
Unsupervised Text Embedding Space Generation Using Generative
Adversarial Networks for Text Synthesis

Jun-Min Lee, Korea Advanced Institute of Science and Technology, I-BRICKS, ljm56897@gmail.com

Tae-Bin Ha, I-BRICKS, taebinalive@gmail.com

Abstract Generative Adversarial Network (GAN) is a data synthesis model that creates plausible data through the competition
between a generator and a discriminator. Although GAN has been extensively studied for image synthesis, it has inherent limi-
tations when applied to natural language generation. This is because natural language is composed of discrete tokens, and the
generator faces challenges in updating its gradient through backpropagation. Therefore, most text-GAN studies generate sentences
starting with a random token (or prompt) based on a reward system. Thus, the generators of previous studies are pre-trained in
an autoregressive manner before adversarial training, resulting in data memorization where synthesized sentences reproduce the
training data. In this paper, we synthesize sentences using a framework similar to the original GAN. More specifically, we propose
Text Embedding Space Generative Adversarial Networks (TESGAN), which generate continuous text embedding spaces instead of
discrete tokens to address the gradient backpropagation problem. Furthermore, TESGAN conducts unsupervised learning that does
not directly refer to the text of the training data to overcome the data memorization issue. Also, TESGAN enables unconditional
text synthesis during the inference phase by using random noise instead of tokens or prompts for text synthesis. By adopting this
novel method, TESGAN can synthesize new sentences, demonstrating the potential of unsupervised learning for text synthesis. We
look forward to extended research that combines large-scale language models with a new perspective on viewing text as continuous
spaces.

1 Introduction

Generative Adversarial Network (GAN), as proposed by
Goodfellow et al. (2014), is a popular model for data
synthesis. GAN is an unconditional data generation al-
gorithm that aims to generate plausible data in an un-
supervised manner by fostering competition between a
generator and a discriminator to capture the real data
distribution. When GAN was initially introduced, it pri-
marily focused on image synthesis, and extensive re-
search was conducted to achieve high-quality synthetic
data results (Arjovsky et al., 2017; Radford et al., 2015;
Karras et al., 2018, 2021). Furthermore, GAN is com-
monly employed in the field of computer vision for data
augmentation through image synthesis (Sandfort et al.,
2019; Bowles et al., 2018; Antoniou et al., 2018; Tran
et al., 2021). The GAN generator learns implicit density
based on the discriminator’s loss without direct refer-
ence to the training data. Consequently, GAN can pre-
vent data memorization, where the model reproduces
the training data. Additionally, GAN can synthesize
various data by using random noise instead of a spe-
cific starting point, such as a designated start token.

Similar to images, unconditional text generation

can function as a data augmentation technique by gen-
erating new text that resembles a given dataset. It also
has practical applications, such as creating new docu-
ments by generating fictitious text information suitable
for direct use. Consequently, several studies have at-
tempted to apply GAN to natural language, but they
have encountered limitations in natural language gen-
eration. The challenge arises from the fact that nat-
ural language is composed of discrete tokens, making
it challenging for the GAN generator to directly up-
date gradients through backpropagation. The gradient
backpropagation issue in text-based GANs was first dis-
cussed by Yu et al. (2017), and numerous subsequent
text-GAN research efforts aimed to address this prob-
lem using gradient policy-based reinforcement learning
with a reward system. Furthermore, the previous text-
GAN approaches necessitated pre-training the gener-
ator with supervised learning (autoregressive) before
adversarial training due to convergence issue with the
generator (Yu et al., 2017). Accordingly, we discovered
that the generators of previous text-GAN approaches
reproduce the training data (leading to data memoriza-
tion) during text synthesis due to the autoregressive-
based pre-training process, which becomes a significant

Northern European Journal of Language Technology 1

Text Embedding Space GAN for Text Synthesis

issue in generative models.
This paper introduces a novel framework known

as Text Embedding Space Generative Adversarial Net-
works (TESGAN)1, which enables backpropagation and
prevents data memorization. TESGAN does not rely
on a supervised, pre-trained autoregressive-based gen-
erator that generates discrete tokens for text synthe-
sis. Our generator generates continuous text embed-
ding spaces for text synthesis instead of discrete to-
kens, allowing training with gradient backpropagation.
Furthermore, the fact that TESGAN deals with con-
tinuous spaces makes it possible for TESGAN’s gen-
erator to be trained within the original GAN frame-
work to mimic the real text embedding space. More-
over, TESGAN enables unconditional text generation,
as it does not require the selection of a starting token
(or prompt) for text synthesis. Our seed interpretation
model then synthesizes sentences by interpreting the
imitated continuous text embedding space created by
the generator. During sentence synthesis, data memo-
rization does not occur because TESGAN does not di-
rectly refer to the training text data but only learns
from the continuous text embedding space. We use two
datasets to conduct performance evaluations and gen-
eral applicability experiments based on synthetic text
generated by TESGAN. To assess the quality and di-
versity of synthesized text, we employ evaluation met-
rics such as Fréchet BERT Distance (FBD), Multi-sets-
Jaccard (MSJ) (Alihosseini et al., 2019), Language Model
score (LM) (de Masson d’Autume et al., 2019; Caccia
et al., 2020), and Self-BLEU (SBL) (Zhu et al., 2018). In
addition, we conducted human evaluations, and TES-
GAN achieved the highest average score. Lastly, we
calculate the data memorization ratio and present the
synthesized sentences to assess the potential of unsu-
pervised learning and continuous embedding spaces for
text synthesis.

2 Related Works

The most common method of text generation is to use
an autoregressive-based language model via teacher
forcing (Williams and Zipser, 1989). For example, ex-
tensive studies have been conducted on models us-
ing recurrent neural network (RNN) with Long Short-
Term Memory (LSTM) cells (Hochreiter and Schmid-
huber, 1997). Using LSTM, Graves (2013) successfully
generated handwriting by predicting sequences, and
Wen et al. (2015) synthesized sentences under specific
conditions. Bowman et al. (2016) generated text after
learning text embedding spaces with an autoregressive-
based LSTM model and a variational autoencoder (VAE)
architecture (Kingma and Welling, 2014). Policy Gradi-

1https://github.com/ljm565/TESGAN

ent with BLEU (PG-BLEU) calculates the BLEU (Pap-
ineni et al., 2002) score of synthesized sentences and
takes them as a reward when updating the generator
using policy gradient.

Numerous investigations have been conducted to
utilize GANs for text synthesis. Sequence GAN (Seq-
GAN) (Yu et al., 2017) attempted to address the back-
propagation problem by employing gradient policy-
based reinforcement learning with a reward system.
However, SeqGAN faced a reward sparsity issue, lead-
ing Lin et al. (2017) to introduce RankGAN, which
replaced the previous regression-based discriminator
with a novel ranker. RankGAN trains the discrimina-
tor to assign higher scores to more realistic sentences.
MaskGAN (Fedus et al., 2018) utilized an LSTM-based
generator to fill in masked parts of sentences with to-
kens during training. Since MaskGAN uses discrete
tokens, gradient backpropagation is not possible for
the generator. To overcome this challenge, the au-
thors employed the actor-critic method, using the prob-
abilities of candidate tokens from the discriminator as
rewards during training. Che et al. (2017) proposed
Maximum Likelihood Augmented Discrete GAN (Mali-
GAN), which synthesizes text by minimizing Kullback-
Leibler divergence (Kullback and Leibler, 1951). Leak-
GAN (Guo et al., 2018) alleviated issues related to
sparseness and the lack of intermediate information by
providing leaked information from the discriminator.

Several studies have aimed to address the gradient
backpropagation problem without relying on reward-
based reinforcement learning. TextGAN (Zhang et al.,
2017) introduced kernel-based moment-matching,
which enforces empirical distributions of real and
synthetic text by using LSTM and Convolutional
Neural Networks (CNN) for the generator and the
discriminator, respectively. Feature Mover GAN (FM-
GAN) (Chen et al., 2018) defined the feature-mover’s
distance (FMD) and learned it by minimizing the
FMD between real and fake sentences. Both TextGAN
and FM-GAN utilized LSTM generators that generate
discrete tokens using the soft-argmax trick instead of
relying on reinforcement learning. Relational GAN
(RelGAN) (Nie et al., 2019) applied relational recurrent
neural networks (Santoro et al., 2018) and attempted
to address the gradient backpropagation issue using
Gumbel-softmax (Jang et al., 2017). However, since
these approaches employed autoregressive (e.g., LSTM)
generators, they explicitly referenced the training text
data during model training. Consequently, previous
studies faced challenges in avoiding complete data
memorization while synthesizing sentences due to an
autoregressive generator. Lastly, Transformer-based
Implicit Latent GAN (TILGAN) (Diao et al., 2021)
adopted a similar approach to TESGAN for addressing
the gradient backpropagation issue based on the

Northern European Journal of Language Technology 2

https://github.com/ljm565/TESGAN

Text Embedding Space GAN for Text Synthesis

embedding space. However, TILGAN differs from
TESGAN in that it was trained on a latent space com-
pressed by the encoder, configured as an autoencoder
transformer, and did not utilize embeddings learned
from real language models.

Most of the aforementioned text-GAN models re-
quire the first token or prompt to synthesize text due to
their autoregressive generators. TESGAN stands apart
from these models as it generates text embedding space
directly from random noise, eliminating the need for
selecting tokens. Our TESGAN is the first text-GAN
model that learns the real text embedding space with-
out relying on an autoregressive generator.

3 Text Embedding Space GAN

TESGAN aims to generate the seeds required for syn-
thesizing plausible text. These generated seeds (fake
seeds) from the generator, along with the real seeds
from the real text, are passed to the discriminators for
training within the GAN framework. Once the training
of TESGAN is complete, the pre-trained seed interpre-
tation model synthesizes text using the fake seed cre-
ated by the generator.

