
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
System Demonstrations, pages 507–519

November 12-16, 2024 ©2024 Association for Computational Linguistics

Instruction-Driven Game Engine: A Poker Case Study
Hongqiu Wu1,2,3† and Xingyuan Liu1,2,3† and Yan Wang4∗ and Hai Zhao1,2,3*

1Department of Computer Science and Engineering, Shanghai Jiao Tong University
2Key Laboratory of Shanghai Education Commission for Intelligent Interaction

and Cognitive Engineering, Shanghai Jiao Tong University
3Shanghai Key Laboratory of Trusted Data Circulation and Governance in Web3

4Tencent
{wuhongqiu,chloelxy,zhaohai}@sjtu.edu.cn,yanwang.branden@gmail.com

Abstract

The Instruction-Driven Game Engine (IDGE)
project aims to democratize game development
by enabling a large language model (LLM) to
follow free-form game descriptions and gen-
erate game-play processes. The IDGE allows
users to create games simply by natural lan-
guage instructions, which significantly lowers
the barrier for game development. We approach
the learning process for IDGEs as a Next State
Prediction task, wherein the model autoregres-
sively predicts the game states given player ac-
tions. The computation of game states must be
precise; otherwise, slight errors could corrupt
the game-play experience. This is challenging
because of the gap between stability and diver-
sity. To address this, we train the IDGE in a
curriculum manner that progressively increases
its exposure to complex scenarios. Our initial
progress lies in developing an IDGE for Poker,
which not only supports a wide range of poker
variants but also allows for highly individual-
ized new poker games through natural language
inputs. This work lays the groundwork for fu-
ture advancements in transforming how games
are created and played.

1 Introduction

Game developers dedicate creativity to offer immer-
sive experiences to game players. Players immerse
themselves in games and offer valuable feedback
to developers. This makes a symbiotic relation-
ship between creators and customers. However,
as depicted in the comic from Figure 1, there are
disconnections between them, due to diverse pref-
erences of players across age, gender, and cultural
backgrounds. Despite the fact that many today’s
games allow for customization of basic characters

*Corresponding author. † Equal contribution. This re-
search was supported by the Joint Research Project of Yangtze
River Delta Science and Technology Innovation Community
(No. 2022CSJGG1400), the Joint Funds of the National Natu-
ral Science Foundation of China (Grant No. U21B2020).

and appearances, it is an impossible task for devel-
opers to craft every aspect of the game to suit the
need of every player. Our study seeks to reconcile
such a divide.

Game engines, as the heart of game develop-
ment, are conventionally driven by programming
languages. This technical barrier often deters en-
thusiasts from realizing their game development
dreams. In response, we propose a novel concept:
Instruction-Driven Game Engine (IDGE), a game
engine enabling anyone to fashion a game through
natural language instructions and generating the
resultant game-play process. Distinct from recent
advancements in video-based games (Bruce et al.,
2024; Team et al., 2024b), our focus in this paper is
on the text-based game states. We leverage Unity
to render these states to visual display.

IDGE is a neural engine, meaning it is built upon
neural networks, specifically large language mod-
els (LLMs) (Brown et al., 2020; OpenAI, 2023;
Touvron et al., 2023; Yang et al., 2023). It is de-
signed to follow a game script, a detailed instruc-
tion that blueprints the game, e.g. settings, rules,
elements, and drive the progression of game-play
as interacting with players. IDGEs frame the op-
eration of engines as a Next State Prediction task,
which autoregressively predicts the next game state
based on the user-specified game script, previous
game state, and current player action.

Training an IDGE faces the dual challenges of
stability and diversity. The former seeks to pro-
vide a stable and precise game-play throughout
lengthy contexts, while the latter seeks to follow
diverse preferences across the large player base.
Unfortunately, we empirically see an ironic twist:
the model trained directly from naive game logs is
neither stable nor diverse. Therefore, we employ
a standard-to-diverse curriculum learning method-
ology, which gradually introduces complexity into
the training process, incrementally enhancing the
model’s diversity while preserving its stability.

507

Developer:
In our new
game,
players will
control...

Player: Why
protagonist
is always a
man?

Developer:
Yes, maybe
we should...

Developer: In
dual protago-
nists, you can
always switch
between a man
and a woman.

Player: Why
always men
or women?

Developer:
Emmm...

Developer:
Please tell your
thought to our
engine.

1 2 3

4 5 Player: Design the
protagonist as a Mar-
tian with black skin.

Player: Give the protag-
onist the superpower of
instantaneous moving.

6

�
�

�
�

�
�

�
�

Engine:
Yes!

Figure 1: 1: Players were tired of the game’s protagonist models. 2, 3: Developers thus created a new mode
with dual protagonists. Players still didn’t buy it, while they didn’t know how to develop games. 4: There were
irreconcilable divides between players and developers. 5, 6: Till the advent of the IDGE, it can read the players’
mind and let them experience the games immediately.

While it is still on journey from building an
IDGE capable of producing AAA games, this paper
provides an initial progress on Poker, a worldwide
card game, e.g. Texas hold’em, Badugi. We train
the IDGE using data sourced from a poker simu-
lator. We show that the IDGE’s understanding of
nuanced semantics successfully fills voids left by
the simulator program, e.g. generating suits and
numbers that never occurred in the training process.
Furthermore, the IDGE shows immense promise in
generalizing to entirely new games, e.g. handling
novel card combinations and battle strategies.

We summarize our paper below: • § 2 introduces
the concept of the IDGE and its learning problem; •
§ 3 discusses the IDGE-style data for poker games;
• § 4 proposes the enhanced training techniques.

2 Instruction-Driven Game Engine

In this section, we introduce dialogue-style LLMs
as the setup for IDGEs. We then formulate the
learning problem as Next State Prediction.

2.1 From Instruction-Driven Dialogue to
Instruction-Driven Game Engine

Most LLMs (Brown et al., 2020; OpenAI, 2023;
Touvron et al., 2023; Yang et al., 2023) have been
fine-tuned on dialogue-style corpora, where it is
endowed with the ability to interact with users. The
resultant models can follow a system instruction
provided by users and lead to a dialogue process in
line with it.

Likewise, an IDGE works through interaction,
too. Its system instruction specifically refers to a

game script that accurately describes the desired
game. In game-play, the IDGE interacts with play-
ers (users), concurrently processing player inputs,
(e.g. moves, targets), to dynamically generate the
game states as responses.

In Figure 2, we demonstrate how a poker IDGE
facilitates a variant of Texas Hold’em: the player
first inputs the game script in natural language.
Based on this game script, the IDGE simulates the
game-play process with the player state by state.
The player performs the action, e.g. check, call,
raise, and the engine computes and returns the re-
sultant game state. It is a dialogue-like process and
will continue till the game concludes.

2.2 Next State Prediction
Causal language models learn the interplay of
words through the autoregressive process of next to-
ken prediction (Vaswani et al., 2017; Brown et al.,
2020). From a game-play perspective, the mini-
mum component is no single token, but rather each
game state. A game state is a single frame that
contains all real-time game information, e.g. char-
acters, items, missions. Essentially, the task of any
game engines is exactly to compute the next state
according to the prior ones. Therefore, we may
formulate the learning of IDGEs as a Next State
Prediction (NSP) problem.

