeba dataset (Tiedemann,
2020).

3.1 Local Base Search

A local database in our system is essential. It has
been designed to meet customer requirements by
providing pre-prepared answers in certain question
domains, such as those containing advertising for
other products of our company.

To address the need for up-to-date information
in the knowledge base, we developed a pipeline

1585

for auto-updating data from Wikipedia and Wiki-
data (Vrandecic and Krotzsch, 2014). Wikipedia
is the primary source of our knowledge base. It
undergoes extensive preprocessing, cleaning, and
question generation for each answer to be in-
cluded in our KB. Questions are necessary be-
cause the retriever operates in a symmetric se-
mantic search mode. We selected 300,000 most
popular Wikipedia articles based on the last five
years of page views to be incorporated into our lo-
cal database.” The content is filtered and cleaned
of special characters and editing artifacts, subse-
quently the questions are generated. In parallel, the
Ranker features are gathered, including page views,
categories and more.

With respect to Wikipedia, our methodology for
generating questions for each article involves the
following steps: Firstly, we employ Named Entity
Recognition (NER) to identify and extract named
entities from both the article titles and abstracts.
Subsequently, we categorize these entities into var-
ious classes, including animate and inanimate ob-
jects, proper nouns, organizations, countries, and
so on. This allows us to create questions that are
tailored to the specific content of each article. With
respect to Wikidata, every entity possesses struc-
tured properties, such as date of birth, citizenship,
profession, and more. For each of these properties,
we have devised specific question templates. As for
other sources, the questions were crafted manually.

Beyond public sources, we include corporate
sources guided by service needs. We also maintain
an annotation management service that gathers data
from alpha testing environment. Annotators utilize
this platform to review and filter queries, manually
annotate them, and generate accurate answers as
needed. These annotations create distinct sources
or tables within the databases, which are seamlessly
integrated into the automatic update mechanism.

The final stage of the pipeline is merging all
sources. We use the top 300,000 Wikipedia arti-
cles, extract data from Wikidata for 36,000 of them
and include 4-5 additional smaller sources. Con-
sequently, our knowledge base comprises around
400,000 entries and is updated several times a
month.

*Based on the distribution of views and the system’s perfor-
mance, as well as to insure against the curse of dimensionality,
we decided on the figure of 300,000 articles.

4 Combining Search Pipeline

General overview of our system can be found in
Figure 1.

Once an input query (a question requesting a
fact as an answer) is received by our system, it’s
processed in the following way:

1. The Truecase component recovers punctua-
tion (including capitalization) that can occur
in the query since the input can be received ei-
ther from users typing it into the chatbot inter-
face or from the ASR system. There are other
ways to solve this problem, such as fine-tuning
the Retriever or fine-tuning components in
speech recognition block, but we decided to
develop and implement a Truecase model.

2. The Retriever transforms the corrected query
into vector representations with the E5 em-
bedder. Then, the Retriever performs the Ap-
proximate Nearest Neighbor (ANN) search
over the local database and if relevant answers
are found, it returns top-n semantically close
candidates. In case the local database lacks
relevant information, the query is forwarded
to the Generative Search module.

3. The retrieved candidates are sent into the
Ranker model that improves the output from
the Retriever and returns the best candidate
based on its score.

4. Once a certain threshold (determined on vali-
dation) is reached, the answer retrieved from
the local database is returned to the user (An-
swer 1).

5. If the local database lacks relevant answers,
the Generative Search component is em-
ployed. The user query is forwarded to a web
search API, which in turn provides the top-n
(5 or 10) most relevant snippets. These snip-
pets are short textual extracts from relevant
web pages.

6. The snippets are concatenated into one string
(context) which is passed to the LLM with the
system prompt describing the task (Figure 4).

7. If the LLM returns “No information”, the con-
text from the search API is returned to the
user as the answer (Answer 3). Otherwise, the
LLM generated answer is shown to the user
(Answer 2).

1586

4.1 Retriever

The Retriever component performs a search based
on the local knowledge base. It consists of an
embedder and an Approximate Nearest Neigh-
bor (ANN) search. We incorporate both semantic
search types: symmetric (query-query) and asym-
metric (query-passage) that matches the concate-
nation of query, document and title to the input
query.