3.1 Seed for Text Synthesis

We denote a text sequence as 𝑆 = 𝑤1, . . . ,𝑤𝑇 (𝑇 is the
sequence length). An autoregressive-based language
model calculates the probability of the text sequence
𝑆 as a product of conditional probabilities. If we as-
sume that 𝑆 is a complete sentence, then the sequence
𝐷 = 𝑆1, . . . , 𝑆𝑁 (𝑁 is the dialogue length) can be viewed
as multi-turn sentences. Let 𝑆1 = 𝑤1, . . . ,𝑤𝑚 and
𝑆2, . . . , 𝑆𝑁 = 𝑤𝑚+1, . . . ,𝑤𝑀 denote the first sentence and
the subsequent sentences, respectively (𝑀 is the total
length of the multi-turn sentences 𝐷). The subsequent
sentences after the first sentence can be predicted from
a product of conditional probabilities:

𝑝 (𝑆2, . . . , 𝑆𝑁 |𝑆1) =
𝑀∏

𝑖=𝑚+1
𝑝 (𝑤𝑖 |𝑤1, . . . ,𝑤𝑖−1) (1)

In other words, the first sentence can generate sub-
sequent text using an autoregressive-based language
model trained with multi-turn sentences. Therefore,
the first sentence can serve as a seed. Meanwhile, the
generator of TESGAN generates the first sentence as a
continuous embedding space instead of discrete tokens
to enable gradient backpropagation. Consequently, a
continuous embedding space of the first sentence is de-
fined as a seed.

3.2 Seed Interpretation Model

We define a seed in Section 3.1, and the seed interpre-
tation model 𝑓𝜃 (·) is used to synthesize text based on
the seed. To synthesize text, the seed interpretation
model must first be trained with multi-turn sentences
in an autoregressive manner, similar to general lan-
guage modeling, before adversarial training, as shown
in Figure 1 (left), with the following loss function:

L𝐿𝑀 = − 1
𝑁

𝑁∑︁
𝑛=1

log
𝑒𝑥𝑝 (𝑥𝑛,𝑦𝑛)∑𝐶
𝑐=1 𝑒𝑥𝑝 (𝑥𝑛,𝑐)

(2)

This enables the generator to synthesize appropriate
text by utilizing the fake embedding space it creates
during the inference phase. More detailed explanations
will be provided in the following section. As a result,
the model has to be trained on data consisting of multi-
turn sentences𝐷 = 𝑆1, . . . , 𝑆𝑁 , where each sentence has
a maximum length of 𝐿, meaning the total number of
tokens in 𝐷 is 𝑁 × 𝐿. When constructing the multi-
turn sentence data, the special token [𝐶𝐿𝑆] is inserted
only at the beginning of the first sentence, and each
sentence is distinguished by adding the special token
[𝑆𝐸𝑃] at the end. If the length of the tokenized sen-
tence is less than 𝐿, the sentence is padded with the
special token [𝑃𝐴𝐷]:

𝑆1 = 𝑤1
1 , . . . ,𝑤

1
|𝑆1 | , . . . ,𝑤

1
𝐿

(𝑤1
1 = [𝐶𝐿𝑆],𝑤1

|𝑆1 | = [𝑆𝐸𝑃],𝑤1
|𝑙>𝑆1 | = [𝑃𝐴𝐷])

(3)

𝑆𝑖 (𝑖>1) = 𝑤𝑖
1, . . . ,𝑤

𝑖
|𝑆𝑖 | , . . . ,𝑤

𝑖
𝐿

(𝑤𝑖
|𝑆𝑖 | = [𝑆𝐸𝑃],𝑤𝑖

|𝑙>𝑆𝑖 | = [𝑃𝐴𝐷])
(4)

where 𝑆1 and 𝑆𝑖 represent a seed sentence and subse-
quent text. Let 𝐻𝑟𝑒𝑎𝑙 denote the real seeds from TES-
GAN. As shown in Figure 1, the real seed is an embed-
ding space of a sentence obtained by applying the sum
of the token embedding and the positional embedding
to the sigmoid function. Since most sentences can exist
before others as long as the seed interpretation model
is trained with multi-turn sentences, a significant por-
tion of them can be used as seeds for text generation.
Therefore, most of the sentences can be used as real
seeds:

𝐻𝑟𝑒𝑎𝑙 = 𝜎
(
𝑊𝑒𝑚𝑏 (𝑆1) +𝑊𝑝𝑜𝑠 (𝑆1)

)
≈ 𝜎

(
𝑊𝑒𝑚𝑏 (𝑆𝑛) +𝑊𝑝𝑜𝑠 (𝑆𝑛)

)
∈ R𝐿×𝑑

(5)

where 𝐿 and 𝑑 represent sequence length and embed-
ding dimensions. 𝐻𝑟𝑒𝑎𝑙 from the real text can be viewed
as continuous spaces, similar to images, and the well-
pretrained seed interpretation model can predict the
next sentence 𝑆𝑛+1 properly as illustrated in Figure 1
(right):

𝑆𝑛+1 = 𝑓𝜃

(
𝜎
(
𝑊𝑒𝑚𝑏 (𝑆𝑛) +𝑊𝑝𝑜𝑠 (𝑆𝑛)

))
= 𝑓𝜃 (𝐻𝑟𝑒𝑎𝑙) ∈ Z𝐿 (6)

Northern European Journal of Language Technology 3

Text Embedding Space GAN for Text Synthesis

Figure 1: Illustration of the seed interpretation model. The seed interpretation model is pre-trained with multi-turn
sentences before adversarial training (left). After pre-training, the model’s parameters are frozen, allowing it to synthe-
size text from the seed. The right figure implies that text can be synthesized from the seed. The [𝑃𝐴𝐷] tokens following
the [𝑆𝐸𝑃] tokens are omitted in the left part for clarity.

Figure 2: Illustration of text synthesizing method using
the seed interpretation model in the inference phase.

As a result, text synthesis is carried out as the seed
passes through the seed interpretation model to predict
the subsequent sentence.

Applying to Unconditional Text Synthesis

Here, we assume that the training of the TESGAN
framework, including adversarial training, is fully com-
pleted and describe how the seed interpretation model
synthesizes text during the inference phase. Let 𝑓 ∗

𝜃
(·)

and 𝑔∗
𝜙
(·) denote the frozen seed interpretation model

and frozen generator, respectively. We can now syn-
thesize text during the inference stage using the well-
trained 𝑓 ∗

𝜃
(·) and 𝑔∗

𝜙
(·). At this point, 𝑔∗

𝜙
(·) will gen-

erate a fake seed 𝐻𝑓 𝑎𝑘𝑒 with the same dimensions as
𝐻𝑟𝑒𝑎𝑙 , as shown in Equation 7. Then, 𝑓 ∗

𝜃
(·) can synthe-

size text using the fake seed, as shown in Figure 2. In
other words, if the generator can skillfully create fake
seeds 𝐻𝑓 𝑎𝑘𝑒 that imitate the distributions of 𝐻𝑟𝑒𝑎𝑙 , then
𝐻𝑓 𝑎𝑘𝑒 can also generate appropriate subsequent sen-
tences (a.k.a synthetic text). However, no matter how

excellently𝐻𝑓 𝑎𝑘𝑒 is generated by the generator, it is use-
less if it cannot be interpreted; therefore, training the
seed interpretation model is crucial. We use the pre-
trained GPT-2 (Radford et al., 2018)2 model and fine-
tune it with multi-turn text data to serve as the seed in-
terpretation model. In addition, this model is only used
to provide 𝐻𝑟𝑒𝑎𝑙 from the real text with frozen param-
eters during adversarial training. Thus, the seed inter-
pretation model never affects the training of the gener-
ator and the discriminator during adversarial training,
and vice versa. More detailed specifications of the seed
interpretation model are explained in Appendix A.

Synthesizing text based on the generated fake seeds
𝐻𝑓 𝑎𝑘𝑒 by the generator is entirely different from autore-
gressive prompting. This is because prompting meth-
ods (Wei et al., 2021; Ouyang et al., 2022; Chung et al.,
2022) function by providing discrete tokens as input to
a model that generates the next tokens based on the
previous one. On the other hand, the generator of TES-
GAN creates continuous spaces 𝐻𝑓 𝑎𝑘𝑒 for synthesizing
text from random noise, enabling unconditional text
synthesis without explicit human instruction. Further-
more, research is actively being conducted to leverage
continuous spaces (learnable query) for flexible model
training (Lester et al., 2021; Alayrac et al., 2022; Li et al.,
2023; Dai et al., 2023). Most research explores various
methods, including using a fixed learned query after
model training or memorizing multiple learned queries
and selecting them selectively as needed in different sit-
uations. However, the TESGAN framework differs from
the mentioned studies in that its primary objective is to
generate appropriate queries through the gernerator to

2https://huggingface.co/docs/transformers/model_

doc/gpt2

Northern European Journal of Language Technology 4

https://huggingface.co/docs/transformers/model_doc/gpt2
https://huggingface.co/docs/transformers/model_doc/gpt2

Text Embedding Space GAN for Text Synthesis

Figure 3: Illustration of the generator. P-TESGAN
makes perturbed seeds by adding zero-centered normal
distribution noise 𝑧 (gray) to the output (blue) from the
generator.

produce appropriate sentences.

3.3 Generator
Both real and fake seeds (𝐻𝑟𝑒𝑎𝑙 and 𝐻𝑓 𝑎𝑘𝑒) are essen-
tial for adversarial training. Real seeds can be obtained
from the real text, as described in the seed interpreta-
tion model, and fake seeds are generated by the gen-
erator. In most text-GAN models reported so far, fake
sentences are obtained from a text-based pre-trained
autoregressive generator. Consequently, data memo-
rization occurs, where several synthetic sentences re-
produce the training data. To prevent data mem-
orization, our generator does not use a pre-trained
autoregressive-based model and does not explicitly ref-
erence the text in the training data during adversarial
training. Our generator aims to create suitable fake text
embedding spaces 𝐻𝑓 𝑎𝑘𝑒 in an unsupervised manner
(GAN framework) by referencing real text continuous
spaces 𝐻𝑟𝑒𝑎𝑙 .

As shown in Figure 3, the generator 𝑔𝜙 (·) is com-
posed of two convolutional layers and generates seeds
from the uniform distribution noise 𝑋 within an inter-
val of [−10, 10) to create diverse forms of the seeds. Ad-
ditionally, using random noise has the advantage of not
having to select the first token in the text synthesis pro-
cess after model learning. The final 𝐻𝑓 𝑎𝑘𝑒 can be ob-
tained by Equation 7:

𝐻𝑓 𝑎𝑘𝑒 = 𝑔𝜙
(
𝑋 ∼ 𝑈 (−10, 10)

)
∈ R𝐿×𝑑 (7)

where 𝐿 and 𝑑 represent sequence length and embed-
ding dimensions. As a result, the embedding space cre-
ated by the generator has the same dimension as the
real seed. Moreover, we also compare an additional
model, perturbed TESGAN (P-TESGAN). P-TESGAN
creates perturbed seeds by adding zero-centered nor-

mal distribution noise 𝑧 to the generator output. P-
TESGAN is expected to learn more robustly by pertur-
bating the generator output. Please refer to Appendix A
for detailed model information.

