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Abstract

Large language models (LLMs) have gained
increasing attention due to their prominent abil-
ity to understand and process texts. Neverthe-
less, LLMs largely remain opaque. The lack
of understanding of LL.Ms has obstructed the
deployment in safety-critical scenarios and hin-
dered the development of better models. In
this study, we advance the understanding of
LLM by investigating the significance of in-
dividual layers in LLMs. We propose an ef-
ficient sampling method to faithfully evaluate
the importance of layers using Shapley values,
a widely used explanation framework in fea-
ture attribution and data valuation. In addi-
tion, we conduct layer ablation experiments
to assess the performance degradation result-
ing from the exclusion of specific layers. Our
findings reveal the existence of cornerstone lay-
ers, wherein certain early layers can exhibit a
dominant contribution over others. Removing
one cornerstone layer leads to a drastic col-
lapse of the model performance, often reducing
it to random guessing. Conversely, removing
non-cornerstone layers results in only marginal
performance changes. This study identifies cor-
nerstone layers in LLMs and underscores their
critical role for future research.

1 Introduction

The rapid advancement of large language mod-
els (LLMs) has revolutionized natural language
processing, enabling unprecedented capabili-
ties in text generation, translation, and com-
prehension tasksCitewei2022chain, hu2021lora,
rafailov2024direct, ouyang2022training. These
models, exemplified by architectures such as GPT-
3 (Brown et al., 2020), Llama (Touvron et al.,
2023a,b), and Bloom (Workshop et al., 2022), rely
on transformer-based neural networks with numer-
ous layers (Vaswani et al., 2017). Despite their
successes, LLMs suffer from issues such as hal-
lucinations, biases, and unstable reasoning abili-
ties (Hendrycks et al., 2020; Bolukbasi et al., 2016;

Bender et al., 2021; Garg et al., 2018). Regard-
less of the effort to mitigate these issues (Cao
et al., 2018; Huang et al., 2023; Dathathri et al.,
2019; Kaneko and Bollegala, 2021), they remain
unsolved nowadays, hindering the deployment of
LLMs in more safety-critical domains. When a
neural network makes errors or underperforms, it
is valuable to identify the specific part of the model
responsible for these issues. Therefore, understand-
ing the inner workings of neural networks and rec-
ognizing the role of individual components is key
to addressing the challenges associated with LLMs.

In this paper, we advance the understanding of
LLMs by investigating the importance of individual
layers in LLMs across multiple tasks. To quantify
the contribution of each layer to the overall model
performance, we extend the Shapley value frame-
work (Lundberg and Lee, 2017; Ghorbani and Zou,
2020), originally from cooperative game theory,
to layers in LLMs. We employ an efficient sam-
pling method to estimate layer importance within a
practical runtime. To further analyze the impact of
the key layers characterized by high Shapley val-
ues, we perform layer ablation to observe a specific
layer’s impact on performance.

Our study reveals that certain early layers in
LLMs, which we term cornerstone layers, play
a dominant role in influencing the model’s perfor-
mance. Notably, removing one of these cornerstone
layers can cause a significant performance drop,
reducing the model performance to near random
guessing. In contrast, removing other layers typi-
cally results in only marginal performance degrada-
tion. We hypothesize that these cornerstone layers
handle some fundamental tasks in LLMs and hope
this discovery inspires future studies on understand-
ing the role of cornerstone layers.

Our contribution: (1) We propose an efficient
sampling method based on the proximity of LLM
layers to estimate layer Shapley values. (2) We
investigate the importance of layers in LLMs using
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layer Shapley with layer ablation. Our method com-
plements the traditional model explanation method
with a mechanistic interpretability perspective. (3)
We identify cornerstone layers in LLMs. A corner-
stone layer has distinct behavior compared to other
layers. It has a major contribution across many
tasks, and its absence leads to the collapse of model
performance. (4) We also examine the behavior
of cornerstone layers across different models and
tasks. Our findings demonstrate the universal im-
portance of these layers across various tasks, while
also revealing that cornerstone layers contribute dif-
ferently depending on the model. (5) We analyze
our findings and provide two possible hypotheses
for the observed model behavior.

