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Abstract

Transformer-based language models have
shown an excellent ability to effectively cap-
ture and utilize contextual information. Al-
though various analysis techniques have been
used to quantify and trace the contribution of
single contextual cues to a target task such as
subject-verb agreement or coreference resolu-
tion, scenarios in which multiple relevant cues
are available in the context remain underex-
plored. In this paper, we investigate how lan-
guage models handle gender agreement when
multiple gender cue words are present, each
capable of independently disambiguating a tar-
get gender pronoun. We analyze two widely
used Transformer-based models: BERT, an
encoder-based, and GPT-2, a decoder-based
model. Our analysis employs two comple-
mentary approaches: context mixing analysis,
which tracks information flow within the model,
and a variant of activation patching, which mea-
sures the impact of cues on the model’s predic-
tion. We find that BERT tends to prioritize the
first cue in the context to form both the target
word representations and the model’s predic-
tion, while GPT-2 relies more on the final cue.
Our findings reveal striking differences in how
encoder-based and decoder-based models pri-
oritize and use contextual information for their
predictions.

1 Introduction

Pre-training language models on large data using
the Transformer (Vaswani et al., 2017) architecture
has led to remarkable advancements in natural lan-
guage processing. A key advantage of this neural
network topology is its ability to retrieve informa-
tion from any part of the input, thus, constructing
rich, contextualized representations. This capabil-
ity allows the model to effectively deal with long-
range dependencies (Tay et al., 2020) and enables
in-context learning phenomena, where the model
can be adapted to solve downstream tasks using ad-
ditional input context (Brown et al., 2020; Schick

and Schiitze, 2020; Min et al., 2022; Hendel et al.,
2023).

Grammatical dependencies, such as subject-verb
agreement (Linzen et al., 2016; Warstadt et al.,
2020) and coreference resolution (Weischedel et al.,
2011), have been extensively used as well-defined
tasks to study the contextual abilities of pre-trained
language models (Marvin and Linzen, 2018; Ten-
ney et al., 2019b,a; Niu et al., 2022; Kulmizev et al.,
2020; Lampinen, 2022). These tasks often require
the model to capture and exploit the syntactic re-
lationship between word pairs in the sentence; for
example in the case of coreference resolution, the
model needs to disambiguate a pronoun with re-
spect to the subject as its single reference point in
the context. Despite a rich literature on this, the sce-
nario where multiple grammatical cues are present
within the context remains underexplored.

In this paper, we use coreference resolution as
our case study and analyze model behavior in cases
where the context contains multiple sources of
information that are relevant for the target task
(which we refer to as ‘cue’ words), aiming to iden-
tify which contextual cues the model prioritizes
when disambiguating target pronouns. Consider
the following example, in which the last pronoun
as a target word that the model is asked to gen-
erate is marked in bold and all possible cues to
disambiguate it (‘she’ versus ‘he’) are underlined:

Mary loves playing the piano. She practices every day, and
her music teacher says she is very talented.

Specifically, we investigate how the model benefits
from various cue words when generating the last
target pronoun in the output. To this end, we make
use of the Biography corpus as it naturally con-
tains numerous referential expressions that refer
to the same individual. using two complementary
analytical approaches, we analyze BERT (Devlin
et al., 2019) and GPT-2 (Radford et al., 2019), two
models with different architectures and training
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objectives, across contexts with various numbers
of cues, revealing a notable distinction between
the behavior of encoder-based and decoder-based
language models.

Firstly, we use Value Zeroing (Mohebbi et al.,
2023b) as a context-mixing method to track the
flow of information from cue words to the repre-
sentation of the target word at each layer of the
model. We find that decoder-based models tend to
incorporate the final cue words in the context to
form the contextualized representation of the target
word. In contrast, encoder-based models rely on
the first cue words.

