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Abstract

In this paper, we study the translation abil-
ities of Large Language Models (LLMs)
for business IT texts. We are strongly in-
terested in domain adaptation of transla-
tion systems, which is essential for accurate
and lexically appropriate translation of such
texts. Among the open-source models eval-
uated in a zero- and few-shot setting, we
find Llama-2 13B the most promising for
domain-specific translation fine-tuning. We
investigate the full range of adaptation tech-
niques for LLMs: from prompting, over
parameter-efficient fine-tuning to full fine-
tuning, and compare to classic neural ma-
chine translation (MT) models trained in-
ternally at SAP. We provide guidance how
to use training budget most effectively for
different fine-tuning approaches. We ob-
serve that while LLMs can translate on-par
with SAP’s MT models on general domain
data, it is difficult to close the gap on SAP’s
domain-specific data, even with extensive
training and carefully curated data.

1 Introduction

With swift improvement and recent successes of
Large Language Models (LLMs), it has become
imperative for companies to measure their produc-
tive NLP systems against such new models. In the
rapidly evolving field of NLP, incorporating the
state-of-the-art models could unlock new capabili-
ties for one’s product and improve performance. On
the other hand, switching to LLM-based systems

c© 2024 The authors. This article is licensed under a Creative
Commons 4.0 licence, no derivative works, attribution, CC-
BY-ND.

should not be done merely to appeal to public hype,
but should be a thoroughly evaluated choice.

With this in mind, we set out to investigate
whether LLMs can be easily utilized to outperform
and ultimately supersede the current machine trans-
lation systems employed by SAP (Buschbeck et
al., 2022). They are based on a traditional neu-
ral machine translation architecture trained on a
multitude of data sources including the contents of
the company-internal translation memories and is
therefore optimized for SAP’s domain of interest,
which we call Business IT here. While previous
research has shown that LLMs make good transla-
tors (Hendy et al., 2023; Zhang et al., 2023; Zhu et
al., 2023), it is not yet well explored whether they
can effectively adapt to domain-specific translation
intricacies and outscore a smaller model that has
been trained from scratch within the domain.

In particular, our interest lays in whether com-
parably smaller sized open-source LLMs can be
fine-tuned to this end. This interest is motivated by
certain drawbacks of using large proprietary models
such as OpenAI’s GPT-4 (OpenAI et al., 2024) out-
of-the-box. Potential data privacy concerns, slower
inference and higher monetary costs (provided suf-
ficient throughput) are some of the reasons.

In addition, fine-tuning (open-source) models
offers some more benefits. Fine-tuning addresses
challenges such as hallucinations and overgenera-
tion, commonly associated with the LLMs’ innate
generative nature. By channelling the LLMs’ fo-
cus towards translation through downstreaming, it
becomes possible to regulate and control these un-
wanted generative tendencies, resulting in a more
precise and tailored output for the intended domain-
specific application.

While there is a general argument to be made
that fine-tuning an LLM on parallel data would im-
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prove its translation quality, a much more crucial
one can be made regarding domain-specific trans-
lation. In domain-specific translation, vocabulary
and translation patterns might differ substantially
from its general purpose counterpart. For instance,
UI strings contained in our domain-specific data
such as ‘Item masters in catalog’, ‘Number in the
Total field’ or ‘PENDING The item has not yet
been sent.’ do not only differ from general domain
texts in terms of vocabulary, but can also deviate
substantially in syntax.

In our experiments, we first estimate the transla-
tion capacities of various models through prompt-
ing to identify the most promising one to fine-
tune. Concretely, Llama-2 13B appears to offer
the best model size to performance trade-off. We
then fine-tune the model with both full parameter
and parameter-efficient tuning and conduct various
ablation studies.

Overall, we arrive at the following conclusions:

1. It requires large amounts of domain-specific
data to have a fine-tuned Llama-2 13B ap-
proach the performance of a smaller but dedi-
cated translation system.

2. When fine-tuning Llama-2 13B with domain-
specific translation data, we do not observe
noteworthy catastrophic forgetting of general
domain translation capacity.