Given a sequence of game states s =
{s0, s1, · · · , sT }, an IDGE with parameters θ
seeks to maximize the likelihood:

T∑

t=1

log pθ(st|s0, s1, · · · , st−1, xt, z) (1)

508

State N-1:
state={
 'config': {'players': ['p1', 'p2', 'p3']},
 'chips': {'p1': {'bet': 20, 'remain': 980}, 'p2': {'bet': 10, 'remain': 990}, 'p3':
{'bet': 10, 'remain': 990, 'fold': True}},
 'deck': [...],
 'hole': {'p1': ['D7', 'C6'], 'p2': ['H7', 'H11'], 'p3': ['C12', 'H8']},
 'community': ['C7', 'H9', 'D1'],
 'flow': ['start', 'shuffle', 'blind', 'deal2', 'bet', 'flop3'],
 'message': [{'src': 'engine', 'trg': 'p2', 'content': 'It is your turn to bet.'}]}
Player Input N: (from Player 2)
{'src': 'p2', 'trg': 'engine', 'content': 'Raise to 50!'}

State N:
state={
 'config': {'players': ['p1', 'p2', 'p3']},
 'chips': {'p1': {'bet': 20, 'remain': 980}, 'p2': {'bet': 50, 'remain': 950}, 'p3':
{'bet': 10, 'remain': 990, 'fold': True}},
 'deck': [...],
 'hole': {'p1': ['D7', 'C6'], 'p2': ['H7', 'H11'], 'p3': ['C12', 'H8']},
 'community': ['C7', 'H9', 'D1'],
 'flow': ['start', 'shuffle', 'blind', 'deal2', 'bet', 'flop3'],
 'message': [{'src': 'engine', 'trg': 'p2', 'content': 'It is your turn to bet.'}]}
Player Input N+1: (from Player 1)
{'src': 'p1', 'trg': 'engine', 'content': 'Call'}

50

20

10

Call

State N+t:
state={
 'config': {'players': ['p1', 'p2', 'p3']},
 'chips': {'p1': {'bet': 50, 'remain': 950}, 'p2': {'bet': 50, 'remain': 950}, 'p3':
{'bet': 10, 'remain': 990, 'fold': True}},
 'deck': [...],
 'hole': {'p1': ['D7', 'C6'], 'p2': ['H7', 'H11'], 'p3': ['C12', 'H8']},
 'community': ['C7', 'H9', 'D1', 'D6', 'S9'],
 'flow': ['start', 'shuffle', 'blind', 'deal2', 'bet', 'flop3', 'bet', 'flop1', 'bet',
'flop1', 'bet', 'show'],
 'message': [{'src': 'engine', 'trg': 'all', 'content': 'Winner is Player 1.'}]}

50

50

10

Player 1’s view

Raise to 50!

20

10

Player 2’s view

All players’ view

...

Game Script:
There are 3 players in the game. The minimum and maximum bet is 2 and 1000. There are four suits: Hearts (H), Diamonds (D), Clubs (C), Spades
(S). Card values rank as: 2<3<4<5<6<7<8<9<10<11<12<13<1.
Card combinations rank as: High Card<Pair<Two Pair<Three of a Kind<Straight<Flush<Full House<Four of a Kind<Straight Flush.
Pair: Two cards of the same value; Two Pair: Two pairs of different values; Three of a Kind: Three cards of the same value; Straight: Five
consecutive cards of any suit; Flush: Five cards of the same suit, not consecutive; Full House: Three cards of the same value plus another two
cards of another value; Four of a Kind: Four cards of the same value; Straight Flush: Five consecutive cards of the same suit; High Card: Not
conforming to any of above combinations.
There is a game flow to determine how the game proceeds: start->shuffle->blind->deal2->bet->flop3->bet->flop1->bet->flop1->bet->show->prize.
start: Configure the game and prepare the deck and chips for all players; shuffle: Shuffle the deck; blind: Randomly choose two players as big
blind and small blind. Place 1/2 minimum bet for small blind and minimum bet for big blind; dealx: Deal x cards to each player; bet: Query each
player to bet until all unfolded players have placed the highest bet or there is only one unfolded player; flopx: Flop x cards to the communi-
ty; show: Calculate the highest five-card hand of each player from hole cards and community cards; prize: Determine the winners with the high-
est five-card hand and split the prize pool to them.

State 1:
state={
 'config': {'players': ['p1', 'p2', 'p3']},
 'chips': {'p1': {'bet': 0, 'remain': 1000}, 'p2': {'bet': 0, 'remain': 1000}, 'p3':
{'bet': 0, 'remain': 1000}},
 'deck': ['H1', 'D1', 'C1', 'S1', 'H2', 'D2', 'C2', 'S2', 'H3', 'D3', 'C3', 'S3',
'H4', 'D4', 'C4', 'S4', 'H5', 'D5', 'C5', 'S5', 'H6', 'D6', 'C6', 'S6', 'H7', 'D7',
'C7', 'S7', 'H8', 'D8', 'C8', 'S8', 'H9', 'D9', 'C9', 'S9', 'H10', 'D10', 'C10',
'S10', 'H11', 'D11', 'C11', 'S11', 'H12', 'D12', 'C12', 'S12', 'H13', 'D13', 'C13',
'S13'],
 'flow': ['start']
}

All players’ view

...

Figure 2: Game-play samples for next state prediction. In the lower half, we illustrate the state prediction circle
using NSP. The left side is the input text for the engine from a global view, including all parts that are visible to
players as well as those that are not. The right side is the diagram of the game from different players’ views.

where xt refers to the player input at the moment t
and z refers to the game script which is global for
the entire game. The engine seeks to predict the
next state st given the prior states s0, s1, · · · , st−1

following z.
A game state is typically far bigger than a token,

incurring overflow of inputs and posing challenges
for language models in capturing long-range depen-
dencies (Beltagy et al., 2020; Xiao et al., 2024). A
more manageable case occurs when it is assumed
that each state st solely depends on its previous
k states. Specifically when k = 1, Eq. 1 can be
reduced to:

T∑

t=1

log pθ(st|st−1, xt, z). (2)

While such an independence assumption would

incur information loss, a solution is to keep a sum-
mary module within the game state.

NSP is a general way to model the process of
game-play using a neural engine. However, the
practical performance will be limited by models’
computational capabilities. For example, it won’t
be easy for an LLM to handle sophisticated nu-
merical calculation (Wu et al., 2023a), especially
for a smaller one. To overcome this weakness, we
augment the state prediction process using code
modality. The engine is allowed to predict the inter-
mediate code to serve its duty rather than offering
the eventual results directly. The prediction will be
post-processed by a code interpreter to compute the
next state eventually. A toy example is the shuffling
of poker cards. It is very hard for a neural model to
generate uniformly distributed cards from its inner

509

representation. To do this, it can define a “shuffle”
function and then call it in the next state.

In addition to defining new functions or methods,
we allow the engine to call predefined functions,
called core functions, which are defined in an ex-
ternal core set. These core functions are usually
the essential routines that will be frequently used
in the game, such as shuffling, ranking of cards
in poker. By utilizing core functions, the engine
further overcomes the inefficiency of generating
repeated content.

The integration of core functions extends IDGEs’
functionality and flexibility, enabling them to han-
dle a broader scope of games. This design is akin to
the hierarchical architecture in conventional game
engines, where the high layers are allowed to call
utilities from the core layer.

2.3 Differential State Prediction
The inference complexity of NSP scales quadrat-
ically with the sequence length. Therefore, de-
coding a lengthy game state may fall into trouble.
Empirically, the game state only undergoes a slight
change between two successive moments t and
t+ 1, with the majority of the state remaining the
same. This phenomenon can be potentially general
across various games when the intervals between
states are short. We thus introduce Differential
State Prediction (DSP), an efficient variant of NSP,
where the engine is simplified to predict solely the
difference of two states:

T∑

t=1

log pθ(∆st|st−1, xt, z) (3)

where ∆st is the difference of st−1 and st. DSP
is more efficient compared to NSP in most situa-
tions, significantly accelerating the inference dur-
ing game-play. In our experiments, we find that
DSP also produces slightly better performance.

To reconstruct st from ∆st and st−1, there will
be a merge function st = M(∆st, st−1). In this
work, each game state is implemented as a dict.
Hence, M refers to the coding of updating dict
elements. The following section will demonstrate
concrete examples of NSP/DSP for a poker game.

