WAMP: Writing, Annotation, and Marking Platform

Geonsik Moon*, Muhammad Reza Qorib*, Daniel Dahlmeier’ and Hwee Tou Ng*
* Department of Computer Science, National University of Singapore
T SAP Innovation Center Singapore
moon97@nus.edu.sg, mrgorib@comp.nus.edu.sg, nght@comp.nus.edu.sg
d.dahlmeier@sap.com

Abstract

Creating annotated corpora has always been
one of the major challenges for grammatical
error correction (GEC). Annotated corpora are
critical since they enable us to evaluate the
accuracy of GEC systems by providing gold-
standard references. In this paper, we propose
a web-based annotation tool — Writing, Anno-
tation, and Marking Platform (WAMP) — that
tackles this issue of generating annotated cor-
pora by allowing annotators to annotate essays
with ease and export the resulting annotated es-
says for use in GEC research. The source code
and a demo video of WAMP are publicly avail-
able at: https://github.com/nusnlp/wamp.

1 Introduction

Grammar is an important part of language learn-
ing, especially in writing. Incorrect grammar could
misrepresent some of the meanings that a writer
is trying to convey and damage the credibility of
the writer, ultimately resulting in ineffective com-
munication. Despite having learned English in pri-
mary and secondary education, non-native English
speakers can still struggle with grammatical errors
in writing. Subject-verb agreement and verb tense
are among the most frequent error types (Singh
et al., 2017). As such, grammatical error correc-
tion (GEC), formulated as the task of automatically
detecting and correcting grammatical errors in a
text (Chollampatt et al., 2016; Chollampatt and Ng,
2018; Qorib et al., 2022; Bryant et al., 2023), has
gained attention over the past decade as a useful
application for language learners. GEC facilitates
faster language learning by providing a better al-
ternative for these students to check their writing,
replacing manual checking.

However, one of the biggest challenges for GEC
arises from generating high-quality annotated cor-
pora. Due to its time-consuming nature, manual an-
notation is still regarded as the major bottleneck for

77

building annotated corpora that are large enough to
train and test systems for many NLP tasks (Neves
and Seva, 2019). GEC is no exception, as it also re-
quires a gold-standard reference in order to evaluate
the accuracy of GEC systems and analyze the spe-
cific areas in which these systems under-perform.
The NUS Corpus of Learner English (NUCLE)
(Dahlmeier et al., 2013), a large annotated corpus
of learner essays, was created in collaboration with
the Centre for English Language Communication
(CELC) at NUS. Comprising about 1,400 essays
written by undergraduate students at NUS, NU-
CLE contains a total of over one million words
which were annotated with error tags and correc-
tions by a team of professional English language
instructors at NUS (Dahlmeier et al., 2013). In
building the NUCLE corpus, a web-based anno-
tation tool — Writing, Annotation, and Marking
Platform (WAMP) — was utilized to allow the in-
structors to annotate student essays online, using a
web browser of their choice.

To facilitate the creation of additional anno-
tated corpora for GEC, we provide the system
overview, functionalities, and system implemen-
tation of WAMP in this paper. We also introduce
two new enhancements to the original WAMP that
allow greater usability of the tool for GEC research:
(1) The user can choose from different sets of error
tags that are available for annotators. (2) The user
can export each annotated essay into the M2 file
format, which displays the start word index, end
word index, and the error type of each edit. This
M2 file can then be used as a gold-standard ref-
erence for the MaxMatch (M?) scorer (Dahlmeier
and Ng, 2012) and the ERRANT (Bryant et al.,
2017) scorer to evaluate GEC systems.

2 System Overview

Writing, Annotation, and Marking Platform
(WAMP) is a web-based annotation tool, built us-

Proceedings of the 13th International Joint Conference on Natural Language Processing and the 3rd Conference of
the Asia-Pacific Chapter of the Association for Computational Linguistics: System Demonstrations, pages 77-85
November 14, 2023. ©2023 Association for Computational Linguistics

https://github.com/nusnlp/wamp

View Essays

Essay ID Essay Title

1 9 CREATING A HABITABLE ENVIRONMENT
10 The Factors that Shaped Biometrics

3 11

China's problems hampering engineering design processes for innovations

Annotated Operations

N Annotate
N Annotate

N Annotate

Figure 1: The web interface in WAMP for viewing essays.

ing Drupal (version 6.13)!, a PHP-based content
management system. Drupal can be easily cus-
tomized to extend the functionalities of the soft-
ware with the use of modules. Other than the
community-contributed modules (Appendix A.1)
that are shipped together with the Drupal release,
a custom module named “WAMP”, consisting of
two sub-modules “Essay” and “Administration”,
extends the main functionalities of WAMP.