3. For domain-specific translation, low-rank
adaptation (Hu et al., 2021) cannot compete
with full fine-tuning as it fails to internalize
domain-specific phenomena in the limited pa-
rameters available. In order to increase model
fit, the adapter rank needs to be increased
to magnitudes where the tuning becomes no
longer parameter-efficient. Additionally, we
observe that quantization significantly hinders
model fit and consequently in-domain perfor-
mance as well.

4. If nonetheless parameter efficient fine-tuning
is conducted, one should favour an increase
in training data over an increase of training
epochs. For full fine-tuning, however, training
for multiple epochs provides a notable benefit.
In fact, if the number of training iterations are
to be kept a constant, one should favour an
increase of epochs over more training data;
naturally, under diminishing returns.

2 Related Work

In their paper, Brown et al. (2020) presented the
performance of GPT-3 and evaluated the transla-
tion ability of their LLM. They found that general-
purpose LLMs benefit from having examples in the
prompt (few-shot prompting) to guide the model
towards a specific task. Undoubtedly, adding rele-
vant examples via few-shot prompting or retrieval
augmented generation can improve translation per-
formance. However, both Alves et al. (2023) and
Li et al. (2023) observe that translation fine-tuning
outperforms few-shot prompting when provided
with only few thousands of training samples. Xu et
al. (2023) achieve state-of-the-art translation perfor-
mance with help of a two-stage training mechanism,
where in the first stage, the model is further pre-
trained on billions of tokens of monolingual data of
various languages to shift the model to a more mul-
tilingually balanced state; away from its dominantly
English pre-trained state. Only then, the model is
fine-tuned with limited parallel data. While the
resulting performance is astonishing, the first train-
ing stage is computationally expensive. Even with
adequate GPU resources available, the proposed
setup does not necessarily work as effective in low-
resource domain translation, where the parallel data
does not align well with the monolingual data used
in the first stage. Üstün et al. (2024) recently pre-
sented the Aya model which uses a more balanced
distribution of multilingual data in the pre-training.
Although the approach seems promising, our first
preliminary investigations do not show substantially
higher translation performance of the Aya model
compared to previous LLMs.

3 Datasets & Evaluation

In this paper, we mainly focus on the high-resource
language pair English → French. The more re-
sources a language pair has, the more LLMs should
be able to leverage from their pre-training, making
it easier and quicker to downstream them for the
translation task. In addition, we also investigate the
performance on the low-resource language pair En-
glish → Slovak and on English → Japanese, which
is known for its complexity, in section 5.7.

For few-shot example retrieval, fine-tuning and
testing, we use well-curated parallel SAP-internal
data. It is composed of large amounts of software
user interface (UI) strings, user assistance (UA)
texts, but also training materials, corporate content
and marketing texts. The models are tested not
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only on a test set of 2000 segments consisting of
domain-specific UI strings and UA texts, but also
on general-domain data, i.e. the FLORES (Goyal
et al., 2022) test set. Even though they stem from
the same domain (SAP), training and in-domain
test data are not merely divided randomly, but in-
stead feature both temporal and distributional shifts.
This in turn allows a more realistic performance
evaluation (Søgaard et al., 2021).

We want to clarify that SAP’s MT systems are
trained using large corpora comprised of millions
of parallel sentences, and this training is performed
over many epochs. Since fine-tuning LLMs on
a similar scale would entail considerable compu-
tational costs, we conduct our fine-tuning experi-
ments with fewer but gradually incremented quan-
tities of data to map respective improvements in
translation quality. Furthermore, while SAP’s MT
system evaluated in this study has been trained to
excel in translating texts from the SAP domain, it
has not been fine-tuned to UI and UA texts specifi-
cally, and obviously the test data is unseen.

We evaluate the performance with both
BLEU (Papineni et al., 2002) and COMET1(Rei
et al., 2022). While COMET is more robust and
correlates better with human annotators, the n-gram
based BLEU score nonetheless has its use when
evaluating domain-specific translations. Specifi-
cally, it captures lexical agreement with references
which indicates the correct use of terminology and
writing style for the domain.

4 Prompting

To establish a baseline for the translation fine-
tuning it is natural to start with simple prompt exper-
iments. These experiments are relatively straight-
forward to conduct since large commercial models
like GPT-4 are offered as services. Furthermore,
hosting open-source models for inference requires
fewer resources compared to tuning them. The
motivation driving this inquiry is twofold: first, to
establish a baseline for the performance of open-
source models; and second, to evaluate the inherent
capabilities of GPT-4, a proprietary cutting-edge
language model in its “out-of-the-box” state.