2 Related Work

There is a significant body of research focused on
interpreting and understanding large language mod-
els (LLMs). This section provides an overview of
some key approaches.

Analysing parts of LLMs: Shim et al. (2022)
analyze the contributions of various components in
LLMs and their impacts on performance. Gromov
et al. (2024) investigate the role of deep layers in
LLMs through layer pruning. Michel et al. (2019)
explore the redundancy of attention heads, showing
that many heads can be pruned without significant
performance loss. Clark et al. (2019b) study the
behavior of individual attention heads in BERT,
revealing their distinct roles in capturing linguistic
features.

Model probing: Probing techniques are widely
used to analyze the internal representations of
LLMs: Tenney et al. (2019) use probing tasks to ex-
amine what linguistic information BERT captures,
finding that different layers encode different types
of linguistic features. Tenney et al. (2018) intro-
duce a suite of probes to analyze the representations
learned by contextualized word embeddings, iden-
tifying how syntactic and semantic information is
distributed across layers.

Mechanistic interpretability:  Some research
views the inner workings of LLMs as circuits:
Pal et al. (2023) conceptualize LLMs as computa-
tional circuits, mapping out how information flows
through the network. Meng et al. (2022) focus
on locating and understanding functional circuits
within LLMs, providing insights into how factual
knowledge is stored in LLMs.

Study of intermediate representation: = Under-
standing the intermediate representations within
LLMs is another critical area of study: Sun et al.
(2024) analyze the intermediate layers of LLMs,
exploring how these representations evolve across
the network and contribute to final predictions.
Bricken et al. (2023) investigate the nature of inter-
mediate representations and their roles in encoding
syntactic and semantic information.

3 Preliminaries

3.1 Layers in LLMs

Recent LLMs primarily adopt a decoder-only archi-
tecture. Typically, an LLM begins with an embed-
ding layer E, succeeded by L transformer decoder
layers Hy, Ho, ..., Hy, and ends with a head layer
C that predicts the probability of each token in the
vocabulary V. Each decoder layer H; consists of an
attention layer and a feed-forward network (FFN)
layer. Given an input prompt x of length /N and
a vocabulary V, where x € |V|V, the LLM first
maps x into a hidden space, resulting in

where hy € RV*4, The hidden state hg is then
processed sequentially through the decoder layers:

E = Attnl(hl,ﬁ +h;_q forl=1,2,...,L,
h; = FFN;(h)) + h; forl=1,2,... L.

ey
Lastly, the head layer C' predicts the logits

C(hr) = [zM, 23 2V,

where z(") € RVl represents the predicted logits
for the (i + 1)-th output token.

3.2 Shapley Value

Shapley values, rooted in cooperative game the-
ory, have become a powerful tool in the realm of
explainable artificial intelligence (XAI), providing
insights into the contributions of individual features
within complex models. Originally formulated by
Lloyd Shapley in 1953 (Shapley, 1952), Shapley
values offer a systematic and fair allocation of pay-
offs to players based on their contributions to the
total gain of a coalition, making them an essential
method in understanding the role of each partici-
pant.

In the context of cooperative games, the Shapley
value for a player represents the player’s average
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marginal contribution across all possible coalitions.
This concept ensures that each player’s influence is
assessed comprehensively, considering every possi-
ble combination of players. Formally, for a set IV
of n players, the Shapley value ¢; for player ¢ is
defined as:
gilv) = D C-[(Su{i}) —u(S)],

SCN\{i}

where v(.S) represents the value of the coalition S,
and C is the combinatorial factor given by:

_ [S]Mn = |S] = 1)!

n!

C

This formulation considers all permutations of play-
ers, ensuring that each player’s contribution is fairly
evaluated by analyzing every possible coalition
they could potentially join.

Calculating Shapley values involves considering
all subsets of players, which makes the compu-
tation particularly challenging as the number of
players increases. For a game with n players, the
Shapley value requires an evaluation of 2”1 possi-
ble subsets, leading to computational complexities
that grow exponentially with n. Despite the chal-
lenges in computation, the Shapley value remains
a cornerstone in XAl, particularly in attributing the
contributions of different features in machine learn-
ing models. By fairly distributing credit among fea-
tures, Shapley values enable a deeper understand-
ing of model behavior, supporting transparency and
trust in Al systems.

