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Abstract

A wide body of evidence shows that human001
language processing difficulty is predicted by002
the information-theoretic measure surprisal,003
a word’s negative log probability in context.004
However, it is still unclear how to best estimate005
these probabilities needed for predicting human006
processing difficulty – while a long-standing007
belief held that models with lower perplexity008
would provide more accurate estimates of word009
predictability, and therefore lead to better read-010
ing time predictions, recent work has shown011
that for very large models, psycholinguistic012
predictive power decreases. One reason could013
be that language models might be more confi-014
dent of their predictions than humans, because015
they have had exposure to several magnitudes016
more data. In this paper, we test what effect017
temperature-scaling of large language model018
(LLM) predictions has on surprisal estimates019
and their predictive power of reading times of020
English texts. Firstly, we show that calibration021
of large language models typically improves022
with model size, i.e. poorer calibration cannot023
account for poorer fit to reading times. Sec-024
ondly, we find that temperature-scaling prob-025
abilities lead to a systematically better fit to026
reading times (up to 89% improvement in delta027
log likelihood), across several reading time cor-028
pora. Finally, we show that this improvement in029
fit is chiefly driven by words that are composed030
of multiple subword tokens.1031

1 Introduction032

In psycholinguistics, a key finding is that words033

with higher surprisal (= negative log probability034

of the word in context) require more time for pro-035

cessing (Hale, 2001; Levy, 2008). Numerous stud-036

ies provided experimental evidence supporting this037

theory, demonstrating that surprisal is a powerful038

predictive measure of processing complexity (e.g.,039

Demberg and Keller, 2008; Wilcox et al., 2020,040

1Code available at: https://github.com/
TongLiu-github/TemperatureScaling4RTs.

2023; Shain et al., 2022), and that the relationship 041

between surprisal and reading times (RTs) seems 042

to be linear (Smith and Levy, 2013; Wilcox et al., 043

2020; Shain et al., 2022). 044

However, prior work implicitly made the as- 045

sumption that human predictability estimates 046

would be similar to the actual probability of a word 047

occurring in a given context, and that therefore, sur- 048

prisal values estimated from models that achieve 049

lower perplexities should also approximate human 050

processing difficulty better (Goodkind and Bick- 051

nell, 2018; Merkx and Frank, 2021). 052

Recent research has however found that this is 053

not true – surprisal values from very large LLMs 054

provide in fact a very poor fit to reading times. Oh 055

and Schuler (2023b) hypothesize that this might 056

be due to LLMs being “too confident” in their esti- 057

mates of rare named entities compared to humans, 058

thanks to their manifold larger exposure to data 059

and greater memory capacity compared to humans. 060

Furthermore, work on NLP applications like ques- 061

tion answering has reported that probability esti- 062

mates from pretrained language models are often 063

overconfident, i.e. they are higher than the ground 064

truth probability (Si et al., 2022; Kumar, 2022). 065

These findings hence beg the question whether 066

current LLMs are well-calibrated with respect to 067

“objective” word occurrence probabilities. Relat- 068

edly, we ask whether LLM probability estimates 069

are overconfident compared to human estimates (as 070

observed in reading times). 071

One approach to address calibration problems is 072

to use temperature scaling, as done e.g., in vision 073

tasks (Guo et al., 2017; Hendrycks et al., 2019). 074

Temperature-scaling with a temperature T > 1 075

has the effect that the probability distribution is 076

flattened such that it becomes more similar to a 077

uniform distribution. Temperature-scaling hence 078

incorporates uncertainty into the probability esti- 079

mates from LLMs. 080

We note that the idea to work with flattened dis- 081
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tributions instead of the original probability dis-082

tributions from LLMs is also related to contex-083

tual Rényi Entropy as discussed by Pimentel et al.084

(2023), as well as the super/sub-linear surprisal ef-085

fect by Shain et al. (2022); Hoover et al. (2023).086

However, rather than merely adjust the power of087

surprisal in super/sub-logarithmic patterns or the088

power of probability in Rényi entropy, our work089

represents a distinct branch of study (i.e., probabil-090

ity calibration) in machine learning: shaping the091

probability distribution itself through shaping the092

logits before softmax. We also discuss the motiva-093

tion for why a slightly flattened distribution may be094

more suitable, and whether this change in distribu-095

tion is applied when calculating surprisal vs. when096

calculating entropy.097

Our experimental results show that scaling prob-098

abilities can largely improve the fit to reading099

times in all 12 settings (3 corpora × 4 neural100

LMs). Our contributions are summarized as fol-101

lows: (1) We propose temperature-scaled surprisal,102

where surprisal is calculated from temperature-103

scaled probabilities. (2) We demonstrate that104

temperature-scaling with temperature T≈2.5 im-105

proves predictability of human reading times of106

English texts compared to T=1. (3) We identify lin-107

guistic phenomena that correlate with the benefit of108

temperature-scaled surprisal by analyzing residual109

errors from regression models.110

2 Predictive Power for Reading Times111

In psycholinguistics, RTs on a word are believed to112

correlate with its processing difficulty. RTs can be113

gathered using different paradigms, including eye-114

tracking while reading text on a screen (Rayner,115

1998), self-paced reading (Aaronson and Scarbor-116

ough, 1976; Mitchell and Green, 1978) and the117

Maze task (Forster et al., 2009).118

The most common procedure for predicting119

words’ RT is first to select a set of predictor vari-120

ables thought to impact RTs v = [v(1), ..., v(d)]⊤ ∈121

Rd, which include, e.g., the length of a word122

wt, |wt|, the frequency of a word freq(wt). Let123

fϕ : Rd → R be a regression model parametrized124

by ϕ used to fit these predictors for the prediction125

of human RTs rt: rt(wt|w<t) ∼ fϕ(v), given the126

previous context w<t. The performance of fϕ is127

quantified by its log-likelihood, with a higher log-128

likelihood indicating a better psychometric predic-129

tive power for human RTs (Frank and Bod, 2011;130

Fossum and Levy, 2012).131

Besides the word length |wt| and word frequency 132

freq(wt), a word’s surprisal (i.e., its negative log- 133

probability in context) (Hale, 2001; Levy, 2008) 134

has been shown to be predictive of RTs (Demberg 135

and Keller, 2008; Goodkind and Bicknell, 2018; 136

Wilcox et al., 2020; Shain et al., 2022). 137

3 Methods 138

In this section, we delve into key aspects of 139

information-theoretic measures in language com- 140

prehension. We start with surprisal, a method con- 141

necting processing difficulty to word predictabil- 142

ity. As word predictability is empirically estimated 143

by LLMs, we introduce the notion of calibration 144

errors, metrics quantifying how good the estima- 145

tion of word predictability is. Further, we lay out 146

temperature-scaled surprisal, and the relation be- 147

tween varying temperature vs. varying α in contex- 148

tual Rényi entropy. 149

3.1 Surprisal 150

Starting from Shannon (1948), the information con- 151

veyed by a word wt has been quantified as the 152

negative log probability of the word wt given its 153

previous context w<t. In Surprisal Theory (Hale, 154

2001; Levy, 2008), this quantity is called surprisal 155

s(wt) and proposed to be predictive of the word’s 156

processing difficulty, typically quantified as its RT. 157

Surprisal values are typically estimated from lan- 158

guage models p̂(wt|w<t). 159

s(wt) = −log2 p(wt|w<t), (1) 160

3.2 Calibration error 161

Definitions Let D = {(xi, yi)}Ni be a data set 162

where xi ∈ X is an sample (i.e., context) and 163

yi ∈ K = [K] is a category label. Let gθ and 164

ẑi = gθ(xi) denote a language model parametrized 165

by θ and the output logit vector of sample i, respec- 166

tively. The predicted class label ŷi for sample i is 167

given by ŷi = argmaxk∈K g(xi)k and confidence 168

for sample i is given by p̂i = maxk∈K g(xi)k. A 169

model is perfectly calibrated when the confidence 170

p̂ is equal to the frequency of correctness, i.e., 171

P(ŷi = yi|p̂i = p) = p holding for all p ∈ [0, 1] 172

and any sample i. Any difference between the left 173

and right sides of the above equation indicates there 174

exists a calibration error. 175

Expected calibration error (ECE) (Guo et al., 176

2017) ECE is the most popular calibration met- 177

ric, which empirically approximates the calibration 178
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error by discretizing the probability interval into a179