Given the nature of the task, we restrict ourselves
to a selection of models that are intended for multi-
lingual usage:

1. GPT-4: GPT-4 serves as a benchmark for the
1https://huggingface.co/Unbabel/
wmt22-comet-da

state-of-the-art in natural language processing,
boasting superior language understanding and
generation capabilities (OpenAI et al., 2024).
Hendy et al. (2023) have also demonstrated
that it shows remarkable performance in the
translation task.

2. Llama-2 (7B, 13B, 70B): The Llama-2 fam-
ily of models has been shown to achieve great
performance in various tasks across various
languages and has a commercially usable li-
cence.

3. BLOOM 7B: The BLOOM model family has
been released in 2022 and was trained on well
documented high-quality data (Laurençon et
al., 2022) encompassing 46 natural languages.

4. Falcon (7B, 40B): As with BLOOM, the Fal-
con family of models, released in 2023, is of
special interest due to its balanced, curated
and, most importantly, well documented mul-
tilingual training data (Penedo et al., 2023).

Figure 1: Translation Prompt

The simple prompt shown in figure 1 is used
for prompting and fine-tuning experiments through-
out the paper. While it is known that optimized
and more verbose prompts can improve results, we
refrain from prompt engineering for two reasons.
Firstly, while engineering prompts is fairly cheap
when optimizing a zero-shot setting, it would re-
quire repeated trainings for each and every prompt
to measure its performance in a fine-tuning setting;
an endeavour that is too costly. In our experiments,
we expect the model to adapt to any prompt during
fine-tuning. Susceptibility to prompt design would
prove a major obstacle for fine-tuning LLMs. Sec-
ondly, a short and concise prompt is preferable as it
leaves more context length available for the actual
translation pairs.

Figure 2 displays the BLEU and COMET scores
of the models in the zero-shot setup. For open-
source models, we establish a comparison under
equal resource conditions, i.e. given four NVIDIA
A10G2. Models that are too large for full precision
inference are tested with 8-bit quantization instead.

As expected, SAP’s MT model performs best by
a large margin on the domain-specific data. The su-
perior BLEU score, in particular, indicates the cor-
2a single g5.12xlarge instance on AWS
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Figure 2: Zero-shot prompting performance

rect usage of in-domain vocabulary, rather than just
semantically similar phrases. For general-domain
data (FLORES), however, GPT-4 is capable of out-
performing SAP’s domain-specific MT system out
of the box. Keep in mind that this MT model is
not optimized for general-domain translation, and it
is unknown whether the publicly available dataset
was included in GPT-4’s training data.

Provided with the simple prompt, all open-source
models but Llama-2 7B are able to translate texts
consistently3, albeit not necessarily correctly. Natu-
rally, it is difficult to determine whether the weaker
model performance is the result of shortcomings in
its translation quality, or merely a misinterpretation
or mishandling of the prompt.

It might seem unintuitive, but some open-source
models perform better on domain-specific data than
on general-domain data. This can be explained by
the large percentage of UI segments contained in
the SAP test set. While such strings contain lexical
intricacies, they are generally short and syntacti-
cally simple, which makes them easier to translate
for the smaller models.

As a natural next step, we investigate whether
few-shot prompting could narrow the gap for the
SAP domain-specific translations. We focus our
experiments on GPT-4, serving as an upper LLM
benchmark, and Llama-2 13B, which offered the
best trade-off between model size and translation
performance in the zero-shot experiments. In order
to construct our few-shot prompts, we first encode
the English source segments of the domain-specific
parallel training data (section 3) with the sentence-
BERT model all-MiniLM-L6-v2 by Reimers and
3generating output in French and not English

Gurevych (2019). Then, for each English segment
to translate, we retrieve the five translation pairs
that have the highest cosine similarity to the English
source. These pairs are then arranged as completed
prompts and placed before the final segment set for
translation, with each pair separated by an empty
line.