3.4 Objective Functions
Since the generator does not refer to text during ad-
versarial training, its performance is determined by the
loss of the discriminator. Thus, we propose four types
of loss to update the parameters of the generator and
the discriminator.

3.4.1 Discriminators

Sentence structure is important for constructing a com-
plete sentence. Since the real seeds are made from
perfect sentences, they maintain structural represen-
tations of sentences. Therefore, the fake seeds should
capture the structural features of the real seeds. As
shown in Figure 4a, we use Bidirectional Encoder Rep-
resentations from Transformer (BERT) (Devlin et al.,
2019) 𝑑𝛼 (·) called Seed Structure Discriminator (SSD)
to capture the structural features of sentences, and the
first hidden state is used to predict whether the seed is
real or fake.

The order of tokens is also important for construct-
ing sentences. It is possible to predict whether a sen-
tence’s order representation of a seed is correct be-
cause both real and fake seeds have a dimension of
(sequence length * embedding dimensions). To do this,
as shown in Figure 4b, we use Bidirectional LSTM 𝑑𝛽 (·)
called Seed Order Discriminator (SOD) to consider both
forward and backward directions of sentences. The
concatenation of the first and the last hidden states is
used to predict whether the seed is real or fake.

During adversarial training, both discriminators are
trained to predict whether the seeds are real (label 1)
or fake (label 0), while the generator is trained to fool
the discriminators by predicting fake seeds as 1. The
loss function of the discriminators is defined by the fol-
lowing equation, which updates both the discrimina-
tors and the generator:

L𝐷 = − 1
𝑁

𝑁∑︁
𝑖=1

[
𝑦𝑖 log𝑥𝑖 + (1 − 𝑦𝑖) log (1 − 𝑥𝑖)

]
𝑥 = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑦 = 𝑡𝑎𝑟𝑔𝑒𝑡

(8)

Additional information regarding the size and descrip-
tions of the discriminators can be found in Appendix A.

3.4.2 Generator Helpers

During adversarial training, it is challenging for the
generator to learn solely from the discriminators intro-
duced in Section 3.4.1. Therefore, in this section, two

Northern European Journal of Language Technology 5

Text Embedding Space GAN for Text Synthesis

(a) Seed Structure Discriminator (SSD) (b) Seed Order Discriminator (SOD)

Figure 4: Illustrations of the two discriminators. SSD predicts whether the seed is real or fake using the [𝐶𝐿𝑆] special
token’s feature. SOD considers both forward and backward contexts of the seed.

Figure 5: Illustration of Seed Distribution Prediction
(SDP). SDP is used to enhance the fake seeds of the
generator during adversarial training by minimizing the
distance between real and fake seed distributions.

auxiliary tasks are introduced to aid the training of the
generator.

Capturing the distribution of the text embedding
space is important, and for this purpose, we employ
Seed Distribution Prediction (SDP). However, since the
text embedding space cannot be directly used as a prob-
ability distribution, the output of the seed interpreta-
tion model is utilized. Specifically, when a seed passes
through the frozen seed interpretation model, the out-
put dimension of (sequence length * vocabulary size)
is obtained through the softmax function, which can
be used as a probability distribution. The loss is cal-
culated using the Kullback-Leibler divergence between
the distributions of the real and the fake seeds. SDP is
used solely for updating the generator during adversar-
ial training:

L𝑆𝐷𝑃 = 𝜎
(
𝑓 ∗
𝜃
(𝐻𝑟𝑒𝑎𝑙)

)
log

𝜎
(
𝑓 ∗
𝜃
(𝐻𝑟𝑒𝑎𝑙)

)
𝜎
(
𝑓 ∗
𝜃
(𝐻𝑓 𝑎𝑘𝑒)

) (9)

where the 𝜎 and 𝑓 ∗
𝜃
(·) mean softmax function and the

frozen seed interpretation model. More detailed figure
of SDP is illustrated in Figure 5.

The sentences used as the seeds are composed of
tokens explained in Equation 3. Additionally, we ap-
ply Seed Frame Prediction (SFP) since the structures of
seeds are somewhat formalized. Therefore, we calculate
the Mean Absolute Error (MAE) and Mean Squared Er-
ror (MSE) to make the form of a fake seed similar to a
real one. If we train the fake seeds using MAE and MSE,
the fake seeds from the generator can become blurred.
However, the loss of SFP is relatively small compared
to that of SSD, SOD, and SDP; therefore, SFP does not
adversely affect the generator. SFP is used only for up-
dating the generator during adversarial training:

L𝑆𝐹𝑃 = ∥𝜇𝑟 − 𝜇𝑓 ∥22 + ∥𝐻𝑟𝑒𝑎𝑙 − 𝐻𝑓 𝑎𝑘𝑒 ∥1
𝜇𝑟 = 𝑎𝑣𝑔(𝐻𝑟𝑒𝑎𝑙), 𝜇𝑓 = 𝑎𝑣𝑔(𝐻𝑓 𝑎𝑘𝑒)

(10)

The full loss function, including the seed interpretation
model’s loss, is described in Appendix B.

4 Text Synthesis Experiments

4.1 Dataset
In this experiment, we use two datasets consisting of
multi-turn sentences to train the seed interpretation
model and perform the text synthesis experiment.
DailyDialog3 (Li et al., 2017) is multi-turn conversation
data used for training open-domain dialogue genera-
tion models. It consists of chit-chat-style multi-turn En-
glish conversations, and we select this data for domain-
independent text synthesis. This dataset is used to eval-
uate the performance of TESGAN and other baselines.
IMDb4 (Maas et al., 2011) contains highly polar movie

3http://yanran.li/dailydialog
4https://huggingface.co/datasets/imdb

Northern European Journal of Language Technology 6

http://yanran.li/dailydialog
https://huggingface.co/datasets/imdb

Text Embedding Space GAN for Text Synthesis

Algorithm 1 Text Embedding Space GAN
Require: Seed interpretation model 𝑓𝜃 ; Generator 𝑔𝜙 ;
BERT discriminator 𝑑𝛼 ; LSTM discriminator 𝑑𝛽 ; Multi-
turn data 𝐷 = {𝑆1:𝑁 }; Sentence data 𝑆𝑖 = {𝑤 𝑖

1:𝐿}.
1: Pre-train 𝑓𝜃 using 𝐷 .
2: Initialize 𝑔𝜙 , 𝑑𝛼 , 𝑑𝛽 with random weights

𝜙, 𝛼, 𝛽 ∼ 𝑁 (0, 0.08).
3: Freeze the 𝑓𝜃 .
4: while TESGAN converges do
5: for d-steps (during odd epoch) do
6: Get real data from 𝑓𝜃 using 𝑆 with positive la-

bel 1.
7: Make fake data from 𝑔𝜙 with negative label 0.

8: Update 𝛼 and 𝛽 via results of 𝑑𝛼 and 𝑑𝛽 .
9: end for

10: for g-steps do
11: Make fake data from 𝑔𝜙 with positive label 1.
12: Calculate SDP and SFP.
13: Update 𝜙 via results of 𝑑𝛼 , 𝑑𝛽 , SDP and SFP.
14: end for
15: end while

reviews and is widely used for sentiment classification
tasks. Each human-written movie review consists of
several sentences, and we used this data as multi-turn
data. This dataset is rougher and has a larger vol-
ume compared to DailyDialog. We evaluate the gen-
eral applicability by synthesizing sentences based on
IMDb-trained TESGAN. Statistics of the two datasets
are shown in Appendix C.

4.2 Training Steps

TESGAN training has two steps. First, the seed inter-
pretation model must be pre-trained with multi-turn
data to interpret the seeds. In the performance and
general applicability experiments, we train the model
on the 11k and 25k multi-turn sets of DailyDialog and
IMDb, respectively, as shown in Table 7. Then, the
model that achieves the highest BLEU-4 score in the
validation set is selected in each experiment.

The second step is adversarial training. After pre-
training the seed interpretation model, the generator
and the discriminator learn through adversarial train-
ing. For adversarial training, real and fake seeds are
created by the embedding part of the frozen seed inter-
pretation model and the generator, respectively. Since
real seeds can be generated from a significant number
of sentences, all 87k and 300k sentences in each training
set used in the experiment mentioned above are used to
create the real seeds via Equation 3. We also generate
the same number of fake seeds as real seeds for adver-
sarial training, and the following equation represents

what the discriminator and generator aim to optimize
during adversarial training:

DL = max
𝛼,𝛽
E𝑥∼𝐻𝑟𝑒𝑎𝑙

[
log𝑑𝛼,𝛽 (𝑥)

]
GL = max

𝜙
E𝑧

[
log𝑑𝛼,𝛽 (𝑔𝜙 (𝑧))

]
+ L𝑆𝐷𝑃 + L𝑆𝐹𝑃

(11)

where 𝑑𝛼,𝛽 means SSD, SOD respectively. DL implies
updating the parameters of the discriminator to accu-
rately predict real seeds as 1 from the perspective of
real seeds. GL also means updating the generator so
that the discriminator predicts the fake seeds created
by the generator as 1. This approach helps partially re-
solve the learning imbalance problem between the gen-
erator and the discriminator (Goodfellow et al., 2014).
Further discussion of the above pseudocode and opti-
mization methods is covered in Section 6.1. Lastly, hy-
perparameters and experiment setup are described in
Appendix D.

4.3 Evaluation Metric
Target-oriented evaluation metrics, such as BLEU and
ROUGE (Lin, 2004), are not suitable for evaluating syn-
thetic text. This is because each synthesized sentence
from random noise has no corresponding target, and
the generative models aim to synthesize plausible data
based on real data distribution without copying the
training data. Therefore, we employ several metrics
that can evaluate unconditional text generation.

4.3.1 Fréchet BERT Distance (FBD)

de Masson d’Autume et al. (2019) proposed Fréchet Em-
bedding Distance (FED) to evaluate the quality of syn-
thetic text, inspired by Fréchet Inception Distance (FID)
(Heusel et al., 2017). Alihosseini et al. (2019) proposed
FBD, an improved version of FED, to measure the qual-
ity and diversity of synthesized text using a pre-trained
BERT. The features of real and synthesized text ob-
tained by the pre-trained BERT are assumed to have
Gaussian distributions, and FBD is the distance be-
tween them:

𝐹𝐵𝐷 =

√︃
∥𝜇𝑟 − 𝜇𝑓 ∥22 + 𝑡𝑟

(
Σ𝑟 + Σ𝑓 − 2(Σ𝑟Σ𝑓)0.5

)
(12)

where 𝜇 and Σ show the mean vectors and the covari-
ance matrices of the real and fake seed features.