4 Estimating Layer Shapley

Prior works usually calculate shapley values be-
tween different input features or different data
points. In a nutshell, Shapley values are usually
applied to data, not models. Nevertheless, in this
work, we adopt the well-established Shapley value
framework to measure the contribution of a layer to
the model performance. For a model with a sequen-
tial structure, we can construct its mathematical
form in nested functions:

f(z) = fn(fn-1(.-f1(2))),

where NV is the number of layers in this model.
Hence, we consider each layer f; as a player in the
cooperative game. Specifically, we choose each
individual attention and FFN layer as a player in
LLMs and the model performance on a predefined
task as the game outcome.

One major drawback of calculating Shapley val-
ues is the enormous number of required samples.
To calculate Shapley values for N players precisely,
one needs to sample 2V times, which is compu-
tationally not feasible for LLMs. Therefore, we
aim for a reasonable estimation of layer Shapley
with efficient sampling that exploits the structure of
LLMs and achieves orders of magnitude speed-ups,
which we explain below.

Early truncation:  As discussed in prior work
that estimates Shapley values (Ghorbani and Zou,
2020), the model performance degrades to random
guessing for cases where many layers are removed.
Consequently, the value difference will be

[v(SU{i}) —v(S)] <

where € is a small real number close to zero, since
both v(S' U {i}) and v(S) are essentially random
guesses. To exploit this, we limit our sampling to
scenarios where layers are removed up to a cer-
tain level. Formally, we apply the constraint that
|S| > Niim, where Ny, is a hyperparameter that
defines the maximal layer perturbation level. This
approach results in an overestimation of the layer
Shapley values, as many near-zero contributions
are excluded from the sampling process. However,
the relative ordering of the Shapley values remains
accurate.

Neighborhood sampling:  Besides early trun-
cation, we leverage the sequential structure of the
model to perform efficient sampling. Each layer
primarily influences its immediate subsequent lay-
ers and is influenced by its immediate preceding
layers. Consequently, interactions between distant
layers are weaker than those between closely posi-
tioned layers. To capture meaningful interactions
with fewer samples, we implement neighborhood
sampling that only samples subsequent layers for
Shapley value estimation. Formally, a set S of
n elements under neighborhood sampling has the
form

S={a,a+1,...,a+ (n—1)},
where a is an offset value.

Complexity analysis: By combining both
early truncation and neighborhood sampling, we
reduce the number of samples from 2V to
(N+Nmi”)2(N7Nmi") , where N is the total number
of layers and N,,;,, is the minimal remaining lay-

ers defined by us. In our experiments, we remove
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maximally 4 layers from the model during the layer
Shapley value estimation.

5 Mechanistic Interpretation via
Layer-wise Ablation

One limitation of the Shapley value is that, on its
own, it does not provide a concrete understanding
of how the model’s performance degrades when
layers are removed. Aside from using Shapley
values to quantify layer contribution considering
layer-wise interactions, it is also important to un-
derstand the functional significance of individual
layers. Specifically, we perform layer ablation for
this endeavor. Layer ablation involves selectively
removing a target layer from the model and ob-
serving the resulting impact on performance across
various tasks. This approach helps us isolate and
evaluate the unique contribution of that specific
layer, independent of others.

In conventional LLM architectures, skip con-
nections are employed in each layer, as discussed
in Section 3.1 and Equation 1. Skip connections,
which bypass one or more layers, allow informa-
tion to be transferred directly from one layer to
another non-adjacent layer. Hence, it is possible to
remove a layer without entirely disrupting the flow
of information through the network. Without skip
connections, the removal of a layer would likely
result in a complete breakdown of the model, as
the information flow would be interrupted. There-
fore, we perform layer ablation by removing one
layer while keeping the skip connection around
the removed layer to maintain the information flow
within the model. For a module with skip connec-
tion in the form of:

Jmodule with skip (.%' ) = fmodule (I’ ) + x.