3 Data for IDGE

Our training data is sourced from two methods.
First, we develop a poker simulator and obtain the
training data from its game logs. The simulator
supports ten representative poker games: Texas

state={
 'config': {'players': ['p1', 'p2', 'p3']},
 'chips': {
 'p1': {'bet': 0, 'remain': 1000},
 'p2': {'bet': 0, 'remain': 1000},
 'p3': {'bet': 0, 'remain': 1000}
 },
 'deck': ['H1', 'D1', 'C1', 'S1', 'H2', ...],
 'flow': ['start']
}

state['deck']=shuffle(state['deck'])
state['flow']=['start', 'shuffle']

DSP Code Interpreter

Input state for Shuffling: Output state for Shuffling:

state={
 'config': {'players': ['p1', 'p2', 'p3']},
 'chips': {
 'p1': {'bet': 0, 'remain': 1000},
 'p2': {'bet': 0, 'remain': 1000},
 'p3': {'bet': 0, 'remain': 1000}
 },
 'deck': [...],
 'hole': {
 'p1': [],
 'p2': [],
 'p3': []
 },
 'flow': ['start', 'shuffle', 'blind']
}

def deal(x,deck,hole):
 for i in range(x):
 for p in hole:
 hole[p]+=[deck.pop()]
deal(2,state['deck'],state['hole'])
state['flow']=['start','shuffle','blind','deal2']

DSP Code Interpreter

Input state for Dealing

state={
 'config': {'players': ['p1', 'p2', 'p3']},
 'chips': {
 'p1': {'bet': 0, 'remain': 1000},
 'p2': {'bet': 0, 'remain': 1000},
 'p3': {'bet': 0, 'remain': 1000}
 },
 'deck': [...],
 'hole': {
 'p1': ['C2', 'S2'],
 'p2': ['C1', 'S3'],
 'p3': ['C5', 'H9']
 },
 'flow': ['start', 'shuffle', 'blind', 'deal2']
}

Output state for Dealing

Output code

Output code

Merge

state={
 'config': {'players': ['p1', 'p2', 'p3']},
 'chips': {
 'p1': {'bet': 0, 'remain': 1000},
 'p2': {'bet': 0, 'remain': 1000},
 'p3': {'bet': 0, 'remain': 1000}
 },
 'deck': ['C2', 'C1', 'C5', 'S2', 'S3', ...],
 'flow': ['start', 'shuffle']
}

Merge

Figure 3: DSP. In the shuffling case, the IDGE calls
“shuffle”, which is a predefined core function. In the
dealing case, it defines a new “deal” function to deal a
number of cards to each player one by one. We use a
code interpreter to merge the input state and the output
code to obtain the next state.

Hold’em, Omaha, Omaha HL, Short-deck Hold’em,
2-to-7 triple Draw, A-to-5 triple Draw, 2-to-7 sin-
gle Draw, Badugi, Badeucey, and Badacey. Addi-
tionally, it allows for further configuration of sev-
eral common poker elements, e.g. type of suits,
numbers. By adjusting these elements, one can de-
rive virtually infinite variations beyond aforemen-
tioned ten poker games. Moreover, we realize that
if the game logs are sampled completely in uniform,
the occurrence of some rare states, such as some su-
perior card combinations, would be extremely low.
The resultant engine trained on such data may fall
short in low-frequency situations, even though the
dataset is large. Therefore, we balance the data by
up/down-sampling the game logs to ensure that all
possible situations occur similarly. After obtaining
game logs, we transform each log into a training
sample as in Figure 2 for NSP and DSP. Each sam-
ple is made up of three parts: the game script z,
player input xt, and game states st. If we were to
draw an analogy with ChatGPT, they respectively
play the roles of the system, user, and assistant.

The second part of the data is generated by
GPT3.5. Based on the state prediction data from
the simulator, we prompt GPT3.5 to augment the
game scripts and generate the corresponding new
game states. This process is manually done by
skilled prompting, which incorporates scenarios
beyond typical poker games, expanding the diver-
sity of training data as a result.

510

num. of len. of len. of len. of output avg.
samples script input NSP → DSP states

10k 439.8 401.1 404.9 → 135.9 35.3

Table 1: Statistics of training data.

♠ Game Script To describe the poker game in nat-
ural language, we design a prototype game script.
The top part of Figure 2 illustrates the game script
for a Texas Hold’em variant. We can see that it
defines a series of game elements: the number of
players in the game, minimum and maximum bet
limits, suits and values of single cards, battle strate-
gies, and the game flow. These elements corre-
spond to the configuration of the poker simulator.
Particularly, the game flow refers to the procedures
this game will go through in order, e.g. bet, deal.
♠ Game State and Player Input For the game
state and player input, we adopt a dict format as
shown on the left side of Figure 2. For instance,
“deck” is followed by the remaining cards in the
deck, “hole” and “community” is followed by the
hole cards of players and the public cards, while
“message” is followed by the message sent from
the source a to target b. On the right side of Figure
2, we show the diagram of the poker game asso-
ciated to the left-side game state. In player input
N , player 2 chooses to raise the bet. Given state
N − 1, the engine outputs state N , where the chips
of player 2 are updated and player 1 is informed to
bet since player 3 has folded.

To ensure the independence assumption that
each state st solely depends on state st−1, we incor-
porate the game flow as a summary module in the
game state. It specifically caches all past game pro-
cedures in order. The engine can thus be navigated
to step into the next procedure correctly, regardless
of the amount of game-play history.
Data Statistics Table 1 shows the statistics of the
training data that we construct, which comprises
10k state prediction samples. Specifically, the av-
erage number of states of one game is 35.3, i.e.
the number of states for the engine to predict. The
output tokens of DSP is much less than that of NSP.

4 Curriculum Learning

Straightforwardly, we could utilize the data gen-
erated in § 3 to fine-tune a base model by maxi-
mizing Eq. 2/3 and obtain the IDGE. However,
the resultant IDGE may struggle with stability and
diversity: neither can it accurately predict the next
game state nor comprehend the user-specified game

script in natural language. Therefore, we devise a
progressive curriculum learning process (Bengio
et al., 2009), to incrementally enhance the IDGE’s
diversity while preserving stability.
Warmup: Training on Core Set In § 2, we utilize
a set of core functions to facilitate the process of
state prediction. Though the model can be exposed
to all core functions via fine-tuning, we observe
that it struggles to call the core functions properly.
This phenomenon is much more severe in unseen
contexts. We attribute this to the cold start prob-
lem that the model merely memorizes the names of
the core functions during training, without know-
ing their underlying implementation. To this end,
we introduce a pre-learning phase to warmup the
model. We develop an instruction tuning dataset
of 1k samples derived from the core set, where
each core function is translated to a natural lan-
guage instruction and the model is trained to imple-
ment the function in a way of instruction following.
This phase offers a profound comprehension of the
model’s usage of core functions.
Standard: Training on Standard Game Scripts
The next step is to train the model on the standard
data introduced in § 3 by optimizing NSP/DSP.
In this phase, the model is forged into an engine,
predicting game-play state by state following the
game scripts, and is combined with pre-learned
core functions organically.
Diverse: Training on Rephrased Game Scripts
While the standard data already includes the pro-
totype game scripts, mastering the prototype de-
scriptions can be too restrictive for users. Rather, it
is more natural for them to describe their desired
games in free-form natural language. Rather than
exhaustively crafting new natural language data,
we introduce Segment Rephrasing (SR), a tech-
nique that rephrases a portion of the game script
to encourage the model to follow diverse natural
language. Specifically, given a game script, we
segment it into chunks and randomly rephrase sev-
eral of them. To largely keep the semantics intact,
there is only a very low probability that the entire
script will be rephrased. The rephrasing process
is done by GPT3.5. These rephrased game scripts
enable the model fully “to customers”. In addition,
these scripts will be more challenging to under-
stand, which potentially generalizes the model to
unseen scenarios. Readers may refer to Table 5 in
Appendix B for real human-written examples.

We summarize the training pipeline for the
IDGE: 1) train on the core set Dcs (1k); 2) train

511

by optimizing NSP/DSP on the standard dataset D
(10k); 3) rephrase the standard data Dsr and train
on the sum of D and Dsr (20k).

The warmup, standard, and diverse process
correspond to the easy, medium, and hard curricu-
lum. It serves for a smooth transfer of the IDGE
from standardization to diversity.