Secondly, we employ a variant of activation
patching (Vig et al., 2020a; Geiger et al., 2021b;
Meng et al., 2022), a recently popular mechanistic
interpretability method (Ferrando et al., 2024; Mo-
hebbi et al., 2024), to measure the impact of each
cue word on the model’s confidence in generating
the target word. While context-mixing methods
quantify information mixing in the representation
space, the second approach focuses on the language
model head to determine whether the encoded in-
formation is actually used for prediction.

Our empirical results show that the predictions of
the two analysis methods are consistent with each
other, implying that the cues that contribute more to
the representation of the target word also play a cru-
cial role in the model’s final decision. Specifically,
our main finding indicates that, in contexts with
multiple grammatical cues, encoder-based models
tend to prioritize the earlier cues, while decoder-
based models rely on the later cue words when
disambiguating the target pronoun. !

2 Related Work

Many analytical studies have been conducted to ex-
amine the grammatical capabilities of pre-trained
language models, often by probing their layerwise
representations for tasks such as part-of-speech tag-
ging (Giulianelli et al., 2018), dependency parsing
(Hewitt and Manning, 2019; Chrupata and Alishahi,
2019), subject-verb agreement (Giulianelli et al.,
2018), and coreference resolution (Tenney et al.,
2019a; Fayyaz et al., 2021). These tasks have also
been leveraged in another line of research, particu-
larly as a case study for evaluating attribution meth-
ods (Abnar and Zuidema, 2020; Mohebbi et al.,
2023b; Ferrando et al., 2022), as they provide a

'All code for our data creation and experiments is publicly
available at https://github.com/hamid-amir/CueWords

clear ground truth for assessing the plausibility of
attribution scores. For example, when predicting
a pronoun, an appropriate attribution method is
expected to highlight the subject of the sentence.
While these studies focus only on cases with a sin-
gle plausible cue in the context (e.g., subject) to
disambiguate the target word (e.g., pronoun), our
work investigates model behavior when multiple
sources of information (cue words) exist in the con-
text.

For this purpose, we leverage two state-of-the-
art analysis methods from two active lines of in-
terpretability research: one that aims at measuring
token-to-token interactions in the model known as
context mixing, while the other focuses on reverse
engineering the model’s decision and decompose
it to understandable components, known as mecha-
nistic interpretability.

Context mixing. This line of work focuses on
tracking information flow in the model, providing
a map score that quantifies token-to-token inter-
actions at each layer. This can be achieved us-
ing a group of analytical approaches known as
‘context-mixing’ methods. Although self-attention
weights are often seen as a straightforward mea-
sure of context mixing in Transformers, numerous
studies have shown that relying solely on raw atten-
tion can be misleading (Bibal et al., 2022; Hassid
et al., 2022). They often focus on meaningless
and frequently occurring tokens in the input, such
as punctuation marks and special separator tokens
in models trained on text (Clark et al., 2019), or
background pixels in vision Transformers (Bon-
darenko et al., 2023).2 Hence, several methods
have been developed to broaden the scope of anal-
ysis and incorporate other model components into
the computation of the context-mixing (Abnar and
Zuidema, 2020; Kobayashi et al., 2020, 2021; Fer-
rando et al., 2022; Modarressi et al., 2022; Mohebbi
et al., 2023b).

Mechanistic interpretability. This body of re-
search aims to make use of specific characteristics
of Transformer architecture and combine them with
causal methods to identify specific subnetworks
within the model, known as circuits, that are respon-
sible for particular tasks (Vig et al., 2020b; Geiger
et al., 2021a; Wang et al., 2023; Goldowsky-Dill
et al., 2023; Conmy et al., 2023; Heimersheim and
Nanda, 2024). In our work, we leverage the concept

2See Kobayashi et al. (2020)’s study for an explanation.