For the Llama-2 13B model we had to conduct
postprocessing of the output due to overgenera-
tion issues. In particular, it continued generating
English-French sentence pairs beyond the com-
pleted prompt. To deal with this, we simply trun-
cated the generation after the first line break. The
results of the few-shot experiments are displayed
in table 1. While both models improve in per-
formance of in-domain translation, a gap to the
domain-specific MT model still remains. However,
it is worth noting that the open-source Llama-2
model benefits more substantially from the exam-
ples, promising potential that may be even better
leveraged through fine-tuning. We also find that
providing domain-specific examples for general-
domain translation is detrimental to the models’
performance.

While few-shot prompting can provide a basic
understanding of the domain in question, it may
not fully capture all the domain-specific nuances.
This is particularly challenging when the domain
is highly specialized, as selecting the appropriate
domain-specific vocabulary and creating accurate
examples can be difficult. Additionally, including
multiple examples in the prompt increases the to-
ken count, which can lead to higher computational
costs and longer inference times. Fine-tuning, on
the other hand, would allow the model to learn
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Model SAP domain General domain
Llama-2 0-Shot 0.757 / 0.283 0.780 / 0.243
Llama-2 5-Shot 0.843 / 0.503 0.767 / 0.310
GPT-4 0-Shot 0.842 / 0.498 0.891 / 0.532
GPT-4 5-Shot 0.866 / 0.560 0.883 / 0.518
SAP’s MT 0.888 / 0.686 0.867 / 0.490

Table 1: Few-shot results with COMET (first value) and
BLEU (second value) for Llama-2 13B and GPT-4. For com-
parison SAP’s MT is added.

from a much larger pool of examples, potentially
leading to better adaptation to the specific-domain
requirements.

5 Fine-Tuning

While the performance of open-source LLMs is
promising, it falls short compared to both a domain-
specific neural machine translation model as fre-
quently used in production and more advanced mod-
els like GPT-4. A promising pathway to improve
the task-specific performance of open-source LLMs
is to further fine-tune them. Given the substantial
gap in performance on the in-domain data to SAP’s
MT model and even GPT-4, we have a strong in-
centive to investigate how well LLM translation
can adapt to a specific domain through fine-tuning.
To do so, we experiment with three different fine-
tuning setups:

1. LoRA: With low rank adaptation (Hu et al.,
2021), the pre-trained model weights are
frozen while trainable rank decomposition ma-
trices are injected on top of the frozen weight
matrices. As the decomposition matrices are
the only ones fine-tuned and contain magni-
tudes less parameters, model downstreaming
becomes faster and more GPU efficient.

2. QLoRA: The fine-tuning approach proposed
by Dettmers et al. (2023) quantizes the pre-
trained model during training and only keeps
the trainable LoRA adapter weights in stan-
dard precision. This method reduces the mem-
ory requirements of fine-tuning which in turn,
depending on the available GPUs and model
size, can allow data-parallel training rather
than model-distributed one, cutting training
time short by a multitude.

3. Full fine-tuning: While Hu et al. (2021) and
Dettmers et al. (2023) show that the proposed
parameter efficient fine-tuning approaches per-
form on-par with full fine-tuning, other re-
searchers applying them could not always con-

firm such observations (Sun et al., 2023; Chen
et al., 2022). Consequently, we also conduct
full fine-tuning to establish an upper bound.

QLoRA is of special interest, as the greatly re-
duced GPU footprint allows cost-efficient training.
In addition, quantization could also help reduce the
cost during inference and recent development in
dynamic adaptation (Babakniya et al., 2023) make
QLoRA even more tempting. A main interest of our
experiments is therefore an evaluation of QLoRA
against full fine-tuning for domain-specific trans-
lation. Then, ablation studies are conducted that
investigate shortcomings of QLoRA opposed to
LoRA without quantization.

5.1 Fine-Tuning Setup

We use the 13 billion parameter version of Llama-2
for all fine-tuning experiments. For one, the model
is capable of translation in a zero-shot prompt setup,
which certifies that there is sufficient pre-trained
knowledge to leverage through fine-tuning and al-
lows a comparison to a sensible baseline. Secondly,
the model is comparably lightweight, which allows
full fine-tuning on as few as four NVIDIA A10G4.
We use standard libraries to perform the fine-tuning,
namely Huggingface’s trainer interface5 and bit-
sandbytes6 for quantization. We use the training
data presented in section 3 and vary the amount of
training segments in the experiments and train for
3 epochs.