We encode pre-compiled triplets (query-title-
passage) from the local database using the multi-
lingual E5 large embedding model (Wang et al.,
2024). Next, the embeddings are indexed us-
ing Faiss (Johnson et al., 2021). We use the In-
dexFlatL2 method, which allows storing vectors in
their original form without compression, as well as
performing an accurate search. In our case, this is
acceptable, since the database size is not huge (less
than 1 million), and the search is performed on the
GPU. According to the results of load testing of
the our service, the index component executes for
8.17 ms on an A100 80 GB GPU. During inference,
the user’s input question is encoded by the same
embedding model, and then passed to Faiss to fetch
the top-10 semantically similar embeddings. If the
top-1 score exceeds the threshold value, the system
proceeds with the Ranker. Otherwise, it resorts to
the Generative Search module.

4.2 Ranker

The Ranker’s function is to identify the most accu-
rate answer among the candidates retrieved by the
Retriever. One of two implementations is usually
used as a ranker model: (1) cross-encoder that gets
two sentences as input and returns a value from
0 to 1 indicating the similarity between them; (2)
a gradient boosting model trained with a tailored
pairwise or listwise loss function like in Cao et al.
(2007). Our system uses the second approach, as
it’s more flexible with the provision of additional
features of a different nature.

A crucial aspect is that the system must return
a single, most relevant document. To address this
need, we use QuerySoftMax? loss function from
CatBoost (Prokhorenkova et al., 2018) library.

Thus, using the gradient boosting model and tab-
ular data representation allows to achieve improved
performance by providing additional important in-
formation to the model (Appendix A provides a

3https://catboost.ai/en/docs/concepts/
loss-functions-ranking#QuerySoftMax

detailed description of each feature).

We evaluate our Ranker against other ranking
techniques, including the performance metrics of
the Retriever, the Ranker with basic features, the
Ranker with all features, and a cutting-edge propri-
etary Cohere cross-encoder (rerank-multilingual-
v3.0)*. The comparison is presented in the Table 2,
which shows that even the base Ranker provides
a quality boost of 16.5%. Our custom features
add another 5.3% increase compared to the base
Ranker, thus improving the overall retrieval quality
by 22.7%.

4.3 Generative Search

When the answer chosen by the Ranker is insuf-
ficient or the question pertains to information not
available in the local knowledge base, such as ex-
change rates, time-sensitive data, current news,
real-time events, and similar, it is necessary to re-
sort to external sources. The sign for insufficiency
or absence of a response in the database is falling
below a threshold. To respond to a question us-
ing external search engines, we need to navigate
through two stages: (1) get the context relevant to
the query; (2) provide the LLM with the request
and context to answer the question. If the con-
text lacks sufficient information for a response, the
model should output “No information”.

To collect context, we use site snippets, namely,
relevant pieces of documents from the first page of
search engine API results. In the second stage, the
compiled context and request are submitted to the
LLM. The prompt can be found in Figure 4. It’s cru-
cial to indicate LLM to generate “No information”
if there is no relevant information in the context,
otherwise the LLM will hallucinate (Mallen et al.,
2023). Thus, in the Generative Search component
we employ RAG with relevant context retrieved
from the internet via a search engine API.

We employ Mistral 7B (Jiang et al., 2023) in our
pipeline as at the time of development this model
provided the best quality and size trade-off for our
case.

5 System Performance

We develop domain-specific validation sets that
simulate probable user queries. Additionally, we
have a comprehensive golden set comprising 1,600
factual questions, along with their corresponding

4https://cohere.com/blog/rerank—3

1587

https://catboost.ai/en/docs/concepts/loss-functions-ranking##QuerySoftMax
https://catboost.ai/en/docs/concepts/loss-functions-ranking##QuerySoftMax
https://cohere.com/blog/rerank-3

Usefulness “No info” proportion Usefulness excl. “No info”
Model
top-5 top-10 top-5 top-10 top-5 top-10
Mistral 7B 59.58 65.43 13.74 8.56 69.02 71.50
GPT-3.5 55.79 63.17 13.44 8.68 64.41 69.13
GPT-40 50.09 50.00 40.87 40.87 84.62 84.47

Table 1: Usefulness on different LLMs evaluated on the golden set. Top-5 and top-10 indicate the number of search
engine snippets passed to the model as context. The proportion of uninformative (“No information”) answers
returned by the model is shown in “No info” proportion columns. The Usefulness metric calculated for only
informative answers (excluding the uninformative) can be found in the last two columns.