Removing this module results in an ablated struc-
ture in the form of:

fablated(x) =x.

Here, the effect of the module is completely re-
moved, but the information processed by previous
layers can still pass to subsequent layers. An il-
lustration of the single-layer ablation is shown in
Figure 1.

Layer ablation complements Shapley values by
providing a mechanistic perspective on the contri-
bution of each layer. While Shapley values offer
a mathematical framework to understand the im-
portance of each layer in the context of all possible

Decoder-Only Language Models

— — —
Self-
FFN }_U_{Aﬁemlon}_u_{ FFN }_L .......

\Embedding O Transformer Block i Transformer Block i +1
AN

Figure 1: Illustration of single-layer ablation. A layer
is ablated by removing the block while keeping the skip
connection across the layer. We choose to ablate layers
we used for layer Shapley calculation, that are, attention
layers and FFN layers. For Mixtral 8x7B, we ablate
attention layers and MoE layers. More details can be
found in Section 5.

layer combinations, ablation experiments give us
a direct way to observe the functional impact of a
layer’s removal. By combining both methods, we
gain a comprehensive understanding of layer impor-
tance—Shapley values quantify the contribution in
terms of interactions, while ablation highlights the
practical significance of each layer in maintaining
model performance.

6 Experiments

6.1 Experimental Setup

We evaluate the models on various datasets to en-
sure a comprehensive analysis of a wide spectrum
of language understanding and reasoning tasks.
In our study, we utilize three recent large lan-
guage models to assess the impact of individual
layers: LLaMA3-8B, LLaMA3-70B, and Mixtral-
8x7B (Touvron et al., 2023b,a; Jiang et al., 2024).
LLaMA3-8B contains 8 billion parameters, mak-
ing it a mid-sized model suitable for a range of NLP
tasks. LLaMA3-70B have 70 billion parameters
and are significantly larger than LLaMA3-8B. This
model is expected to capture more complex lan-
guage patterns and dependencies. Mixtral-8x7B
replaces FEN layers with Mixture-of-Expert (MoE)
layers, each containing 8 experts. The ensemble
approach aims to combine the strengths of multiple
models to achieve superior performance.

We perform our experiment on 6 datasets rang-
ing from simple to hard tasks. BoolQ (Clark et al.,
2019a) is a reading comprehension dataset con-
sisting of questions that can be answered with
"yes" or "no" based on a given passage. ARC-
Easy and ARC-Challenge (Clark et al., 2018)
are part of the AI2 Reasoning Challenge (ARC),
which provides multiple-choice questions derived
from science exams. PIQA (Bisk et al., 2020) as-
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Figure 2: Proportion of estimated layer Shapley values for each layer. We calculate the proportion of Shapley
values for each layer relative to all layers in the model. The layers in the pie chart are arranged in ascending order
according to their proximity to the model input, moving in an anti-clockwise direction starting from the top of the
chart. The top 4 most contributing layers are captioned. Across all three models (rows) and six tasks (columns),
we observe a disproportionately high contribution from a few layers, typically early layers. Additionally, these
important layers account for a significant portion of the overall layer importance. For example, in Llama3 70B, the
top 4 layers contribute 47.6% to model performance, as indicated by Shapley values. More discussion in Section 6.2.
Attn refers to attention layers, FFN refers to fully connected layers, and MoE refers to Mixture-of-Expert layers.

Top 3 Layers | Other Layers
Llama3 8B 29.1% 70.9%
Llama3 70B 37.0% 63.0%
Mixtral 8x7B 37.5% 62.5%

Table 1: Proportion of Shapley values summarized in
two groups. The top 3 layers with the highest Shapley
values account for 30% of the total Shapley value. In
larger models such as Llama3 70B and Mixtral 8x7B,
the proportion of Shapley values attributed to the top
three layers is even higher compared to smaller models.

sesses the model’s understanding of physical com-
monsense by presenting multiple-choice questions
about everyday situations and interactions. Wino-
grande (Sakaguchi et al., 2019) includes sentence
pairs with a pronoun that needs to be correctly re-
solved based on the Winograd Schema Challenge.
OpenBookQA (Mihaylov et al., 2018) comprises
questions that require knowledge from elementary
science topics, testing the model’s ability to com-
bine factual knowledge with reasoning skills.