Measuring performance not only in the domain-
specific but also on general domain data allows us to
investigate the effect the domain-specific translation
tuning has on the model’s translation performance
in general. On the one hand, we expect an increase
in general domain translation performance, as the
model is downstreamed to translate only. On the
other hand, increasing the model fit to specific data
could also induce catastrophic forgetting and con-
sequently cause the general domain performance to
deteriorate.

For (Q)LoRA training, we set the rank to r = 8
and the scaling factor to α = 16 unless otherwise
specified. We use 8-bit quantization for QLoRA, as
its 4-bit counterpart did not yield satisfying results
in preliminary experiments. For both (Q)LoRA and
full fine-tuning, we observed good convergence

4Using paged optimizers as discussed in Dettmers et al. (2023)
5https://huggingface.co/docs/
transformers/main_classes/trainer
6https://github.com/TimDettmers/
bitsandbytes
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Figure 3: Model performance measured in COMET (left) and BLEU (right). The Llama-2 models have been fine-tuned for 3
epochs with 10 to 90 thousand parallel segments.

behaviour with a learning rate of 2e-5. Other than
heuristically searching for a functional learning rate,
we did not search any further hyperparameters. Af-
ter all, one key advantage of (Q)LoRA over full
fine-tuning is that it is not as sensitive to hyperpa-
rameters; an advantage we do not want to offset by
expending valuable resources to optimize full-fine-
tuning.

5.2 Results

The results in figure 3 demonstrate how effective
LLMs can learn from very limited training data.
Even a small training set of only 10k sentence pairs
drastically improves performance over the zero-
shot baseline. This initial boost of performance,
compared to zero-shot, is most likely due to the
model quickly adjusting to the prompt and transla-
tion task in general. By increasing the training data
we can further improve the model’s performance,
albeit with diminishing returns. At 90k training
samples, the fine-tuned model surpasses GPT-4 per-
formance on the domain-specific test sets. This
demonstrates that fine-tuning of a smaller open-
source model can close the performance gap to
large proprietary models out of the box. With lim-
ited training data, however, Llama-2 cannot be eas-
ily downstreamed to beat the parameter efficient
SAP translation system. Further investigations into
the amount of training data required to match SAP’s
MT performance are conducted in section 5.6.

Despite training only on domain-specific SAP
data, the model also shows improvements in gen-
eral domain translation performance. While this is
unsurprising, given that the model is downstreamed

for translation, it is nonetheless remarkable that
there is no apparent catastrophic forgetting occur-
ring when fine-tuning with the above quantities of
training data. When full fine-tuning, we begin to
see a slight degradation of general domain perfor-
mance from 30k samples upwards. However, the
performance is still substantially better than the
model’s zero-shot one. This general robustness
also stands in contrast with few-shot prompting,
where the addition of domain specific examples de-
teriorates general domain performance. In a way,
one could argue that the few-shot examples much
more aggressively urge the model to translate in the
domain-specific style while fine-tuning only pro-
vides the models with the additional knowledge to
translate appropriately, if necessary.

In general, we observe that full fine-tuning is su-
perior to QLoRA tuning. Most notably, however, is
that the full fine-tuned model displays a much larger
improvement in BLEU scores on domain-specific
data than its QLoRA counter-part. Since BLEU is
a token-based metric, we conclude that full fine-
tuning allows the model to internalize the lexical
intricacies of the domain. This is crucial for trans-
lation use cases in specific domains, also at SAP, as
the translations must be consistent with established
terminology. With less trainable parameters avail-
able, QLoRA is less capable of internalising these
lexical differences.

While full fine-tuning is undoubtedly the supe-
rior choice, it comes with increased computational
costs. With the GPU setup discussed above, the
QLoRA training could be conducted in a data dis-
tributed manner, while the full fine-tuning required
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Figure 4: Effect of increasing training data and number of epochs on BLEU and COMET scores for the SAP domain test set.

all four GPUs for a single copy of the model.