fixed number of bins (Bm with m ∈ {1, 2, ...,M}),180

and measures the gaps of averaged confidence and181

averaged accuracy in each bin Bm.182

ECE =
1

N

M∑

m=1

|
∑

i∈Bm

p̂i−
∑

i∈Bm

1[ŷi = yi]|, (2)183

where 1 is the indicator function. However, it does184

not necessarily measure the actual-word probabil-185

ity, which is the probability required for calculating186

surprisal in Eq. 1. It focuses only on the top-label187

probability for a given sample.188

Classwise-ECE (CECE) (Kumar et al., 2019;189

Kull et al., 2019) In comparison, CECE mea-190

sures probabilities of all classes. For each bin and191

every class k, it assesses the difference between the192

average confidence of samples for class k and the193

actual proportion of class k. If assuming all classes194

weigh equally, we have:195

CECE

=
1

NK

K∑

k=1

M∑

m=1

|
∑

i∈Bm

p̂i,k −
∑

i∈Bm

1[k = yi]|,

(3)

196

where p̂i,k is the predicted probability of sample i197

for class k.198

Human-likeness calibration error (HCE) We199

define the HCE as the Kullback-Leibler divergence200

(KL divergence) between predicted probability p̂201

from a neural LM and actual probability p∗ of hu-202

man language model.203

HCE = DKL(p̂||p∗). (4)204

Empirically, since p∗ is not directly observable, we205

approximate it by the estimates of a temperature-206

scaled model that best fits human reading times207

(as discussed later). We denote the approximated208

HCE using such a method as HCETS.209

3.3 Temperature-scaled surprisal210

Temperature scaling (Guo et al., 2017) is a widely-211

used method to improve model calibration. Given212

the output logit vector ẑi for sample i, a single213

scalar T > 0 is applied to rescale ẑi before the214

softmax activation:215

q̂i = max
k

σSM (
ẑi
T
)(k), (5)216

where q̂i is the calibrated confidence for sample 217

i, and σSM is the softmax function. Scaling by 218

a scalar T does not alter the ranking; hence, the 219

predicted label ŷi remains unchanged. As T > 1, it 220

“softens” the probability distribution (i.e., makes the 221

distribution more uniform), increasing uncertainty 222

and entropy of the probability distribution, while 223

T < 1 peaks the distribution. The parameter T in 224

research on calibration is optimized by minimizing 225

the negative log-likelihood on the validation set. In 226

our experiments of fit to human RTs, we manually 227

tune this temperature with T > 1. 228

Temperature scaling has been successfully ap- 229

plied in several applications: In knowledge distilla- 230

tion (Hinton et al., 2015), temperature scaling (with 231

T > 1) is used to “soften” the knowledge (i.e., 232

probability distribution) provided by the teacher 233

model; in text generation, temperature is used to 234

shape the probability distribution to ease certain 235

aspects of the problems of top-k sampling (e.g., 236

choosing an appropriate k value across varying 237

contexts) (Ficler and Goldberg, 2017; Fan et al., 238

2018). Temperature tuning inherently shifts the 239

model’s output in the generation’s quality/diversity 240

spectrum (Caccia et al., 2018), with higher tem- 241

perature decreasing the quality of generation while 242

improving its diversity. This also aligns with our 243

consideration of a possibility that human proba- 244

bility distributions might be flatter than the ones 245

learned by language models and thus increasing the 246

predictive diversity of surprisal provided by LLMs 247

could potentially yield more human-like distribu- 248

tions. 249

Given Eq. 5, temperature-scaled surprisal is: 250

sT (wt, T ) = −log2(σSM (ẑwt/T )
(k∗)), (6) 251

where ẑwt and k∗ = ywt denote the logit vector and 252

the actual word wt class, respectively. For given 253

t ∈ (0,∞), we simply denote sT (wt, T = t) as 254

sT |T=t. A temperature T with its best performance 255

of final fit to RTs is denoted as T ∗. 256

The extent to which a word’s surprisal is affected 257

by temperature scaling depends on the distribution 258

and thus correlates with the entropy at word wt. 259

Consider an example of two five-class probability 260

distributions pi = [0.8, 0.05, 0.05, 0.05, 0.05] 261

and pj = [0.8, 0.2, 0, 0, 0], for which the word 262

indicated by the first position in the probabil- 263

ity vector has identical surprisal in both pi 264

and pj . Notably, pi is more uniform and pj 265

is more peaked, resulting in distinct entropy 266
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Figure 1: Temperature-scaled surprisal sT (wt, T )
with corresponding T ∈ [1, 2.5] for two ran-
dom five-class probability distributions: pi =
[0.8, 0.05, 0.05, 0.05, 0.05] and pj = [0.8, 0.2, 0, 0, 0].
Dashed lines show Shannon entropy (H1). Loosely
dashed lines show Rényi entropy with α = 1/2 (H1/2).

characteristics: H(wi|w<i) > H(wj |w<j),267

where the entropy defined as the expectation268

of surprisal of current word wt over vocab-269

ulary, H(wt|w<t) = Ew′∼p(·|w<t)
[s(w

′
)] =270

−∑
w′∈W p(w

′ |w<t) log2 p(w
′ |w<t), where271

W = W ∪ {EOS} denotes the set of vocabulary272

W with EOS token. Fig. 1 illustrates a greater273

increase in surprisal for a word with a more274

uniform distribution than with a more peaked275

distribution.276

This figure also anecdotally shows that the effect277

of applying temperature scaling with T > 1 is278

similar to the effect of setting α < 1 in Rényi279

entropy. We will discuss the relationship between280

these parameters in more detail in Appendix A.281

4 Experimental setup282

4.1 Datasets283

We conduct analyses on two self-paced reading284

corpora, the Natural Stories Corpus (Futrell et al.,285

2018) and the Brown Corpus (Smith and Levy,286

2013), as well as on the Dundee Corpus (Kennedy287

et al., 2003), which contains the eye-movement288

record; our analyses in this paper focus on first-289

pass times2 from the Dundee corpus. We follow290

previous work with respect to the preprocessing291

steps for each corpus (Kuribayashi et al., 2022;292

Shain et al., 2022). Appendix C includes details293

about the preprocessing steps of each corpus.294

2First pass times are calculated as the sum of all fixation
durations from first entering to first leaving the word during
the first pass, i.e., only those cases are counted where no words
further advanced in the text have been fixated.