6.2 Shapley Value Result

This section shows results of estimated Shapley
values. Figure 2 shows the proportion of estimated
Shapley values (bar plot in Figure 6 in Appendix).

Cornerstone Layers
Attn 0, FFN 0, FFN 1
Attn 0, FFN 0, FFN 3
Attn 0, MoE 0, MoE 1

Llama3 8B
Llama3 70B
Mixtral 8x7B

Table 2: Identified cornerstone layers. These layers ex-
hibit disproportionately high Shapley values compared
to other layers across various tasks.

Are there critical layers? According to Figure 2
and Table 1, we observe a clear phenomenon that
several layers contribute significantly to the model
performance across all tasks. By grouping the top
three layers with the highest Shapley values, we
observe that they can take 29% to 37% of the total
contribution on average across various tasks. In
addition, models with Mixture-of-Expert layers,
such as Mixtral-8x7B, and models with FFN lay-
ers, such as Llama models, share similar findings.
Overall, we observe that several early layers pos-
sess a significantly higher contribution than other
layers. On larger models such as Llama3-70B and
Mixtral-8x7B models, the contribution distribution
between layers is more unbalanced than a smaller
Llama3-8B. As the layers with the most signifi-
cant impact on model performance are typically
the initial layers, we term them cornerstone layers.
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Figure 3: Layer ablation result of Llama3 8B. X-axis shows the layer ID of the removed layer. Y-axis shows
the accuracy after this layer is removed. Attention layers are colored in red, while FFN layers are colored in blue.
Removing one cornerstone layer can cause the model performance to immediately drop to random guesses. More

discussion in Section 6.3.

Where are critical layers located? We observe
that all models have cornerstone layers positioned
in similar places. For Llama3-8B, we identify cor-
nerstone layers to be the attention layer 0, the FFN
layer 0, and the FFN layer 1. For Llama3-70B, cor-
nerstone layers are the attention layer 0, the FFN
layer 0, and the FFN layer 3. For Llama3-70B, cor-
nerstone layers are the attention layer 0, the MoE
layer 0, and the MoE layer 3. Table 2 shows a sum-
mary of cornerstone layers. The similar location
of cornerstone layers suggests a similar processing
flow among models.

Are cornerstone layers more important in larger
models? In our analysis in Table 1, we have an
additional observation that in larger models, the
concentration of Shapley importance becomes even
more pronounced, with the top three layers ac-
counting for an even greater proportion of the total
Shapley values compared to smaller models. This
suggests that as models scale in size, the distribu-
tion of importance among layers becomes more
uneven, with a few layers playing a disproportion-
ately larger role in driving the model’s overall effec-
tiveness. Understanding this distribution is crucial
for optimizing model architecture and improving
interpretability, as it underscores the pivotal role of
these key layers in the functioning of the model.

6.3 Layer Ablation Result

To complement insights acquired from layer Shap-
ley studies and observe the practical effects of al-
tering the model’s architecture, we conduct layer
ablation experiments. This dual approach allows us

to cross-validate our findings and formulate more
robust hypotheses about the specific functions of
cornerstone and non-cornerstone layers. Figure 3,
Figure 4, and Figure 5 show the model performance
after ablating one layer for Llama3 8B, Llama3
70B, and Mixtral 8x7B, respectively.

How important are cornerstone layers? Ac-
cording to Figure 3, Figure 4, and Figure 5, remov-
ing one layer with a high Shapley value causes the
performance of the model to collapse and produce
random guesses, while removing one from other
layers only results in minor performance degra-
dation, indicating their lesser importance. These
cornerstone layers likely carry unique functionali-
ties within the model, with their outputs serving as
critical foundations for all subsequent layers.

How unimportant are non-cornerstone layers?
Based on our results in Table 4, we find that non-
cornerstone layers are less critical to the model’s
performance. This is evident from the small Shap-
ley values of non-cornerstone layers as well as the
minimal performance drop observed when a non-
cornerstone layer is removed, suggesting that these
layers play a less significant role compared to the
cornerstone layers in the overall functioning of the
model. Nevertheless, these layers are not entirely
unimportant. According to our Shapley value and
layer ablation experiments, they have small but
non-zero contributions to the model.