Searcher MAP@1
Retriever 0.6275
Retriever & base Ranker 0.7314
Retriever & all-features Ranker 0.7705
Retriever & Cohere Ranker 0.5874

Table 2: Retriever and Ranker metrics.

benchmark (ground-truth) answers crafted by hu-
mans. This set is highly representative of expected
user questions (including the length and complex-
ity).

The Usefulness metric is our key product met-
ric for evaluating QA system responses. Although
we define a “useful” answer simply as one that ad-
dresses the posed question, there are many nuances
(some of the are highlighted in Appendix D which
provides a detailed description of each usefulness
value). The score can take values of 0, 0.5, or 1 for
a single sample, and then these values are averaged
over the validation set to get the final Usefulness.

Preliminary outcomes of the current system are
depicted in Figure 2. The notable 92.8% improve-
ment in voice-based answers, achieved through
the optimal combination of +Ranker and +LLM,
increased the overall Usefulness from 26.65% to
51.39%, taking into account the utility and contribu-
tion of each service component. The contribution
of the Ranker is twofold: it reorders the Retriever’s
output and allocates the queries efficiently across
the local and generative search. In our system, we
assess the overall Usefulness of the entire service
rather than each individual component. It’s cru-
cial to maximize the total final Usefulness by any
means necessary, which renders the significance of
individual components less critical.

In Figure 2b, one can observe the absence of the
web search component’s share, as we are unable to
present web search results to the user through the

audio channel; this is due to safety concerns and the
lack of informativeness. Furthermore, it’s impor-
tant to note that, by definition, a QA system should
respond to all posed questions. “No Information”
cannot be considered a correct answer. Even in
cases where a user asks an nonsensical question
that cannot be answered properly, the LLM should
provide a response indicating that the question does
not have a definitively correct answer. Therefore,
our objective is to minimize the share of “No In-
formation” responses, as these responses offer no
value or benefit to the service and are essentially
useless.

Upon optimizing the QA system validation, we
focused on accelerating the service and migrating
it to the Triton Inference Server’. By incorporat-
ing dynamic batching (Zha et al., 2019) for the lo-
cal search module and continuous batching (Kwon
et al., 2023) for the LLM, along with asynchronous
external search engine queries for context, we
achieved a 700% increase in RPS and a 500% re-
duction in response time. Currently, we are pursu-
ing LLM quantization for further efficiency.

5.1 Human Evaluation

Human evaluation is capable of capturing a broad
spectrum of elements and contextual aspects, such
as cultural subtleties and the style of the text, which
might be challenging for automated systems to
fully grasp.

To speed up human annotation process, bench-
mark answers from golden sets were provided. As
these benchmark answers need periodic updates
to incorporate new information, a supplementary
mechanism was implemented to automatically re-
fresh items with updated data from knowledge base.
The hourly rate paid to the annotators is approxi-
mately $2. The golden set has roughly 1,650 most

5https://developer.nvidia.com/
triton-inference-server

1588

https://developer.nvidia.com/triton-inference-server
https://developer.nvidia.com/triton-inference-server

100 I

M Local Base
[Web Search
801 |mLLm |
IS
RS 45.56 46.1
=)
T 40| 3
-
20 *
-Ranker +Ranker - Ranker +Ranker
-LLM -LLM +LLM +LLM

(a) Distribution of Answers

100 I
B Local Base
[Web Search
801 \mLLm |
IS
g 00 51.39 |
% 44.87
“g 40 1 36.7 -
= 26.54
20 *
-Ranker +Ranker -Ranker +Ranker
-LLM -LLM +LLM +LLM

(b) Distribution of Voiced Answers

Figure 2: The Usefulness measured across the Ranker and LLM components. In our virtual assistant, the bot
answers are voiced by the text-to-speech model, and the answers obtained directly from the web search cannot
be voiced. The histogram (a) includes Usefulness scores for all answers provided to the users. The histogram (b)
excludes the web search component and only shows the scores for the answers our system was able to voice, which
is the most desirable mode of operation. Both histograms show significant increase delivered by the Ranker and

LLM components.

representative queries for system validation, this
number allows us to optimize the validation pro-
cess, both in terms of time spent and in terms of
financial cost. By utilizing benchmark answers, the
annotation time was decreased by approximately
30%. Furthermore, the inclusion of benchmark
answers increased annotator consistency by an av-
erage of 6%.