4.2 Language Models 295

Recent observations showed that surprisal provided 296

by LLMs with more parameters and lower perplex- 297

ity is less predictive of self-paced reading times 298

and eye-gaze durations (Shain et al., 2022; Oh 299

and Schuler, 2023b); across different experiments, 300

GPT-2 (Radford et al., 2019) surprisals were found 301

to predict human RTs the best. Therefore, we take 302

four variants of pretrained GPT-2 (small, medium, 303

large, xl) as our language models in all experiments. 304

Following prior work, we obtain the surprisal for 305

words composed of more than one subword by sum- 306

ming up the surprisal estimates of the subwords. 307

4.3 Metrics and evaluation 308

We measure the predictive power of surprisal es- 309

timates from different language models, which is 310

denoted as the log-likelihood difference per data 311

point between a linear mixed-effects (LME) re- 312

gression model using lme4 package (Bates et al., 313

2015) with a predictor of surprisal estimates (target 314

model) and a model without surprisal (base model), 315

following Goodkind and Bicknell (2018); Wilcox 316

et al. (2020). More specifically, the metric of delta 317

log-likelihood is defined as: 318

∆llh = llh(fϕ(v
tgt))− llh(fϕ(v

base)), (7) 319

where vtgt is target predictor variables that in- 320

clude baseline predictor variables as well as pre- 321

dictor variables of our interest, such as surprisal 322

or temperature-scaled surprisal. vbase is base pre- 323

dictor variables only including baseline predictor 324

variables. The greater the value of ∆llh, the more 325

valuable the additional surprisal estimates are for 326

predicting human reading times. 327

For the calibration error evaluation, we set the 328

number of bins M to 15 for both ECE and CECE, 329

aligning with prior literature, such as works by Guo 330

et al. (2017); Kumar et al. (2019); Rahimi et al. 331

(2020b), to ensure consistency in addressing prob- 332

lems where comparable probability ranges are rele- 333

vant. The calibration metrics (ECE and CECE) are 334

evaluated separately on each of the reading time 335

corpus D. For simplicity, our calibration evaluation 336

is conducted at the token level. Given that many 337

words have extremely low probabilities and thus 338

are often grouped into a single bin, we also evalu- 339

ate the calibration error under the log probability 340

binning scheme. For further descriptions regarding 341

the metrics and evaluation, see Appendix D. 342
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5 Results343

5.1 Calibration of LLMs344

Table 1 shows ECE and CECE in log binning345

scheme for GPT-2 models of different sizes. LLMs346

are in general well calibrated on language mod-347

eling. Besides, LLM calibration improves with348

scale. Larger LMs are better calibrated. This349

conclusion is consistent with calibration investiga-350

tion evaluated in BIG-bench multiple-choice tasks351

in Srivastava et al. (2023) as well as in several tasks352

including language modelling in Zhu et al. (2023).353

5.2 Main result: temperature-scaled surprisal354

improves human reading time prediction355

We evaluate the predictive power of temperature-356

scaled surprisal. We scale T in the range of [1, 10]357

and measure ∆llh, see Fig. 2. First, a confirma-358

tory observation regarding the relationship between359

model size and predictive power: At T = 1, GPT-2360

small exhibits the best predictive performance, and361

as the model size increases, ∆llh declines, which is362

consistent with previous studies (Shain et al., 2022;363

Oh et al., 2022; Oh and Schuler, 2023b). Secondly,364

scaling the surprisal with T > 1 can signifi-365

cantly improve the predictive power across all366

corpora and LLMs. With optimal T ∗, on Dundee,367

Natural Stories, and Brown, the ∆llh improvement368

is 23-43%, 60-89%, and 14-24%, respectively. We369

assess statistical significance of GPT-2 small in Ap-370

pendix H, where we report a result of p < 0.001371

on three corpora. We also observe a consistent372

pattern: when increasing T , ∆llh first rises then373

declines; the optimal value T ∗ falls within the374

range of (2, 3) (around 2.5) across all models375

and corpora in our setting. At T ∗, even though the376

impact of model size on final performance is not377

fully recovered, the disparity diminishes. Smaller378

models continue to outperform, but the extent of379

model sizes influencing performance is reduced.380

Finally, larger LMs typically have a larger381

human-likeness calibration error, shown in Ta-382

ble 1. Larger LMs also require a higher value of T383

to reach their best performance and have a greater384

increase by temperature-scaled surprisal.385

5.3 Calibration error vs. RT prediction error386

Table 2 shows ECE and CECE in both equally-387

spaced and log binning schemes when T equals 1388

and T ∗ on three corpora. Probability distribution389

shaped by an optimal T ∗ learnt for fit to human390

T ∗ ∆llh+ HCETS ↓ ECElog ↓ CECElog ↓

Dundee

s 2.75 22.5 3.11 1.59 4.07E-03
m 3.0 42.0 3.61 1.74 4.13E-03
l 3.0 39.9 3.82 1.55 3.99E-03
xl 3.25 43.2 4.13 1.29 3.84E-03

NS

s 2.5 60.3 3.31 1.91 1.53E-02
m 2.5 63.0 3.50 1.80 1.50E-02
l 2.5 82.6 3.97 1.70 1.40E-02
xl 2.5 89.0 4.07 1.56 1.35E-02

Brown

s 2.5 13.7 3.10 1.69 1.53E-02
m 2.5 16.2 3.29 2.27 1.51E-02
l 2.75 21.8 4.18 1.58 1.44E-02
xl 2.75 24.4 4.29 1.56 1.38E-02

Table 1: Optimal T ∗, ∆llh improvement (%) (∆llh+ =
(∆llh(T = T ∗) − ∆llh(T = 1))/∆llh(T = 1)), and
calibration errors (HCETS, % ECE and % CECE) for
GPT2s on Dundee, Natural Stories (NS) and Brown.
∆llh values are multiplied by 1000. ECE and CECE are
evaluated on log binning scheme.

RTs drastically hurts the model calibration regard- 391

ing these two metrics. ECE and CECE with T ∗ are 392

more than 10 times worse than values with T = 1. 393

This discrepancy can be attributed to the differ- 394

ent minima of deviations in LM human RT pre- 395

diction and expected calibration error. The former 396

is minimized towards words where LMs surprisal 397

significantly deviates from human processing diffi- 398

culty, while the latter is typically minimized with 399

respect to the negative log-likelihood on a hold-out 400

dataset (Guo et al., 2017; Rahimi et al., 2020a). 401

6 Linguistic analysis 402

Next we want to gain insight into what words ben- 403

efit the most from temperature scaling. To this end, 404

we analyze residuals from fitting LME regression 405

models, identifying data points where scaling the 406

temperature parameter notably enhances the fit of 407

human RTs. Specifically, we quantify the improve- 408

ment in fit by comparing the mean squared error 409

(MSE) before and after adjusting the temperature 410

ECE↓ ECElog ↓ CECE↓ CECElog ↓
Dundee T = 1 1.43 1.59 4.05E-03 4.07E-03

T = T ∗ 28.68 28.68 7.30E-03 9.88E-03

NS T = 1 2.48 1.91 1.83E-02 1.53E-02
T = T ∗ 35.85 35.85 3.16E-02 3.97E-02

Brown T = 1 1.82 1.69 1.67E-02 1.53E-02
T = T ∗ 33.16 33.16 2.75E-02 3.34E-02

Table 2: Expected calibration errors (% ECE and %
CECE) for GPT-2 small on Dundee, Natural Stories
(NS) and Brown. Results are all evaluated on the
equally-spaced binning scheme and log binning scheme.

5
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Figure 2: Relationship between ∆llh of GPT-2 models and corresponding temperature. T is scaled from 1.0 to 10.

Figure 3: Relationship between ∆MSE and negative log
actual-word probability (surprisal). We take the number
of bins to 20. Black dashed lines denote ∆MSE = 0.
Subsets containing less than 1% of data are ignored for
each corpus.

to its optimal value as follows:411

∆MSE(F ) = MSET=1(xF )−MSET=T ∗(xF ),
(8)