Are layers in MoE architecture better learned?
Intriguingly, the Mixtral-8x7B model is less reliant
on cornerstone layers. According to Figure 5, ab-
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Figure 4: Layer ablation result of Llama3 70B. X-axis shows the layer ID of the removed layer. Y-axis shows
the accuracy after this layer is removed. Attention layers are colored in red, while FFN layers are colored in blue.
Similar to Llama3 8B, removing a single cornerstone layer causes the model’s performance to degrade to the level

of random guessing. More discussion in Section 6.3.

C Layers | NC Layers
Llama3 8B 29.3% 1.6%
Llama3 70B 36.7% 0.9%
Mixtral 8x7B 23.5% 1.3%

Table 3: Performance drop after single-layer abla-
tion averaged over tasks and layers. Removing one
cornerstone layer usually results in model collapse to
random guessing, while removing one non-cornerstone
layer causes minimal performance degradation.

lating these layers results in a smaller performance
drop compared to Llama models. In five out of six
tasks, Mixtral-8x7B maintains certain performance
instead of dropping to random guessing when a
cornerstone layer is removed. One likely explana-
tion is that MoE layers provide more regularization
through sparse activation of experts. This mecha-
nism likely helps the model avoid over-relying on
any single MoE layer.

6.4 Interpretation of Findings

In this section, we integrate the findings from Sec-
tion 6.2 and Section 6.3 to hypothesize about the
roles of cornerstone and non-cornerstone layers in
the model. We observe that cornerstone layers are
typically located at the beginning of an LLLM and
that removing these layers often causes the perfor-
mance of the model to collapse to random guessing.
In contrast, removing other layers results in only
marginal performance changes. Based on these
observations, we propose the following hypothesis:

Hypothesis 1. Cornerstone layers are primarily

Lla. 8B | Lla. 70B | Mix. 8x7B
BoolQ 2.8% 1.1% 2.1%
PiQA 1.5% 0.8% 1.0%
WG 0.4% 0.6% 1.4%
ARC-E | 1.6% 1.1% 1.2%
ARC-C | 2.6% 1.6% 2.1%
OBQA | 0.9% 0.6% 0.4%

Table 4: Performance drop after single-layer ablation
averaged over non-cornerstone layers across tasks
and models. Removing one non-cornerstone layer has
a neglectable effect on model performance on all tasks
and models we used. WG: WinoGrande, OBQA: Open-
bookQA, Lla.: Llama3, Mix.: Mixtral.

responsible for processing the initial input embed-
dings, establishing the foundational outputs upon
which every subsequent layer operates.

For non-cornerstone layers, our results indicate
that while their individual contributions are small,
they are not insignificant. Their collective contribu-
tion can be substantial. Therefore, we propose the
following hypothesis for non-cornerstone layers:

Hypothesis 2. Non-cornerstone layers collaborate
to process information, with their functionalities
potentially overlapping.

While our hypotheses are grounded in the find-
ings from our analyses, we do not claim them to
be definitive conclusions. Instead, we present these
hypotheses to highlight the intriguing phenomena
observed in our study, emphasizing the need for
further investigation and validation. We encourage
the research community to rigorously test these
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Figure 5: Layer ablation result of Mixtral 8x7B. X-axis shows the layer ID of the removed layer. Y-axis shows
the accuracy after this layer is removed. Attention layers are colored in red, while MoE layers are colored in
blue. Removing a single layer generally causes a decrease in model performance. However, even after ablating
cornerstone layers, the performance of Mixtral 8x7B remains above random guessing, suggesting a more balanced
contribution among the layers for LLMs with MoE layers instead of FFN layers. More discussion in Section 6.3.

ideas, as doing so will be crucial in advancing our
understanding of layer-specific roles in LLMs.