We employ our primary golden set to assess two
proprietary LLMs — ChatGPT 3.5 and GPT-40 —
and evaluate their Usefulness side-by-side with
open-source Mistral 7B (Jiang et al., 2023), which
is integrated into the current system. The same set
of hyperparameters is applied to all models (Table
4). Each model is evaluated with top-5 and top-10
context snippets received from the search engine
API. The results can be found in the Table 1.

The average Usefulness for the open-source Mis-
tral 7B answers in our setup is higher than any of
the proprietary models. The refusal rate, which is
the proportion of “No information” answers is the
highest with GPT-40 (over 40% of all answers). If
these uninformative answers are excluded from the
overall Usefulness calculation, GPT-40 achieves
significantly higher quality than any other model.
This indicates that open-source LLMs might bene-
fit from fine-tuning for context following, a strategy
we plan to implement in future version of our sys-
tem.

5.2 Automatic Evaluation

In addition, we implemented an automatic evalua-
tion method, where the primary criterion was the
answer’s Correctness. In this type of assessment,
the system-generated response is compared against
the established ground truth (Es et al., 2024).

Two primary methods are employed for auto-
mated validation: (1) deterministic metrics, which
don’t incorporate stochastic components (such as
Precision, Recall, F1-score, BLEU, ROUGE) in
conjunction with Cosine Similarity, and (2) LLM-
as-a-judge (Zheng et al., 2023). Both approaches
are designed to correspond Usefulness metric.

The first approach often results in a weak corre-
lation with human evaluation (Figure 3), while the
LLM-as-a-judge, due to its nature, poses challenges
to interpretation and can be resource-intensive, es-
pecially when utilizing proprietary models like
GPT-4. Consequently, an intermediate framework
was developed. It combines deterministic met-
rics into ensemble using Gradient Boosting Clas-
sifier (Prokhorenkova et al., 2018), providing a
slightly lower performance compared to the LLM-
as-a-judge yet being practically free in terms of
resources and improving the use of certain metrics.

The ensemble acts as an extra quality control
step prior human evaluation. This approach signif-
icantly improves the efficiency of the annotation
process. It should be used as an additional stage,
and not the main one, replacing the stage of human

1589

1 |

B0 T0p-5
On Top-10
- 0.8 B 8 Top-5 No Info _ b
S I 8 Top-10 No Info
S 0.6
) b .
= —
o}
O _
o _
2 0.4} R
<
o
A
02| “ |
0 L | L L |
Cosine Unigram Bigram BLEU ROUGE-L Ensemble GPT-40
Similarity ~ Overlap F1 ~ Overlap F1 as a judge

Figure 3: Metrics of both approaches evaluated on the golden set and compared using Pearson’s correlation with
human evaluation (Usefulness) labels. Top-5 and top-10 indicate the number of search engine snippets passed to the
model as context. Variations with different refuse rates (No info) from Mistral 7B are included.

evaluation. It reduces the amount of data that re-
quires human evaluation, concentrating the efforts
and time of annotators only on the most complex
and ambiguous cases.

6 Conclusion

In this work, we introduced EARS, a production-
ready factual question answering system. Answers
can be derived either from a local knowledge base
or generated by an LLM using context obtained
from the web search API. We outlined the compre-
hensive workflow for addressing factual questions,
making it reproducible for any language. The cor-
nerstone of the pipeline is the Ranker, which en-
hances retrieval quality by 23%. Incorporating the
LLM boosts the quality of our chatbot’s spoken
answers by 92.8%. Furthermore, we developed a
suite of automatic metrics to reduce reliance on
human annotators.

Limitations

In spite of bringing a significant increase in useful-
ness in the task of factual question answering, our
system has a few limitations that are planned to be
covered in the future work.

One serious limitation is that the LLM that we
deployed has not been fine-tuned to answer ques-
tions based on the context. Another point that could
be covered in future research is extending the con-

text. In our current deployment, the model is only
tested on 5 and 10 top hits from the web search API,
which can be increased to several pages of content,
since the context window of latest LLMs allows
that. Furthermore, we aim to integrate the results
obtained from various web search APIs in order to
improve both the accuracy and comprehensiveness
of our results.

The human evaluation that we partly rely on to
assess the performance of our system is a rather
costly and lengthy process. It requires detailed in-
structions and proper training for annotators, which
is not always feasible. One way to alleviate this is
to use automatic metrics.