5 Experimental Results

In this section, we evaluate the IDGE in two sce-
narios. The former is automatically generated by
our simulator, which can be considered as a test
set that has the same distribution as the training
set. The latter resembles the real-world situations,
where proficient poker players are directly enlisted
as annotators to create new game scripts. Subse-
quently, the test data is obtained by playing the
games online by themselves with the IDGE.

5.1 Training and Evaluation Setup

We develop the IDGE based on CodeGemma-7b
(Team et al., 2024a)1. CodeGemma is a code
LLM that is additionally pre-trained on large code
corpora. We find that CodeGemma works better
than similar-sized natural language models like
LLaMA3 (Dubey et al., 2024). We train each model
using LoRA (Hu et al., 2022) with r = 8, α = 32,
and the optimal learning rate in 1.5e-4 and 3e-4.
The warmup of the learning rate is set to 30 steps
and the total batch size is set to 8 on 8 chips. For
each curriculum, we train 3 epochs. To ensure the
stability of outputs, we leverage greedy decoding.
• In-domain evaluation: The model has been

exposed to a broad range of variants based on ten
existing poker games during training. We sampled
some unseen variants of these ten games from the
poker simulator for evaluation. Then, we program
some random players that randomly select an ac-
tion as their input to interact with the IDGE. This
manner allows for a quick and automatic assess-
ment of the IDGE’s basic performance as well as
the effectiveness of training methods. Specifically,
each type of games is played for 20 rounds. There
are totally 200 rounds of games in the in-domain
test set. The state prediction accuracy is determined
through two steps. First, we compare the predicted
code snippet and the ground truth. If not exactly
matched, we execute both snippets on the input
state respectively and then compare two outputs.

1https://huggingface.co/google/
codegemma-7b-it

• Out-of-domain evaluation: The in-domain
evaluation is limited to a number of predefined
poker games with configurable essential elements.
To evaluate our the IDGE’s performance in scenar-
ios more closely aligned with the real world, we
further recruit 5 proficient poker players as our en-
gine testers. Each of them is asked to create 1∼2
new poker games based on their personal prefer-
ences and craft the game script using natural lan-
guage. They are free to tailor the game scripts,
for example, crafting the entirely new elements
and strategies not found in existing poker games.
Subsequently, we invite them to play 10 rounds of
the game with distinct configurations for each new
game by themselves and record all player inputs
and game states throughout the game-play. This
forms our out-of-domain test set that comprises 8
distinct game scripts and 80 rounds of games.

5.2 In-Domain
Round-level Table 2 shows the round-level suc-
cess rates of a number of fine-tuned models. The
success rate is counted if the engine correctly
handles all states in a round. The results of
CodeGemma from NSP to DSP suggest the ad-
vantage of predicting the difference of two states,
which results in both accuracy and efficiency boost.
The best results occur when the model undergoes
segment rephrasing (SR) and the full curriculum
(CS + SR) respectively. The resultant CodeGemma
achieves 100% success rates on all ten poker vari-
ants. This suggests the effectiveness of SR to
enhance the model’s understanding on the game
scripts. In the following, we will show that SR is
more important in the face of out-of-domain games.
State-level We also introduce GPT4 as a strong
baseline in our experiment, which is prompted with
additionally five in-context samples (5-shot). Sur-
prisingly, in 200 rounds of games, it is unable
to successfully complete any single round. One
might question why GPT4 completely fails in this
task, significantly behind fine-tuned CodeGemma-
7b. To conduct a more in-depth analysis, we com-
pute the state-level accuracy in Table 3. We find
that, though GPT4 is strong in programming, it
performs badly in managing nuanced poker cards.
For example, it is very likely to mess up the or-
der, hallucinating new cards or missing some of
them. This drawback is pronounced in deal and
show. In contrast, deal is a much easier task for
humans. We conjecture that current LLMs have not
been exposed to highly sophisticated data and tasks

512

https://huggingface.co/google/codegemma-7b-it
https://huggingface.co/google/codegemma-7b-it

Texas Omaha Om. HL Short. 27 triple A5 triple 27 single Badugi Badeucey Badacey
NSP ✓ ✓ 18/20 ✓ 18/20 ✓ ✓ ✓ 17/20 18/20
DSP ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 18/20 18/20
DSP (CS) ✓ ✓ ✓ ✓ ✓ 19/20 ✓ ✓ ✓ ✓
DSP (SR) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
DSP (CS+SR) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 2: Round-level success rates on 10 existing poker variants for 20 rounds. We use ✓ to indicate the 100%
success rate. CS and SR refer to the core set and segment rephrasing technique.

start (A) blind (C) shuf. (D) deal (C) flop (C) switch (B) bet (B) show (A) prize (A)
GPT4 (5-shot) 88.0 84.0 ✓ 31.3 77.6 20.6 78.7 0.0 83.0
CoGem. (5k) 94.0 ✓ ✓ ✓ ✓ ✓ 93.0 88.0 ✓
CoGem. (10k) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 3: State-level performances with different values of training data based CodeGemma-7b (DSP+CS+SR). We
use ✓ to indicate the 100% accuracy. We label the difficulty of each type of states from A to D from hard to easy.

IDGE IDGE w. SR
MAGIC DEALER % ✓
3-CARD DRAW 8/10 ✓
6-CARD DRAW % ✓
DRAGONIE 1/10 9/10
THREE KINGDOMS % ✓
STARDUST % 8/10
ODD LOVER 3/10 ✓
JOKER HOLD’EM % ✓

Table 4: Success rates on out-of-domain games.

as for the IDGEs during their training. The accu-
mulation of errors in all these aspects eventually
leads non-fine-tuned models to zero success rates
in round-level evaluation. It is important to note
that an IDGE should be all-round at each aspect;
otherwise, the overall performance will degenerate
in a way of Buckets effect.

In contrast, for fine-tuned CodeGemma, Table 3
shows that it has performed close to 100% accuracy
in most states with only a half of training samples
(5k). Such high accuracy correlates positively to
its stable round-level performance in Table 2. We
notice that CS is particularly beneficial for show,
where the model is responsible to calculate the hand
combinations and compare their strength, the most
challenging task in poker games. There are a large
number of relevant core functions in this process.
Hence, it becomes critical for the model to adapt
to core functions in advance.

5.3 Out-of-Domain
Table 5 in Appendix B illustrates the eight scripts
created by human players. Most of them are cre-
ative new games with a large gap from standard
poker. For example, in script 6, the creator defines
a group of novel combinations “Stardust X”.

Table 4 reports the round-level success rates of
our IDGE, fine-tuned based on CodeGemma-7b
with and without SR. We first find that the model
not underwent SR fails to be fully instructable by
players. For example, it cannot understand the
tricky dealing process in Magic Dealer described
in free natural language, though it is a simple vari-
ant from standard dealing. In contrast, the model
underwent SR treats this with ease. The rephrased
samples encourage the model to learn the alignment
between prototype game scripts and diverse natural
language, thereby better balancing stability and di-
versity. Additionally, the full IDGE demonstrates
remarkable generalizability in the face of novel
and unseen games. For example, in 6-card Draw,
the IDGE effectively generalizes from managing
5-card hands to 6-card hands, while in Dragonie,
which is an upgrade version of Badugi, the IDGE
learns to pick out cards with distinct suits while
determining the consecutiveness of their values.
For more challenging Stardust, where the creator
introduces a series of entirely new cards and com-
binations, the IDGE successfully passes eight of
the ten rounds of the game.

6 Conclusion

This paper introduces the Instruction-Driven Game
Engine (IDGE), offering game enthusiasts a brand
new game development and game-play experience.
The IDGE understands the player-specified game
rules and simulates the entire game-play process.
We formulate the learning of IDGEs as Next State
Prediction and leverage a curriculum learning ap-
proach to enhance stability and diversity. Experi-
ments demonstrate our poker IDGE can accurately
complete the majority of user-defined games.