412

where MSET=T ′ (xF ) is the MSE calculated by all413

the data xF under the linguistic factor F . The414

difference ∆MSE(F ) thus quantifies the impact415

of scaling relative to the linguistic factor F . A416

higher ∆MSE(F ) signifies a greater influence of417

temperature-scaled surprisal of factor F . To ensure418

sufficient data in each subset, we only consider sub-419

sets including more than 1% of the data in each420

corpus.421

6.1 Influence of low probability words422

Given that temperature scaling enhances human423

likeness by shaping the probability distribution,424

it is natural to think about investigating whether425

there exists an inherent relationship between the426

distribution of probability and ∆MSE. Specifically,427

one might ask questions like if samples with low428

probability gain more from temperature scaling or429

the other way around. We find that high surprisal430

words benefit more from temperature scaling than431

low surprisal words, across all corpora, see Fig. 3.432

6.2 Influence of word types 433

We investigate the effects of word-level properties, 434

which include: 435

Named entities. Research has substantiated 436

that named entities (NEs) require increased read- 437

ing time for humans since during the processing 438

of such words (Damasio et al., 2004; Wang et al., 439

2013). Oh and Schuler (2023b) showed that NEs 440

are among the top two significant factors contribut- 441

ing to the discrepancies of large and small LMs 442

across all corpus-by-LM combinations. There- 443

fore, we were wondering whether the effect of 444

temperature-scaling might be driven by NE. To test 445

this, we automatically tagged NEs using a BERT 446

base model (Devlin et al., 2019) fined-tuned for 447

NER3. 448

Part-of-speech tags. Similarly, previous re- 449

search has argued that the poor fit of large LMs 450

is primarily due to assigning too low surprisal es- 451

timates to open-class words like nouns and adjec- 452

tives (Oh and Schuler, 2023b). We POS-tagged 453

the corpora using the NLTK toolkit (Bird et al., 454

2009) with the default Penn Treebank Tag set. In 455

the following, we mainly focus on the four classes 456

of open-class tags, as well as a subset of the whole 457

closed-class tags (CC). 458

Named entities POS tags
GPT2 Avg. NE non-NE NN ADJ VERB ADV CC

Dundee

s 26.3 87.0 23.4 33.8 100.5 -2.0 2.6 10.4
m 41.7 152.3 36.4 57.0 123.3 7.8 27.6 16.4
l 40.1 158.2 34.5 56.3 126.5 4.8 19.2 14.0
xl 41.4 168.2 35.4 60.0 125.5 6.9 19.7 13.5

NS

s 105.7 186.8 104.6 148.7 152.5 122.0 49.0 77.1
m 108.5 155.9 107.9 145.3 152.0 130.1 60.8 80.8
l 127.7 151.6 127.3 175.6 158.6 152.9 74.8 94.3
xl 123.3 141.8 123.1 163.6 145.4 161.2 81.5 89.0

Brown

s 37.2 266.0 28.1 54.3 -65.2 138.1 32.1 5.9
m 41.4 257.6 32.8 71.4 -60.6 137.5 38.6 3.5
l 42.6 265.3 51.1 69.9 -110.3 160.8 17.2 24.7
xl 54.8 282.3 45.8 90.5 -90.2 151.3 32.2 20.0

Table 3: ∆MSE measurement on word-level properties
of GPT-2 models on Dundee, Natural Stories (NS) and
Brown. Top-3 on each corpus-by-LM are underlined.

3Link: https://huggingface.co/dslim/bert-base-NER
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Results. The result, as shown in Table 3, shows459

primary factors responsible for the benefit of us-460

ing sT (wt, T ) for each corpus-by-LM combination.461

The top three influential subsets for each corpus462

are underlined. Among all datasets and models,463

named entities perform to be the most benefi-464

cial word-level attribute. In contrast, closed-class465

words profit the least from temperature scaling.466

Performance trends are consistent across different467

model variants on the same corpus.468

We also measured empirically how often tem-469

perature scaling increased vs. decreased the sur-470

prisal estimate of a word. Our results show that for471

ca. 90% of words, surprisal estimates are increased472

through temperature scaling across all word classes.473

For the subset of named entities, a slightly smaller474

percentage exhibits increased surprisal estimates.475

For a full analysis across different corpora and mod-476

els, see Table 5 in Appendix B.477

We further investigate the benefit of temperature-478

scaled surprisal (quantified by ∆MSE) given the479

subset of words whose probability decreases (or480

increases). The results are in Table 4. On Dundee,481

the main gain arises from the reduction of large482

probabilities via temperature scaling. Conversely,483

for Natural Stories, the primary benefit comes more484

strongly from words with originally very low prob-485

ability, which become more probable. For Brown,486

the effects are evenly split. These findings align487

with our theoretical intuition that temperature488

scaling enhances the fit performance by mak-489

ing probabilities more smooth, which means not490

only making high probabilities lower but also mak-491

ing very low probabilities higher and close to 1/K,492

since a very low probability also means the model493

is confident in the incorrectness of certain classes.494

Considering effects on named entities more495

specifically, we find that on Natural Stories and496

Brown, the benefit of temperature scaling can497

mostly be attributed to reducing the probability498

estimates of highly predictable entities, while on499

Dundee the beneficial effect mostly arises from in-500

creasing probabilities of named entities. We spec-501

ulate that this could be due to the types of most502

frequent named entities that occur in the different503

text sorts, and present a more detailed analysis of504

this aspect in Appendix B.505

6.3 Influence of multiple-token words506

A fact that is often ignored (but see Nair and Resnik,507

2023) is that modern LLMs use subword tokeniza-508

Named entities
Avg. NE non-NE

Corpus GPT2 pwt↓ pwt↑ pwt↓ pwt↑∗ pwt↓ pwt↑
s 27.4 18.2 81.3 107.2 25.1 10.1
m 41.9 39.8 139.1 205.6 37.8 23.9
l 41.0 31.3 156.1 166.6 36.2 18.0Dundee

xl 42.5 29.8 170.2 158.8 37.0 16.9
s 94.5 275.6 218.5 3.0 92.9 284.9
m 105.7 158.3 179.3 -34.9 104.7 163.9
l 125.0 166.1 197.5 -224.8 124 175.4NS

xl 121.8 140.7 197.3 -272.6 120.8 149.5
s 37.6 32.6 329.7 -170.6 26.6 45.5
m 39.1 72.3 276.0 143.6 30.5 66.3
l 52.7 28.1 325.8 -205.9 42.5 44.4Brown

xl 50.9 111.5 298.2 168.2 41.7 107.1

Table 4: Given words whose probability decreases
(and increases), the corresponding ∆MSE(pwt

↓) (and
∆MSE(pwt

↑)) measurement for GPT-2 models on
Dundee, Natural Stories (NS) and Brown. A higher
∆MSE is displayed in bold in the average across all
word types (Avg.), named entities (NE), and non-named
entities (non-NE) columns, respectively, for each corpus-
by-LM combination. The column with ∗ indicates in-
sufficient (less than 1%) data.

tion. This means that long words may consist of 509

several tokens. In this case, the probability of the 510

complete word is calculated by multiplying the 511

probabilities of the subword tokens (and the word’s 512

surprisal is correspondingly calculated by adding 513

the surprisals of the subwords). While this may 514

often not matter, whether a word is tokenized into 515

a single subword or several subwords can make a 516

remarkable difference when applying temperature 517

scaling: imagine a long / difficult word which has 518

a low probability (and correspondingly a high sur- 519

prisal). If this word were to be represented as a 520

single subword token, temperature scaling might 521

have the effect that the probability of this word 522

gets increased during temperature scaling, and its 523

surprisal estimate is hence decreased at T > 1. 524

If, on the other hand, the same word were to 525

be composed of two subword tokens, one or both 526

of the subword tokens can be expected to have a 527

higher probability (than a hypothetical single sub- 528

word token), and it is possible that during tempera- 529

ture scaling, the probabilities of the subword tokens 530

would each be decreased at T > 1, such that the 531

sum of the surprisals of the subword tokens would 532

be much higher, compared to the word’s surprisal 533

estimate at T = 1. 534

To summarize, whether the surprisal of a certain 535

word would increase or decrease after temperature 536

scaling could depend on whether that word happens 537

to be included in the subword token vocabulary or 538
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Figure 4: Relationship between ∆llh of GPT-2 s on
three corpora and corresponding temperature T.

not.4 In order to quantify to what extent subword539

tokenization affects surprisal estimates, we con-540

ducted several analyses.541

Fig. 4 shows ∆llh under various conditions:542

scaling all words (consistent with experiments in543

Section 5.2) vs. taking into the analysis only the544

subset of single-token words and multiple-token545

words. The comparison between the full, dotted,546

and dashed lines highlights that the benefit of547

temperature-scaled surprisal comes primarily548

from the scaling of multiple-token words.549

Next, it is interesting to consider for what550

percentage of multiple-token words temperature-551

scaling increases the surprisal. We find that the sur-552

prisal of more than 90% of multiple-token words in-553

creases, and the ratio is higher than across single-554

token words by ca. 6% on Dundee and Brown, see555

Table 12 in Appendix L for more details.556

7 Discussion557

Our experiments demonstrate that choosing a tem-558

perature around 2.5 improves the fit to human read-559

ing times. Furthermore, we find that this effect is560

chiefly driven by an improved fit for words which561

consist of several subword tokens.5 Named entities562

and other open class words tend to have a larger563

tendency to contain several subword tokens, which564

can explain why temperature scaling is particularly565

effective for these words.566

So what does all of this mean for surprisal esti-567

mates from LLMs and reading time prediction?568

Firstly, following the argumentation of Oh and569

Schuler (2023b), it is possible that indeed the effect570

is driven by humans failing to accurately estimate571

the probability of rare words (rare words being572

the ones that are split up into several subwords),573

because they do not reach sufficient language ex-574

4Distributions of surprisal for single vs. multiple token
words before and after temperature scaling are provided in
Fig. 8 in Appendix L.