5.3 Budget Efficient Training

When confronted with a fixed training budget, the
pivotal decision arises between allocating resources
to acquiring more training data or investing in mul-
tiple epochs. Iterating over the same data across
multiple epochs expedites model fitting but poses
the potential threat of overfitting, as the model may
become too closely tailored to the training set. Con-
versely, augmenting the volume of training data
holds the promise of bolstering the model’s gen-
eralization capacity, yet it introduces the risk of
underfitting.

Since full fine-tuning and QLoRA differ substan-
tially in terms of trainable parameters and there-
fore also in expected time to reach training conver-
gence, we investigate the effect of data and epoch
increase on model performance. Figure 4 shows
that QLoRA fine-tuning does not benefit all too
much from an increase of epochs. After around
two epochs, the test set performance is already sat-
urated. More importantly, however, increasing the
amount of training data by a factor of three pro-
vides a substantially larger boost in performance
than tripling the training epochs. Therefore, we
conclude that when fine-tuning with QLoRA it is
sufficient to have the model observe each example
only once. A reason to this is likely that the model
cannot fit individual examples arbitrarily well as
both the base model precision and the underparame-
terised adapters regulate model fit. The only way to
increase the performance of QLoRA tuned models
is therefore to increase the amount of training data

to allow the model to capture the underlying data
distribution more wholly.

With full fine-tuning, on the other hand, we
can observe a clear benefit when tuning the model
over multiple epochs. Here, tripling the number
of epochs results in equal or better performance
than increasing the training data by a factor of three.
With more trainable parameters, the model can im-
prove its fit on an individual example with each
visit. Naturally, increasing the epochs further and
further will result in diminishing returns in terms of
test set performance or might even lead to overfit-
ting. Nonetheless, if confronted with limited com-
putational budget, one should consider reducing the
training data in favour of more than one epoch of
training.

We would like to emphasize how differently the
LLMs learn compared to the traditional and much
smaller encoder-decoder translation models. These
models are trained with substantially more data over
dozens of epochs, since training is much cheaper,
faster and requires comparably few parameters. In
contrast, we see that the LLMs are quickly and eas-
ily adjusted to a downstream task in a few epochs
and with a few thousand examples. This compen-
sates for the higher training cost per sample due to
the large model size.

5.4 Domain-Specific Translation - Appetite
for Parallel Data

For both full fine-tuning and QLoRA, the test set
performance continuously increases logarithmically
with respect to the amount of training data. This ob-
servation stands in firm contrast to Xu et al. (2023),
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who notice a lack of improvement beyond 10k trans-
lation examples when fine-tuning a Llama-2 7B
model. Consequently, they argue that LLMs are
not hungry for parallel data and suffer from catas-
trophic forgetting (French, 1999; Kirkpatrick et al.,
2016) when confronted with too many examples.
These conflicting observations could, for one, be
explained by the larger size of the Llama-2 model
employed in our experiments. After all, robust-
ness to catastrophic forgetting scales with model
size (Dyer et al., 2022).

We argue, however, that the different observa-
tions could stem from the type of training and test
data, rather than the models. Xu et al. (2023) tune
their model on general domain translation data, for
which the LLM already contains knowledge that
can be leveraged. Consequently, the fine-tuning just
needs to nudge the model in the right direction to
utilize this intrinsic knowledge.

In our case, however, we fine-tune the model on
domain-specific data, which poses two challenges
for the model. For one, the model needs to ‘learn’
the domain to retrieve relevant pre-trained knowl-
edge. With an increase of training data, the model
can come to a better understanding of what the
domain really entails. Much more, however, the
model also needs to internalize very rare or even
new information it encounters during training. The
update in parameters required for this in turn is
much larger than the small nudge required for gen-
eral domain translation.

5.5 Tackling Shortcomings of (Q)LoRA

The experimental results show a substantial gap
in performance between QLoRA tuning and full
fine-tuning. To attempt to close this gap, we ex-
perimented with various configurations for QLoRA
training.

We note three observations based on the results
in table 2. First, while applying adapters to all
attention and feed forward matrices provides a sub-
stantial boost, it is still not comparable to full fine-
tuning. Second, making the LoRA adapter bias
terms trainable does not yield any benefit.