Our system might not be applicable for every
domain of data. The questions that require long
answers (e.g. food recipes) could be too difficult to
cover with a local base, since each entry would re-
quire manual parsing. We are currently researching
the types of LLM agents and building systems with
multiple agents in order to handle cases that require
constant data updates. For example, exchange rates,
work schedules of organizations, routes and inter-
esting events nearby that require third-party APIs
and cannot be covered by the Web Search context.

Moreover, to enhance performance, it is advis-
able to investigate LLM quantization techniques.

1590

References

Julia Belikova, Evegeniy Beliakin, and Vasily Kono-
valov. 2024. JellyBell at TextGraphs-17 shared
task: Fusing large language models with external
knowledge for enhanced question answering. In Pro-
ceedings of TextGraphs-17: Graph-based Methods
for Natural Language Processing, pages 154-160,
Bangkok, Thailand. Association for Computational
Linguistics.

Ravish Bhagdev, Sam Chapman, Fabio Ciravegna, Vi-
taveska Lanfranchi, and Daniela Petrelli. 2008. Hy-
brid search: Effectively combining keywords and
semantic searches. In The Semantic Web: Research
and Applications, 5th European Semantic Web Con-
ference, ESWC 2008, Tenerife, Canary Islands, Spain,
June 1-5, 2008, Proceedings, volume 5021 of Lecture
Notes in Computer Science, pages 554-568. Springer.

Tolgahan Cakaloglu, Christian Szegedy, and Xiaowei
Xu. 2020. Text embeddings for retrieval from a large
knowledge base. In Research Challenges in Informa-
tion Science, pages 338-351, Cham. Springer Inter-
national Publishing.

Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and
Hang Li. 2007. Learning to rank: from pairwise ap-
proach to listwise approach. In Machine Learning,
Proceedings of the Twenty-Fourth International Con-
ference (ICML 2007), Corvallis, Oregon, USA, June
20-24, 2007, volume 227 of ACM International Con-
ference Proceeding Series, pages 129-136. ACM.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4171-4186. Association for Computational
Linguistics.

Dennis Diefenbach, V. Lopez, Kamal Deep Singh, and
Pierre Maret. 2017. Core techniques of question
answering systems over knowledge bases: a survey.
Knowledge and Information Systems, 55:529 — 569.

Shahul Es, Jithin James, Luis Espinosa Anke, and
Steven Schockaert. 2024. RAGAs: Automated evalu-
ation of retrieval augmented generation. In Proceed-
ings of the 18th Conference of the European Chap-
ter of the Association for Computational Linguistics:
System Demonstrations, pages 150—-158, St. Julians,
Malta. Association for Computational Linguistics.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2021. Deberta: decoding-enhanced
bert with disentangled attention. In 9th International
Conference on Learning Representations, ICLR 2021,
Virtual Event, Austria, May 3-7, 2021. OpenRe-
view.net.

Gautier Izacard, Patrick S. H. Lewis, Maria Lomeli,
Lucas Hosseini, Fabio Petroni, Timo Schick, Jane
Dwivedi-Yu, Armand Joulin, Sebastian Riedel, and
Edouard Grave. 2023. Atlas: Few-shot learning
with retrieval augmented language models. J. Mach.
Learn. Res., 24:251:1-251:43.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de Las Casas, Florian Bressand, Gianna Lengyel,
Guillaume Lample, Lucile Saulnier, Lélio Re-
nard Lavaud, Marie-Anne Lachaux, Pierre Stock,
Teven Le Scao, Thibaut Lavril, Thomas Wang, Timo-
thée Lacroix, and William El Sayed. 2023. Mistral
7b. CoRR, abs/2310.06825.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2021.
Billion-scale similarity search with gpus. [EEE
Trans. Big Data, 7(3):535-547.

Vasily Konovalov, Pavel Gulyaev, Alexey Sorokin, Yury
Kuratov, and Mikhail Burtsev. 2020. Exploring the
bert cross-lingual transfer for reading comprehen-
sion. In Computational Linguistics and Intellectual
Technologies, pages 445-453.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gonza-
lez, Hao Zhang, and Ion Stoica. 2023. Efficient mem-
ory management for large language model serving
with pagedattention. In Proceedings of the 29th Sym-
posium on Operating Systems Principles, SOSP 2023,
Koblenz, Germany, October 23-26, 2023, pages 611—
626. ACM.

