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Abstract
For sequence-to-sequence tasks it is challeng-
ing to combine individual system outputs. Fur-
ther, there is also often a mismatch between the
decoding criterion and the one used for assess-
ment. Minimum Bayes’ Risk (MBR) decoding
can be used to combine system outputs in a
manner that encourages better alignment with
the final assessment criterion. This paper ex-
amines MBR decoding for Grammatical Error
Correction (GEC) systems, where performance
is usually evaluated in terms of edits and an
associated F-score. Hence, we propose a novel
MBR loss function directly linked to this form
of criterion. Furthermore, an approach to ex-
pand the possible set of candidate sentences is
described. This builds on a current max-voting
combination scheme, as well as individual edit-
level selection. Experiments on three popular
GEC datasets and with state-of-the-art GEC
systems demonstrate the efficacy of the pro-
posed MBR approach. Additionally, the paper
highlights how varying reward metrics within
the MBR decoding framework can provide con-
trol over precision, recall, and the F-score in
combined GEC systems. 1

1 Introduction

Ensembling, the combination of system outputs,
is a powerful technique in deep learning, exploit-
ing diverse model capabilities for robust predic-
tions. Though numerous methodologies exist for
system combination (Ganaie et al., 2021), when
there is only access to model outputs, many meth-
ods are inapplicable and thus the simplest method
becomes the averaging of model outputs. How-
ever, for sequence-to-sequence (seq2seq) systems,
such as summarization, machine translation, and
grammatical error correction (GEC), output aver-
aging is less straightforward. A further challenge
with seq2seq tasks is the mismatch between the de-
coding and assessment criteria. Kumar and Byrne

1Code available at: https://github.com/rainavyas/
mbr_gec

(2004) proposed the utilization of Minimum Bayes’
Risk (MBR) decoding as a means to select an out-
put that minimizes the theoretical risk according to
a designated reward metric. We propose a novel
variant of MBR decoding for GEC to allow for sys-
tem combination and give better alignment with
the assessment criteria.

The nature of a GEC task permits the use of
MBR decoding within the "edit"-space. Each out-
put sequence can be represented as a set of "edits"
required to transform the input sequence into the
output. Consequently, the selection of a single out-
put sequence for GEC can be achieved through
MBR decoding with a reward function defined on
the set of edits, aligned with the edit-based F-score
typically used in GEC assessment criteria. Beyond
selection, an additional technique known as max-
voting (Tarnavskyi et al., 2022) can be employed
to combine different sets of edits. We propose an
enhancement to the performance achieved through
max-voting by treating the output sequences ob-
tained from the combination as additional candi-
dates for MBR decoding. Further, with a greedy
MBR decoding algorithm, we explore the edit
space to identify other candidate edit sets. Through
experiments on three popular GEC datasets and
use of state of the art GEC systems (Grammarly’s
GECToR (Omelianchuk et al., 2020)), we demon-
strate that our MBR decoding approach in the edit
space consistently leads to significant performance
gains. Further, we also show that by selecting dif-
ferent reward metrics as part of the MBR decoding
approach we can provide explicit control over pre-
cision, recall and the overall F-score used to assess
GEC systems.

2 Related Work

Grammatical Error Correction: Early GEC sys-
tems using hand-crafted rules (Naber, 2003) were
replaced by encoder-decoder architectures, using
for example Recurrent Neural Networks (Cho