2.1 WAMP Module

The WAMP module is the parent module that en-
compasses the two aforementioned sub-modules,
and these sub-modules inherit all the functions of
the WAMP module. Other than the administrator
who manages WAMP, the main user of the soft-
ware is the “annotator” and the WAMP module
specifically contains the navigational user interface
for the annotator to view and annotate essays, as
illustrated in Figure 1. The WAMP module also al-
lows the administrator to toggle between the mode
production or testing (for debugging purpose).

2.2 Essay Sub-Module

The Essay sub-module comprises essay-related
management functionalities for the administrator to
view all the annotations created by the annotators.
Additionally, the administrator can check if an es-
say has been flagged to be of poor quality or invalid
format, and delete the essay to make it unavailable
to annotators accordingly. The functionalities for
annotating essays are also contained under the Es-
say sub-module, which will be discussed in more
detail under the Annotate Essays subsection.

2.3 Administration Sub-Module

The Administration sub-module is responsible for
extending data management functionalities for the
administrator, which mainly consists of import-
ing and exporting files. Essays are imported into

lhttps://www.drupal.org/project/drupal/
releases/6.13

78

WAMP in XML (Extensible Markup Language)’
format. WAMP further processes the imported file
to extract the essay title and body, and insert the
relevant information into the database. The func-
tionalities for importing essays will be discussed
in more detail under the Import Essays subsection.
WAMP supports two types of data export: (1) XML
and (2) M2. The administrator can export the entire
annotation data from the WAMP database into a
single XML file. This exported XML file contains
the data for all essays and the relevant annotations
for all grammatical errors identified and corrected
by the annotators. WAMP also allows export of
data in M2 file format. Unlike XML export, M2
export is executed for each individual annotator,
i.e., the annotation data for a single essay by a sin-
gle annotator is exported. The exported M2 file
contains all the sentences of an essay in separate
lines. Each sentence is followed by lines that indi-
cate the start and end word index of the sequence of
words identified as an error in the sentence, and the
appropriate error type provided by the annotator.
Exporting essays will be discussed in greater detail
under the Export Essays subsection.

Additionally, under the Administration sub-
module, the administrator can also select between
two different sets of error tags to be made avail-
able to the annotators. Currently, WAMP supports
NUCLE (Dahlmeier et al., 2013) as the default set
of error tags, with an additional support for the set
of ERRANT (Bryant et al., 2017) error tags. NU-
CLE introduced an extensive list of 28 error tags,
ranging from frequently found error types such as
verb tense error and subject-verb agreement error,
to more niche error types, such as poor citation
practice and unclear meaning. Similarly, (Bryant
et al., 2017) proposed another error tag scheme
that consists of 25 main error types. WAMP is de-
signed in a way that allows easy extension to new
sets of error tags. The customization only requires
the addition of a new HTML file that contains the

2ht’cps: //developer.mozilla.org/en-US/docs/Web/
XML/XML_introduction

https://www.drupal.org/project/drupal/releases/6.13
https://www.drupal.org/project/drupal/releases/6.13
https://developer.mozilla.org/en-US/docs/Web/XML/XML_introduction
https://developer.mozilla.org/en-US/docs/Web/XML/XML_introduction

new error tags and a simple modification to the
Administration sub-module. As such, WAMP can
be easily customized to accommodate the needs of
other GEC research that requires annotated corpora
with grammatical errors categorized by a different
set of error tags.

3 Functionalities

3.1 Import Essays

Before an annotator can start the annotation on the
essays, the administrator first needs to import the
essays into WAMP. Each essay has two main com-
ponents, which are the title and the main body. To
import an essay into WAMP, it needs to be in XML
format, as illustrated in Figure 2. It is also possible
to import multiple essays into WAMP with a single
import XML file. Once the XML file is loaded
from the database after the upload, the essay is in-
serted into the database through post-processing of
the import XML file. The annotators can now view
the list of uploaded essays, as shown in Figure 1,
and click on “Annotate” to begin the annotation
process.

<instance title="CREATING_A_HABITABLE.
ENVIRONMENT ">
<context>
Humans have many basic needs and
one of them is to have an
environment that can...
Some countries are having
difficulties in managing a
place to live for their
citizen as they...
</context>
</instance>

Figure 2: An example illustrating the import XML for-
mat. The details are explained in Appendix A.2.