316


https://github.com/hamid-amir/CueWords

of activation patching? (Vig et al., 2020a; Geiger
et al., 2021b; Meng et al., 2022), a commonly used
method from this line of work, which measures the
drop in a model’s confidence using a contrastive
approach. The central idea is to overwrite certain
activations in the model during a forward pass with
cached activations obtained from another run on
the same example with minimal changes (known
as a corrupted run) and observe the impact on the
model’s output. While this method has often been
used to identify circuits within the model, we adopt
it here to measure token importance for the model’s
predictions.

3 Experimental Setup

In this section, we describe the data and models
that we use to set up our experiments.

3.1 Data

To measure how the model prioritizes possible cue
words within a given context, we need a corpus that
includes a diverse range of cue words, each capable
of independently disambiguating the target words.
We find Biography datasets an ideal case study for
this purpose since they naturally describe a single
individual, frequently referring to the same subject
using referential expressions like pronouns.

We use the test set from the WikiBio (Lebret
et al., 2016) dataset*, which contains biographies
extracted from Wikipedia with varying lengths. We
clean the dataset by removing HTML tags and au-
tomatically annotate the cue words in the context
by defining a comprehensive list of gender-specific
nouns (e.g., ‘actor’/‘actress’) and gendered pro-
nouns (e.g., ‘he’/‘she’) that can serve as cue words
for gender identification. The complete list of po-
tential cue words is presented in Table 1.°> We
categorize our data based on the number of cue
words within the context of each example (ranging
from 2 to 6), balance the data through undersam-
pling, and then split it into training and test sets.
The training set is used solely for fine-tuning the
models, while the test set is used for conducting all
our experiments. The statistics for the final dataset
are provided in Table 3.

3Other terms have been also used in the literature, includ-
ing Interchange Interventions, Causal Mediation Analysis, and
Causal Tracing.

4https ://huggingface.co/datasets/michaelauli/
wiki_bio

5The exclusion of other groups is due to the binary labels
in the dataset, rather than a choice by the authors.

Gender Words

he, his, him, himself
master, mister, mr, sir, sire, gentleman, lord

Male . g .
man, actor, prince, waiter, king
father, dad, husband, brother, nephew, boy, uncle, son, grandfather
she, her, hers, herself
miss, ms, mrs, mistress, madam, ma’am, dame
Female

woman, actress, princess, waitress, queen
mother, mom, wife, sister, niece, girl, aunt, daughter, grandmother

Table 1: List of potential cues for gender identification.

3.2 Target models

In our experiments, we investigate both encoder-
based and decoder-based Transformer (Vaswani
et al., 2017) language models. Encoder-based mod-
els are trained using masked language modeling,
where a certain number of tokens are masked in
the input, and the model learns to predict them us-
ing bidirectional access to the context. In contrast,
decoder-based models are trained autoregressively
to predict the next word in the context by condition-
ing only on the preceding words. This distinction
allows us to study how different training objectives
influence the way models utilize contextual cues.

We opt for BERT (Devlin et al., 2019) and GPT-2
(Radford et al., 2019) as widely used representative
models of each category and analyze them in both
pre-trained and fine-tuned setups. For fine-tuning,
we employ prompt-based fine-tuning (Schick and
Schiitze, 2021; Karimi Mahabadi et al., 2022) by
calculating the Cross-Entropy loss specifically over
the output logits corresponding to a limited set of
vocabulary words, particularly male and female
pronouns. The accuracy of each model before and
after fine-tuning is presented in Table 4.

3.3 Model input setup

Consider the following example from the dataset,
which includes four cue words marked with under-
lines:

Ron Masak is an American actor. He began as a stage
performer, and much of his work is in theater.

We always ask the model to predict the last pronoun
in the context (here, *his’) as the target word. So,
for an encoder-based model, we replace the target
word with a special mask token®:

Ron Masak is an American actor. He began as a stage
performer, and much of [MASK] work is in theater.

®The symbol for the masked token depends on the tok-
enizer used by the model; for BERT, it is [MASK].
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Figure 1: Value Zeroing scores for the pre-trained (top row) and fine-tuned (bottom row) BERT across different

numbers of cue words.
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Figure 2: Value Zeroing scores for the pre-trained (top row) and fine-tuned (bottom row) GPT-2 across different

numbers of cue words.