https://github.com/rainavyas/mbr_gec
https://github.com/rainavyas/mbr_gec
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et al., 2014). Today, many state of the art GEC
systems use Transformer-based (Vaswani et al.,
2017) encoder-decoder architectures to perform
the sequence-to-sequence GEC task (Kaneko
et al., 2020; Chen et al., 2020; Kiyono et al.,
2019; Lichtarge et al., 2020; Stahlberg and Kumar,
2020). However, LaserTagger (Malmi et al.,
2019), the PIE model (Awasthi et al., 2019) and
Grammarly’s GECToR (Omelianchuk et al., 2020)
are all able to achieve competitive performance
using a sequence-to-edit structure for the overall
sequence-to-sequence task, where a token can be
tagged with edit operations. Once a set of tags have
been defined, the edit operations can be applied to
the input sequence to generate the grammatically
correct output sequence. The GECToR system
is particularly efficient at inference as it uses a
Transformer encoder followed by softmax over
linear layers for edit tag prediction, which is signif-
icantly faster than standard sequence-to-sequence
GEC system decoders. Further, Wu et al. (2023)
demonstrated that GECToR performs better than
the most recent generative large language models,
e.g. ChatGPT (Brown et al., 2020), which tend to
over-correct, compromising on recall performance.
Hence this work uses the GECToR model as its
base GEC architecture.

System Combination for seqseq systems: In-
dividual deep learning systems for classification
tasks can be combined in many ways: stacking
(Wolpert, 1992), negative correlation learning (Liu
and Yao, 1999), max-voter schemes (Ju et al., 2018;
Simonyan and Zisserman, 2014) or probability av-
eraging (He et al., 2016; Raina et al., 2020; Szegedy
et al., 2015). However, for generative language
tasks such as GEC, where the output is a sequence
of tokens, many traditional ensembling approaches
are inapplicable. Sequence-level ensembling ap-
proaches, however, can address this by averaging
conditional token level probabilities of multiple
systems (Sennrich et al., 2015; Freitag et al., 2017;
Malinin and Gales, 2021; Fathullah et al., 2021).
However, this approach requires identical member
architectures as well as access to the output prob-
abilities of the predicted tokens. With the rising
trend of limited black box access to large language
models (e.g. ChatGPT (Liu et al., 2023)), system
combination methods that only require the gener-
ated output sequences have practical benefit.

With access to only the output sequences from

individual seq2seq systems, it is challenging to
combine them into a single output. For automatic
speech recognition, Sim et al. (2007) select a sin-
gle output using a simple Minimum Bayes’ Risk
(MBR) decoding approach (Kumar and Byrne,
2004), where the aim is effectively to select the
most average/representative output sequence. Sim-
ilarly Manakul et al. (2023) use MBR to combine
sequences for clinical document summarization.
The MBR approach has also recently been applied
to machine translation (Rosti et al., 2007a,b; Fre-
itag et al., 2022; Müller and Sennrich, 2021; Zhang
et al., 2022). For GEC systems, Tarnavskyi et al.
(2022) propose a max voting scheme, where only
edits predicted by the majority of individual sys-
tems are retained. We further improve GEC perfor-
mance by applying MBR decoding to a sequence
selection set augmented with sequences from max
voting. We further enrich this selection space with
a greedy search over edits.

3 Output Sequence Combination for GEC

A Grammatical Error Correction (GEC) system
predicts a grammatically correct output sequence
y from an input sequence, x. With multiple differ-
ent GEC system output sequence predictions, Y =
{y1, . . . ,yN}, for the same input sequence, x, it
is challenging to combine them into a single, best
sequence. It is useful to consider the edit-space,
where a set of edits, en(x,yn) = {e1, . . . , e|en|}
can be used to represent each predicted output se-
quence, yn

2. A single edit in the edit set can be
defined fully by an input token in x and an edit op-
eration to apply (insertion, deletion or substitution).
This section describes how Minimum Bayes’ Risk
decoding can be used in the edit-space to combine
the different output sequences in Y .

3.1 MBR decoding for GEC
MBR decoding aims to select the most representa-
tive output sequence, y∗ ∈ Y . For GEC, we aim to
maximise a reward score R in the edit-space that
encourages better alignment with the final assess-
ment metric,

y∗ = argmax
y∈Y

{
Ep(ỹ|x)[R(ẽ(x, ỹ), e(x,y))]

}
,

(1)
where the reward score, R(ẽ, e), views ẽ as refer-
ence edits and e as the hypothesis/predicted edits.