513

Broader Impact

This paper presents the initial progress of IDGE in
the case of Poker. Such a paradigm theoretically ap-
plies to all types of games. However, our progress
is constrained by several bottlenecks.
Inference Latency We have demonstrated that
IDGEs go well with turn-based strategy (TBS)
games. For real-time strategy (RTS) games, players
may make more than one action per second. The
inference latency of current LLMs cannot meet the
real-time requirements of such games.
Context Window Generally, as games become
more complicated, the length of game states in-
creases, posing a challenge to satisfy our indepen-
dence assumption. This may significantly chal-
lenge both the comprehension ability of LLMs and
the cache of KV states.
Accessibility The kernel data of most commercial
games is not publicly available, which is why we
developed a poker simulator to generate the training
data for this paper.

We are delighted to observe that there have
been continuous advancements in inference frame-
works such as vLLM (Kwon et al., 2023), as
well as efficient long-text generation methods like
StreamingLLM (Xiao et al., 2024) and Temp-
LoRA (Wang et al., 2024). We believe that the
ongoing development of LLM technologies will ul-
timately address the limitations of latency and the
context window. Regarding the issue of accessibil-
ity, we look forward to more companies providing
open interfaces as SC2LE (Vinyals et al., 2017),
HOK Arena (Wei et al., 2022) to offer kernel data.

The recent released Delta-Engine (Wu et al.,
2024a) is largely inspired from our work. It ex-
clusively focuses on game development. The devel-
opment process can be ideally eternal, by expand-
ing the engine incrementally. Unlike the IDGE,
the delta-engine does not simulate the game-play
process. The resultant game-play is rendered by
external modules.

References
Iz Beltagy, Matthew E. Peters, and Arman Cohan. 2020.

Longformer: The long-document transformer. CoRR,
abs/2004.05150.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert,
and Jason Weston. 2009. Curriculum learning. In
Proceedings of the 26th Annual International Con-
ference on Machine Learning, ICML 2009, Montreal,
Quebec, Canada, June 14-18, 2009, volume 382 of

ACM International Conference Proceeding Series,
pages 41–48. ACM.

Michael Bowling, Neil Burch, Michael Johanson, and
Oskari Tammelin. 2017. Heads-up limit hold’em
poker is solved. Commun. ACM, 60(11):81–88.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual.

Jake Bruce, Michael D. Dennis, Ashley Edwards, Jack
Parker-Holder, Yuge Shi, Edward Hughes, Matthew
Lai, Aditi Mavalankar, Richie Steigerwald, Chris
Apps, Yusuf Aytar, Sarah Bechtle, Feryal M. P. Be-
hbahani, Stephanie C. Y. Chan, Nicolas Heess, Lucy
Gonzalez, Simon Osindero, Sherjil Ozair, Scott E.
Reed, Jingwei Zhang, Konrad Zolna, Jeff Clune,
Nando de Freitas, Satinder Singh, and Tim Rock-
täschel. 2024. Genie: Generative interactive envi-
ronments. In Forty-first International Conference on
Machine Learning, ICML 2024, Vienna, Austria, July
21-27, 2024. OpenReview.net.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang,
Archi Mitra, Archie Sravankumar, Artem Korenev,
Arthur Hinsvark, Arun Rao, Aston Zhang, Aurélien
Rodriguez, Austen Gregerson, Ava Spataru, Bap-
tiste Rozière, Bethany Biron, Binh Tang, Bobbie
Chern, Charlotte Caucheteux, Chaya Nayak, Chloe
Bi, Chris Marra, Chris McConnell, Christian Keller,
Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Al-
lonsius, Daniel Song, Danielle Pintz, Danny Livshits,
David Esiobu, Dhruv Choudhary, Dhruv Mahajan,
Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova,
Emily Dinan, Eric Michael Smith, Filip Radenovic,
Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Geor-
gia Lewis Anderson, Graeme Nail, Grégoire Mialon,
Guan Pang, Guillem Cucurell, Hailey Nguyen, Han-
nah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov,
Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan
Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan
Geffert, Jana Vranes, Jason Park, Jay Mahadeokar,
Jeet Shah, Jelmer van der Linde, Jennifer Billock,
Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi,
Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu,
Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph
Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia,

514

https://arxiv.org/abs/2004.05150
https://doi.org/10.1145/1553374.1553380
https://doi.org/10.1145/3131284
https://doi.org/10.1145/3131284
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://openreview.net/forum?id=bJbSbJskOS
https://openreview.net/forum?id=bJbSbJskOS

Kalyan Vasuden Alwala, Kartikeya Upasani, Kate
Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, and
et al. 2024. The llama 3 herd of models. CoRR,
abs/2407.21783.

Mirjam Palosaari Eladhari. 2018. Re-tellings: The
fourth layer of narrative as an instrument for critique.
In Interactive Storytelling - 11th International Con-
ference on Interactive Digital Storytelling, ICIDS
2018, Dublin, Ireland, December 5-8, 2018, Proceed-
ings, volume 11318 of Lecture Notes in Computer
Science, pages 65–78. Springer.

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Man-
dlekar, Yuncong Yang, Haoyi Zhu, Andrew Tang,
De-An Huang, Yuke Zhu, and Anima Anandkumar.
2022. Minedojo: Building open-ended embodied
agents with internet-scale knowledge. In Advances
in Neural Information Processing Systems 35: An-
nual Conference on Neural Information Processing
Systems 2022, NeurIPS 2022, New Orleans, LA, USA,
November 28 - December 9, 2022.

Roberto Gallotta, Graham Todd, Marvin Zammit, Sam
Earle, Antonios Liapis, Julian Togelius, and Geor-
gios N. Yannakakis. 2024. Large language mod-
els and games: A survey and roadmap. CoRR,
abs/2402.18659.

Akshat Gupta. 2023. Are chatgpt and GPT-4 good
poker players? - A pre-flop analysis. CoRR,
abs/2308.12466.

Senyu Han, Lu Chen, Li-Min Lin, Zhengshan Xu, and
Kai Yu. 2024. IBSEN: director-actor agent collabora-
tion for controllable and interactive drama script gen-
eration. In Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), ACL 2024, Bangkok, Thailand,
August 11-16, 2024, pages 1607–1619. Association
for Computational Linguistics.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. Lora: Low-rank adaptation of
large language models. In The Tenth International
Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de Las Casas, Florian Bressand, Gianna Lengyel,
Guillaume Lample, Lucile Saulnier, Lélio Re-
nard Lavaud, Marie-Anne Lachaux, Pierre Stock,
Teven Le Scao, Thibaut Lavril, Thomas Wang, Timo-
thée Lacroix, and William El Sayed. 2023. Mistral
7b. CoRR, abs/2310.06825.

Juho Kim. 2023. Pokerkit: A comprehensive python
library for fine-grained multi-variant poker game sim-
ulations. CoRR, abs/2308.07327.

Heinrich Küttler, Nantas Nardelli, Alexander H. Miller,
Roberta Raileanu, Marco Selvatici, Edward Grefen-
stette, and Tim Rocktäschel. 2020. The nethack learn-
ing environment. In Advances in Neural Information

Processing Systems 33: Annual Conference on Neu-
ral Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Ef-
ficient memory management for large language
model serving with pagedattention. Preprint,
arXiv:2309.06180.

Ryan Lowe, Abhinav Gupta, Jakob N. Foerster, Douwe
Kiela, and Joelle Pineau. 2020. On the interaction
between supervision and self-play in emergent com-
munication. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
Alex Graves, Ioannis Antonoglou, Daan Wierstra,
and Martin A. Riedmiller. 2013. Playing atari with
deep reinforcement learning. CoRR, abs/1312.5602.

Matej Moravcík, Martin Schmid, Neil Burch, Viliam
Lisý, Dustin Morrill, Nolan Bard, Trevor Davis,
Kevin Waugh, Michael Johanson, and Michael H.
Bowling. 2017. Deepstack: Expert-level artificial in-
telligence in no-limit poker. CoRR, abs/1701.01724.