Finally, since the QLoRA adapters are of low
rank, our suspicion was that the number of param-
eters is simply insufficient to learn the domain-
specific intricacies of the translation data. Intu-
itively, with the rank approaching the full rank of
the matrix and applying it to all matrices, we should
also observe the performance converge towards the

Adapt. Attention Adapt. FFN QLoRA Bias QLoRA Rank BLEU
X 8 0.406
X 32 0.408
X 64 0.407

X 8 0.381
X X 8 0.458
X X 64 0.456
X X X 8 0.456

Table 2: BLEU scores on the in-domain test data for differ-
ent QLoRA configurations fine-tuned with 90k parallel seg-
ments. Adapt. Attention signifies the low rank adaptation
of the model’s query, key, value and out projection matrices
within the attention submodule. Adapt. FNN signifies the low
rank adaptation of the up, gate and down matrices within the
model’s MLP submodule. QLoRA Bias indicates whether the
low-rank adapter contains tunable bias terms. QLoRA Rank
specifies the rank of the low-rank approximation matrices.

Figure 5: Effect of quantization and adapter rank on model
fit.

one of the full fine-tuning. However, increasing
the rank does not result in any improvement. Even
worse, training runs with even higher ranks resulted
in continuously degrading performance. A small
grid search over learning rates and LoRA α terms
could not alleviate this issue.

As figure 5 shows, QLoRA training runs are un-
derfitting, converging quickly to a loss of about 1.5
and only very slowly beyond, regardless of adapter
rank. Full fine-tuning, on the other hand, is able to
fit the data much better, which becomes apparent in
the dips the loss curve takes with each epoch. After
all, the more often an example has been visited, the
smaller the loss on it in future iterations. While the
full fine-tuning model’s loss curve suggests overfit-
ting, this is not the case yet after three epochs and
validation scores are substantially better than the
LoRA and QLoRA runs.

Since increasing the rank of QLoRA adapters
does not result in similar fitting behaviour, we
cannot hold the number of parameters alone re-
sponsible for the bad model fit. Consequently, we
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investigated quantization as possible culprit. For
non-quantized LoRA, figure 5 shows indeed a posi-
tive correlation between adapter rank and model
fit, confirming this suspicion. With sufficiently
large rank, we can once again observe the desired
loss-dip at epoch boundaries, indicating that the
model can fit individual examples rather than just
the translation task in general. This is verified by
the COMET/BLEU scores starting to converge to-
wards the full fine-tuning scores.

A hypothesis to why quantization acts as a bot-
tleneck might be that it causes the model to lose
fine-grained information. While this loss might not
be apparent when prompting the model, it could
become noticeable during fine-tuning. After all,
fine-tuning the model allows us to better leverage
the relevant pre-trained knowledge that could not
be accessed as easily through prompting. If this
knowledge in turn is encoded in higher precision
variations in the parameters, quantization would
inevitably result in its loss.

While keeping the base model unquantized im-
proves adapter-based fine-tuning, the BLEU scores
still lack behind full fine-tuning. In order to ap-
proach full fine-tuning performance, one has to
increase the rank beyond 512, which negates the
advantages that low rank adaptation would offer in
the first place. The computational load for such
high ranks is comparable to a full fine-tuning, since
the hidden layer size for Llama-2 13B is 5120.

5.6 Pushing The Limits

Up to now we have investigated parameter efficient
techniques and compared them to a full fine-tuning.
The results indicate that only full fine-tuning of
LLMs can possibly lead to results comparable to
GPT-4 and the encoder-decoder MT system used
at SAP. Therefore, we conducted a full fine-tuning
with larger datasets, 200k and 400k, to push the
limits. Due to a lack of improvement in general
domain translation (see figure 3), we upsampled
non-UI texts to diminish the dominance of simple
and short UI strings. These non-UI texts are closer
to general domain translation, featuring syntacti-
cally complete sentences rather than just phrases.
With this change in the data mixture, we hope to
see further fine-tuning improvements on both test
sets.

Figure 6 shows that the domain-specific perfor-
mance of the Llama-2 model approaches the one
of SAP’s MT with increasing amount of training

Figure 6: Llama-2 performance for larger training data sets
and additional language pairs.

data. Further increasing the amount of training data
will likely allow the fine-tuned LLM to surpass the
MT system on the domain-specific test set. How-
ever, the same cannot be stated for general domain
performance. While increasing the proportion of
non-UI training data helped exceed the general do-
main performance observed in figure 3, we observe
that further doubling the total training data does not
lead to further improvement.