2Given an input sequence x and an output sequence y
it is simple to create an edit set, using tools such as ER-
RANT (Bryant et al., 2017).
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In practice, it is difficult to meaningfully estimate
the posterior distribution, p(ỹ|x) for each output
sequence. Hence, we consider only similarly per-
forming systems’ output sequences, Y(c) ∈ Y to
calculate the expectation of the reward and so we
approximate each of these sequences as equiproba-
ble,

y∗ ≈ argmax
y∈Y(s)

 1

|Y (c)|
∑

ỹ∈Y (c)

R(ẽ(x, ỹ), e(x,y))

 ,

(2)
where Y(s) represents the set of possible output
sequences we want to select from.

3.2 MBR decoding with edit voting

Inspired by Tarnavskyi et al. (2022) the different
edit sets, {e1, . . . , eN} associated with the differ-
ent output sequences, can be combined to create a
single edit set, e(m) containing all the individual
edits present in at least m of the edit sets (i.e. m
votes). This new combined edit set represents a new
combined output sequence, y(m). The MBR decod-
ing approach of Equation 1 can now be applied by
simply including the combined sequence in the set
of sequences to select from, such that y(m) ∈ Y(s).
Note that the voting scheme can generate a maxi-
mum of N different combined sequences, with e(1)

being the union of all edit sets and e(N) the inter-
section. Hence the selection space of sequences
Y(s) can be made richer with an extra N sequences.

3.3 Greedy MBR decoding for edit selection

Instead of augmenting the selection set Y(s) with
only a few sequences, it is useful to consider all pos-
sible edit sets. However, it is computationally in-
feasible to consider every possible edit set. Hence,
this work proposes a practical, greedy method to
increase the richness of the selection set. The mini-
mal edit set is arguably the intersection of all edit
sets, e(N). In contrast the set of possible edits is
given by the union set, e(1). Hence, we can insert
individual edits one by one from the union set to the
intersection set. Every new edit insertion into the
existing edit set represents a new output sequence
y (that can be added to Y(s)). However, we only
retain the edit insertions that give a new output se-
quence that increases the MBR expected reward,

1
|Y (c)|

∑
ỹ∈Y (c) R(ẽ(x, ỹ), e(x,y)) from Equation

2. This way we can efficiently search a richer selec-
tion set, Y(s) of output sequences to find the best
combined output sequence y∗.

3.4 MBR reward score

Equation 1 uses a reward score R(ẽ, e) to perform
MBR decoding. Careful selection of the reward
score allows for control over the desired metric
to optimise. We can for example aim to combine
systems in a manner that encourages better edit
recall,

R(rec)(ẽ, e) =
|ẽ ∩ e|
|ẽ|

. (3)

Conversely, it may be desirable to have a system
with high precision,

R(prec)(ẽ, e) =
|ẽ ∩ e|
|e|

. (4)

However, it is usually desirable to have a GEC
system with a good combination of precision and
recall, as measured by a F-k score,

R(f{k})(ẽ, e) =
(1 + k2)|ẽ ∩ e|

|ẽ|k + |e|
. (5)

As the precision is more important than recall for
GEC systems, this work aligns the reward metric
with the F0.5 score. The Jaccard Similarity re-
ward metric is also explored as an alternative in
Appendix A.

4 Experiments

4.1 Experimental setup

We evaluate performance of the combined sys-
tems on three popular grammatical error correc-
tion corpora. First Certificate in English (FCE)
corpus (Yannakoudakis et al., 2011) is a subset
of Cambridge Learner Corpus (OpenCLC, 2019)
made up of written examinations for general and
business English of candidates from 86 different
mother tongues, consisting of 2,720 test sentences.
Building Education Applications 2019 (BEA-
19) (Bryant et al., 2019) offers a test set of 4477 sen-
tences, sourced from essays written by native and
non-native English students. Conference on Com-
putational Natural Language Learning 2014
(CoNLL-14) (Ng et al., 2014) test set consists of
1312 sentences sourced from 50 essays written by
25 non-native English speakers. Three different
state of the art GECToR models are used as the
individual systems to be combined 3. Each sys-
tem uses a different Transformer encoder (bert (b),

3GECToR model Weights: https://github.com/
grammarly/gector#pretrained-models

https://github.com/grammarly/gector#pretrained-models
https://github.com/grammarly/gector#pretrained-models
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roberta (r) or xlnet (x)). Table 1 gives the perfor-
mance of these individual systems 4.