5Appendix K shows that subword tokenization has larger
explanatory power than word class.

perience or because human language models do 575

not track these probabilities well. In this case, 576

temperature-scaling rare words to which the LLM 577

assigns a too high probability (and hence a low 578

surprisal) would be a good strategy to counteract 579

the discrepancy between humans and LLMs. From 580

LLMs’ perspective, recalling the observation from 581

Section 5.3 that larger LLMs that yield poorer fits 582

to RTs are actually better calibrated, hence the mas- 583

sive training dataset might be at the cause of driving 584

these models away from the human-like predictive 585

processing, aligning with Oh and Schuler (2023a). 586

Secondly, it is likely that the beneficial effect of 587

temperature scaling is an artifact of subword tok- 588

enization, and that this effect would diminish if all 589

words were composed of only a single subword 590

token (cf. our explanation in Section 6.3). That 591

is, temperature scaling would not be beneficial be- 592

cause of the reasons that motivated this research 593

originally, but only because it is a way of assign- 594

ing higher surprisal to words consisting of several 595

subword tokens. In order to test this hypothesis, 596

one would have to re-train a GPT-2 model using a 597

vocabulary that at least includes all words that are 598

contained in the reading time corpora, and then re- 599

running the analysis to check whether a beneficial 600

effect of temperature scaling can still be found. 601

Finally, it is also possible that the splitting of a 602

word into subwords coincides with the reader fixat- 603

ing a word several times, and that these added fixa- 604

tions lead to an overestimate in RTs compared to 605

the actual surprisal experienced by a human reader. 606

Future work could investigate this hypothesis by 607

analysing RTs on subwords instead of aggregated 608

words (with the caveat that subword tokens may 609

not be cognitively plausible units). 610

8 Conclusion 611

This paper studies the prediction of human RTs 612

from the perspective of probability distribution. We 613

make the following contributions: (1) We demon- 614

strate that the prediction of RTs can be significantly 615

improved via temperature scaling of LLM probabil- 616

ity estimates. (2) We demonstrate that the primary 617

benefit of temperature-scaled surprisal is driven by 618

words composed of several subword tokens. These 619

words also tend to be rarer / long open-class words. 620

Future work should investigate the interaction of 621

subword tokenization and temperature scaling, as 622

well as the issue of tokenization in the analysis of 623

eye-tracking data. 624
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Limitations625

In this work, the identification of the optimal T for626

temperature-scaled surprisal is manually tuned. Fu-627

ture research could develop an automated method628

to determine this optimal value, e.g., from specific629

characteristics of LLMs or corpora. Additionally,630

a question may be asked whether the possible non-631

linear relationship between surprisal and reading632

times (Shain et al., 2022; Hoover et al., 2023) could633

influence the temperature-scaled surprisal’s superi-634

ority over original surprisal. Investigating the effec-635

tiveness of temperature-scaled surprisal using gen-636

eralized additive models, a branch of models that637

assume less about the linearity than linear mixed ef-638

fect models employed here, would be an extension.639

Finally, exploring effects of temperature-scaled sur-640

prisal on different measures of fixation duration641

could be considered in future work.642
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A Connection to Contextual Rényi891

Entropy892

While a lot of work has investigated the effect of893

next word entropy on reading times (Hale, 2003,894

2006; Linzen and Jaeger, 2014; Angele et al., 2015;895

van Schijndel and Linzen, 2019; Aurnhammer and896

Frank, 2019; Pimentel et al., 2023), we will here fo-897

cus on contextual Rényi entropy (the entropy of the898

probability distribution at the current time stamp,899

which is parameterized by α), as proposed in Pi-900

mentel et al. (2023) to represent human anticipatory901

reading process. Pimentel et al. (2023) find that902

Rényi entropy with an optimal α∗ in the range of903

(0, 1) (around 1/2) obtains the best performance904

in reading time prediction (compared to Shannon905

Entropy (α = 1) or compared to unscaled surprisal906

estimates).907

Mathematically, Contextual Rényi en-908

tropy (Rényi, 1961) is defined as:909

Hα(wt | w<t)

= lim
β→α

1

1− β
log2

∑

w∈W
(p(w|w<t))

β.

(9)

910

For given α
′ ∈ (0,∞), we simply denote Hα(wt |911

w<t)|α=α′ as Hα|α=α′ .912

Theorem 1 (Monotonicity of sT (wt, T ) and913

Hα(wt | w<t)). Given any probability distribution914

p with actual-word probability pwt > 1/K, where915

K is the number of classes, temperature-scaled sur-916

prisal sT (wt, T ) is strictly monotonically increas-917

ing in ∆T ∈ [1,∞], Rényi entropy Hα(wt | w<t)918

is strictly monotonically decreasing in ∆α ∈ [0, 1],919

especially,920

sT |T=1 < sT |T=T ∗ < lim
T→∞

sT (wt, T ) (10)921

Hα|α=1 < Hα|α=1/2 < Hα|α=0, (11)922

where T ∗ is the optimal T of fit to RTs in the range923

of ∆T .924

Proof. Eq. (10) can be easily verified by con-925

sidering the monotonicity of temperature-scaled926

softmax output σSM (ẑwt/T ). The second part of927

Eq. (11) can be rewritten as:928

Hα|α=1/2 = 2 log2
∑

w∈W

√
p(w|w<t) (12)929

< 2 log2

√
K

∑

w∈W
p(w|w<t) (13)930

= − log2(1/K) = Hα|α=0, (14)931

where for the step from Eq. (12) to Eq. (13) we 932

use AM-QM inequality and K is the number of 933

classes in tokenizer. The first part of Eq. (11) can 934

be rewritten as: 935

Hα|α=1/2 = 2 log2
∑

w∈W

√
p(w|w<t) (15) 936

> 2 log2

√√√√
∏

w∈W
(

1

p(w|w<t)
)p(w|w<t)

(16)

937

=
∑

w∈W
p(w|w<t) log2 p(w|w<t) = Hα|α=1,

(17)

938

where from Eq. (15) to Eq. (16) we use AM-GM 939

inequality. 940

Theorem 2 Rényi entropy with α = 0 is equiva- 941

lent to temperature-scaled surprisal with T → ∞. 942

Hα(wt | w<t)|α=0 = lim
T→∞

sT (wt, T ). (18) 943

Proof. By plugging in α = 0, Contextual Rényi 944

entropy recovers to be the entropy that readers 945

concentrate on the count of potential words with 946

nonzero probabilities, which is defined in Eq. (5) 947

in Pimentel et al. (2023). As T → ∞, temperature- 948

scaled surprisal converges to the surprisal induced 949

by random guessing. Given the assumtion that 950

p(w|w<t) > 0 for each word w ∈ W , LHS be- 951

comes: 952

LHS = −log2(1/K), (19) 953

where K is the number of classes. As T → ∞, 954

RHS becomes: 955

RHS = − lim
T→∞

log2
ezwt/T

∑
w∈W ezw/T

(20) 956

= −log2(1/K) (21) 957

Theorem 3 For K ≥ 2, the expectation of the 958

L1 norm between Rényi entropy with α = 1 and 959

temperature-scaled surprisal with T = 1 has an 960

upper bound. 961

E[|sT |T=1 −Hα|α=1|] <
√

1

4
log2(K − 1) + 1

(22)