For a decoder-based model, we keep the sentence
up to the last word before the target word and ask
the model for the next token prediction:

Ron Masak is an American actor. He began as a stage
performer, and much of

We select those instances where the target word is
a pronoun and the model correctly identifies the tar-
get word, ensuring accurate gender identification.’

In the next sections, we investigate the model
internals to understand which contextual cues the

"We consider target words to be correct in both their capi-
talized and lowercase forms.

model relies on to form representations of the target
words and make its final predictions.

4 Which cue does the model rely on
to form a target representation?

Transformers perform well at retrieving informa-
tion from any part of the context to build contex-
tualized representations. Our first step is to trace
the flow of information within the model to un-
derstand how different contextual cues shape the
representation of target words.
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Figure 3: Value Zeroing scores for constructing target token representation in a test example for fine-tuned models.

Cue words are highlighted in bold.

4.1 Setup

We use Value Zeroing (Mohebbi et al., 2023b), a
new technique that has shown promise in various
domains, including text and speech (Mohebbi et al.,
2023a).8 It iteratively zeroes out the value vector of
each token in the context and measures the cosine
distance between the modified and original repre-
sentation of the target word. This distance indicates
the degree each token influences the target word’s
representation—the greater the distance, the higher
the contribution.

Using this method, we extract the contribution
of each token including the cue word tokens to
the representation of the target word at each layer
of the model.® Scores are normalized to sum to
1 for each context. In encoder-based models, the
target position corresponds to the time step of the
masked position, while in decoder-based models, it
corresponds to the time step when the target token
is being generated.

4.2 Results

Figures 1 and 2 demonstrate the contribution of
cues to the representation of target words in BERT
and GPT-2 models, respectively, averaged across
all examples in the test set. The analysis covers
both their pre-trained (top row) and fine-tuned (bot-
tom row) setups across three scenarios when there
are 2, 4, and 6 cues in the context.'? Additionally,

8Results for other common methods can be found in Ap-
pendix A.3; while, Attention-Norm (Kobayashi et al., 2020)
yields results consistent with Value Zeroing, self-attention and
Attention Rollout (Abnar and Zuidema, 2020) show a random
pattern, confirming the inefficacy of raw attention weights.

°If a word is split into multiple tokens by the model’s
tokenizer, we take the maximum score among them.

'OResults for other numbers of cues can be found in the
Appendix A.3.

we report the average context mixing score of non-
cue tokens in the context (labeled as ‘Others’), as a
baseline, to highlight the significance of the cues’
contributions.

As shown in Figure 1, BERT significantly incor-
porates earlier cue words into the representation
of the target word, starting from the middle layers.
Looking at different scenarios when the number
of cues in the context increases, the pre-trained
model pays more attention to the first and second
cue, while the fine-tuned model pays dominantly
to the first cue, compared to other cue words. This
suggests that the model tends to keep the first cue
in the context as the main source of information
for gender identification during the information-
mixing process.

We also replicated our experiment by replacing
the first two cue words (the first and last names)
with their corresponding gendered pronouns (‘he’
or ‘she’). We make this modification to ensure the
model’s reliance on the first cue word is consistent,
regardless of whether the cue is a name or pronoun.
The results display the same pattern, confirming
our hypothesis; thus, we relegate these findings to
Appendix A.4.

The pattern observed in decoder-based models,
however, is clearly different. As illustrated in Fig-
ure 2, GPT-2 significantly attends to the later cue
words in the context, starting from the earlier layers
and peaking in the layers closer to the final layer.
The later cues make more contributions, while the
first cue word has the least contribution, a behav-
ior entirely opposite to that of BERT. Fine-tuning
further intensifies this behavior by increasing the
importance of the last cue word. Additionally, sub-
stituting names with ‘he’ or ‘she’ in the experi-
ments does not alter this behavior, indicating that
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Figure 4: Value patching scores for the fine-tuned BERT (top row) and fine-tuned GPT-2 (bottom row) across

different numbers of cue words.