Model conll bea fce

b 56.15
(
61.75
41.19

)
65.41

(
67.33
58.71

)
49.66

(
54.47
36.68

)
r 56.82

(
61.99
42.59

)
68.21

(
70.21
61.21

)
49.86

(
53.47
39.28

)
x 56.77

(
61.74
42.95

)
68.00

(
69.89
61.36

)
50.52

(
53.49
41.00

)

Table 1: F0.5 and (precision, recall) performance for
individual GECToR systems

4.2 Results

MBR decoding (Equation 2) is applied in the edit-
space for the three individual GECToR systems’
outputs (b,r,x). Here, as the systems have similar
performance (equiprobable posterior assumption
valid), we let the selection set and the set of se-
quences to calculate the expected reward be the
same Y(s) = Y(c) = {b, r, x}. Table 2 compares
the different reward functions, R, when applying
MBR decoding. Selection with precision (Equation
6) and F0.5 (Equation 5) oriented reward metrics
give a significant increase in performance over the
individual systems in Table 1. Although the re-
call reward (Equation 3) does not increase F0.5
performance, it does significantly increase recall
performance. This demonstrates that a simple ap-
plication of MBR decoding can be used to combine
individual systems to improve performance and se-
lection of the reward function gives specific control
over precision and recall of the combined system.

Reward conll bea fce

R(rec) 55.13
(
57.76
46.66

)
64.67

(
64.59
64.99

)
48.74

(
50.12
43.90

)
R(prec) 59.78

(
69.38
34.48

)
70.87

(
75.93
55.96

)
52.35

(
60.13
34.50

)
R(f05) 59.71

(
66.42
42.53

)
69.95

(
72.95
60.07

)
52.05

(
56.61
39.36

)

Table 2: MBR with Y(c) = Y(s) = {b, r, x}.

Section 3.2 describes how MBR decoding can be
applied to systems combined by a voting scheme
in the edit space. Table 3 shows the performance
of systems combined with voting, where an indi-
vidual edit requires m votes (from b,r or x edit
system predictions) to be included in the com-
bined edit set, e(m) to form the single combined
sequence y(m). Note here that e(1) is the union

4GEC performance for CoNLL and FCE is measured using
the ERRANT tool (Bryant et al., 2017). Note that CoNLL is
often evaluated with a different scorer in other papers. BEA
is evaluated using the online submission portal: https://
codalab.lisn.upsaclay.fr/competitions/4057

set and e(3) is the intersection and so these se-
quences encourage either a higher recall or pre-
cision respectively. Table 4 shows the impact of
MBR decoding where all the separate voting sets
(y(1),y(2),y(3)) are included in the selection set,
Y(s) = {b, r, x,y(1),y(2),y(3)}. Note that we
maintain the same set of sequences for the expected
reward calculation, Y(s) = {b, r, x} to ensure the
equiprobable posterior assumption holds 5. It is
evident that a richer selection set allows for even
greater improvements in model performance for
precision and F0.5 reward MBR decoding.

System conll bea fce

y(1) 47.13
(
48.02
43.89

)
55.94

(
55.03
59.91

)
41.76

(
42.38
39.43

)
y(2) 60.58

(
68.41
41.54

)
71.82

(
75.86
59.22

)
52.73

(
58.16
38.38

)
y(3) 59.60

(
77.30
31.10

)
72.96

(
84.32
47.41

)
52.50

(
67.05
28.01

)

Table 3: Voting combination, y(m) (m votes).