4.3.2 Multi-Sets-Jaccard (MSJ)

Each synthesized sentence has no corresponding tar-
get; thus, we select MSJ (Alihosseini et al., 2019), which
calculates the score between real and synthesized text
sets. The Jaccard Index determines the similarity of two
sets, calculating the ratio of the cardinality of their in-
tersection to that of their union. Inspired by the Jaccard

Northern European Journal of Language Technology 7

Text Embedding Space GAN for Text Synthesis

Index, MSJ focuses on the similarity of the n-gram fre-
quencies of text in the two sets, 𝑠𝑟 and 𝑠𝑓 , which are the
real and synthesized text sets, respectively:

𝑀𝑆𝐽𝑛 =

∑
𝑔∈𝐺𝑛

min
(
𝐶𝑛 (𝑔, 𝑠𝑟),𝐶𝑛 (𝑔, 𝑠𝑓)

)∑
𝑔∈𝐺𝑛

max
(
𝐶𝑛 (𝑔, 𝑠𝑟),𝐶𝑛 (𝑔, 𝑠𝑓)

) (13)

where 𝐺𝑛 and 𝐶𝑛 (𝑔, 𝑠) mean the n-gram in 𝑠𝑟 ∪ 𝑠𝑓 and
the normalized counts of the n-gram in set 𝑠 . Addi-
tionally, this n-gram-based synthesized sentence evalu-
ation method is a common approach in the field of un-
conditional text generation (Yu et al., 2017; Press et al.,
2017; Fedus et al., 2018).

4.3.3 Language Model score (LM)

de Masson d’Autume et al. (2019); Caccia et al. (2020)
proposed LM, which can evaluate the quality of gener-
ated samples using a well-trained language model. LM
measures the quality of generated samples, meaning
that scores of the bad samples are poor under a well-
trained language model. We select the pre-trained GPT-
22 as a well-trained language model. LM is calculated as
the cross-entropy results between the output and input
of GPT-2.

4.3.4 Data Synthesis Ratio (DSR)

DSR considers not only the data memorization ratio be-
tween the training and synthesized data but also syn-
thetic diversity itself. Short sentences identical to train-
ing data, such as ”I’m fine”, can be synthesized by coin-
cidence. Therefore, sentences longer than two-thirds of
the maximum sentence length that perfectly reproduce
the training data are considered memorized data. Con-
sidering these conditions, we can calculate DSR using
the following equation:

𝑅𝑠𝑦𝑛 =
|𝑆𝑠𝑦𝑛 − 𝑆𝑡𝑟𝑎𝑖𝑛 |

|𝑆𝑠𝑦𝑛 |
, 𝑅𝑢𝑛𝑞 =

|𝑆𝑢𝑛𝑞 |
|𝑆𝑠𝑦𝑛 |

𝐷𝑆𝑅 =
2 ∗ 𝑅𝑠𝑦𝑛 ∗ 𝑅𝑢𝑛𝑞
𝑅𝑠𝑦𝑛 + 𝑅𝑢𝑛𝑞

(14)

where 𝑆𝑠𝑦𝑛 and 𝑆𝑡𝑟𝑎𝑖𝑛 indicate synthesized and train-
ing text set respectively. 𝑆𝑢𝑛𝑞 means the set of unique
sentences of synthesized text results. If the synthesized
sentences in 𝑆𝑠𝑦𝑛 do not reproduce any of the sentences
in 𝑆𝑡𝑟𝑎𝑖𝑛 , 𝑅𝑠𝑦𝑛 would be 1. Similarly, if the synthesized
text in 𝑆𝑠𝑦𝑛 is all unique, 𝑅𝑢𝑛𝑞 will be 1. The final DSR
is calculated as the harmonic mean of 𝑅𝑠𝑦𝑛 and 𝑅𝑢𝑛𝑞
ratios.

4.3.5 Self-BLEU (SBL)

Zhu et al. (2018) first proposed SBL to measure diver-
sity of token combination. The original BLEU evaluates
the degree of n-gram overlap (similarity) between one
hypothesis sentence and multiple reference sentences.

However, unconditionally generated text does not have
specific targets, so it is not suitable for BLEU evalua-
tion. SBL is widely used to solve this problem. SBL can
evaluate n-gram-level similarity by regarding one sen-
tence as a hypothesis and the rest as references in a syn-
thetic text set. Since SBL evaluates based on the gener-
ated text set itself, it is not able to evaluate the quality
of the synthetic text, but it is possible to evaluate the
diversity of token combinations based on n-gram. Ad-
ditionally, the difference between SBL and DSR lies in
their evaluation criteria. DSR assesses data memoriza-
tion by comparing the generated text set with the train-
ing dataset, while also considering the diversity of not
n-gram-based but generated complete sentences them-
selves.

4.4 Baselines

In this paper, we compare our two models with the fol-
lowing approaches: LSTM-based Maximum Likelihood
Estimation (MLE-L), PG-BLEU, SeqGAN, RankGAN,
and MaliGAN. MLE-L represents the pre-training re-
sult of the generator, which all the other models un-
dergo before adversarial training. The pre-trained gen-
erators with the lowest loss in the validation set were
chosen for each method, including MLE-L. We com-
pare these models with our original TESGAN and P-
TESGAN, which is trained by adding zero-centered nor-
mal distribution noise 𝑧 to the generator’s output. We
also evaluate the GPT-2-based pre-trained seed inter-
pretation model (MLE-G) used in the TESGAN frame-
work. Since MLE-based models are trained without ad-
versarial training, they are shown as baselines in Fig-
ure 6. Finally, to demonstrate that the results of the
TESGAN-based models are not solely dependent on the
seed interpretation model but rather on seeds created
by the generator, we present the outcomes when using
Gaussian random noise as input for the seed interpre-
tation model.

5 Results

5.1 Metric-based Evaluation

In this section, we compare the results of the synthe-
sized text at every epoch of adversarial training using
the metrics mentioned in Section 4.3. This experiment
was performed with models trained on the DailyDia-
log dataset. Since Fréchet BERT Distance (FBD) and
Multi-Sets-Jaccard (MSJ) require a real text corpus, the
test set is used as the real text corpus. Data Synthesis
Ratio (DSR) is calculated with the training set as the
data memorization ratio needs to be computed.

The FBDs of the TESGAN-based models are lower
than the MLE-based autoregressive results, while the

Northern European Journal of Language Technology 8

Text Embedding Space GAN for Text Synthesis

(a) FBD ↓ (b) MS-Jaccard2 ↑ (c) MS-Jaccard3 ↑

(d) MS-Jaccard4 ↑ (e) MS-Jaccard5 ↑ (f) DSR ↑

Figure 6: Illustration showing the results of the text-GAN models. In previous research, adversarial training is conducted
after the generator pre-training. MLE is represented as a baseline because it is a supervised pre-trained generator
without adversarial training.

Method FBDQ,D ↓ MSJ4Q,D ↑ MSJ5Q,D ↑ DSRM (𝑅𝑠𝑦𝑛, 𝑅𝑢𝑛𝑞) ↑ LM∗Q ↓ SBL3∗D↓ SBL4∗D ↓
TESGAN (ours) 2.899 0.042 0.021 0.967 (1, 0.936) 4.236 0.743 0.623
P-TESGAN (ours) 2.274 0.032 0.014 0.841 (0.997, 0.727) 3.642 0.790 0.702
SeqGAN (Yu et al., 2017) 6.153 0.040 0.015 0.880 (0.883, 0.877) 5.094 0.420 0.266
RankGAN (Lin et al., 2017) 6.409 0.048 0.023 0.890 (0.895, 0.886) 5.123 0.446 0.290
MaliGAN (Che et al., 2017) 21.436 0.003 0 0.030 (1, 0.015) - - -
PG-BLEU (Yu et al., 2017) 9.002 0.015 0.006 0.569 (0.555, 0.584) 4.584 0.628 0.484
MLE-L (Yu et al., 2017) 6.284 0.045 0.021 0.955 (0.925, 0.987) 5.168 0.403 0.242
MLE-G 9.592 0.026 0.014 0.078 (1, 0.040) 3.543 0.948 0.944
Random Noise † 14.142 0.016 0.006 0.930 (1, 0.869) 4.562 0.516 0.404

Table 1: Performance of the models. P-TESGAN denotes the perturbed TESGAN. † is the result of directly entering
Gaussian random noise as an input to the seed interpretation model. The second group of models consists of autore-
gressive models. ∗ denotes a metric not considered when selecting the best model. - denotes that the confidence of the
result is low because the quality of the synthesized sentence is poor. The superscript of each metric represents what
each metric can measure (Q: quality, D: diversity, M: data memorization).

baselines increase after having the lowest value at the
end of the first epoch of adversarial training, as shown
in Figure 6a. In terms of MSJ, as shown in Figure 6b-
6e, the previous studies report lower values than the
TESGAN-based models at the end of adversarial train-
ing, despite having higher results in the beginning.
On the other hand, MSJ results of the TESGAN-based
models slightly increase during adversarial training.
Moreover, some MSJ5 results of the original TESGAN
are higher than MLE-L during adversarial training, as
shown in Figure 6e. In the case of DSR, as shown in
Figure 6f, the original TESGAN also increases during

adversarial training, and some results are higher than
MLE-L. On the other hand, the results of the previous
studies decrease during adversarial training, resulting
in lower values than the TESGAN-based models in the
end. As adversarial learning progresses, the results of
the baselines deteriorate because the LSTM generator
tends to generate only a few unique sentences. Fur-
thermore, we will explain the reasons why the MLE-G
results of the GPT-2 base are relatively poor in the fol-
lowing section.

We chose the best model of each method consider-
ing the FBD, MSJ, and DSR results because these met-

Northern European Journal of Language Technology 9

Text Embedding Space GAN for Text Synthesis

TESGAN (17-epoch, DailyDialog) P-TESGAN (10-epoch, DailyDialog) Random Noise
I’m so glad you finally got on the train. Hello, Mr. Smith. I’m Mary. Anything I have called three weeks
I just lost my job. I just want to tell you the truth. Is Is Is Is Is Is Is
Yeah. You mean the network connection? It’s the end of the world. Left and go to go to go to go
What happened? What do you want to do in this company? Mr Moon, Mr Moon. . .Mr Moon. . .
So you have to wait for a while. He just broke up with Ann. are you have finished 6 items?