3.2 Annotate Essays

Any annotator account can be used to annotate an
essay. The following steps to annotate essays are
based on the assumptions that (1) an essay has
been imported to the database and (2) an annotator
account has been created.

An annotator can utilize the WAMP interface to
perform annotation on an uploaded essay. However,
before the annotator begins to annotate an essay,
WAMP allows the annotator to flag the essay to
be of poor quality or invalid format. More specif-
ically, if the quality of the essay is very poor and
annotations should not be made on it, the annotator

79

can notify the administrator by checking the “Bad
Essay” check box. Similarly, if the essay is trun-
cated, poorly formatted, or contains unexpected
Unicode characters, the annotator can check the
“Needs Editing” check box to notify the administra-
tor to modify the essay before anyone can proceed
to annotate the essay. These check boxes can be
found in label (4) of Figure 3. The information is
shared among all annotators. Hence, if an essay
has been flagged as either “Bad Essay” or “Needs
Editing”, all annotators who have access to the es-
say will be notified with a warning whenever they
load the flagged essay.

3.2.1 Adding Annotations

Once an annotator confirms that there is no issue
with an essay, the annotator can proceed with the
annotation. The action of annotating an essay can
be broken down into three main steps, which are
identify, classify, and correct. As shown in label (5)
of Figure 3, the annotator can use the cursor to high-
light an arbitrary contiguous text span (containing
multiple words in general) and identify the gram-
matical error. Once an error has been highlighted,
a pop-up box prompts the annotator to choose the
appropriate error type, as illustrated in label (6) of
Figure 3. The available error types are based on the
predefined set of error tags, configured in the afore-
mentioned Administration sub-module. Lastly, the
annotation is completed when the annotator enters
an appropriate correction string to correct the error
and clicks “Save.” Once an annotation is com-
pleted, the identified error will be highlighted in
yellow with the assigned error tag on top, as indi-
cated in label (7) of Figure 3. Optionally, WAMP
allows the annotator to add a comment to clarify
the annotation.

3.2.2 Modifying Annotations

WAMP also allows an annotator to modify or delete
an existing annotation. After an annotation is saved,
clicking on the highlighted text span (as illustrated
in label (5) of Figure 3) opens a pop-up window,
as shown in Figure 4. The annotator can choose a
different error tag, enter another correction string
or comment for that annotation by clicking on the
“Edit” button. If the annotator considers an existing
annotation to be unnecessary, the annotator can
simply click on the “Delete” button to delete the
annotation from the essay. A sample annotated
essay is shown in Figure 5.

(1

()

Essay Title:
CREATING A HABITABLE ENVIRONMENT

e

(6)

Suggested Correction:
cause

Mistake Type:
[Vt (Verb tense)

3)

V)

Other Comments:
should be in present tense

)

Humans have many basic needs and one of them is to have an environment that can sustain their lives. Our current population is 6

billion people and it is stil! arowing exponentially. This will, if not already, caused problems as there are very limited spaces for us.

vt

The solution can be obtain by using technology to achieve a better usage of space that we have and resolve the problems in lands

that inhospitable such as desserts and swamps.

Figure 3: The web interface in WAMP for annotating an essay.

Mistake Type:
Vt (Verb tense)

Suggested Correction:

cause

Other Comments:

should be in present tense

[Edit || Delete | | Close

Figure 4: An example illustrating a pop-up menu for
annotation.

3.2.3 Characteristics of WAMP

One characteristic of WAMP is that the start (or
end) position of an erroneous text span can be the
location of any character in an essay, and does not
need to be the start (or end) of a word. By al-
lowing annotation in fine granularity and imposing
minimal constraints, WAMP provides an environ-
ment that closely resembles annotating with pen
and paper for the annotators. Additionally, WAMP
ensures that no annotation data is lost or damaged
during the annotation process by saving changes
after every annotation operation. This can prove
useful in cases of unexpected connection or hard-
ware failures.

Although WAMP allows multiple annotators to
collaborate on annotating the same essay by sharing
an annotator account, this workflow is not typical in
the context of constructing a GEC corpus. For GEC
annotation, it is preferable to have as many different
annotations as possible for the same text as there

80

are usually multiple possible ways of correcting an
erroneous text (Bryant and Ng, 2015).