OpenAI. 2023. GPT-4 technical report. CoRR,
abs/2303.08774.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray,
John Schulman, Jacob Hilton, Fraser Kelton, Luke
Miller, Maddie Simens, Amanda Askell, Peter Welin-
der, Paul F. Christiano, Jan Leike, and Ryan Lowe.
2022. Training language models to follow instruc-
tions with human feedback. In Advances in Neural
Information Processing Systems 35: Annual Confer-
ence on Neural Information Processing Systems 2022,
NeurIPS 2022, New Orleans, LA, USA, November 28
- December 9, 2022.

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen,
Ning Ding, Ganqu Cui, Zheni Zeng, Yufei Huang,
Chaojun Xiao, Chi Han, Yi Ren Fung, Yusheng Su,
Huadong Wang, Cheng Qian, Runchu Tian, Kunlun
Zhu, Shihao Liang, Xingyu Shen, Bokai Xu, Zhen
Zhang, Yining Ye, Bowen Li, Ziwei Tang, Jing Yi,
Yuzhang Zhu, Zhenning Dai, Lan Yan, Xin Cong,
Yaxi Lu, Weilin Zhao, Yuxiang Huang, Junxi Yan,
Xu Han, Xian Sun, Dahai Li, Jason Phang, Cheng
Yang, Tongshuang Wu, Heng Ji, Zhiyuan Liu, and
Maosong Sun. 2023. Tool learning with foundation
models. CoRR, abs/2304.08354.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1–140:67.

Noah Ranella and Markus Eger. 2023. Towards auto-
mated video game commentary using generative AI.

515

https://doi.org/10.48550/ARXIV.2407.21783
https://doi.org/10.1007/978-3-030-04028-4_5
https://doi.org/10.1007/978-3-030-04028-4_5
http://papers.nips.cc/paper_files/paper/2022/hash/74a67268c5cc5910f64938cac4526a90-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2022/hash/74a67268c5cc5910f64938cac4526a90-Abstract-Datasets_and_Benchmarks.html
https://doi.org/10.48550/ARXIV.2402.18659
https://doi.org/10.48550/ARXIV.2402.18659
https://doi.org/10.48550/ARXIV.2308.12466
https://doi.org/10.48550/ARXIV.2308.12466
https://doi.org/10.18653/V1/2024.ACL-LONG.88
https://doi.org/10.18653/V1/2024.ACL-LONG.88
https://doi.org/10.18653/V1/2024.ACL-LONG.88
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.48550/ARXIV.2310.06825
https://doi.org/10.48550/ARXIV.2310.06825
https://doi.org/10.48550/ARXIV.2308.07327
https://doi.org/10.48550/ARXIV.2308.07327
https://doi.org/10.48550/ARXIV.2308.07327
https://proceedings.neurips.cc/paper/2020/hash/569ff987c643b4bedf504efda8f786c2-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/569ff987c643b4bedf504efda8f786c2-Abstract.html
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2309.06180
https://openreview.net/forum?id=rJxGLlBtwH
https://openreview.net/forum?id=rJxGLlBtwH
https://openreview.net/forum?id=rJxGLlBtwH
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1701.01724
https://arxiv.org/abs/1701.01724
https://doi.org/10.48550/arXiv.2303.08774
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2304.08354
https://doi.org/10.48550/ARXIV.2304.08354
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://ceur-ws.org/Vol-3626/paper7.pdf
https://ceur-ws.org/Vol-3626/paper7.pdf

In Proceedings of the Experimental Artificial Intelli-
gence in Games Workshop co-located with the 19th
AAAI Conference on Artificial Intelligence and In-
teractive Digital Entertainment (AIIDE 2023), Salt
Lake City, Utah, USA, October 8, 2023, volume 3626
of CEUR Workshop Proceedings. CEUR-WS.org.

Murray Shanahan, Kyle McDonell, and Laria Reynolds.
2023. Role play with large language models. Nat.,
623(7987):493–498.

Weihao Tan, Ziluo Ding, Wentao Zhang, Boyu Li, Bo-
han Zhou, Junpeng Yue, Haochong Xia, Jiechuan
Jiang, Longtao Zheng, Xinrun Xu, Yifei Bi, Pengjie
Gu, Xinrun Wang, Börje F. Karlsson, Bo An, and
Zongqing Lu. 2024. Towards general computer con-
trol: A multimodal agent for red dead redemption II
as a case study. CoRR, abs/2403.03186.

Gemma Team, Thomas Mesnard, Cassidy Hardin,
Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale,
Juliette Love, et al. 2024a. Gemma: Open models
based on gemini research and technology. arXiv
preprint arXiv:2403.08295.

SIMA Team, Maria Abi Raad, Arun Ahuja, Catarina
Barros, Frederic Besse, Andrew Bolt, Adrian Bolton,
Bethanie Brownfield, Gavin Buttimore, Max Cant,
Sarah Chakera, Stephanie C. Y. Chan, Jeff Clune,
Adrian Collister, Vikki Copeman, Alex Cullum,
Ishita Dasgupta, Dario de Cesare, Julia Di Trapani,
Yani Donchev, Emma Dunleavy, Martin Engelcke,
Ryan Faulkner, Frankie Garcia, Charles Gbadamosi,
Zhitao Gong, Lucy Gonzalez, Kshitij Gupta, Karol
Gregor, Arne Olav Hallingstad, Tim Harley, Sam
Haves, Felix Hill, Ed Hirst, Drew A. Hudson, Jony
Hudson, Steph Hughes-Fitt, Danilo J. Rezende, Mimi
Jasarevic, Laura Kampis, Nan Rosemary Ke, Thomas
Keck, Junkyung Kim, Oscar Knagg, Kavya Koppa-
rapu, Andrew K. Lampinen, Shane Legg, Alexander
Lerchner, Marjorie Limont, Yulan Liu, Maria Loks-
Thompson, Joseph Marino, Kathryn Martin Cus-
sons, Loic Matthey, Siobhan Mcloughlin, Piermaria
Mendolicchio, Hamza Merzic, Anna Mitenkova,
Alexandre Moufarek, Valéria Oliveira, Yanko Gitahy
Oliveira, Hannah Openshaw, Renke Pan, Aneesh
Pappu, Alex Platonov, Ollie Purkiss, David P. Re-
ichert, John Reid, Pierre Harvey Richemond, Tyson
Roberts, Giles Ruscoe, Jaume Sanchez Elias, Tasha
Sandars, Daniel P. Sawyer, Tim Scholtes, Guy Sim-
mons, Daniel Slater, Hubert Soyer, Heiko Strath-
mann, Peter Stys, Allison C. Tam, Denis Teplyashin,
Tayfun Terzi, Davide Vercelli, Bojan Vujatovic, Mar-
cus Wainwright, Jane X. Wang, Zhengdong Wang,
Daan Wierstra, Duncan Williams, Nathaniel Wong,
Sarah York, and Nick Young. 2024b. Scaling in-
structable agents across many simulated worlds.
CoRR, abs/2404.10179.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,

Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurélien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models. CoRR, abs/2307.09288.

Muhtar Çagkan Uludagli and Kaya Oguz. 2023. Non-
player character decision-making in computer games.
Artif. Intell. Rev., 56(12):14159–14191.

Nidhi Vakil and Hadi Amiri. 2023. Complexity-guided
curriculum learning for text graphs. In Findings
of the Association for Computational Linguistics:
EMNLP 2023, Singapore, December 6-10, 2023,
pages 2610–2626. Association for Computational
Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 5998–6008.

Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki,
Michaël Mathieu, Andrew Dudzik, Junyoung Chung,
David H. Choi, Richard Powell, Timo Ewalds, Petko
Georgiev, Junhyuk Oh, Dan Horgan, Manuel Kroiss,
Ivo Danihelka, Aja Huang, Laurent Sifre, Trevor Cai,
John P. Agapiou, Max Jaderberg, Alexander Sasha
Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin
Dalibard, David Budden, Yury Sulsky, James Mol-
loy, Tom Le Paine, Çaglar Gülçehre, Ziyu Wang,
Tobias Pfaff, Yuhuai Wu, Roman Ring, Dani Yo-
gatama, Dario Wünsch, Katrina McKinney, Oliver
Smith, Tom Schaul, Timothy P. Lillicrap, Koray
Kavukcuoglu, Demis Hassabis, Chris Apps, and
David Silver. 2019. Grandmaster level in starcraft
II using multi-agent reinforcement learning. Nat.,
575(7782):350–354.

Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko
Georgiev, Alexander Sasha Vezhnevets, Michelle
Yeo, Alireza Makhzani, Heinrich Küttler, John P.
Agapiou, Julian Schrittwieser, John Quan, Stephen
Gaffney, Stig Petersen, Karen Simonyan, Tom
Schaul, Hado van Hasselt, David Silver, Timothy P.
Lillicrap, Kevin Calderone, Paul Keet, Anthony
Brunasso, David Lawrence, Anders Ekermo, Jacob
Repp, and Rodney Tsing. 2017. Starcraft II: A

516

https://doi.org/10.1038/S41586-023-06647-8
https://doi.org/10.48550/ARXIV.2403.03186
https://doi.org/10.48550/ARXIV.2403.03186
https://doi.org/10.48550/ARXIV.2403.03186
https://doi.org/10.48550/ARXIV.2404.10179
https://doi.org/10.48550/ARXIV.2404.10179
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.1007/S10462-023-10491-7
https://doi.org/10.1007/S10462-023-10491-7
https://aclanthology.org/2023.findings-emnlp.172
https://aclanthology.org/2023.findings-emnlp.172
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.1038/S41586-019-1724-Z
https://doi.org/10.1038/S41586-019-1724-Z
https://arxiv.org/abs/1708.04782

new challenge for reinforcement learning. CoRR,
abs/1708.04782.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Man-
dlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. 2023. Voyager: An open-ended
embodied agent with large language models. CoRR,
abs/2305.16291.

Yan Wang, D. Ma, and Deng Cai. 2024. With greater
text comes greater necessity: Inference-time training
helps long text generation. CoRR, abs/2401.11504.

Hua Wei, Jingxiao Chen, Xiyang Ji, Hongyang Qin,
Minwen Deng, Siqin Li, Liang Wang, Weinan Zhang,
Yong Yu, Liu Lin, Lanxiao Huang, Deheng Ye, Qiang
Fu, and Wei Yang. 2022. Honor of kings arena: an en-
vironment for generalization in competitive reinforce-
ment learning. In Advances in Neural Information
Processing Systems 35: Annual Conference on Neu-
ral Information Processing Systems 2022, NeurIPS
2022, New Orleans, LA, USA, November 28 - Decem-
ber 9, 2022.

Hongqiu Wu, Linfeng Liu, Hai Zhao, and Min Zhang.
2023a. Empower nested boolean logic via self-
supervised curriculum learning. In Proceedings of
the 2023 Conference on Empirical Methods in Natu-
ral Language Processing, EMNLP 2023, Singapore,
December 6-10, 2023, pages 13731–13742. Associa-
tion for Computational Linguistics.

Hongqiu Wu, Yongxiang Liu, Hanwen Shi, Hai Zhao,
and Min Zhang. 2023b. Toward adversarial training
on contextualized language representation. In The
Eleventh International Conference on Learning Rep-
resentations, ICLR 2023, Kigali, Rwanda, May 1-5,
2023. OpenReview.net.

Hongqiu Wu, Zekai Xu, Tianyang Xu, Shize Wei, Yan
Wang, Jiale Hong, Weiqi Wu, Hai Zhao, Min Zhang,
and Zhezhi He. 2024a. Evolving virtual world with
delta-engine. CoRR, abs/2408.05842.

Weiqi Wu, Hongqiu Wu, Lai Jiang, Xingyuan Liu, Hai
Zhao, and Min Zhang. 2024b. From role-play to
drama-interaction: An LLM solution. In Findings of
the Association for Computational Linguistics, ACL
2024, Bangkok, Thailand and virtual meeting, Au-
gust 11-16, 2024, pages 3271–3290. Association for
Computational Linguistics.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song
Han, and Mike Lewis. 2024. Efficient streaming lan-
guage models with attention sinks. In The Twelfth
International Conference on Learning Representa-
tions, ICLR 2024, Vienna, Austria, May 7-11, 2024.
OpenReview.net.

Yuzhuang Xu, Shuo Wang, Peng Li, Fuwen Luo, Xi-
aolong Wang, Weidong Liu, and Yang Liu. 2023.
Exploring large language models for communication
games: An empirical study on werewolf. CoRR,
abs/2309.04658.

Aiyuan Yang, Bin Xiao, Bingning Wang, Borong Zhang,
Ce Bian, Chao Yin, Chenxu Lv, Da Pan, Dian Wang,
Dong Yan, Fan Yang, Fei Deng, Feng Wang, Feng
Liu, Guangwei Ai, Guosheng Dong, Haizhou Zhao,
Hang Xu, Haoze Sun, Hongda Zhang, Hui Liu,
Jiaming Ji, Jian Xie, Juntao Dai, Kun Fang, Lei
Su, Liang Song, Lifeng Liu, Liyun Ru, Luyao Ma,
Mang Wang, Mickel Liu, MingAn Lin, Nuolan Nie,
Peidong Guo, Ruiyang Sun, Tao Zhang, Tianpeng
Li, Tianyu Li, Wei Cheng, Weipeng Chen, Xian-
grong Zeng, Xiaochuan Wang, Xiaoxi Chen, Xin
Men, Xin Yu, Xuehai Pan, Yanjun Shen, Yiding
Wang, Yiyu Li, Youxin Jiang, Yuchen Gao, Yu-
peng Zhang, Zenan Zhou, and Zhiying Wu. 2023.
Baichuan 2: Open large-scale language models.
CoRR, abs/2309.10305.

Enmin Zhao, Renye Yan, Jinqiu Li, Kai Li, and Jun-
liang Xing. 2022. Alphaholdem: High-performance
artificial intelligence for heads-up no-limit poker via
end-to-end reinforcement learning. In Thirty-Sixth
AAAI Conference on Artificial Intelligence, AAAI
2022, Thirty-Fourth Conference on Innovative Ap-
plications of Artificial Intelligence, IAAI 2022, The
Twelveth Symposium on Educational Advances in Ar-
tificial Intelligence, EAAI 2022 Virtual Event, Febru-
ary 22 - March 1, 2022, pages 4689–4697. AAAI
Press.

Chen Zhu, Yu Cheng, Zhe Gan, Siqi Sun, Tom Gold-
stein, and Jingjing Liu. 2020. Freelb: Enhanced
adversarial training for natural language understand-
ing. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net.

517

https://arxiv.org/abs/1708.04782
https://doi.org/10.48550/ARXIV.2305.16291
https://doi.org/10.48550/ARXIV.2305.16291
https://doi.org/10.48550/ARXIV.2401.11504
https://doi.org/10.48550/ARXIV.2401.11504
https://doi.org/10.48550/ARXIV.2401.11504
http://papers.nips.cc/paper_files/paper/2022/hash/4dbb61cb68671edc4ca3712d70083b9f-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2022/hash/4dbb61cb68671edc4ca3712d70083b9f-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2022/hash/4dbb61cb68671edc4ca3712d70083b9f-Abstract-Datasets_and_Benchmarks.html
https://aclanthology.org/2023.emnlp-main.847
https://aclanthology.org/2023.emnlp-main.847
https://openreview.net/pdf?id=xZD10GhCvM
https://openreview.net/pdf?id=xZD10GhCvM
https://doi.org/10.48550/ARXIV.2408.05842
https://doi.org/10.48550/ARXIV.2408.05842
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.196
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.196
https://openreview.net/forum?id=NG7sS51zVF
https://openreview.net/forum?id=NG7sS51zVF
https://doi.org/10.48550/ARXIV.2309.04658
https://doi.org/10.48550/ARXIV.2309.04658
https://doi.org/10.48550/ARXIV.2309.10305
https://doi.org/10.1609/AAAI.V36I4.20394
https://doi.org/10.1609/AAAI.V36I4.20394
https://doi.org/10.1609/AAAI.V36I4.20394
https://openreview.net/forum?id=BygzbyHFvB
https://openreview.net/forum?id=BygzbyHFvB
https://openreview.net/forum?id=BygzbyHFvB

A Related Work

A game engine is a fundamental software designed
for game development. Famous game engines in-
clude Unreal, Unity, CoCos, etc. Pygame is also
a simple game engine. We spotlight two crucial
properties of a game engine. The first is function-
ality, i.e. providing a wide variety of basic tools
to facilitate the development process. The next is
secondary development, i.e. rich and flexible inter-
faces to allow developers to customize games. In
this work, we introduce a new concept, instruction-
driven game engine (IDGE), a neural game engine
learned on basis of large language models (OpenAI,
2023; Touvron et al., 2023; Jiang et al., 2023; Yang
et al., 2023; Qin et al., 2023). As opposed to typical
game engines, the IDGE acquires its functionality
power by instruction tuning on the core set (Raffel
et al., 2020; Ouyang et al., 2022) and allows for
low-barrier game development by issuing natural
language descriptions.