TESGAN (18-epoch, IMDb)
This is probably one of the best of the best of the series.
I was bored to think about how stupid this movie was.
”The Deadly Loved One” is the story of a rebellious college basketball
I have to say, this is the worst film I have ever seen.
I was very excited to see it, anticipating Christmas eve.
This movie was one of the best of the year for me.

Table 2: Example of unconditionally synthesized sentences. P-TESGAN denotes the perturbed TESGAN.

rics evaluate quality, diversity, and data memorization.
We evaluated the text generated by each model per
epoch using the metrics mentioned above and com-
pared the best-performing models5. According to Ta-
ble 8 in Appendix E, we compare the baselines at 1-
epoch with TESGAN and P-TESGAN at 17 and 10-
epochs, respectively. After selecting the best models,
we calculated the Language Model score (LM) and Self-
BLEU (SBL) based on the text generated by each model.
As shown in Table 1, the TESGAN-based models show
the highest results in FBD and DSR. Also, the TESGAN-
based models show comparable results in MSJ com-
pared to the baselines and display the highest results
among the adversarial-based methods in terms of LM
score. However, in terms of SBL, TESGAN-based mod-
els perform worse than the baselines. In addition, the
results of Gaussian random noise demonstrate that the
TESGAN results are attributed to the seeds from the
generator. The first group of Table 2 shows the syn-
thetic text by TESGAN and Gaussian random noise. In
conclusion, MLE-L is a supervised pre-trained genera-
tor applied before adversarial training, but most of the
result curves of the prior methods showed lower perfor-
mance than MLE-L during adversarial training. On the
other hand, our TESGAN-based models showed better
results than MLE-L or improved performance during
adversarial training. Finally, the results according to
the epoch of the LM and SBL of each model are shown
in Appendix E.

5.2 Analysis of Autoregressive Models

In this section, we will analyze the results of the MLE-
based autoregressive models. Other baseline models
pretrain an LSTM-based generator before starting ad-
versarial training, while the TESGAN framework em-
ploys a GPT-2-based pre-trained seed interpretation
model. The results of the MLE-based models in Sec-

5Detailed results are shown in Appendix E

tion 5.1 are based on the evaluation of corpora gener-
ated in an autoregressive manner using the two pre-
trained models. MLE-based models generate sentences
in an autoregressive manner, starting from a specific
[𝑠𝑡𝑎𝑟𝑡 𝑡𝑜𝑘𝑒𝑛] and predicting the next token. If the
model predicts the next token in a greedy manner, all
generated sentences would be identical, exhibiting de-
terministic behavior. To prevent this, MLE-based mod-
els sample the next token based on the probability log-
its (Yu et al., 2017). This way, MLE-L results in diverse
token choices since the logit probability differences are
not large. On the other hand, MLE-G training fits the
data better than LSTM-based models, resulting in sig-
nificantly larger differences in the logits of the next to-
ken. As a consequence, MLE-G is relatively determin-
istic compared to MLE-L. Therefore, when generating
sentences without the use of the softmax temperature
technique (Hinton et al., 2015), MLE-G delivers high
quality, but it struggles to produce a variety of sen-
tences. In practice, sentences generated by MLE-G lack
diversity, which led to relatively lower results in Sec-
tion 5.1. However, it is worth noting that while diversity
may be lacking, the quality of the generated sentences
is high, and this aspect will be demonstrated in the next
section.

5.3 Human Evaluation

We conducted human evaluations based on the corpora
generated by each model. The corpora, comprising 50
randomly selected unique sentences that do not dupli-
cate those from the training set, were assessed by 10
annotators. We asked annotators to give higher scores
to corpora that contained more natural sentences on a
scale from 1 to 5. The scores presented in Table 3 rep-
resent the average scores assessed by each person. Ac-
cording to Table 3, TESGAN received the highest score,
with MLE-G achieving the second-highest result. As
mentioned in Section 5.2, MLE-G, despite facing chal-
lenges in generating diverse sentences, was able to pro-

Northern European Journal of Language Technology 10

Text Embedding Space GAN for Text Synthesis

Method Avg. Score
TESGAN (ours) 4.2
P-TESGAN (ours) 3.4
SeqGAN (Yu et al., 2017) 2.4
RankGAN (Lin et al., 2017) 2.0
MaliGAN (Che et al., 2017) 1.0
PG-BLEU (Yu et al., 2017) 1.6
MLE-L (Yu et al., 2017) 3.0
MLE-G 3.8

Table 3: Human evaluation scores (1 ∼ 5).

duce high-quality sentences.

5.4 General Applicability
In this section, we trained TESGAN with IMDb using
a larger volume than DailyDialog to assess the general
applicability of TESGAN. The IMDb-trained TESGAN
is evaluated with both the DailyDialog test set (zero-
shot) and the IMDb test set (non-zero-shot). Figures 7a
and 7b display the zero-shot and non-zero-shot test re-
sults of the IMDb-trained TESGAN, respectively. Addi-
tionally, the zero-shot results generally exhibit a simi-
lar trend to the non-zero-shot test, suggesting that the
model is being trained without bias toward the training
data. Furthermore, the second group in Table 2 presents
the synthetic text results of the IMDb-trained TESGAN.
Both the zero-shot and text synthesis results indicate
that TESGAN’s outcomes do not vary significantly de-
pending on the dataset, implying that TESGAN gen-
eralizes well and can be trained on diverse datasets.
Figure 7c also illustrates the DSR, LM, and SBL results
of the IMDb-trained TESGAN. Since these metrics are
evaluated not on the test set but on generated text data,
they consistently yield results regardless of the zero-
shot test.

5.5 Error Analysis
We also conducted three additional TESGAN trainings
without setting a manual seed in the code to confirm
reproducibility. To assess whether the sentences gen-
erated by the model for each trial converge as adver-
sarial training progresses, we calculated the Standard
Error of the Mean (SEM) based on the average results.
SEM is equivalent to the standard deviation of a sam-
ple mean taken from a population and represents the
standard deviation that indicates the extent of variabil-
ity in sample means. SEM is calculated by 𝜎√

𝑛
(𝜎 and 𝑛

denote average results and the number of trials). As a
result, the overall tendency of training outcomes during
adversarial training is similar. Furthermore, the SEM of
each epoch decreases during adversarial training, indi-
cating that each TESGAN converges. Figure 8 displays

the results of the four experiments, including the aver-
age results and SEM.

6 Discussion

6.1 Generator and Training Strategy

We found that the performance of the TESGAN frame-
work depends on the generator’s architecture. When
ReLU was used, dying ReLU (Lu et al., 2019) occurred,
where the negative values became zero, making it un-
suitable for text synthesis where diversity is impor-
tant. Additionally, the hyperbolic tangent (tanh) was
not adequate due to the problem of gradient vanish-
ing (Wang et al., 2019). Consequently, we adopted
Leaky ReLU (Maas et al., 2013) as the activation func-
tion between two convolutional layers of the genera-
tor. Furthermore, deep structures and batch normal-
ization tended to result in monotonous text synthe-
sis. Therefore, we designed the generator’s layers to be
wide rather than deep without batch normalization.

We also observed that the convergence of TESGAN
depends on the parameter update rate of the discrim-
inators and the generator. As in Algorithm 1, the dis-
criminators update their parameters only during odd
training epochs to allow the generator to catch up with
the discriminator’s learning because the convergence of
the generator is commonly slower than that of the dis-
criminator. When the discriminators updated their pa-
rameters at every training epoch, the same as the gen-
erator, adversarial training became unbalanced. Addi-
tionally, we conducted further experiments by chang-
ing the update frequency of the generator from once
to three times per mini-batch step. When the gener-
ator updated only once per step, the same as the dis-
criminators, it could not keep up with the learning of
the discriminators. On the other hand, when the gen-
erator updated three times per step, the discrimina-
tors could not keep up with the learning of the genera-
tor. Therefore, we chose to update the generator twice
per step, resulting in the generator being updated four
times more frequently per two epochs than the discrim-
inators, as explained in Algorithm 1.

6.2 Ablation Study

In this section, we confirm the effect of the four objec-
tive functions in Section 3.4, and the results are shown
in Table 4. When Seed Order Discriminator (SOD) and
Seed Distribution Prediction (SDP) were not used, there
was a significant difference in the results, indicating
that SOD and SDP are important for high-quality text
synthesis. Since MSJ evaluates text based on the n-
gram of tokens, the order of the synthesized text is im-
portant. Accordingly, the MSJ results of the ”w/o SOD”

Northern European Journal of Language Technology 11

Text Embedding Space GAN for Text Synthesis

(a) Zero-shot results (b) Non-zero-shot results (c) DSR, LM, SBL results

Figure 7: Zero-shot, non-zero-shot results of IMDb-trained TESGAN. DSR, LM, and SBL results of IMDb-trained TES-
GAN are normalized for ease of viewing.

(a) FBD ↓ (b) MS-Jaccard2 ↑ (c) MS-Jaccard3 ↑

(d) MS-Jaccard4 ↑ (e) MS-Jaccard5 ↑ (f) DSR ↑

Figure 8: Illustration of TESGAN training results. TESGANs show similar trends for every trial, and SEMs decrease
during adversarial training.

in Table 4 are worse than those of the ”w/o Seed Struc-
ture Discriminator (SSD)”, which proves that SOD can
capture the token order representations. The four ob-
jective functions were used to achieve a good overall
result, demonstrating that each of the four objective
functions is playing a unique role.

6.3 Activation Function Study
The results varied depending on the activation func-
tions used at the end of the seed-making process. We
conducted experiments on sigmoid, tanh, and non-use
cases during the seed-making process, and their results
are shown in Table 5. Table 6 shows the quality of the
synthetic text for tanh and non-use cases, and the re-
sults are worse than those using sigmoid in Table 2.

However, according to Table 5, the DSR results of the
non-use case are higher than the sigmoid case. Thus,
we can see that a higher DSR does not always mean
good quality because DSR only considers data memo-
rization. Therefore, we select the model using the sig-
moid activation function, which has better results for
FBD and MSJ, and moderately high DSR.