Lastly, WAMP allows an annotator to view the
corrected version of an annotated essay, which is
available as a link in label (3) of Figure 3. The cor-
rected essay simply replaces the existing erroneous
text spans with the proposed corrections, display-
ing each corrected text span in bold and enclosing
it within a box. This functionality facilitates the
revision of essays for annotators by making it pos-
sible to view a corrected essay after the proposed
corrections are applied, without having to check
each annotation individually. As such, WAMP is
unique in that it is an annotation platform that of-
fers an easy interface to highlight errors, classify
error types, and view corrected essays.

3.3 Export Essays

Once all the annotation tasks are completed, the
administrator can export the annotation data in
XML format, as shown in Figure 6. The exported
XML file contains all the essays and the annota-
tions that have been saved in the WAMP database
so far. WAMP facilitates the export process by al-
lowing extraction of the entire data into a single
XML file. The export XML file contains the list of
essays that have been uploaded to WAMP. Within
each essay are the annotations, if any, and each
annotation is identified by the annotator’s name
to distinguish annotations on the same essay by
different annotators.

As previously mentioned, WAMP also supports
export of annotation data in M2 format. There
are several scorers available to evaluate the per-
formance of GEC systems on a data set and two
of the most widely utilized are the MaxMatch

Humans have many basic needs and one of them is to have an environment that can sustain their lives. Our current population is 6

Vvt
billion people and it is still growing exponentially. This will, if not already, caused problems as there are very limited spaces for us.

Vform

The solution can be obtain by using technology to achieve a better usage of space that we have and resolve the problems in lands

that inhospitable such as desserts and swamps.

Figure 5: An example illustrating an annotated essay.

<annotation annotator="John_Smith">

<mistake start="/0.210" end="/0.216"
>
<type>Vt</type>

<correction>cause</correction>
<comments>should be in present
tense</comments>
</mistake>

<mistake start="/0.287" end="/0.293"
>
<type>Vform</type>
<correction>obtained</correction

>
<comments/>
</mistake>
</annotation>

Figure 6: An example illustrating the export XML for-
mat. The details are explained in Appendix A.3.

(M?) scorer (Dahlmeier and Ng, 2012) and the
ERRANT (Bryant et al., 2017) scorer. Used as
the official GEC scorer for the CoNLL-2013 (Ng
et al., 2013) and CoNLL-2014 (Ng et al., 2014)
shared tasks, the MaxMatch (M?) scorer computes
the F-score over the optimal phrase-level alignment
between a source sentence and a system hypothesis
that achieves the highest overlap with the gold-
standard annotation (Dahlmeier and Ng, 2012; N4-
plava et al., 2022). It was also used for other non-
English corpora, including the Falko-MERLIN cor-
pus (Boyd, 2018) in German, and the RULEC-GEC
corpus (Rozovskaya and Roth, 2019) in Russian.
Both the MaxMatch (M?) scorer and the ERRANT
scorer utilize M2 files for evaluation. As shown in
Figure 7, the exported M2 file contains a list of to-
kenized original sentences, preceded by S. Each of
these sentences is optionally followed by lines, pre-
ceded by A. Each line contains information about
an annotation on the associated sentence, including
the start and end token offset, the error type, and
the tokenized correction string. This indicates that
WAMP not only facilitates seamless annotation on
essays but also generates annotated gold-standard
references that can be further utilized directly for
evaluation of GEC system performance.

4 System Implementation

WAMP is a web-based application, built using the
LAMP? full-stack framework. The specific depen-
dencies are listed in Appendix A.4. To facilitate
the deployment of WAMP by standardizing the de-
velopment environment, we use Docker (version
4.13.1)* to set up the required LAMP stack. We
build our Docker based on the Docker image® of
Ubuntu 9.10. After running the Docker image as
a standalone container, the source code of WAMP
is mounted to the container. One of the benefits of
Docker is that other users can easily replicate the
environment setup on any device and run the soft-
ware without having to worry about dependency
issues. We believe this is critical for the usability
of WAMP and any other annotation tools that serve
a similar purpose.

5 Related Work

Grammatical error correction is an active area of
research in natural language processing (Chollam-
patt et al., 2016; Chollampatt and Ng, 2018; Qorib
et al., 2022; Bryant et al., 2023). Both commercial
(e.g., Grammarly) and open-source GEC tools (e.g.,
ALLECS (Qorib et al., 2023)) are available. In tan-
dem, the need for new GEC corpora also increases
to support GEC development with more training
and evaluation data. Unfortunately, as of now, there
is no publicly available open-source GEC annota-
tion tool to help with the creation of GEC corpora.
Andersen (2011) reported that annotating GEC cor-
pora with a graphical tool can significantly increase
the annotation speed compared to using a text ed-
itor. The author made a simple annotation tool
for the experiment, but the tool is not explained in
detail and not publicly available.