Reward conll bea fce

R(rec) 53.99
(
55.99
47.23

)
63.81

(
63.47
65.25

)
48.18

(
49.29
44.20

)
R(prec) 60.24

(
76.59
32.50

)
73.42

(
83.40
49.66

)
53.51

(
66.74
29.85

)
R(f05) 60.43

(
67.94
41.90

)
70.84

(
74.48
59.25

)
52.71

(
57.83
38.92

)

Table 4: MBR with Y(c) = {b, r, x} and Y(s) =
{b, r, x,y(1),y(2),y(3)}.

Finally, as described in Section 3.3, MBR decod-
ing can be performed over a richer edit selection
space by greedily adding individual edits to the in-
tersection edit set, e(3) from the union edit set, e(1).
Experiments revealed (Appendix B) that allowing
for all edits to be included from the union set can
significantly increase the risk of poor insertions,
compromising performance. Hence, instead we
only consider edits from e(2) to be added to the in-
tersection set e(3). Table 5 demonstrates that MBR
decoding over this richer set of sequences can give
better performance (CoNLL) than MBR with vot-
ing, but does not always give the best performance
(BEA and FCE have better performance in Table
4). This is perhaps because the expected reward
over the individual systems (b,r,x) is not neces-
sarily perfectly aligned with the final F0.5 score
relative to the true reference edits used in evalua-
tion and thus over-optimisation of the selection set
for MBR decoding does not help performance for
some datasets.

5Experiments with an alternative set of sequences for Y(c)

are in Appendix C

https://codalab.lisn.upsaclay.fr/competitions/4057
https://codalab.lisn.upsaclay.fr/competitions/4057
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Reward conll bea fce

R(rec) 61.06
(
69.50
41.11

)
72.20

(
76.87
58.08

)
52.94

(
58.87
37.73

)
R(prec) 59.65

(
76.58
30.79

)
72.76

(
84.18
47.16

)
52.62

(
67.61
27.89

)
R(f05) 61.08

(
69.71
40.85

)
72.34

(
77.16
57.19

)
53.00

(
59.07
37.57

)

Table 5: MBR with Y(c) = {b, r, x} and greedy search
for Y(s).

5 Conclusions

The combination of sequence-to-sequence gram-
matical error correction (GEC) systems is challeng-
ing. There is also often a mismatch between the
decoding criterion and assessment criterion used
for GEC systems. This work demonstrates that
a novel Minimum Bayes’ Risk (MBR) decoding
approach within the edit-space can give an effec-
tive system combination method that aligns better
with the assessment criteria. We further showed
that enhancing the selection space to encompass
sequences formulated by max-voting over individ-
ual edits can further improve system performance.
Moreover, the employment of a greedy search strat-
egy, guided by an MBR reward function, can re-
sult in performance gains for the combined system.
Crucially, the choice of a reward function in the
MBR framework gives users the ability to optimize
desired characteristics of the combined GEC sys-
tem, such as precision, recall or the F-score.

6 Limitations

This work explored how MBR decoding can be
used to combine individual GEC systems, as well
as align the combined system’s performance to the
edit-based F-score used to assess GEC systems.
Experiments were performed with Grammarly’s
GECToR based systems. It would be useful to
extend these experiments to other state of the art
GEC systems. Although these other systems are
not as efficient as GECToR due to the use of an
auto-regressive Transformer decoder (as opposed
to GECToR’s encoder only structure), it is still
meaningful to understand how these systems react
to MBR decoding used for system combination.
This is particularly relevant as generative large lan-
guage models are increasingly used for standard
natural language tasks.

7 Ethics Statement

This work reports on an efficient method to com-
bine individual GEC system outputs in a manner

that better aligns with assessment and improve per-
formance. There are no perceived ethical risks
associated with this work.
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A Jaccard Similarity as MBR Reward

Section 3.4 proposes three different reward func-
tions, R to guide the MBR decoding process (Equa-
tion 1) to better align with desired assessment cri-
teria. Here, we consider the Jaccard Similarity as
an alternative reward function that can combine
precision and recall properties,

R(jac)(ẽ, e) =
|ẽ ∩ e|
|ẽ ∪ e|

. (6)

Table 6 gives the performance of systems combined
with MBR decoding using the Jaccard reward func-
tion.