6.4 Data Memorization Study
The pre-trained GPT-2, which has 124M parameters
and is used as the seed interpretation model, has been
trained on relatively large corpora. Therefore, we need
to confirm whether the low data memorization comes
from transfer learning or the TESGAN framework. We
trained three smaller seed interpretation models from

Northern European Journal of Language Technology 12

Text Embedding Space GAN for Text Synthesis

Method FBD ↓ MSJ2 ↑ MSJ3 ↑ MSJ4 ↑ MSJ5 ↑ DSR LM∗ ↓
TESGAN w/o SSD (13) 2.8346 0.1377 0.0744 0.0394 0.0204 0.9497 4.1833
TESGAN w/o SOD (2) 4.7724 0.1125 0.0596 0.03115 0.0164 0.8656 4.7011
TESGAN w/o SDP (13) 38.1301 0.0580 0.0252 0.0099 0.0041 0.7390 -
TESGAN w/o SFP (16) 2.9202 0.1477 0.0790 0.0422 0.0209 0.9463 4.2339
TESGAN (17) 2.8994 0.1496 0.0789 0.0422 0.0214 0.9669 4.2361

Table 4: Results of the ablation study. Numbers in parentheses indicate the training epoch of the selected model. ∗
denotes a metric not considered when selecting the best model. - denotes that the confidence of the result is low
because the quality of the synthesized sentence is poor.

Activation FBD ↓ MSJ2 ↑ MSJ3 ↑ MSJ4 ↑ MSJ5 ↑ DSR ↑ LM∗ ↓

TESGAN
None 47.261 0.108 0.060 0.032 0.016 0.982 -
Tanh 9.780 0.110 0.057 0.030 0.015 0.871 5.402

Sigmoid 2.899 0.150 0.079 0.042 0.021 0.967 4.236

P-TESGAN
None 54.002 0.111 0.059 0.030 0.015 0.958 -
Tanh 20.158 0.118 0.061 0.031 0.015 0.937 -

Sigmoid 2.274 0.131 0.066 0.032 0.014 0.841 3.642

Table 5: Performance according to the activation functions of the generator. ∗ denotes a metric not considered when
selecting the best model. - denotes that the confidence of the result is low because the quality of the synthesized
sentence is poor.

TESGAN with Tanh P-TESGAN with Tanh
You are a little You ’ re a book?
I ’ m sorry to see you off. You ’ Ve come You are late.
I ’ m sorry. I ’ m doing ’ t “ all day ’ s
You ’ d like a tour to see the dentist. I don’t know what time it is?
You are late. I ’ m sorry to hear this!
TESGAN without activation P-TESGAN without activation
I ’ d like to say it! I ’ d like to I ’ s a big, that ’ s right.
Yes, do you want to buy? I like the back ones. They look like a shop.
I ’ s right over there? I ’, this ’, this ’! be real,
What’s the matter? I have a problem with my English textbooks.
I got a bite the food? I ’ s faster, George. I ’ d like to go

Table 6: Synthesized sentences by tanh and non-use cases in Table 5. P-TESGAN denotes the perturbed TESGAN.

scratch to measure the data memorization and they
have 54M, 75M, and 96M parameters each. As shown in
Figure 9, DSR is high regardless of the number of model
parameters during adversarial training, indicating that
the low data memorization comes from the TESGAN
framework.

7 Conclusion

In this work, we proposed a novel unsupervised text
synthesis framework, TESGAN. TESGAN facilitated the
gradient backpropagation of natural language discrete
tokens by creating a continuous text embedding space
called a seed. In most text-GAN studies, data memo-
rization had been inevitable because the generator had
to be pre-trained with an autoregressive approach be-

fore adversarial training. Therefore, we introduced TES-
GAN, which mitigated the data memorization issue by
applying an unsupervised GAN framework that does
not directly refer to the training data. TESGAN im-
proved text synthesis performance during adversarial
training and resulted in the best or comparable results
in terms of evaluation metrics. Additionally, TESGAN
exhibited the lowest data memorization ratio, and the
data memorization study confirmed that these results
were attributable to the TESGAN framework. Further-
more, TESGAN achieved the highest scores in human
evaluations. The ablation study highlighted the im-
portance of the four objective functions, and the syn-
thetic text results from a large dataset-trained TES-
GAN demonstrated its general applicability. This pa-
per underscores the potential of continuous embed-
ding spaces in conjunction with discrete tokens for text

Northern European Journal of Language Technology 13

Text Embedding Space GAN for Text Synthesis

Figure 9: DSR results according to scales of seed inter-
pretation model.

synthesis through unsupervised learning. By integrat-
ing the concept of viewing text as a continuous space
with publicly available Large Language Models (Tou-
vron et al., 2023), models can synthesize more expres-
sive sentences, and we anticipate that many follow-up
studies will emerge.

Northern European Journal of Language Technology 14

Text Embedding Space GAN for Text Synthesis

References
Alayrac, Jean-Baptiste, Jeff Donahue, Pauline Luc, An-

toine Miech, Iain Barr, Yana Hasson, Karel Lenc,
Arthur Mensch, Katie Millican, Malcolm Reynolds,
Roman Ring, Eliza Rutherford, Serkan Cabi, Tengda
Han, Zhitao Gong, Sina Samangooei, Marianne
Monteiro, Jacob Menick, Sebastian Borgeaud, An-
drew Brock, Aida Nematzadeh, Sahand Sharifzadeh,
Mikolaj Binkowski, Ricardo Barreira, Oriol Vinyals,
Andrew Zisserman, and Karen Simonyan. 2022.
Flamingo: a visual language model for few-shot
learning.

Alihosseini, Danial, Ehsan Montahaei, and Mahdieh
Soleymani Baghshah. 2019. Jointly measuring di-
versity and quality in text generation models. In
Proceedings of the Workshop on Methods for Opti-
mizing and Evaluating Neural Language Generation,
pages 90–98, Minneapolis, Minnesota. Association
for Computational Linguistics.

Antoniou, Antreas, Amos Storkey, and Harrison Ed-
wards. 2018. Data augmentation generative adver-
sarial networks.

Arjovsky, Martin, Soumith Chintala, and Léon Bottou.
2017. Wasserstein generative adversarial networks.
In Proceedings of the 34th International Conference on
Machine Learning, volume 70 of Proceedings of Ma-
chine Learning Research, pages 214–223. PMLR.

Bowles, Christopher, Liang Chen, Ricardo Guerrero,
Paul Bentley, Roger Gunn, Alexander Hammers,
David Alexander Dickie, Maria Valdés Hernández,
Joanna Wardlaw, and Daniel Rueckert. 2018. Gan
augmentation: Augmenting training data using gen-
erative adversarial networks.

Bowman, Samuel R., Luke Vilnis, Oriol Vinyals, Andrew
Dai, Rafal Jozefowicz, and Samy Bengio. 2016. Gener-
ating sentences from a continuous space. In Proceed-
ings of The 20th SIGNLL Conference on Computational
Natural Language Learning, pages 10–21, Berlin, Ger-
many. Association for Computational Linguistics.

Caccia, Massimo, Lucas Caccia, William Fedus, Hugo
Larochelle, Joelle Pineau, and Laurent Charlin. 2020.
Language gans falling short. In 8th International Con-
ference on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020. OpenReview.net.

Che, Tong, Yanran Li, Ruixiang Zhang, R Devon Hjelm,
Wenjie Li, Yangqiu Song, and Yoshua Bengio. 2017.
Maximum-likelihood augmented discrete generative
adversarial networks.

Chen, Liqun, Shuyang Dai, Chenyang Tao, Dinghan
Shen, Zhe Gan, Haichao Zhang, Yizhe Zhang, Ruiyi

Zhang, Guoyin Wang, and Lawrence Carin. 2018.
Adversarial text generation via feature-mover’s dis-
tance. In Proceedings of the 32nd International Con-
ference on Neural Information Processing Systems,
NIPS’18, page 4671–4682, Red Hook, NY, USA. Cur-
ran Associates Inc.

Chung, Hyung Won, Le Hou, Shayne Longpre, Bar-
ret Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, Al-
bert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac
Suzgun, Xinyun Chen, Aakanksha Chowdhery, Alex
Castro-Ros, Marie Pellat, Kevin Robinson, Dasha Val-
ter, Sharan Narang, Gaurav Mishra, Adams Yu, Vin-
cent Zhao, Yanping Huang, Andrew Dai, Hongkun
Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin,
Adam Roberts, Denny Zhou, Quoc V. Le, and Jason
Wei. 2022. Scaling instruction-finetuned language
models.

Dai, Wenliang, Junnan Li, Dongxu Li, Anthony
Meng Huat Tiong, Junqi Zhao, Weisheng Wang,
Boyang Li, Pascale Fung, and Steven Hoi. 2023. In-
structblip: Towards general-purpose vision-language
models with instruction tuning.

Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 4171–4186,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Diao, Shizhe, Xinwei Shen, Kashun Shum, Yan Song,
and Tong Zhang. 2021. TILGAN: Transformer-based
implicit latent GAN for diverse and coherent text
generation. In Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021, pages 4844–
4858, Online. Association for Computational Linguis-
tics.

Fedus, William, Ian J. Goodfellow, and Andrew M. Dai.
2018. Maskgan: Better text generation via filling
in the . In 6th International Conference on
Learning Representations, ICLR 2018, Vancouver, BC,
Canada, April 30 - May 3, 2018, Conference Track Pro-
ceedings. OpenReview.net.

Goodfellow, Ian, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. 2014. Generative ad-
versarial nets. In Advances in Neural Information Pro-
cessing Systems, volume 27. Curran Associates, Inc.

Graves, Alex. 2013. Generating sequences with recur-
rent neural networks. CoRR, abs/1308.0850.

Northern European Journal of Language Technology 15

Text Embedding Space GAN for Text Synthesis

Guo, Jiaxian, Sidi Lu, Han Cai, Weinan Zhang, Yong Yu,
and Jun Wang. 2018. Long text generation via adver-
sarial training with leaked information. In Proceed-
ings of the AAAI conference on artificial intelligence,
volume 32.

Heusel, Martin, Hubert Ramsauer, Thomas Un-
terthiner, Bernhard Nessler, and Sepp Hochreiter.
2017. Gans trained by a two time-scale update rule
converge to a local nash equilibrium. In Advances
in Neural Information Processing Systems, volume 30.
Curran Associates, Inc.

Hinton, Geoffrey, Oriol Vinyals, and Jeffrey Dean. 2015.
Distilling the knowledge in a neural network. In NIPS
Deep Learning and Representation LearningWorkshop.

Hochreiter, Sepp and Jürgen Schmidhuber. 1997. Long
Short-Term Memory. Neural Computation, 9(8):1735–
1780.

Jang, Eric, Shixiang Gu, and Ben Poole. 2017. Categor-
ical reparameterization with gumbel-softmax. In 5th
International Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Confer-
ence Track Proceedings. OpenReview.net.