962
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Proof. With Jensen’s inequality, we have:963

E[|sT |T=1 −Hα|α=1|] (23)964

≤
√
E[(sT |T=1 −Hα|α=1)2] (24)965

=

√
E[(− log2 pwt −

∑

w∈W
p(w)(− log2 p(w)))

2]

(25)

966

=
√
Var[sT |T=1] (26)967

<

√
1

4
log2(K − 1) + 1, (27)968

where Var[·] denotes the variance. The last inequal-969

ity is shown by Lemma 4, completing the proof of970

this theorem.971

Lemma 4 (Maximum variance of the surprisal).972

(See Theorem 8 and Lemma 15 in (Reeb and Wolf,973

2015)). Let ρ = diag(p1, p2, ..., pd) be a state on a974

d-dimensional system. Let − log pi be the surprisal975

of the output i in this system. Define Nd to be:976

Nd :=
1

4
log2(d− 1) + 1. (28)977

For d ≥ 2, the variance of surprisal has a tight978

upper bound:979

varρ(− log ρ) < Nd (29)980

Theorem 2 claims the equivalence of temperature-981

scaled surprisal sT (wt, T ) and Rényi entropy Hα982

when T → ∞ and α = 0. Theorem 3, on the983

other side, gives an upper bound when T = 1984

and α = 1. Intuitively, when T ∈ (1,∞), sT985

can be considered as a softened version of sT |T=1.986

Similarly, when α ∈ (0, 1), Hα can be consid-987

ered as a softened version of Hα|α=1. Math-988

ematically, Theorem 1 provides the monotonic-989

ity of both functions within their respective do-990

mains. Hypothetically, given the above conditions,991

when tuning both functions with the aim of a bet-992

ter fit to RTs, sT |T=T ∗ and Hα|α=1/2 might be993

close. Empirically, Fig. 5 illustrates the relationship994

between averaged Rényi entropy Hα|α={0,1/2,1}995

and sT |T={1,T ∗,∞} on probabilities on three cor-996

pora. Notably, Hα|α=1/2 and sT |T=T ∗ are closely997

aligned, especially when compared with other en-998

tropy and surprisal data points. This empirical ev-999

idence partly verifies Theorem 2, Theorem 3 and1000

our hypothesis.1001

Figure 5: A comparison of averaged temperature-
scaled surprisal sT |T={1,T∗,∞} and Rényi entropy
Hα|α={0,1/2,1}.

B Further analysis in Section 6.2 1002

We observe that larger LMs exhibit an increased 1003

∆MSE by utilizing temperature-scaled surprisal, 1004

as shown in the average column (Avg.) of Table 3. 1005

Specifically, on Dundee, the top 2 models achiev- 1006

ing the largest improvement through temperature 1007

scaling are GPT-2 medium and xl, while GPT-2 1008

large and xl have the most benefit on Natural Sto- 1009

ries and Brown. This result is consistent with previ- 1010

ously observed ∆llh improvement (∆llh+) across 1011

the corpus-by-LM reported in Table 1, suggest- 1012

ing a correlation between model likelihood and 1013

MSEs of the regression models. We do not ob- 1014

serve a mismatch between them, as posited by Oh 1015

and Schuler (2023b) that LME models achieve sim- 1016

ilar MSEs irrespective of obvious differences in 1017

model likelihood. 1018

Regarding the effect of the change (increase or 1019

decrease) of actual-word probability on the final fit 1020

to RTs, we first analyzed the ratio of probabilities 1021

decreasing (or increasing) for all words, as well 1022

as for subsets with specific word-level properties, 1023

choosing named entities as the representative, as 1024

shown in Table 5. We observed that probabilities 1025

of the majority of words (around 80-90%) de- 1026

crease by temperature scaling. Compared with 1027

the average across all word types (as indicated in 1028

the ’Avg.’ column), named entities exhibit a lower 1029

ratio of probability reduction. Larger LMs tend to 1030

have a higher ratio, especially the ratio for named 1031

entities, likely because smaller models may lack 1032

the specific knowledge of less common terms, such 1033

as named entities. 1034

Recalling one of the results in Section 6.2 that 1035

the main advantage of temperature-scaled surprisal 1036

arises from reduction of large probabilities on 1037

Dundee and the amplification of small probabilities 1038
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on Natural Stories. However, for named entities,1039

the story is converse on Dundee vs. on Natural Sto-1040

ries and Brown, where for the latter two corpora,1041

the advantage is primarily due to reducing the prob-1042

abilities of highly predictable entities. We shed1043

light to the possible reason of such a discrepancy in1044

Fig. 6, which displays the top 15 frequent words for1045

GPT-2 small on three corpora. Notably, Natural1046

Stories and Brown show a marked lack of words1047

with increased probabilities (blue bins) compared1048

to Dundee. This lack weakens the overall impact1049

of rising probabilities (quantified by ∆MSE(pwt↑)).1050

Specifically, on Brown, only 4 out of 15 top fre-1051

quent words have the part of increased probabilities1052

(blue bins), correlating with the largest discrep-1053

ancy in ∆MSE between probabilities that decrease1054

(329.7) and those that increase (-170.6) in Table 4.1055

Avg. Named entities
Corpus GPT2 pwt ↓ |res| ↓ pwt ↓ |res| ↓

Dundee

s 88.0 51.8 78.1 52.3
m 89.6 52.5 80.1 54.1
l 90.2 52.3 80.1 53.5
xl 91.4 52.4 82.7 54.3
s 93.8 55.0 85.3 51.8

Natural m 94.7 55.2 89.1 53.2
Stories l 93.5 55.7 89.1 53.4

xl 92.1 55.5 88.2 52.8

Brown

s 91.8 51.5 87.3 50.9
m 93.2 51.5 86.1 50.9
l 93.3 51.8 88.6 52.1
xl 93.5 51.7 87.8 53.3

Table 5: The ratio of probability of predicted word pwt

getting smaller and the absolute value of residuals |res|
getting smaller for GPT-2 models on three corpora.

C Preprocessing steps1056

On Dundee ET corpus (Kennedy et al., 2003),1057

we use the first-pass gaze duration. Following1058

prior work (Kuribayashi et al., 2022), we remove1059

words containing numbers or punctuation, words1060

that are either the first or the last one in a line,1061

as well as words whose previous words contain1062

numbers or punctuation. On Natural Stories SPR1063

corpus (Futrell et al., 2018), following Shain et al.1064

(2022), we remove words if the RT is less than1065

100ms or greater than 3,000ms, if the words are in1066

the first or last position of each story, if participants1067

answered less than 5 out of 8 comprehension ques-1068

tions correctly, if words contain numbers or punc-1069

tuation, and if words whose previous words con- 1070

taining numbers or punctuation. On Brown SPR 1071

corpus (Smith and Levy, 2013), following Shain 1072

et al. (2022), we remove words if the RT is less 1073

than 100ms or greater than 3,000ms and if words 1074

contain numbers or punctuation. 1075

D Further descriptions on metrics and 1076

evaluation 1077

We evaluate calibration error (% ECE and % 1078

CECE) in both equally-spaced and log binning 1079

schemes. In equally-spaced binning scheme, 1080

the samples are grouped into M ∈ N equally- 1081

spaced interval bins based on their confidences 1082

p̂i. Conversely, the log binning scheme operates 1083

under an empirical upper limit for − log2 p̂i, de- 1084

noted as max(− log2 p̂). Table 6 shows ranges 1085

of p̂ and − log2 p̂ for GPT2s on three corpora. 1086

For this scheme, we establish M ∈ N log- 1087

equally-spaced interval bins within the range of 1088

(0, max(− log2 p̂)]. 1089

We investigate scaling T ∈ [1, 10], considering 1090

both densely and sparsely distributed points. The 1091

values examined are detailed as follows: [1.0, 1.1, 1092

..., 1.9] for dense intervals, [2.0, 2.25, ..., 3.25] for 1093

moderately spaced intervals, and [3.5, 4.0, ..., 10.0] 1094

for sparse intervals. 1095

Following Kuribayashi et al. (2022), reading 1096

times of a base model are modelled by the fol- 1097

lowing formula: 1098

rt ∼ freq ∗ length + freq_prev_1 ∗ length_prev_1

+ (1|article) + (1|subj_id)
(30)