One non-free tool that can be used for GEC anno-

3https://www.ibm.com/cloud/learn/
lamp-stack-explained

4https://docs.docker.com/desktop/
release-notes/

Shttps://github.com/iComputer7/
ancient-ubuntu-docker

https://www.ibm.com/cloud/learn/lamp-stack-explained
https://www.ibm.com/cloud/learn/lamp-stack-explained
https://docs.docker.com/desktop/release-notes/
https://docs.docker.com/desktop/release-notes/
https://github.com/iComputer7/ancient-ubuntu-docker
https://github.com/iComputer7/ancient-ubuntu-docker

S This will , if not already , caused problems as there are very limited spaces for us .

A 7 8|]||vt|||cause|| |REQUIRED]| | |-NONE-|| |0

S The solution can be obtain by using technology to achieve a better usage of space that we
have and resolve the problems in lands that inhospitable such as desserts and swamps .
A 4 5|||Vform| | |obtained| | |REQUIRED| | | -NONE-| | |0

Figure 7: An example illustrating the exported M2 format.

tation is Write&Improve®, which is an online plat-
form to assist English learners to improve their writ-
ing (Yannakoudakis et al., 2018). Write&Improve
allows English learners to submit their essays and
get feedback from an automated system or a teacher.
In our experience of using Write&Improve, we
could not find a way of labeling error type when
annotating a text. Furthermore, the system is un-
able to export the list of corrections to be applied
to a text, which is important for the GEC task. This
is because the system was designed to focus more
on tracking students’ learning progress instead of
creating a GEC corpus. The lack of error-type la-
beling and correction export features is also the
reason why text rewriting tools (Xu et al., 2019;
Goldfarb-Tarrant et al., 2019) are not suitable for
GEC annotation.

Kutuzov and Kuzmenko (2015) designed a tool
for grammatical error detection (GED) annota-
tion by integrating BRAT (Stenetorp et al., 2012)
with a linguistic analyzer (FreeLing (Padré and
Stanilovsky, 2012)) and a spellchecker (Aspell”).
BRAT is a multi-task text annotation tool that can
be used for part-of-speech tagging, named entity
recognition, dependency parsing, and other NLP
tasks. BRAT has an intuitive interface similar to
WAMP, but BRAT is not suitable for GEC corpora
annotation. This is because for each text span, one
can only assign a label from a pre-determined list of
labels instead of providing a free-form correction
string. This is also the reason why other sequence-
tagging annotation tools (Yang et al., 2018; Zhang
et al., 2021) are not suitable for GEC annotation,
which requires associating a text span with a free-
form correction string and a label for its error type.

Machine translation post-editing tools (Lee et al.,
2021) or text simplification annotation tools (Stod-
den and Kallmeyer, 2022) are also not suitable for
GEC annotation, because the tools expect a pair of
sentences for each data instance. This means that
the annotator needs to rewrite the whole text in full
first, then aligns the words in both sentences. This

®https://writeandimprove.com/
7http: //aspell.net/

82

will result in excessive rewriting and a slower an-
notation process, compared to manual annotation
with a text editor.

In summary, GEC annotation needs a special-
ized tool that cannot be easily substituted by other
natural language processing annotation tools.

6 Conclusion

In this paper, we introduce WAMP, a web-based
annotation platform to facilitate the process of man-
ual annotation and export the annotation data in
XML and M2 format. WAMP has already proven
its utility in building the NUCLE corpus, a large
annotated corpus that contains over one million
words which are completely annotated by profes-
sional English instructors using WAMP (Dahlmeier
et al., 2013). With the new enhancements in place,
WAMP brings even greater values in generating
annotations for annotated corpora by offering more
flexibility in defining the error tags and converting
the annotation data into the M2 file format that can
be used as references for evaluating GEC systems.

For future work, WAMP can be extended to in-
clude learning analytics features, such as keeping
track of the counts of different error types made
by different groups of learners. This will facilitate
the analysis of the error profile of different learners
and enable personalized and targeted assistance to
learners.

Acknowledgements

We thank Jun Hong Pua and Hong Guan Chan for
implementing WAMP. This research is supported
by the National Research Foundation, Singapore
under its Al Singapore Programme (AISG Award
No: AISG-RP-2019-014).