GPT-2 does not exhibit a preference for the first
cue word when constructing target token represen-
tations, even if it is a pronoun (see Appendix A.4).

In Figure 3, we present the Value Zeroing scores
for a test example from the dataset across all layers
of both fine-tuned models. The context contains
four cues, with BERT primarily using the first cue,
which is the first name, to construct the target token
representation in the final layers. In contrast, GPT-
2 relies on the last cue.!!

5 Which cue does the model rely on
to predict a target word?

In Section 4, we quantified context-mixing in the
model to assess each cue word’s contribution to the
contextualized representation of the target word.
This analysis reveals how information from these
cues is encoded into the target representation. How-
ever, it does not show whether this information is
actually used during inference when predicting the
target token. The prediction process (masked or
next token prediction) in the model is typically per-
formed by a trained language model head which
takes the target representation and generates log-
its for all tokens in the vocabulary. The goal here,
in our second step, is to involve the model’s pre-
diction in the analysis to investigate how different
contextual cues influence the model’s decision.

"n this particular example, GPT-2 also utilizes the first
cue, highlighting the variance in the results.

5.1 Setup

Activation patching can be applied to various com-
ponents of a model, including attention heads, MLP
outputs, and residual streams. In this study, how-
ever, the focus is on patching value vectors within a
Transformer layer. The reason for this choice is to
keep the pattern of attention (and thus the flow of
information) in the model intact, and only nullify
the value of a specific cue token representation in
a given context. Replacing a token from a clean
run with one from a corrupted run adds confound-
ing variables, as it introduces a different pattern of
attention that may not match those of the clean run.

We treat the original text in the dataset as clean
text and generate corrupted text by replacing all cue
words in the clean text with their gender-opposite
counterparts. For each cue word, a corresponding
counterpart exists, as shown in Table 1, except
for the first and second cue words, which are first
and last names, respectively. In these cases, we
substitute the names with a constant name with
the opposite gender, ensuring the same number
of subwords in all of our model’s tokenizers (see
Table 2). An example of clean and corrupted text
from our dataset is shown below:

clean:
Ron Masak is an American actor. He began as a
stage performer, and much of his work is in theater.

corrupted:
Amy Willinsky is an American actress. She began as a
stage performer, and much of her work is in theater.
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Figure 5: Value patching scores for a test example for fine-tuned models. Cue words are highlighted in bold.

Name type Gender #Tokens Constant name
1 Bob
. Male 2 John
First name
Female ! Amy
2 Noora
Last name - ! Walker
2 Willinsky

Table 2: A set of random constant names based on
gender and the number of tokens into which the word is
split.

We generate corrupted texts for each example
in the test dataset, input them into the model, and
cache the resulting value vectors for each token as
“corrupted value vectors.” Subsequently, we input
the clean text into the model and record the output
probability for the target token (p;). We then input
the clean text again, but this time, we replace the
value vector of a specific token at the time step j at
a particular layer with its corresponding corrupted
value vector and measure the resulting output prob-
ability for the target token (p,”). This process is
repeated for all tokens across all layers to measure
the value patching score: p; — p,”. Intuitively, if
a cue token is important for the model’s predic-
tion, replacing its value vector with a corrupted one
(which implies an opposite gender) would lead to
a drop in the model’s confidence in identifying the
true gender.

5.2 Results

Figure 4 shows the layer-wise value patching scores
of the cue words for fined-tuned BERT and GPT-2
across three scenarios when there are 2, 4, and 6
cues in the context.'> The scores are averaged over

12Results for pre-trained models and also other number of
cues can be found in Appendix A.5.

all examples in the test set.

BERT exhibits a significant loss of confidence in
generating the correct target word when the value
vector of the first cue word is replaced with that
from a corrupted run, compared to the other cue
words.