7 Conclusion and Future Work

In this study, we investigated the significance and
contribution of individual layers in LLMs using
Shapley values and layer ablation. Our results
based on Shapley values revealed that certain lay-
ers, typically early in the model, exhibit a dominant
contribution to the model performance, which we
term as cornerstone layers. Layer ablation experi-
ments demonstrated that removing a single corner-
stone layer can cause the model to collapse and per-
form random guessing, highlighting their critical
role. Conversely, removing other non-cornerstone
layers resulted in marginal performance changes,
indicating redundancy in the model architecture.

Future works can continue the study on layer
importance in groups of layers instead of one sin-
gle layer. Investigating the specific reasons behind
the importance of cornerstone layers could pro-
vide deeper insights into LLM functionality and
inspire newer LLM structures that promote model
transparency, remove redundant parts, and improve
inference efficiency.

8 Limitation

Our sampling method for estimating Shapley val-
ues may introduce bias, potentially affecting the
accuracy of our layer importance estimations. In
addition, our analysis focuses on the general contri-
bution of individual layers without examining how

exactly different layers interact with each other and
incorporate information from other layers. Future
work on layer interaction can also help validate
our Hypothesis 2. Furthermore, a deeper explo-
ration into the unique functions of the early layers
remains an open avenue for future research. Under-
standing why these layers play a critical role could
provide valuable insights into optimizing model
performance. Future work on layer functionalities
can help validate our Hypothesis 1.

9 [Ethical Consideration

Transparency and explainability are key in deploy-
ing LLMs, especially in sensitive applications like
healthcare or legal systems. Understanding the role
of cornerstone layers can enhance explainability,
but it is essential to communicate these findings
clearly to non-expert stakeholders to foster trust
and accountability. In addition, the identification
of cornerstone layers and their critical roles may
lead to more targeted and efficient model optimiza-
tion. However, it is crucial to ensure that these
optimizations do not inadvertently introduce biases
or reinforce existing ones. Lastly, the redundancy
identified in other layers suggests the potential for
model simplification, which could reduce compu-
tational costs and environmental impact. However,
such reductions must balance performance and fair-
ness, ensuring that simplified models do not com-
promise on ethical standards.

476



References

Emily M. Bender, Timnit Gebru, Angelina McMillan-
Major, and Shmargaret Shmitchell. 2021. On the
dangers of stochastic parrots: Can language mod-
els be too big? In Proceedings of the 2021 ACM
Conference on Fairness, Accountability, and Trans-
parency, FAccT *21, page 610-623, New York, NY,
USA. Association for Computing Machinery.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng
Gao, and Yejin Choi. 2020. Piga: Reasoning about
physical commonsense in natural language. In Thirty-
Fourth AAAI Conference on Artificial Intelligence.

Tolga Bolukbasi, Kai-Wei Chang, James Y Zou,
Venkatesh Saligrama, and Adam T Kalai. 2016. Man
is to computer programmer as woman is to home-
maker? debiasing word embeddings. Advances in
neural information processing systems, 29.

Trenton Bricken, Adly Templeton, Joshua Batson, Brian
Chen, Adam Jermyn, Tom Conerly, Nicholas L.
Turner, Cem Anil, Carson Denison, Amanda
Askell, Robert Lasenby, Yifan Wu, Shauna Kravec,
Nicholas Schiefer, Tim Maxwell, Nicholas Joseph,
Alex Tamkin, Karina Nguyen, Brayden McLean,
Josiah E. Burke, Tristan Hume, Shan Carter,
Tom Henighan, and Chris Olah. 2023. Towards
monosemanticity: Decomposing language models
with dictionary learning. Https://transformer-
circuits.pub/2023/monosemantic-
features/index.html.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Ziqgiang Cao, Furu Wei, Wenjie Li, and Sujian Li. 2018.
Faithful to the original: Fact aware neural abstractive
summarization. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 32.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019a. BoolQ: Exploring the surprising
difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 2924-2936, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D Manning. 2019b. What does bert look
at? an analysis of bert’s attention. arXiv preprint
arXiv:1906.04341.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question
answering? try arc, the ai2 reasoning challenge.
arXiv:1803.05457v1.