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das,
Daniel Khashabi, and Hannaneh Hajishirzi. 2023.
When not to trust language models: Investigating
effectiveness of parametric and non-parametric mem-
ories. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), ACL 2023, Toronto, Canada,
July 9-14, 2023, pages 9802-9822. Association for
Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1532—1543, Doha, Qatar.
Association for Computational Linguistics.

José R. Pérez-Agiiera, Javier Arroyo, Jane Greenberg,
Joaquin Pérez-Iglesias, and Victor Fresno. 2010. Us-
ing BM25F for semantic search. In Proceedings
of the 3rd International Semantic Search Workshop,
SEMSEARCH 10, Raleigh, North Carolina, USA,
April 26, 2010, pages 2:1-2:8. ACM.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 22272237,

1591

https://aclanthology.org/2024.textgraphs-1.15
https://aclanthology.org/2024.textgraphs-1.15
https://aclanthology.org/2024.textgraphs-1.15
https://doi.org/10.1007/978-3-540-68234-9_41
https://doi.org/10.1007/978-3-540-68234-9_41
https://doi.org/10.1007/978-3-540-68234-9_41
https://doi.org/10.1145/1273496.1273513
https://doi.org/10.1145/1273496.1273513
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://api.semanticscholar.org/CorpusID:3907100
https://api.semanticscholar.org/CorpusID:3907100
https://aclanthology.org/2024.eacl-demo.16
https://aclanthology.org/2024.eacl-demo.16
https://openreview.net/forum?id=XPZIaotutsD
https://openreview.net/forum?id=XPZIaotutsD
https://jmlr.org/papers/v24/23-0037.html
https://jmlr.org/papers/v24/23-0037.html
https://doi.org/10.48550/ARXIV.2310.06825
https://doi.org/10.48550/ARXIV.2310.06825
https://doi.org/10.1109/TBDATA.2019.2921572
https://doi.org/10.28995/2075-7182-2020-19-445-453
https://doi.org/10.28995/2075-7182-2020-19-445-453
https://doi.org/10.28995/2075-7182-2020-19-445-453
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.18653/V1/2023.ACL-LONG.546
https://doi.org/10.18653/V1/2023.ACL-LONG.546
https://doi.org/10.18653/V1/2023.ACL-LONG.546
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.1145/1863879.1863881
https://doi.org/10.1145/1863879.1863881
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202

New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Liudmila Ostroumova Prokhorenkova, Gleb Gusev,
Aleksandr Vorobev, Anna Veronika Dorogush, and
Andrey Gulin. 2018. Catboost: unbiased boosting
with categorical features. In Advances in Neural
Information Processing Systems 31: Annual Con-
ference on Neural Information Processing Systems
2018, NeurIPS 2018, December 3-8, 2018, Montréal,
Canada, pages 6639-6649.

Stephen E. Robertson and Hugo Zaragoza. 2009. The
probabilistic relevance framework: BM25 and be-
yond. Found. Trends Inf. Retr., 3(4):333-389.

Mikhail Salnikov, Hai Le, Prateek Rajput, Irina Nik-
ishina, Pavel Braslavski, Valentin Malykh, and
Alexander Panchenko. 2023. Large language models
meet knowledge graphs to answer factoid questions.
In Proceedings of the 37th Pacific Asia Conference
on Language, Information and Computation, pages
635-644, Hong Kong, China. Association for Com-
putational Linguistics.

Zhihong Shao, Yeyun Gong, Yelong Shen, Minlie
Huang, Nan Duan, and Weizhu Chen. 2023. En-
hancing retrieval-augmented large language models
with iterative retrieval-generation synergy. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2023, Singapore, December 6-10, 2023,
pages 9248-9274. Association for Computational
Linguistics.

Jorg Tiedemann. 2020. The tatoeba translation chal-
lenge - realistic data sets for low resource and mul-
tilingual MT. In Proceedings of the Fifth Confer-
ence on Machine Translation, WMT@EMNLP 2020,
Online, November 19-20, 2020, pages 1174—-1182.
Association for Computational Linguistics.

Raushan Turganbay, Viacheslav Surkov, Dmitry Evseev,
and Mikhail Drobyshevskiy. 2023. Generative ques-
tion answering systems over knowledge graphs and
text. COMPUTATIONAL LINGUISTICS AND IN-
TELLECTUAL TECHNOLOGIES”.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 5998-6008.