Possibly, further data balancing and increases in
training data could allow us to fine-tune Llama-2
to match SAP’s MT on both test sets. Nonethe-
less, it becomes apparent that downstreaming an
open-source LLM to outperform a smaller dedi-
cated translation model is no trivial task.

5.7 Additional Language Pairs

To complete the picture, we also conducted experi-
ments with two additional language pairs: English
→ Japanese, known for its complexity, and English
→ Slovak, a low-resource language pair. The re-
sults are also presented in figure 6. They show the
same trends as for English → French. For the gen-
eral domain, the performance saturated quickly in
the same regime as the SAP MT system. For Slovak
and Japanese, GPT-4 performs best on the general
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Figure 7: Human Evaluation.

domain, but as discussed before, GPT-4 has poten-
tially seen the general domain data in training. For
the SAP domain, the Llama-2 model surpasses GPT-
4 and approaches the performance of the SAP’s MT
system with sufficient training data.

5.8 Human Evaluation
To validate the automatic scores, we conducted a
human evaluation on 300 sentences randomly se-
lected from the SAP test set for all three language
pairs. The translations generated by GPT-4, Llama-
2 200K, and SAP’s MT were post-edited by two
professional translators familiar with the SAP do-
main. We used CharacTER (Wang et al., 2016) to
calculate the edit distance between the MT output
and the post-edited version, and averaged the re-
sults from both translators. A lower edit distance
suggests a higher quality of translation. The re-
sults, as shown in figure 7, largely corroborate the
automatic metrics reported in figure 6.

6 Conclusion

We have shown that Llama-2 13B shows great po-
tential for domain-specific translation fine-tuning
and can substantially improve over its zero-shot
performance. However, doing so is no trivial task.
We find that few-shot prompting is not sufficient to
close the performance gap to productive systems
in the SAP domain. Parameter efficient fine-tuning
with low rank adaptation fails to internalize domain-
specific phenomena and therefore cannot compete
with a full fine-tuning. Full fine-tuning, however,
requires substantially more GPU compute power,
which in turn is reflected in increased monetary
costs.

While we were able to approach the performance
of the comparably small encoder-decoder MT sys-

tem trained and employed at SAP by continuously
increasing training data, we were unable to surpass
it. Considering the much higher monetary infer-
ence costs and lower inference speed of the LLM
compared to the MT model, the benefit of switch-
ing systems is not immediately obvious, especially
when separate models would be hosted for various
languages.

It is without doubt, however, that with rapidly
improving released open-source models the perfor-
mance for domain-specific LLM translation fine-
tuning is bound to increase as well. Therefore, a
continuous investigation into the translation capa-
bilities of future open-source models is imperative.

7 Limitations and Future Work

Since LoRA is not sufficient to close the gap to full
fine-tuning, we believe that multilingual fine-tuning
could be a way to achieve better performance. This
approach would also be more cost-efficient than
fine-tuning LLMs individually for each language
pair, considering their large parameter size. The
emergence of multilingual models like Üstün et al.
(2024) or Alves et al. (2024) makes this route even
more promising. Particularly, the Tower model,
which is based on Llama-2, seems to be a promising
candidate. We plan to conduct multilingual fine-
tuning experiments with this model in the future.

Finally, it should be pointed out that in our study,
we only fine-tuned and evaluated the models at the
sentence level. However, with their large context
windows, LLMs are not limited to sentence-level
translations and could translate whole documents.
This could be especially beneficial in the SAP do-
main, where the consistent translation of whole
technical documents is important. Progress might
be more promising with fine-tuning and inference
at the document level.
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Alves, Duarte M., José Pombal, Nuno M. Guerreiro, Pe-
dro H. Martins, João Alves, Amin Farajian, Ben Pe-
ters, Ricardo Rei, Patrick Fernandes, Sweta Agrawal,

619
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mann, Mark Fishel, Alexander Fraser, Markus Fre-
itag, Yvette Graham, Roman Grundkiewicz, Paco
Guzman, Barry Haddow, Matthias Huck, Antonio Ji-
meno Yepes, Tom Kocmi, André Martins, Makoto
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