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane
Hung, Eric Frank, Piero Molino, Jason Yosinski, and
Rosanne Liu. 2019. Plug and play language models:
A simple approach to controlled text generation. In
International Conference on Learning Representa-
tions.

Nikhil Garg, Londa Schiebinger, Dan Jurafsky, and
James Zou. 2018. Word embeddings quantify 100
years of gender and ethnic stereotypes. Proceedings
of the National Academy of Sciences, 115(16):E3635—
E3644.

Amirata Ghorbani and James Y Zou. 2020. Neuron
shapley: Discovering the responsible neurons. Ad-
vances in neural information processing systems,

33:5922-5932.

Andrey Gromov, Kushal Tirumala, Hassan Shapourian,
Paolo Glorioso, and Daniel A Roberts. 2024. The un-
reasonable ineffectiveness of the deeper layers. arXiv
preprint arXiv:2403.17887.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2020. Measuring massive multitask language under-
standing. arXiv preprint arXiv:2009.03300.

Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu,
Xuezhi Wang, Hongkun Yu, and Jiawei Han. 2023.
Large language models can self-improve. In The
2023 Conference on Empirical Methods in Natural
Language Processing.

Albert Q Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas,
Emma Bou Hanna, Florian Bressand, et al. 2024.
Mixtral of experts. arXiv preprint arXiv:2401.04088.

Masahiro Kaneko and Danushka Bollegala. 2021. Debi-
asing pre-trained contextualised embeddings. arXiv
preprint arXiv:2101.09523.

Scott M Lundberg and Su-In Lee. 2017. A unified ap-
proach to interpreting model predictions. Advances
in neural information processing systems, 30.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022. Locating and editing factual asso-
ciations in GPT. Advances in Neural Information
Processing Systems, 36. ArXiv:2202.05262.

Paul Michel, Omer Levy, and Graham Neubig. 2019.
Are sixteen heads really better than one? Advances
in neural information processing systems, 32.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question answer-
ing. In EMNLP.

Koyena Pal, Jiuding Sun, Andrew Yuan, Byron C Wal-
lace, and David Bau. 2023. Future lens: Anticipating
subsequent tokens from a single hidden state. In Pro-
ceedings of the 27th Conference on Computational

477


https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.18653/v1/N19-1300
https://doi.org/10.18653/v1/N19-1300

Natural Language Learning (CoNLL), pages 548—
560.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2019. Winogrande: An adver-
sarial winograd schema challenge at scale. Preprint,
arXiv:1907.10641.

Lloyd S. Shapley. 1952. A value for n-person games.
RAND Corporation. Available at: https://www.
rand.org/pubs/papers/P295.html.

Kyuhong Shim, Jungwook Choi, and Wonyong Sung.
2022. Understanding the role of self attention for
efficient speech recognition. In International Confer-
ence on Learning Representations.

Mingjie Sun, Xinlei Chen, J Zico Kolter, and Zhuang
Liu. 2024. Massive activations in large language
models. arXiv preprint arXiv:2402.17762.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019. Bert
rediscovers the classical nlp pipeline. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4593-4601.

Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang, Adam
Poliak, R Thomas McCoy, Najoung Kim, Benjamin
Van Durme, Samuel R Bowman, Dipanjan Das, et al.
2018. What do you learn from context? probing
for sentence structure in contextualized word repre-
sentations. In International Conference on Learning
Representations.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023a. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

BigScience Workshop, Teven Le Scao, Angela Fan,
Christopher Akiki, Ellie Pavlick, Suzana Ili¢, Daniel
Hesslow, Roman Castagné, Alexandra Sasha Luc-
cioni, Frangois Yvon, et al. 2022. Bloom: A 176b-
parameter open-access multilingual language model.
arXiv preprint arXiv:2211.05100.

A Estimated Shapley Value

This section provides an additional plot to show the
actual value of estimated Shapley values. Figure 6
illustrates the bar plot of Shapley values across dif-
ferent layers in the model. The plot reveals the
precise contributions of each layer, allowing inter-
ested readers for further reference.
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Figure 6: Estimated Shapley value result. X-axis shows the layer ID of the layer. Y-axis shows the estimated
Shapley value.
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