In contrast, GPT-2 exhibits an opposite pattern,
with later cues in the context playing a more influ-
ential role in the model’s decision-making. There
is one exception for GPT-2: when only two cue
words are present in the context, patching the first
cue word affects the model’s predictions more than
patching the second. This may be reasonable for
a decoder-based model that sees only prior words,
as the last name of a person is not an indicator of
gender unless the model has memorized it during
pre-training.

In Figure 5, we present the value patching scores
for a test example from the dataset across all lay-
ers of both models. There are four cues present in
the context, all of which change the model’s con-
fidence when their value vectors are patched. Yet,
we can see the second sub-word of the first cue is
particularly significant for BERT, while the final
cue word is the major player for GPT-2 in making
their respective decisions.

6 Conclusion

In this paper, we examined how language models
handle gender agreement when multiple valid gen-
der cue words are present in the context. We car-
ried out extensive experiments using two state-of-
the-art and complementary analytical approaches
on two prominent language models with different
model architectures: BERT and GPT-2. Our re-
sults suggest that encoder-based and decoder-based
models behave differently in prioritizing contextual
cues. More specifically, we observed that BERT
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mainly relies on the earlier cues in the context,
while GPT-2 mostly uses the later ones. These
findings can be explored and leveraged in future to
enhance model efficiency (by excluding redundant
cues from the computations), update the models’
beliefs (by intervening with the most crucial cues
they rely on), or improve the way we interact with
them through prompting (by considering the im-
pact different cues may have in various positions
within a given context).

7 Limitations

Our experiments and findings are drawn based on a
grammatical agreement task as a well-defined sce-
nario where multiple cues exist in a context. This
choice was made because it allows us to identify
and annotate cue words using NLP tools automat-
ically. Alternatively, other case studies, such as
Question Answering datasets, where multiple cues
in the context refer to the answer could be explored
in future work.

Furthermore, we ran our experiments on two
widely used language models but with base size
(due to our limited computational budget). Future
work can extend these experiments to include more
recent, large language models as well.
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A Appendix

#Cues Train Set Test Set
2 2480 1677
3 1439 934
4 921 629
5 638 438
6 505 287

Table 3: Distribution of training and test examples
across different numbers of cues before downsampling

Model Accuracy
Pre-trained Fine-tuned

BERT 86.6 97.8

GPT-2 66.7 77.9

Table 4: The accuracy of pre-trained and fine-tuned
models on our test set

A.1 Dataset Statistics

Table 3 presents the distribution of examples for
each cue word in our dataset. To ensure balanced
representation, we downsampled the examples for
cue words 2 through 5 so that each category has
an equal number of instances as those with 6 cues.
Consequently, our final training set includes 505
examples per cue word, yielding a total of 2525
train examples. Similarly, the test set comprises
287 examples per cue word, resulting in a total of
1435 test examples.

A.2 Models Accuracy

Table 4 shows the accuracy of pre-trained and fine-
tuned models on our test set. BERT outperforms
decoder-based model GPT-2 mainly because it has
access to the full context of each example, includ-
ing tokens that follow the target word. In contrast,
decoder-based models lack this advantage.

A.3 Context Mixing Scores

In Figures 6 to 19, we present the context mix-
ing scores derived from various methods used in
our study, including self-attention weights, Atten-
tion Rollout, Attention Norm, and Value Zeroing.
These results are displayed for all different number
of cue words and all the models we analyzed.
Please note that there is currently no imple-
mented version of Attention Norm for decoder-
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based models, so we were unable to provide Atten-
tion Norm results for GPT-2.