Denny Vrandecic and Markus Krotzsch. 2014. Wiki-
data: a free collaborative knowledgebase. Commun.
ACM, 57(10):78-85.

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang,
Rangan Majumder, and Furu Wei. 2024. Multilin-
gual ES text embeddings: A technical report. CoRR,
abs/2402.05672.

Sheng Zha, Ziheng Jiang, Haibin Lin, and Zhi Zhang.
2019. Just-in-time dynamic-batching. CoRR,
abs/1904.07421.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judging
IIm-as-a-judge with mt-bench and chatbot arena. In
Advances in Neural Information Processing Systems
36: Annual Conference on Neural Information Pro-
cessing Systems 2023, NeurlPS 2023, New Orleans,
LA, USA, December 10 - 16, 2023.

A Ranker features

Below are some features employed by the Ranker
boosting model:

Retriever similarity features significantly con-
tribute to the ranker performance, virtually ensur-
ing it doesn’t degrade the retriever’s initial ranking.
This feature represents cosine similarity between
the input question and the retrieved question as
described in the Section 4.1.

Embedding features has been supported by Cat-
Boost by using Linear Discriminant Analysis
(LDA), vectors are converted into a single numer-
ical column. At the first stage, all text informa-
tion related to the retrieved document (query, title,
passage), as well as input query, are encoded into
embeddings using the multilingual ES large em-
bedding model (Wang et al., 2024). At the second
stage, all emdeddings are reduced from 1024 to 512
components using Principal Component Analysis
(PCA). And at the third stage, reduced embeddings
are passed to the Ranker model as a features to take
into account the text attributes of the input query,
as well as the retrieved query, title and passage.
Natural Language Inference (NLI) based on De-
BERTa (He et al., 2021) determines the relationship
between the question and answer candidates. To
be precise, we use concatenation of the title and
the answer as a premise and the input query as a
hypothesis. The resulting entailment, neutral, and
contradiction logits are passed as a separate numer-
ical features to the Ranker.

Named Entity Recognition (NER) extracts enti-
ties from the user’s query and the discovered doc-
ument. Entity classes are transformed into cate-
gorical features, while the entities themselves are
encoded and passed to the ranker as an embedding
feature.

BM25 (Robertson and Zaragoza, 2009) is used in
addition to calculated at the retrieval stage simi-
larity features, which are created by conducting a
parallel document search. This technique is known
as Hybrid Search (Bhagdev et al., 2008). We calcu-
late BM25 score for the top-10 documents received

1592

https://proceedings.neurips.cc/paper/2018/hash/14491b756b3a51daac41c24863285549-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/14491b756b3a51daac41c24863285549-Abstract.html
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://aclanthology.org/2023.paclic-1.63
https://aclanthology.org/2023.paclic-1.63
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.620
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.620
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.620
https://aclanthology.org/2020.wmt-1.139/
https://aclanthology.org/2020.wmt-1.139/
https://aclanthology.org/2020.wmt-1.139/
https://api.semanticscholar.org/CorpusID:267538064
https://api.semanticscholar.org/CorpusID:267538064
https://api.semanticscholar.org/CorpusID:267538064
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.1145/2629489
https://doi.org/10.1145/2629489
https://doi.org/10.48550/ARXIV.2402.05672
https://doi.org/10.48550/ARXIV.2402.05672
https://arxiv.org/abs/1904.07421
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html

by Retriever using the input query and concatena-
tion of the retrieved query and the answer. It helps
to take into account not the semantic, but the lexical
relationship between the request and the document.

Document popularity based on access and view-
ing statistics of the local knowledge base (primarily
Wikipedia and Wikidata), is incorporated into the
feature vector. These features are particularly use-
ful in cases of namesakes, homonyms, identical
book or film titles, etc. We extract the views of all
articles in our knowledge base over the past two
years and then calculate various statistics such as
sum, median, mean and standard deviation to pass
them as a features to the Ranker.

Type Features

Embedding query, title, passage

Score top-N, Retriever score, BM25 score
Text NLI logits, NER entities similarity
Numeric views: sum, median, mean, std

Table 3: Overview of the features of Gradient Boosting
ranker.

B Generative Search prompt

()

{question}

{context}

You have been given a question and a context
compiled from different sources, answer the
question following strictly the context further.
If you cannot answer the question, then write
"No information’. Answering a question out of
context is prohibited.