Limitations

As an annotation tool, WAMP is tailored for the
text correction task, by allowing a user to easily
highlight any span of text and adding the corrected
text as replacement. As such, WAMP is less suit-
able as an annotation tool for other natural language

https://writeandimprove.com/
http://aspell.net/

processing tasks such as named entity recognition,
coreference resolution, etc.

References

@istein E. Andersen. 2011. Semi-automatic ESOL error
annotation. English Profile Journal, 2:el.

Adriane Boyd. 2018. Using Wikipedia edits in low
resource grammatical error correction. In Proceed-
ings of the 2018 EMNLP Workshop W-NUT: The
4th Workshop on Noisy User-generated Text, pages
79-84, Brussels, Belgium. Association for Computa-
tional Linguistics.

Christopher Bryant, Mariano Felice, and Ted Briscoe.
2017. Automatic annotation and evaluation of error
types for grammatical error correction. In Proceed-
ings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 793-805, Vancouver, Canada. Association for
Computational Linguistics.

Christopher Bryant and Hwee Tou Ng. 2015. How far
are we from fully automatic high quality grammatical
error correction? In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 697-707, Beijing, China. Association
for Computational Linguistics.

Christopher Bryant, Zheng Yuan, Muhammad Reza
Qorib, Hannan Cao, Hwee Tou Ng, and Ted Briscoe.
2023. Grammatical error correction: A survey of the
state of the art. Computational Linguistics, 49(3).

Shamil Chollampatt and Hwee Tou Ng. 2018. A multi-
layer convolutional encoder-decoder neural network
for grammatical error correction. In Proceedings
of the Thirty-Second AAAI Conference on Artificial
Intelligence, pages 5755-5762.

Shamil Chollampatt, Kaveh Taghipour, and Hwee Tou
Ng. 2016. Neural network translation models for
grammatical error correction. In Proceedings of the
Twenty-Fifth International Joint Conference on Arti-
ficial Intelligence, pages 2768-2774.

Daniel Dahlmeier and Hwee Tou Ng. 2012. Better
evaluation for grammatical error correction. In Pro-
ceedings of the 2012 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
568-572, Montréal, Canada. Association for Compu-
tational Linguistics.

Daniel Dahlmeier, Hwee Tou Ng, and Siew Mei Wu.
2013. Building a large annotated corpus of learner
English: The NUS corpus of learner English. In Pro-
ceedings of the Eighth Workshop on Innovative Use
of NLP for Building Educational Applications, pages
22-31, Atlanta, Georgia. Association for Computa-
tional Linguistics.

83

Seraphina Goldfarb-Tarrant, Haining Feng, and Nanyun
Peng. 2019. Plan, write, and revise: an interac-
tive system for open-domain story generation. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics (Demonstrations), pages 89-97,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Andrey Kutuzov and Elizaveta Kuzmenko. 2015. Semi-
automated typical error annotation for learner English
essays: integrating frameworks. In Proceedings of
the fourth workshop on NLP for computer-assisted
language learning, pages 35-41, Vilnius, Lithuania.
LiU Electronic Press.

Dongjun Lee, Junhyeong Ahn, Heesoo Park, and Jaemin
Jo. 2021. IntelliCAT: Intelligent machine translation
post-editing with quality estimation and translation
suggestion. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Nat-
ural Language Processing: System Demonstrations,
pages 11-19, Online. Association for Computational
Linguistics.

Jakub Ndplava, Milan Straka, Jana Strakovd, and
Alexandr Rosen. 2022. Czech grammar error cor-
rection with a large and diverse corpus. Transac-
tions of the Association for Computational Linguis-
tics, 10:452-467.

Mariana Neves and Jurica Seva. 2019. An extensive
review of tools for manual annotation of documents.
Briefings in Bioinformatics, 22(1):146—163.

Hwee Tou Ng, Siew Mei Wu, Ted Briscoe, Christian
Hadiwinoto, Raymond Hendy Susanto, and Christo-
pher Bryant. 2014. The CoNLL-2014 shared task
on grammatical error correction. In Proceedings of
the Eighteenth Conference on Computational Natu-
ral Language Learning: Shared Task, pages 1-14,
Baltimore, Maryland. Association for Computational
Linguistics.