Some research efforts have explored the AI ap-
plications in games (Gallotta et al., 2024), e.g. non-
play characters (Shanahan et al., 2023; Uludagli
and Oguz, 2023), interactive drama (Wu et al.,
2024b; Han et al., 2024), game commentators
(Eladhari, 2018; Ranella and Eger, 2023). A great
amount of work focuses on AI as players, e.g. for
Atari (Mnih et al., 2013), Minecraft (Fan et al.,
2022; Wang et al., 2023), StarCraft (Vinyals et al.,
2019), NetHack (Küttler et al., 2020; Lowe et al.,
2020), Werewolf (Xu et al., 2023); However, our
work diverges from all of them in that we treat AI
as the playground, attempting to build a game en-
gine that is defined by instructions (game scripts)
and game states. The former focuses on the way
AI behaves, while the latter focuses on the way AI
would react in the face of any possible behaviors
from human beings and agents. More recent work
comes up with learning for a foundation agent, a
single agent with generalizable skills to behave
in various environments, e.g. SIMA (Team et al.,
2024b), an instruction-driven agent proficient in
multiple simulated environments; CRADLE (Tan
et al., 2024), a powerful agent capable of playing
complex AAA games like Red Dead Redemption 2
by controlling the keyboard and mouse. However,
our work targets the IDGE for a specific group of
games, Poker, as an initial step for building a foun-
dation IDGE. Poker is a widely studied information
game of immense popularity (Bowling et al., 2017;
Moravcík et al., 2017; Gupta, 2023; Kim, 2023;

Zhao et al., 2022).
In this paper, the entire training cycle for IDGE is

a way of curriculum learning (Bengio et al., 2009).
Recent studies show the potential of curriculum
learning in empowering the language models to
tackle more challenging tasks (Vakil and Amiri,
2023; Wu et al., 2023a). The proposed segment
rephrasing technique is related to perturbation train-
ing (Zhu et al., 2020; Wu et al., 2023b), which
smooths the structured natural language in the se-
mantic space.

B Out-of-Domain Game Scripts

C System Demonstration

Figure 4: System demonstration of our poker IDGE,
developed based on Unity.

518

Script 1: MAGIC DEALER

The game proceeds in the following order: start the game, shuffling, set blinds, deal 2 cards, bet, reveal 3 cards (the flop),
bet,reveal 1 card (the turn), deal 1 card (new deal), bet, show, and finally the prize is distributed. In each dealing phrase, deal
x+1 cards to each player. Then randomly discard 1 card from each player’s hand and shuffle it back into the deck. In each
flop, flop x cards from the deck to the community. Except when x=1, if the first flopped card matches the suit of the last
flopped card, flop 1 more.

Script 2: 3-CARD DRAW

Introduce a new game, named “3-card draw”. In this game, there are 3 suits, H, D, C, and each player is dealt with a 3-card
hand.There are 6 possible combinations of hand. Pair: Two cards of the same value; Three of a Kind: Three cards of the same
value;
Straight: Three consecutive cards of any suit; Flush: Three cards of the same suit, not consecutive; Straight Flush: Three
consecutive cards of the same suit; High Card: Not conforming to any of above combinations.

Script 3: 6-CARD DRAW

Introduce a new game “6-card draw”. In this game, there are four suits, Hearts (H), Diamonds (D), Clubs (C), Spades (S).
In addition, define two new combinations with 6 cards in hand.
Three Pair: there are three pairs of distinct numbers, e.g. D8, H8, C10, H10, H12, D12.
Big House: there are two pairs of three of one kind, e.g. H8, C8, S8, C12, H12, D12.
All combinations rank as: High Card<Pair<Three of a Kind<Straight<Flush<Full House<Three Pair<Big House<Straight
Flush.

Script 4: DRAGONIE

There are four original suits: Hearts (H), Diamonds (D), Clubs (C), Spades (S). There is an additional superior suit: Loong
(L). The suits rank as: L>H=D=C=S. Card values rank as: 1<2<3<4<5<6<7<8<9<10<11<12<13.
Introduce a new ranking strategy: “Dragonie”. For each player with four hole cards, pick out the consecutive cards of distinct
suits. Dragonie refers to the four-card hand where four cards are of consecutive cards as well as of distinct suits. In this case,
the valid cards are four. In the case that there are three consecutive cards of distinct suits, the valid cards are three.
Dragonie>three valid cards>two valid cards>one valid cards. To compare the same number of valid cards, the lowest one is
the best.

Script 5: THREE KINGDOMS

These new poker game is called “Three Kingdoms”. There are three distinct suits: Shu Han (S), Cao Wei (W), and Dong Wu
(D). Each player will be dealt with four hole cards. The biggest hand is the one where at least one of all three kingdoms
(suits) is present, call it “Three Kingdoms”. The second biggest is the one where at least two kingdoms is present, “Two
Kingdoms”. The rest of the situations belong to Hard Card. In these game, highest cards are preferred when comparing two
hands of the same combination.

Script 6: STARDUST

There are ten special cards: “Stardust” in the deck (represented as *). These cards are of none suit and none value. In hand
with one Stardust card, the required number of cards to form a straight or flush will be one less, and is greater than a normal
straight or flush. The hand with more than one Stardust, will be reduced to High Card. In detail,
Stardust Straight: Four consecutive cards of any suit, plus a Stardust (*);
Stardust Flush: Four cards of the same suit, not consecutive, plus a Stardust (*);
Stardust Straight Flush: Four consecutive cards of the same suit, plus a Stardust (*).
High Card<Pair<Three of a Kind<Straight<Stardust Straight<Flush<Stardust Flush<Straight Flush<Stardust Straight
Flush.

Script 7: ODD LOVER

In this game, odd values (1, 3, 5, 7, 9) are greater than even values (2, 4, 6, 8, 10). They rank as:
2<4<6<8<10<1<3<5<7<9. Card combinations rank as: High Card<Odd Straight<Odd Flush<Odd Straight Flush.
Odd Straight: Five consecutive odd values of any suit, e.g. 1, 3, 5, 7, 9; Odd Flush: Five odd values of the same suit, not
consecutive; Odd Straight Flush: Five consecutive odd values of the same suit; High Card: Not conforming to any of above
combinations.

Script 8: JOKER HOLD’EM

There are four suits: Hearts (H), Diamonds (D), Clubs (C), Spades (S). Card values rank as:
2<3<4<5<6<7<8<9<10<J<Q<K<1. In addition, there are two special Joker cards represented as J1 and J2,
which can be treated as any suit and value. Three of a Kind: Three cards of the same value. Straight: Five consecutive cards
of any suit. Flush: Five cards of the same suit, not consecutive. Full House: Three cards of the same value plus another
two cards of another value. Four of a Kind: Four cards of the same value. Five of a Kind: Five cards of the same value
(possibly with Joker). Straight Flush: Five consecutive cards of the same suit. High Card: Not conforming to any of above
combinations.

Table 5: Out-of-domain game scripts written by human players. We skip some basic settings in the script for brevity,
e.g. the number of players, bet limits.

519