A.4 Context Mixing Scores: Ablation Study

In our primary experiments, we observed that
BERT predominantly utilizes the first name as the
main contributor to constructing mask token repre-
sentations. To determine whether this significance
is due to the first cue position or the specific use
of a first name, we conducted an ablation study. In
this study, we removed the last name and replaced
the first name with "he" or "she," depending on
the gender of the example. Figures 20 and 21 dis-
play the context mixing scores from this ablation
study for both the pre-trained and fine-tuned BERT
models. As these figures indicate, there is no sig-
nificant shift towards the last cues, leading us to
conclude that the importance lies in the cue being
first, rather than it being a first name. Additionally,
we conducted this experiment with GPT-2 as well,
and once again, the results showed no significant
difference compared to original experiments (see
Figures 22 and 23). This suggests that GPT-2 does
not depend on the first cue words (not necessarily
first names) for constructing target token represen-
tations.

A.5 Value Patching Scores

In Figures 24 to 27, we provide value patching
scores for all different number of cue words and
models we examined.
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of cue words
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Figure 10: Attention Rollout context mixing scores for the pre-trained BERT model across different numbers of
cue words
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Figure 11: Attention Rollout context mixing scores for the fine-tuned BERT model across different numbers of
cue words
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Figure 12: Attention Rollout context mixing scores for the pre-trained GPT-2 model across different numbers of

cue words
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Figure 13: Attention Rollout context mixing scores for the fine-tuned GPT-2 model across different numbers of

cue words
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Figure 14: Attention Norm context mixing scores for the pre-trained BERT model across different numbers of

cue words
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Figure 15: Attention Norm context mixing scores for the fine-tuned BERT model across different numbers of cue

words
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Figure 16: Value Zeroing context mixing scores for the pre-trained BERT model across different numbers of cue

words
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Figure 17: Value Zeroing context mixing scores for the fine-tuned BERT model across different numbers of cue

words
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Figure 18: Value Zeroing context mixing scores for the pre-trained GPT-2 model across different numbers of cue

words
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Figure 19: Value Zeroing context mixing scores for the fine-tuned GPT-2 model across different numbers of cue

words
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Figure 20: Value Zeroing context mixing scores for the pre-trained BERT model with varying cue word counts,
when removing the last names and replacing first names with '"he/she."" Note: Removing the last name results in
the loss of a cue word.
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Figure 21: Value Zeroing context mixing scores for the fine-tuned BERT model with varying cue word counts,
when removing the last names and replacing first names with ""he/she." Note: Removing the last name results in
the loss of a cue word.

333



#Cues=2-1 #Cues=3-1 #Cues=4-1
0.08| —=- Others -== Others
: B Cue l-he/she *~.

N
>

=== Others
; o m Cue 1-he/she 0.4/ mm Cue1-he/she
- * S == Cue 2 = Cue 2
(%] mm Cue3
0.06 703 ue
f=
X
0.04 202
b
x
g
0.02 01
S
00075734 5 6 7 8 9 10 11 12 0.0
Layer

#Cues=5-1 0.4 #Cues =6-1
=== Others === Others
0.4 EEE Cue 1- he/she mm Cue 1 - he/she
mmm Cue 2 0.3 ™= Cue2
0.3 s Cue 3 mmm Cue 3
BN Cue 4

B Cue 4

0.2
0.2

0.1 0.1

0.0

9 10 11 12 0077732

Layer

Figure 22: Value Zeroing context mixing scores for the pre-trained GPT-2 model with varying cue word counts,

when removing the last names and replacing first names with '"he/she."" Note: Removing the last name results in
the loss of a cue word.
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Figure 23: Value Zeroing context mixing scores for the fine-tuned GPT-2 model with varying cue word counts,

when removing the last names and replacing first names with ""he/she." Note: Removing the last name results in
the loss of a cue word.
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Figure 24: Value patching scores for the pre-trained BERT model across different numbers of cue words
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Figure 25: Value patching scores for the fine-tuned BERT model across different numbers of cue words
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Figure 26: Value patching scores for the pre-trained GPT-2 model across different numbers of cue words
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Figure 27: Value patching scores for the fine-tuned GPT-2 model across different numbers of cue words
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