Karras, Tero, Miika Aittala, Samuli Laine, Erik
Härkönen, Janne Hellsten, Jaakko Lehtinen, and
Timo Aila. 2021. Alias-free generative adversarial
networks.

Karras, Tero, Samuli Laine, and Timo Aila. 2018. A style-
based generator architecture for generative adversar-
ial networks.

Kingma, Diederik P. and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. Cite
arxiv:1412.6980Comment: Published as a conference
paper at the 3rd International Conference for Learn-
ing Representations, San Diego, 2015.

Kingma, Diederik P. and Max Welling. 2014. Auto-
Encoding Variational Bayes. In 2nd International Con-
ference on Learning Representations, ICLR 2014, Banff,
AB, Canada, April 14-16, 2014, Conference Track Pro-
ceedings.

Kullback, S. and R. A. Leibler. 1951. On Information
and Sufficiency. The Annals of Mathematical Statis-
tics, 22(1):79 – 86.

Lester, Brian, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on Em-
pirical Methods in Natural Language Processing, pages
3045–3059, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Li, Junnan, Dongxu Li, Silvio Savarese, and Steven Hoi.
2023. Blip-2: Bootstrapping language-image pre-
training with frozen image encoders and large lan-
guage models.

Li, Yanran, Hui Su, Xiaoyu Shen, Wenjie Li, Ziqiang
Cao, and Shuzi Niu. 2017. DailyDialog: A manually
labelled multi-turn dialogue dataset. In Proceedings
of the Eighth International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), pages
986–995, Taipei, Taiwan. Asian Federation of Natural
Language Processing.

Lin, Chin-Yew. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain. As-
sociation for Computational Linguistics.

Lin, Kevin, Dianqi Li, Xiaodong He, Zhengyou Zhang,
and Ming-Ting Sun. 2017. Adversarial ranking for
language generation. In Proceedings of the 31st In-
ternational Conference on Neural Information Process-
ing Systems, NIPS’17, page 3158–3168, Red Hook, NY,
USA. Curran Associates Inc.

Lu, Lu, Yeonjong Shin, Yanhui Su, and George Em Kar-
niadakis. 2019. Dying relu and initialization: Theory
and numerical examples. ArXiv, abs/1903.06733.

Maas, Andrew L., Raymond E. Daly, Peter T. Pham, Dan
Huang, Andrew Y. Ng, and Christopher Potts. 2011.
Learning word vectors for sentiment analysis. In Pro-
ceedings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language Tech-
nologies, pages 142–150, Portland, Oregon, USA. As-
sociation for Computational Linguistics.

Maas, Andrew L., Awni Y. Hannun, and Andrew Y. Ng.
2013. Rectifier nonlinearities improve neural network
acoustic models. In in ICMLWorkshop onDeep Learn-
ing for Audio, Speech and Language Processing.

de Masson d’Autume, Cyprien, Mihaela Rosca, Jack W.
Rae, and Shakir Mohamed. 2019. Training language
gans from scratch. In Neural Information Processing
Systems.

Nie, Weili, Nina Narodytska, and Ankit Patel. 2019. Rel-
gan: Relational generative adversarial networks for
text generation. In 7th International Conference on
Learning Representations, ICLR 2019, NewOrleans, LA,
USA, May 6-9, 2019. OpenReview.net.

Ouyang, Long, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder, Paul
Christiano, Jan Leike, and Ryan Lowe. 2022. Training

Northern European Journal of Language Technology 16

Text Embedding Space GAN for Text Synthesis

language models to follow instructions with human
feedback.

Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalua-
tion of machine translation. In Proceedings of the 40th
Annual Meeting of the Association for Computational
Linguistics, pages 311–318, Philadelphia, Pennsylva-
nia, USA. Association for Computational Linguistics.

Press, Ofir, Amir Bar, Ben Bogin, Jonathan Berant, and
Lior Wolf. 2017. Language generation with recur-
rent generative adversarial networks without pre-
training. CoRR, abs/1706.01399.

Radford, Alec, Luke Metz, and Soumith Chintala. 2015.
Unsupervised representation learning with deep con-
volutional generative adversarial networks.

Radford, Alec, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2018. Language
models are unsupervised multitask learners.

Sandfort, Veit, Ke Yan, Perry Pickhardt, and Ronald
Summers. 2019. Data augmentation using generative
adversarial networks (cyclegan) to improve general-
izability in ct segmentation tasks. Scientific Reports,
9.

Santoro, Adam, Ryan Faulkner, David Raposo, Jack Rae,
Mike Chrzanowski, Théophane Weber, Daan Wier-
stra, Oriol Vinyals, Razvan Pascanu, and Timothy Lil-
licrap. 2018. Relational recurrent neural networks. In
Proceedings of the 32nd International Conference on
Neural Information Processing Systems, NIPS’18, page
7310–7321, Red Hook, NY, USA. Curran Associates
Inc.

Sennrich, Rico, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 1715–1725, Berlin,
Germany. Association for Computational Linguistics.

Touvron, Hugo, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models.

Tran, Ngoc-Trung, Viet-Hung Tran, Ngoc-Bao Nguyen,
Trung-Kien Nguyen, and Ngai-Man Cheung. 2021.
On data augmentation for gan training. Trans. Img.
Proc., 30:1882–1897.

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz

Kaiser, and Illia Polosukhin. 2017. Attention is all you
need. In Advances in Neural Information Processing
Systems, volume 30. Curran Associates, Inc.

Wang, Xin, Yi Qin, Yi Wang, Sheng Xiang, and Haizhou
Chen. 2019. Reltanh: An activation function with
vanishing gradient resistance for sae-based dnns and
its application to rotating machinery fault diagnosis.
Neurocomputing, 363:88–98.

Wei, Jason, Maarten Bosma, Vincent Y. Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M. Dai, and Quoc V. Le. 2021. Finetuned
language models are zero-shot learners. CoRR,
abs/2109.01652.

Wen, Tsung-Hsien, Milica Gašić, Nikola Mrkšić, Pei-
Hao Su, David Vandyke, and Steve Young. 2015.
Semantically conditioned LSTM-based natural lan-
guage generation for spoken dialogue systems. In
Proceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1711–1721,
Lisbon, Portugal. Association for Computational Lin-
guistics.

Williams, Ronald J. and David Zipser. 1989. A learn-
ing algorithm for continually running fully recurrent
neural networks. Neural Computation, 1(2):270–280.

Yu, Lantao, Weinan Zhang, Jun Wang, and Yong Yu.
2017. Seqgan: Sequence generative adversarial nets
with policy gradient. Proceedings of the AAAI Con-
ference on Artificial Intelligence, 31(1).

Zhang, Yizhe, Zhe Gan, Kai Fan, Zhi Chen, Ricardo
Henao, Dinghan Shen, and Lawrence Carin. 2017.
Adversarial feature matching for text generation. In
International Conference on Machine Learning, pages
4006–4015. PMLR.

Zhu, Yaoming, Sidi Lu, Lei Zheng, Jiaxian Guo, Weinan
Zhang, Jun Wang, and Yong Yu. 2018. Texygen: A
benchmarking platform for text generation models.
In The 41st International ACM SIGIR Conference on
Research & Development in Information Retrieval, SI-
GIR ’18, page 1097–1100, New York, NY, USA. Asso-
ciation for Computing Machinery.

Northern European Journal of Language Technology 17

Text Embedding Space GAN for Text Synthesis

A Details of Models

A.1 Seed Interpretation Model

The seed interpretation model 𝑓𝜃 (·) is necessary to pre-
dict subsequent sentences a seed makes. Therefore, the
seed interpretation model must be trained with multi-
turn sentences in an autoregressive way. Our inter-
pretation model inherits the 12-layer GPT-2, derived
from the decoder of the transformer language model
(Vaswani et al., 2017), and has 124M parameters. We
used the model achieving the highest NLTK BLEU-46

in the validation set of each dataset in Table 7 as the
seed interpretation model.

A.2 Generator

The generator 𝑔𝜙 (·) consists of two 1D transposed con-
volutional layers and has 3.3M parameters. The first
and the second layers conduct convolution with 128
and 16 filters, respectively. Since sentences vary ac-
cording to types of tokens and their order, forms of the
real seed 𝐻𝑟𝑒𝑎𝑙 are also varied. The generator generates
seeds from the uniform distribution noise𝑋 with an in-
terval of [−10, 10) to make diverse forms of the seeds.
Furthermore, the fake seeds generated by the deep con-
volutional layers and batch normalization results tend
to synthesize only monotonous sentences. Thus, layers
of the generator are constructed not deeply but widely
and the generator does not have batch normalization
layers. Leaky ReLU is used as the activation function
between the two convolutional layers.

A.3 Seed Structure Discriminator (SSD)

Sentence structure is important for constructing a com-
plete sentence. For example, “I love you so much” is
structurally error-free, but “I love like so much” and “I
love” are not. Because real seeds are created from per-
fect sentences, they retain the structural representation
of sentences. Therefore it is important that the fake
seeds should capture the structural features of the real
seeds. We assume that every sentence can be the first
sentence in multi-turn cases. Thus, the real seeds are
obtained from sentences where the [𝐶𝐿𝑆] token is in-
serted at the beginning like Equation 3. We use the 2-
layer BERT 𝑑𝛼 (·) to capture the structural features of
sentences, and the [𝐶𝐿𝑆] token’s feature is used to pre-
dict whether the seed is real (label 1) or fake (label 0).
In addition, real and fake seeds do not pass through the
embedding part of the BERT because they are already
embedding spaces. Finally, the BERT used in SSD has
54M parameters.

6https://www.nltk.org/_modules/nltk/translate/

bleu_score.html

A.4 Seed Order Discriminator (SOD)
The order of tokens is important for constructing sen-
tences. For example, “I love you so much” is syntacti-
cally correct, but “I you love so much” and “I love you
much so” are not. We use a 2-layer Bidirectional LSTM
to consider both forward and backward directions of
sentences and the model has 24M parameters. The
concatenated hidden states of the last token ([𝑆𝐸𝑃] or
[𝑃𝐴𝐷]) and the first token ([𝐶𝐿𝑆]) are used to predict
whether the seed is real (label 1) or fake (label 0).