Hwee Tou Ng, Siew Mei Wu, Yuanbin Wu, Christian
Hadiwinoto, and Joel Tetreault. 2013. The CoNLL-
2013 shared task on grammatical error correction.
In Proceedings of the Seventeenth Conference on
Computational Natural Language Learning: Shared
Task, pages 1-12, Sofia, Bulgaria. Association for
Computational Linguistics.

Lluis Padr6 and Evgeny Stanilovsky. 2012. FreeLing
3.0: Towards wider multilinguality. In Proceed-
ings of the Eighth International Conference on Lan-
guage Resources and Evaluation (LREC’12), pages
2473-2479, Istanbul, Turkey. European Language
Resources Association (ELRA).

Muhammad Qorib, Seung-Hoon Na, and Hwee Tou
Ng. 2022. Frustratingly easy system combination
for grammatical error correction. In Proceedings of
the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:

https://doi.org/10.1017/S2041536211000018
https://doi.org/10.1017/S2041536211000018
https://doi.org/10.18653/v1/W18-6111
https://doi.org/10.18653/v1/W18-6111
https://doi.org/10.18653/v1/P17-1074
https://doi.org/10.18653/v1/P17-1074
https://doi.org/10.3115/v1/P15-1068
https://doi.org/10.3115/v1/P15-1068
https://doi.org/10.3115/v1/P15-1068
https://arxiv.org/abs/2211.05166
https://arxiv.org/abs/2211.05166
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17308
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17308
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17308
https://aclanthology.org/N12-1067
https://aclanthology.org/N12-1067
https://aclanthology.org/W13-1703
https://aclanthology.org/W13-1703
https://doi.org/10.18653/v1/N19-4016
https://doi.org/10.18653/v1/N19-4016
https://aclanthology.org/W15-1904
https://aclanthology.org/W15-1904
https://aclanthology.org/W15-1904
https://doi.org/10.18653/v1/2021.acl-demo.2
https://doi.org/10.18653/v1/2021.acl-demo.2
https://doi.org/10.18653/v1/2021.acl-demo.2
https://doi.org/10.1162/tacl_a_00470
https://doi.org/10.1162/tacl_a_00470
https://doi.org/10.1093/bib/bbz130
https://doi.org/10.1093/bib/bbz130
https://doi.org/10.3115/v1/W14-1701
https://doi.org/10.3115/v1/W14-1701
https://aclanthology.org/W13-3601
https://aclanthology.org/W13-3601
http://www.lrec-conf.org/proceedings/lrec2012/pdf/430_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/430_Paper.pdf
https://doi.org/10.18653/v1/2022.naacl-main.143
https://doi.org/10.18653/v1/2022.naacl-main.143

Human Language Technologies, pages 1964—1974,
Seattle, United States. Association for Computational
Linguistics.

Muhammad Reza Qorib, Geonsik Moon, and Hwee Tou
Ng. 2023. ALLECS: A lightweight language error
correction system. In Proceedings of the 17th Confer-
ence of the European Chapter of the Association for
Computational Linguistics: System Demonstrations,
pages 298-306, Dubrovnik, Croatia. Association for
Computational Linguistics.

Alla Rozovskaya and Dan Roth. 2019. Grammar error
correction in morphologically rich languages: The
case of Russian. Transactions of the Association for
Computational Linguistics, 7:1-17.

Charanjit Swaran Singh, Amreet Jageer Singh, Nur
Qistina Abdul Razak, and Thilaga Ravinthar. 2017.
Grammar errors made by ESL tertiary students in
writing. English Language Teaching, 10:16.

Pontus Stenetorp, Sampo Pyysalo, Goran Topié,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsujii.
2012. brat: a web-based tool for NLP-assisted text
annotation. In Proceedings of the Demonstrations
at the 13th Conference of the European Chapter of
the Association for Computational Linguistics, pages
102-107, Avignon, France. Association for Compu-
tational Linguistics.

Regina Stodden and Laura Kallmeyer. 2022. TS-
ANNO: An annotation tool to build, annotate and
evaluate text simplification corpora. In Proceed-
ings of the 60th Annual Meeting of the Association
for Computational Linguistics: System Demonstra-
tions, pages 145—155, Dublin, Ireland. Association
for Computational Linguistics.

Qiongkai Xu, Chenchen Xu, and Lizhen Qu. 2019. AL-
TER: Auxiliary text rewriting tool for natural lan-
guage generation. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP):
System Demonstrations, pages 13—-18, Hong Kong,
China. Association for Computational Linguistics.