1099

A target model additionally includes surprisal esti- 1100

mates of current words and previous words: 1101

rt ∼ surprisal + surprisal_prev_1 + surprisal_prev_2

+ freq ∗ length + freq_prev_1 ∗ length_prev_1

+ (1|article) + (1|subj_id).
(31)

1102

On Dundee corpus, both models also include fea- 1103

tures of [screenN, lineN, segmentN]. We also per- 1104

form experiments with both models without inter- 1105

actions among predictors in Appendix I. 1106

E Exploring further effectiveness of 1107

temperature-scaled surprisal over basic 1108

predictors 1109

In this section, we explore the question of whether 1110

the benefit of temperature-scaled surprisal holds 1111
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Figure 6: Top 15 frequent named entities for GPT-2 small on Dundee, Natural Stories and Brown. ↑ and ↓ denote
probability being higher and smaller, respectively. ⃝ and × denote unbeneficial words (absolute residual error
increases) and beneficial words (absolute residual error decreases) by temperature scaling, respectively.

p̂ − log2 p̂

Dundee [4.99e-03, 1) (0, 7.65]
Natural Stories [8.567e-03, 1) (0, 6.87]

Brown [8.15e-03, 1) (0, 6.94]

Table 6: Ranges of p̂ and − log2 p̂ for GPT2s on Dundee, Natural Stories and Brown.
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Figure 7: Relationship between ∆llh of GPT-2 small and corresponding temperature. T is scaled from 1.0 to 10.
Base predictor variables vbase and target predictor variables are 0 and temperature-scaled surprisal sT (wt, T ),
respectively.

only for regression models already containing other1112

predictors such as length and frequency. We con-1113

duct experiments similar to those detailed in Sec-1114

tion 5.2 while setting base predictor variables vbase1115

to 0 and target predictor variables vtgt to only1116

temperature-scaled surprisal sT (wt, T ) in Eq. 7.1117

Fig. 7 shows that excluding base predictors de-1118

crease but not totally impact the effectiveness of1119

temperature-scaled surprisal.1120

F Calibration error for single-token and1121

multiple-token words1122

In Table 7, we demonstrate the calibration error1123

(%ECE) for single-token and multiple-token words1124

for GPT-2 small. Calibration evaluation is con-1125

ducted at the token level as before. Results indicate1126

that multiple-token words show larger calibra-1127

tion errors than single-token words.1128

G Probability distribution before and1129

after temperature scaling1130

Fig. 8 shows actual-word probability distribution1131

before and after temperature scaling for GPT-21132

small on three corpora. Multiple-token words1133

tend to have smaller probabilities than single-1134

token words, both before and after temperature1135

scaling.1136

H Significant test of temperature-scaled1137

surprisal1138

We report the statistical significance based on se-1139

lecting the most representative model, GPT2s, on1140

three corpora in Table 8. Models with temperature-1141

scaled surprisal lead to statistically significant posi-1142

tive ∆llh (p < 0.001).1143

I Analysis on correlations among 1144

predictors 1145

We investigate the question of whether the benefit 1146

of temperature-scaled surprisal is primarily due to 1147

the interactions and correlations among predictors. 1148

We first run experiments with the original target 1149

LME model as in Eq. 31 (denoted as model 1), a 1150

model that has no interactions between frequency 1151

and length as in Eq. 32 (denoted as model 2) and a 1152

third model that has no interactions and addition- 1153

ally includes random slopes for subject as in Eq. 33 1154

(denoted as model 3). 1155

rt ∼ surprisal + surprisal_prev_1 + surprisal_prev_2

+ freq + length + freq_prev_1 + length_prev_1

+ (1|article) + (1|subj_id).
(32)

1156

rt ∼ surprisal + surprisal_prev_1 + surprisal_prev_2

+ freq + length + freq_prev_1 + length_prev_1

+ (1|article) + (surprisal|subj_id).
(33)

1157

The results are in Table 9. Removing the in- 1158

teractions among predictors or additionally in- 1159

cluding random slopes does not influence the 1160

effectiveness of temperature-scaled surprisal. 1161

Furthermore, we also investigated the correla- 1162

tions among predictors by examining the correla- 1163

tion matrix for GPT2 small on three corpora (model 1164

1). Table 9, 10 and 11 indicate that temperature- 1165

scaled surprisal does not exhibit a stronger cor- 1166

relation with the other predictors in comparison 1167

to the original surprisal, as shown in the surprisal 1168

column (’surp’), which excludes the concern that 1169

the primary benefits are simply due to correlations 1170

between the baseline predictor and temperature- 1171

scaled surprisal. 1172
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ECEsingle ECEmultiple

Dundee
T = 1 1.98 2.05
T = T∗ 25.58 36.10

Natural Stories
T = 1 2.20 3.78
T = T∗ 32.38 47.02

Brown
T = 1 1.69 3.86
T = T∗ 28.70 42.99

Table 7: Expected calibration errors of tokens in single-token (% ECEsingle) and multiple-token words (%
ECEmultiple) before and after temperature scaling for GPT-2 small on Dundee, Natural Stories and Brown. Results
are all evaluated on the equally-spaced binning scheme.

Corpora Models p
Dundee target vs. base <0.001
NS target vs. base <0.001
Brown target vs. base <0.001

Table 8: Significance of temperature-scaled surprisal for GPT2 small on three corpora with T = T ∗.

Corpora Models T ∗ ∆llh(T = 1) ∆llh(T = T ∗) ∆llh+

Dundee model1 2.75 6.90 8.45 22.5
Dundee model2 2.75 6.79 8.12 19.6
Dundee model3 2.75 7.81 9.12 16.8
Natural Stories model1 2.5 4.36 6.99 60.3
Natural Stories model2 2.5 4.35 6.99 60.7
Natural Stories model3 * * * *
Brown model1 2.5 6.62 7.53 13.7
Brown model2 2.25 6.62 7.30 10.3
Brown model3 * * * *

Table 9: Optimal T ∗, ∆llh(T = 1), ∆llh(T = T ∗), and ∆llh+ for three models for GPT2 small on three corpora. ∗
indicates regression models not converged.
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Figure 8: Distribution of negative log actual-word probability (surprisal) before (left side of figure) and after (right
side of figure) temperature scaling for single-token and multiple-token words for GPT-2 small on three corpora.
Values of surprisal with probability of 0.1, 0.01 and 1/K (random guessing) are displayed using dash lines.
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(Intr) surp surp_1 surp_2 log_frq length log_frq_1 length_1 log_frq_2
surp 0.004
surp_1 0.000 -0.147
surp_2 -0.001 -0.057 -0.101
log_frq 0.0200 0.238 0.002 -0.03
length 0.019 -0.272 0.027 0.04 0.602
log_frq_1 0.022 -0.085 0.332 -0.048 0.034 -0.021
length_1 0.028 0.034 -0.200 0.031 0.003 -0.025 0.650
log_frq_2 0.032 -0.081 0.002 0.000 0.374 0.626 -0.009 0.014
length_2 0.038 -0.013 -0.033 0.003 -0.003 0.043 0.509 0.578 0.014

(a) T = 1

(Intr) surp surp_1 surp_2 log_frq length log_frq_1 length_1 log_frq_2
surp 0.006
surp_1 0.005 -0.145
surp_2 -0.003 -0.074 -0.154
log_frq 0.020 -0.055 0.050 -0.013
length 0.017 -0.395 0.042 0.044 0.676
log_frq_1 0.024 -0.058 0.063 0.011 0.051 -0.018
length_1 0.025 0.060 -0.353 0.075 -0.016 -0.035 0.702
log_frq_2 0.031 -0.156 0.004 0.004 0.409 0.634 -0.005 0.011
length_2 0.037 0.001 -0.088 -0.006 -0.003 0.038 0.542 0.574 0.014

(b) T = T ∗

Figure 9: Correlation matrix for GPT2s on Dundee with (a) T = 1 and (b) T = T ∗.