B Loss Function
Here, we show whole loss functions of TESGAN:

Seed Interpretation Model :

L𝐿𝑀 = − 1
𝑁

𝑁∑︁
𝑛=1

log
𝑒𝑥𝑝 (𝑥𝑛,𝑦𝑛)∑𝐶
𝑐=1 𝑒𝑥𝑝 (𝑥𝑛,𝑐)

Adversarial Training Training

d − step :

L𝐷 = − 1
𝑁

𝑁∑︁
𝑖=1

{[
𝑦𝑖 log𝑥𝑖 + (1 − 𝑦𝑖) log (1 − 𝑥𝑖)

]𝑟𝑒𝑎𝑙/𝑓 𝑎𝑘𝑒
𝑆𝑆𝐷

+[
𝑦𝑖 log𝑥𝑖 + (1 − 𝑦𝑖) log (1 − 𝑥𝑖)

]𝑟𝑒𝑎𝑙/𝑓 𝑎𝑘𝑒
𝑆𝑂𝐷

}
g − step :

L𝐺 = − 1
𝑁

𝑁∑︁
𝑖=1

{[
𝑦𝑖 log𝑥𝑖 + (1 − 𝑦𝑖) log (1 − 𝑥𝑖)

] 𝑓 𝑎𝑘𝑒
𝑆𝑆𝐷

+[
𝑦𝑖 log𝑥𝑖 + (1 − 𝑦𝑖) log (1 − 𝑥𝑖)

] 𝑓 𝑎𝑘𝑒
𝑆𝑂𝐷

+

𝜎
(
𝑓𝜃 (𝐻𝑟𝑒𝑎𝑙)

)
log

𝜎
(
𝑓𝜃 (𝐻𝑟𝑒𝑎𝑙)

)
𝜎
(
𝑓𝜃 (𝐻𝑓 𝑎𝑘𝑒)

) +
∥𝜇𝑟 − 𝜇𝑓 ∥22 + ∥𝐻𝑟𝑒𝑎𝑙 − 𝐻𝑓 𝑎𝑘𝑒 ∥1

}
(15)

The first loss function in Equation 15 is cross-entropy
and is used to train the seed interpretation model. The
loss functions used in adversarial training operate dif-
ferently in the discriminator and generator steps. In the
discriminator step (d-step), the loss function is designed
to train the discriminator to distinguish between real
and fake seeds, predicting them as 1 and 0, respectively.
On the other hand, in the generator step (g-step), the
loss function aims to train the generator to predict fake
seeds as 1. Additionally, SDP and SFP losses are added
to assist the generator learning during the g-step.

C Statistics of Datasets
Table 7 shows the statistics of the two datasets used
in this paper. We excluded single-turn reviews when
constructing the IMDb multi-turn dataset. For the
baseline performance experiments, we generated fake
seeds equal to the number of sentences in the DailyDi-
alog dataset to conduct TESGAN training (adversarial

Northern European Journal of Language Technology 18

https://www.nltk.org/_modules/nltk/translate/bleu_score.html
https://www.nltk.org/_modules/nltk/translate/bleu_score.html

Text Embedding Space GAN for Text Synthesis

training). Similarly, for the general applicability experi-
ments, we generated nearly 300k fake seeds to conduct
the experiments with IMDb datasets.

D Hyperparameters
The TESGAN framework has two training steps. The
first step is seed interpretation model training. The
multi-turn data for seed interpretation model training
were limited to a maximum of four and eight turns in
performance (DailyDialog-trained) and general appli-
cability (IMDb-trained) experiments, respectively. Also,
the maximum length of the sentence was set to 16 and
32 for each experiment (total sequence length of each
experiment was 64 and 256). The 12-layer GPT-2 is
used as the seed interpretation model, and both hid-
den and embedding dimensions are 768. We adopted
the byte-pair-encodings (BPE) (Sennrich et al., 2016) to-
kenizer with 50,260 vocabularies in the seed interpreta-
tion model. We used the Adam optimizer (Kingma and
Ba, 2014) with 1𝑒−3 learning rate to train the seed in-
terpretation model and set the mini-batch size to 100.

In the adversarial training phase, the sentences
used as the seeds are composed of tokens explained in
Equation 3, and the length of each sentence is set to
16 including special tokens. The discriminators are up-
dated by the loss of SSD and SOD during adversarial
training. Also, the generator is updated not only by the
loss of SSD and SOD but also that of SDP and SFP.

The fake seeds are generated from the uniform dis-
tribution noise 𝑋 with an interval of [−10, 10) by the
generator, which has two convolutional processes. In
addition, the Leaky ReLU with slope 0.5 and the sig-
moid are used in the middle and the end of the genera-
tor, respectively. We used the Adam optimizer with 2𝑒−4
learning rate when training DailyDialog because the
generator has difficulty converging when the learning
rate exceeds 4𝑒−4. However, when training on IMDb,
a larger dataset than DailyDialog, we set the learning
rate to 5𝑒−4. The BERT and the LSTM models, used as
SSD and SOD respectively, consist of two layers and
768 hidden dimensions. Both discriminators used the
Adam optimizer with 5𝑒−4 and 1𝑒−3 learning rate, re-
spectively. When the learning rates of the discrimi-
nators were larger than the proposed values, adversar-
ial learning was imbalanced. Also, the mini-batch size
was set to 128 during adversarial training. Lastly, all
the above experiments took place on a machine with
Ubuntu 18.04.5 and an NVIDIA RTX 3090 GPU.

E Additional Results
We provide evaluation results of the text generated by
each model per epoch. Table 8 shows the results of 1,

5, 10, 15, 17, and 20-epoch results of each model. Also,
Figure 10 shows LM and SBL results of the TESGAN-
based models and the baselines. In Figure 10, the SBL
results of the baselines tend to increase.

Northern European Journal of Language Technology 19

Text Embedding Space GAN for Text Synthesis

Statistics
DailyDialog IMDb

Train Validation Test Train Validation Test
of multi-turn set 11,118 1,000 1,000 24,890 12,500 12,390
Total sentences 87,170 8,069 7,740 299,137 150,369 148,768
Avg. # of turns per set 7.84 8.07 7.74 12.02 12.03 12.01
Avg. # of words per sentence 11.30 11.21 11.44 19.34 19.40 19.28
Avg. # of tokens per sentence 14.51 14.39 14.69 24.25 24.31 24.20

Table 7: Statistics of datasets

Method Epoch FBD ↓ MSJ2 ↑ MSJ3 ↑ MSJ4 ↑ MSJ5 ↑ DSR (𝑅𝑠𝑦𝑛, 𝑅𝑢𝑛𝑞) ↑

TESGAN

1 3.441 0.129 0.067 0.034 0.018 0.911 (1, 0.836)
5 3.826 0.137 0.072 0.037 0.018 0.932 (1, 0.873)
10 3.185 0.132 0.069 0.035 0.016 0.932 (0.999, 0.873)
15 2.624 0.146 0.080 0.041 0.020 0.961 (1, 0.925)
17 2.899 0.150 0.079 0.042 0.021 0.967 (1, 0.936)
20 3.339 0.131 0.068 0.035 0.017 0.932 (1, 0.872)

P-TESGAN

1 6.146 0.112 0.057 0.029 0.013 0.803 (1, 0.671)
5 3.746 0.118 0.060 0.030 0.016 0.801 (0.998, 0.669)
10 2.274 0.131 0.066 0.032 0.014 0.841 (0.997, 0.727)
15 2.132 0.121 0.061 0.030 0.014 0.812 (1, 0.683)
17 2.274 0.122 0.063 0.031 0.014 0.789 (0.998, 0.653)
20 2.309 0.119 0.058 0.029 0.014 0.784 (0.997, 0.646)

SeqGAN

1 6.153 0.185 0.091 0.040 0.015 0.880 (0.883, 0.877)
5 6.373 0.121 0.065 0.032 0.014 0.602 (0.639, 0.568)
10 9.432 0.064 0.034 0.017 0.007 0.289 (0.34, 0.251)
15 18.471 0.012 0.006 0.003 0 0.019 (0.025, 0.015)
17 24.504 0.004 0.002 0.001 0 0.004 (0.006, 0.003)
20 28.048 0 0 0 0 0.001 (0.013, 0.001)

RankGAN

1 6.409 0.189 0.096 0.048 0.023 0.890 (0.895, 0.886)
5 6.778 0.160 0.084 0.04 0.016 0.82 (0.851, 0.791)
10 10.862 0.138 0.074 0.037 0.018 0.739 (0.799, 0.687)
15 9.732 0.118 0.060 0.030 0.015 0.699 (0.791, 0.625)
17 9.893 0.115 0.058 0.028 0.012 0.696 (0.792, 0.62)
20 12 0.114 0.056 0.026 0.011 0.721 (0.836, 0.634)

MaliGAN

1 21.436 0.015 0.006 0.003 0 0.030 (1, 0.015)
5 16.589 0.003 0 0 0 0.027 (1, 0.014)
10 57.769 0 0 0 0 0 (1, 0)
15 57.769 0 0 0 0 0 (1, 0)
17 57.769 0 0 0 0 0 (1, 0)
20 57.769 0 0 0 0 0 (1, 0)

PG-BLEU

1 9.002 0.071 0.036 0.015 0.006 0.569 (0.555, 0.584)
5 18.974 0.017 0.008 0 0 0.139 (0.472, 0.082)
10 21.568 0.001 0.001 0 0 0.041 (0.792, 0.021)
15 89.764 0 0 0 0 0.004 (0.773, 0.002)
17 142.384 0 0 0 0 0.003 (1, 0.001)
20 142.384 0 0 0 0 0.001 (1, 0.001)

Table 8: Performance of each model per epoch.

(a) LM ↓ (b) SBL3 ↓ (c) SBL4 ↓

Figure 10: LM, SBL results of TESGAN-based models and baselines trained with DailyDialog.

Northern European Journal of Language Technology 20

	Introduction
	Related Works
	Text Embedding Space GAN
	Seed for Text Synthesis
	Seed Interpretation Model
	Generator
	Objective Functions
	Discriminators
	Generator Helpers

	Text Synthesis Experiments
	Dataset
	Training Steps
	Evaluation Metric
	Fréchet BERT Distance (FBD)
	Multi-Sets-Jaccard (MSJ)
	Language Model score (LM)
	Data Synthesis Ratio (DSR)
	Self-BLEU (SBL)

	Baselines

	Results
	Metric-based Evaluation
	Analysis of Autoregressive Models
	Human Evaluation
	General Applicability
	Error Analysis

	Discussion
	Generator and Training Strategy
	Ablation Study
	Activation Function Study
	Data Memorization Study

	Conclusion
	Details of Models
	Seed Interpretation Model
	Generator
	Seed Structure Discriminator (SSD)
	Seed Order Discriminator (SOD)

	Loss Function
	Statistics of Datasets
	Hyperparameters
	Additional Results