Jie Yang, Yue Zhang, Linwei Li, and Xingxuan Li. 2018.
YEDDA: A lightweight collaborative text span an-
notation tool. In Proceedings of ACL 2018, System
Demonstrations, pages 31-36, Melbourne, Australia.
Association for Computational Linguistics.

Helen Yannakoudakis, @istein E. Andersen, Ardeshir
Geranpayeh, Ted Briscoe, and Diane Nicholls. 2018.
Developing an automated writing placement system
for esl learners. Applied Measurement in Education,
31:251-267.

Baoli Zhang, Zhucong Li, Zhen Gan, Yubo Chen, Jing
Wan, Kang Liu, Jun Zhao, Shengping Liu, and Yafei
Shi. 2021. CroAno : A crowd annotation platform for
improving label consistency of Chinese NER dataset.
In Proceedings of the 2021 Conference on Empirical

84

Methods in Natural Language Processing: System
Demonstrations, pages 275-282, Online and Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

A Appendix
A.1 WAMP Modules

WAMP contains the following community-
contributed modules:

* Conditional Styles (version 6.x-1.1)
* Hovertip (version 6.x-1.x-dev)
* Jquery Update (version 6.x-2.x).

A.2 TImport XML

The import XML file encompasses a list of “in-
stance” elements, as shown in Figure 2. Each “in-
stance” element represents an individual essay to
be imported into WAMP and is characterized by a
“title” attribute that serves as the title of the spec-
ified essay. Under the “instance” element is the
“context” element that contains the actual content
of the essay. Inside the “context” element, each
paragraph is separated by double line breaks and
can contain multiple sentences.

A.3 Export XML

’

The export XML format contains a list of “instance’
elements, which represent individual essays im-
ported into WAMP. Each of these “instance” ele-
ments, characterized by the “title” attribute, has
two main types of child elements, “context” and
“annotation.” The “context” element comprises the
main body of the essay and the “annotation” ele-
ment contains the annotation XML format. The
annotation XML format, shown in Figure 6, is spe-
cific to a single essay and by a single annotator. The
root element of the annotation XML format is “an-
notation”, which contains a child element “mistake”
representing a single annotation. The “start” and
“end” attributes denote the start and end position of
the specified grammatical error that is annotated.
For example, the annotation for “cause,” illustrated
in Figure 3, is represented as having start attribute
of “/0.210” and end attribute of “/0.216.” This in-
dicates that the annotation belongs to the 0" line
(counting from 0) and the annotation spans from
the 210" to 216™ character offset positions within
that line. Also, the “mistake” element includes

three sub-child elements, “type”, “correction”, and

https://doi.org/10.18653/v1/2023.eacl-demo.32
https://doi.org/10.18653/v1/2023.eacl-demo.32
https://doi.org/10.1162/tacl_a_00251
https://doi.org/10.1162/tacl_a_00251
https://doi.org/10.1162/tacl_a_00251
https://doi.org/10.5539/elt.v10n5p16
https://doi.org/10.5539/elt.v10n5p16
https://aclanthology.org/E12-2021
https://aclanthology.org/E12-2021
https://doi.org/10.18653/v1/2022.acl-demo.14
https://doi.org/10.18653/v1/2022.acl-demo.14
https://doi.org/10.18653/v1/2022.acl-demo.14
https://doi.org/10.18653/v1/D19-3003
https://doi.org/10.18653/v1/D19-3003
https://doi.org/10.18653/v1/D19-3003
https://doi.org/10.18653/v1/P18-4006
https://doi.org/10.18653/v1/P18-4006
https://doi.org/10.1080/08957347.2018.1464447
https://doi.org/10.1080/08957347.2018.1464447
https://doi.org/10.18653/v1/2021.emnlp-demo.32
https://doi.org/10.18653/v1/2021.emnlp-demo.32

“comments.” Each of these sub-child elements con-
tains information about the error type, proposed
correction, and comment respectively.

A.4 Docker Dependencies
« Ubuntu (version 9.10)®

* Apache (version 2.2)°
* PHP (version 5.2)'°

* MySQL (version 5.1)!!

8https://old—releases.ubuntu.com/releases/
karmic/

9https://httpd.apache.org/download.cgi

10https://www.php.net/releases/index.php

11https://downloads.mysql.com/archives/
community/

85

https://old-releases.ubuntu.com/releases/karmic/
https://old-releases.ubuntu.com/releases/karmic/
https://httpd.apache.org/download.cgi
https://www.php.net/releases/index.php
https://downloads.mysql.com/archives/community/
https://downloads.mysql.com/archives/community/