. J

Figure 4: LLM prompt for context question answering.

C LLM Inference Hyperparameters

Hyperparameter Value
Temperature 0.01
Top-p 0.8
Max new tokens 128

Table 4: Inference hyperparameters for LLM.

D The Usefulness metric and annotators
guidelines examples

Regarding voice channel, there are two potential
sources for answers: a response derived from
a local base search and a generative response
produced by LLM. The system itself decides
which component will provide the answer to a
given query. A response is considered useful
only if it directly addresses the question at hand.
The usefulness of the system’s responses can be
either 0, 0.5, or 1, depending on the accuracy of
the answer. A usefulness score of 0.5 indicates
a partially useful answer, which typically occurs
when the generative response is incomplete or
fails to fully address the question. The following
are several examples for each Usefulness score,
accompanied by explanations and illustrations
taken from the annotators’ guidelines:

Usefulness is 0 (not useful response):

1. Question: How many people live in Bu-
dapest?

Response: Local Base: Budapest is the capi-
tal and largest city of Hungary. It is located
in the northern part of the country on both
banks of the Danube. It is the ninth most pop-
ulous city in the European Union, the center of
an agglomeration with a population of about
2.97 million people.

Usefulness: 0

Explanation: It’s necessary to check the fact
about the population of Budapest. The correct
answer from Wikipedia is: “The population
of Budapest on January 1, 2023 is 1,671,004
people”. The system’s response differs from
the actual information, so the Usefulness is 0.

2. Question: Who invented the thermopot?

Response: LLM: The thermopot was invented
in Japan in 1992.

Usefulness: 0

Explanation: The question did not pertain to
the location or year of invention, but rather
sought information about the specific individ-
ual who invented the thermopot. But this de-
tail was absent from the system’s response.
A more accurate response would have been
as follows: “The thermopot was invented in
Japan in 1992. It is impossible to say exactly

1593

who invented it. Arthur Large came up with
the idea of building a heating element into the
kettle itself. And Russell Hobbs came up with
the idea of making kettles automatic. All this
influenced the creation of the thermopot.”

. Question: Does a spider have teeth?
Response: LLM: Yes, spiders have teeth.
Usefulness: 0

Explanation: The system’s response origi-
nated from LLM. Upon investigation on the
Internet, we realize that the model’s response
was factually incorrect. The accurate answer
is as follows: “Spiders don’t have teeth, but
they do have chelicerae — they contain the
ducts of poisonous glands that secrete diges-
tive juice.”

Usefulness is 0.5 (partially useful response):

1. Question: What is the name of the lead singer
of Linkin Park?

Response: LLM: Chester.
Usefulness: 0.5

Explanation: Providing only a single name is
insufficient; at the very least, the singer’s last
name should also be included. A more accu-
rate response to the query would be: "The lead
singer of the band "Linkin Park" is Chester
Charles Bennington."

. Question: Name the fruits that are grown in
Cyprus?

Response: LLM: Cyprus grows oranges,
peaches, cherries, kiwis and dates.

Usefulness: 0.5

Explanation: It’s evident that the list of fruits
cultivated in this country is not exhaustive,
as other produce such as figs and grapes are
also grown there. If we had included phrases
like "and so on" or "among others," the re-
sponse would have received a full Usefulness
of 1. However, since this was not done, the
response is only rated at 0.5.

Usefulness is 1 (useful response):

1. Question: Who is considered the founder of

physics?

Response: LLM: Newton is considered the
founder of physics.

1594

Usefulness: 1

Explanation: The question is phrased in
the singular form, and according to multi-
ple sources, Sir Isaac Newton can indeed be
regarded as the founding figure of classical
physics. Although Galileo Galilei and René
Descartes also made significant contributions
to the field, based on the singular nature of
the question, we conclude that Newton is the
primary answer. Therefore, we consider this
response to be a complete and accurate answer
with a Usefulness of 1.

. Question: Who was the President of Italy in

2000?

Response: Local Base: Carlo Azeglio Ciampi
was an Italian statesman, the tenth President
of the Italian Republic, and Chairman of the
Council of Ministers of Italy.

Usefulness: 1

Explanation: The answer was originated
from a local base search. The sources con-
firm the correctness of the answer, so we rate
the Usefulness at 1.