(Intr) surp surp_1 surp_2 log_frq length log_frq_1 length_1 log_frq_2
surp 0.002
surp_1 0.002 -0.009
surp_2 0.001 0.003 -0.019
log_frq 0.017 0.237 0.013 -0.016
length 0.022 -0.181 0.018 0.011 0.692
log_frq_1 0.018 0.019 0.238 -0.051 0.067 -0.015
length_1 0.022 0.013 -0.183 0.029 -0.01 0.011 0.672
log_frq_2 0.030 0.005 0.030 0.010 0.472 0.586 0.008 0.017
length_2 0.030 0.010 0.011 0.018 -0.005 0.02 0.468 0.589 0.023

(a) T = 1

(Intr) surp surp_1 surp_2 log_frq length log_frq_1 length_1 log_frq_2
surp 0.013
surp_1 0.011 -0.108
surp_2 -0.002 -0.034 -0.080
log_frq 0.020 0.200 0.009 -0.021
length 0.020 -0.194 0.014 0.010 0.700
log_frq_1 0.019 -0.09 0.231 -0.026 0.048 0.001
length_1 0.020 0.016 -0.203 0.045 -0.013 0.014 0.667
log_frq_2 0.031 0.035 0.004 -0.007 0.482 0.578 0.000 0.020
length_2 0.031 0.015 0.038 -0.036 -0.003 0.019 0.474 0.579 0.023

(b) T = T ∗

Figure 10: Correlation matrix for GPT2s on Natural Stories with (a) T = 1 and (b) T = T ∗.
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(Intr) surp surp_1 surp_2 log_frq length log_frq_1 length_1 log_frq_2
surp 0.003
surp_1 -0.003 -0.058
surp_2 -0.001 -0.021 -0.039
log_frq 0.032 0.269 0.007 -0.053
length 0.036 -0.206 0.005 -0.007 0.691
log_frq_1 0.007 -0.068 0.212 -0.044 0.084 0.021
length_1 0.012 -0.018 -0.379 0.036 0.022 0.060 0.484
log_frq_2 0.045 -0.003 0.000 -0.009 0.539 0.593 -0.013 0.016
length_2 0.028 -0.019 -0.09 0.018 0.020 0.054 0.247 0.347 -0.012

(a) T = 1

(Intr) surp surp_1 surp_2 log_frq length log_frq_1 length_1 log_frq_2
surp 0.019
surp_1 -0.010 -0.114
surp_2 -0.002 -0.046 -0.096
log_frq 0.035 0.165 0.010 -0.049
length 0.032 -0.241 0.027 -0.010 0.719
log_frq_1 0.008 -0.103 -0.124 0.011 0.078 0.034
length_1 0.015 0.019 -0.572 0.079 0.018 0.043 0.580
log_frq_2 0.045 0.015 -0.024 -0.023 0.554 0.584 -0.012 0.026
length_2 0.029 0.009 -0.263 0.008 0.022 0.046 0.295 0.418 -0.005

(b) T = T ∗

Figure 11: Correlation matrix for GPT2s on Brown with (a) T = 1 and (b) T = T ∗.

GPT2 ∆llh + (multiple)

Dundee

s 23.6
m 36.4
l 38.0
xl 42.9

NS

s 45.2
m 50.1
l 62.0
xl 67.8

Brown

s 9.2
m 13.4
l 17.9
xl 5.49

Table 10: ∆llh improvement by only scaling tokens
in multiple-token words (%) (∆llh + (multiple) =
(∆llh(T = T ∗,multiple) − ∆llh(T = 1))/∆llh(T =
1)) for GPT2s on Dundee, Natural Stories (NS) and
Brown.

J Influence of multiple-token words1173

vs. model size1174

Table 10 shows the increase of ∆llh of temperature-1175

scaled surprisal by only taking into the analysis1176

the subset of multiple-token words. The benefit of1177

temperature-scaled surprisal being primarily from1178

the scaling of multiple-token words still holds for1179

larger LLMs. For larger LLMs, the influence of1180

multiple-token words is also larger.1181

K Influence of word-level attributes 1182

vs. influence of multiple-token words 1183

We explore which of these two factors has a 1184

stronger effect on the benefit of temperature-scaled 1185

surprisal, word-level attributes in Section 6.2 or 1186

multiple-token words in Section 6.3. For word 1187

types, we select named entities as the representa- 1188

tive attribute since they perform to be the most 1189

beneficial ones as discussed in Section 6.2. For 1190

multiple-token words, we select all multiple-token 1191

words with more-than-one tokens. In order to fairly 1192

compare the influence, we normalize ∆MSE of 1193

each category under the linguistic factor F with 1194

the ratio of that category words among the total 1195

words: ∆̄MSE(F ) = ∆MSE(F ) ·ratio(F ). Table 11 1196

shows that multiple-token words drive the much 1197

stronger averaged benefit of temperature-scaled 1198

surprisal, compared with the averaged benefit of 1199

named entities. 1200

L Other results in Section 6 1201
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GPT2 NE #>1

Dundee

s 3.9 17.0
m 6.9 26.7
l 7.2 27.0
xl 7.6 27.9

NS

s 2.6 35.9
m 2.2 38.4
l 2.1 43.3
xl 2.0 40.6

Brown

s 10.2 27.0
m 9.8 28.9
l 10.1 30.7
xl 10.8 36.0

Table 11: ∆̄MSE measurement on named entites (NE)
and multiple-token words (#>1) for GPT-2 models on
Dundee, Natural Stories (NS) and Brown.
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ratio of pwt↓ ratio of named entities
#=1 #>1 #=2 #=3 #=1 #>1 #=2 #=3

Dundee 87.6 93.7 90.6 98.3 3.7 16.3 16.6 17.4
Natural Stories 92.1 93.0 92.2 97.2* 1.3 3.5 3.3 4.7*
Brown 93.0 98.1 97.6 35.2* 3.3 12.3 10.9 17.0*

Table 12: This table displays the ratio of words with decreasing probability (pwt
↓) and the ratio of named entities

on subsets for both single-token words (#=1) and multiple-token words (#>1) for GPT-2 small on three corpora.
Numbers marked with ∗ indicate subsets with insufficient (less than 1%) data.

#=1 #>1 #=2 #=3
pwt↓ pwt↑ pwt↓ pwt↑ pwt↓ pwt↑ pwt↓ pwt↑

Dundee 8.0 19.6 269.5 -20.3* 50.5 26.6* 497.4 125.4**
NS 117.3 142.3 242.5 93.0* 312.6 95.8* -123.9* 50.6**
Brown 35.2 -61.0 327.3 5290.2** 17.3 5290.2** 655.0* 0.0**

Table 13: Given words with decreasing (and increasing) probability, the corresponding ∆MSE(pwt
↓) (and

∆MSE(pwt↑)) measurement for both single-token words (#=1) and multiple-token words (#>1) for GPT-2 small on
three corpora. Numbers marked with ∗ indicate subsets with insufficient (less than 1%) data. Numbers marked with
∗∗ indicate subsets with super insufficient (around or less than 0.1%) data.
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