Y(s) conll bea fce

{b, r, x} 59.22
(
65.39
43.01

)
69.15

(
71.55
60.96

)
51.56

(
55.71
39.73

)
{b, r, x,y(1),

y(2),y(3)}
59.21

(
65.50
42.76

)
69.26

(
71.87
60.48

)
51.63

(
55.96
39.45

)

Greedy 60.94
(
69.84
40.37

)
72.37

(
77.29
57.68

)
52.92

(
59.09
37.33

)

Table 6: GEC system performance with Jaccard Similar-
ity reward function for MBR decoding. In all settings,
Y(s) = Y(c) = {b, r, x}

Comparing to results in the main experiments
(Section 4.2), it can be seen that using the Jac-
card similarity reward gives similar behaviour but
slightly worse performance than the F0.5 reward
function used for MBR decoding. This is perhaps
expected because both metrics encourage good pre-
cision and recall, but the final GEC systems are
assessed using the F0.5 score. Hence, the Jaccard
similarity reward offers a worse approximation to
the final assessment metric than an explicit F0.5
reward in MBR decoding.

B Greedy MBR Decoding Selection Space

Section 3.3 describes an approach where MBR de-
coding can be used to greedily search over an edit
space between the intersection edit set, e(3) and the
union edit set, e(1) to find a combined edit set that
as per the expected reward in the MBR algorithm
should give better performance. Results in the main
paper in Table 5 search the edit space between the
intersection set, e(3) and e(2). Table 7 shows that
it is sensible to not continue searching for all edits
in the union set, e(1), as searching the entire space
compromises performance. This is perhaps due to
the increased noise added into the system by poten-
tially including spurious edits from the union set.
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Reward conll bea fce

R(rec) 53.22
(
56.48
43.24

)
63.82

(
65.34
58.38

)
47.73

(
50.77
38.52

)
R(prec) 59.03

(
76.58
30.79

)
72.58

(
84.27
46.67

)
52.56

(
67.71
27.73

)
R(f05) 58.42

(
67.33
38.19

)
69.66

(
75.05
54.11

)
50.42

(
57.33
34.02

)

Table 7: Greedy MBR decoding performance with edit
search from intersection edit set, e(3) to the union edit
set, e(1). By considering all possible edits in the union
set, we can reduce performance. Hence in the main
paper we limit edits to be between e(2) and e(3).

C Alternative Expected Reward Set, Y(c)

Equation 1 for MBR decoding can be simplified
to equation 2, where we make the assumption that
every sequence y ∈ Y(c) used to calculate the
expected reward is equiprobable (i.e. the poste-
rior distribution is the same). We justify this as-
sumption in the main paper by considering only
similarly performing systems to form the set of
sequences over which the expected reward is cal-
culated: Y(c) = {b, r, x}. It is interesting consider
a situation where we violate/test this equiproba-
ble posterior assumption by considering different
possible sequence sets for Y(c) and observing the
impact on performance after MBR decoding sys-
tem combination. Table 8 reports the performance
of MBR decoding with different output sequence
sets, Y(c) used to calculate the expected reward. In
comparison to the equivalent results in the main
paper in Table 2, it is evident that a deviation from
Y(c) = {b, r, x} does not compromises perfor-
mance. This demonstrates that it is possible to
diverge from the similar performing system con-
straint to validate the equiprobable posterior as-
sumption to generate good combined systems using
MBR decoding.

Reward conll bea fce

R(prec) 59.83
(
69.43
38.52

)
70.81

(
75.81
56.02

)
52.40

(
60.15
34.57

)
R(f05) 59.96

(
67.76
41.07

)
70.44

(
74.21
58.55

)
52.09

(
57.89
37.19

)

Table 8: Impact of changing the set of sequences,
Y(c) used to calculate the expected reward when us-
ing MBR decoding for system combination. We let
Y(c) = {b, r, x,y(1),y(2),y(3)}. In all settings we
maintain the same selection set, Y(s) = {b, r, x}.


