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Abstract

To develop a system with near-human language
capabilities, we need to understand current sys-
tems’ generalisation and compositional abili-
ties. We approach this by generating compo-
sitional, structured data, inspired from visual
intelligence tests, that depend on the problem-
solvers being able to disentangle objects and
their absolute and relative properties in a se-
quence of images. We design an analogous
task and develop the corresponding datasets
that capture specific linguistic phenomena and
their properties. Solving each problem instance
depends on detecting the relevant linguistic ob-
jects and generative rules of the problem. We
propose two datasets modelling two linguistic
phenomena — subject-verb agreement in French,
and verb alternations in English. The datasets
can be used to investigate how LLMs encode
linguistic objects, such as phrases, their gram-
matical and semantic properties, such as num-
ber or semantic role, and how such information
is combined to correctly solve each problem.
Specifically generated error types help investi-
gate the behaviour of the system, which impor-
tant information it is able to detect, and which
structures mislead it.

1 Motivation

The current reported success of large language mod-
els (LLMs) is based on computationally expensive
algorithms and large amounts of data that are avail-
able for only a few, non-representative languages.
Such data may also contain biases and imbalances,
and its sheer size prevents curation. To be able
to build robust models that can learn better from
manageable sized data, we need to understand the
current systems’ generalisation and compositional
abilities.

We argue that a system with high language com-
petence and performance, that is able to learn from
small amounts of data, and is cross-linguistically
valid, should capture the three fundamental prop-
erties of human language: (i) human language is

described by several abstract levels of representa-
tions (e.g. morphological, phonological, syntactic,
semantic), mapped onto each other by complex
many-to-many rules; (i) it is compositional; (iii) it
is structured.

For GenBench, we propose several datasets un-
der the same umbrella, as they have the same for-
mat, but encode different linguistic phenomena,
each in a different language — subject verb agree-
ment in French, verb alternations in English. They
can be used separately, or in combination, to ex-
plore the properties and the generalisation abilities
of a LLM in various ways.

* Test whether sentence representations encode
the targeted linguistic information.

* Test generalisation when data has different
levels of lexical variation.

* Providing probes into how sentence represen-
tations encode the targeted information — by
studying different minimal architectures that
aim to find patterns in pretrained sentence rep-
resentations. !

* Providing cross-linguistic and multi-task
probes for detecting how sentence represen-
tations encode different kinds of targeted lin-
guistic information. The fact that our datasets
have the same structure allows for a variety of
experimental set-ups to probe how sentence
embeddings encode different linguistic phe-
nomena across different languages.

Additional datasets are in development, thus ex-
panding the scope of the exploration. With respect
to the workshop aims, our motivations are as fol-
lows.

"By minimal we mean the least complex architectures that
could be used to discover patterns in the input data.
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Cognitive : explore how specific linguistic infor-
mation is encoded in pretrained sentence rep-
resentation, and determine whether, or to what
degree, we can identify symbolic structures
and compositional elements within these rep-
resentations.

Intrinsic : explore whether pretrained LLMs have
learned language representations whose prop-
erties can be mapped onto those proposed in
linguistics, and whether the tasks we propose
are solved through identifiable rules.

While the proposed datasets are presented as a
diagnostic tool — to detect patterns that encode lin-
guistic rules and phenomena — we envision that
they could also be used to bring such patterns to
the fore, through fine-tuning pretrained sentence
embeddings, thus pushing continuous distributed
representations towards more symbolic, and inter-
pretable, ones.

2 Blackbird Language Matrices

The design of our datasets were inspired by Raven
Progressive Matrices (RPMs) (Raven, 1938), an
example of which is presented in Figure 1.

[] /P [

Figure 1: An example Raven’s progressive matrix (best
seen in colour). The matrix is constructed according to
two rules: (i) the red dot moves one place clockwise
when traversing the matrix left to right; (ii) the blue
square moves one place anticlockwise when traversing
the matrix top to bottom. The task consists in finding
the tile in the answer set that correctly completes the
sequence, indicated with a double border.

RPMs are used in visual IQ tests, as they rely
on problem-solvers identifying elements and their
attributes such as position, shape, colour and size,
and their absolute and relative properties (for in-
stance, how their positions change relative to each
other throughout the matrix of images). Analo-
gously, in language, elements correspond to phrase
types, attributes correspond to grammatical gen-
der or number, or specific semantic properties, and
their connective properties are the relative positions
within a syntactic structure or the mapping across
levels of representations.

2.1 The Blackbird Language Matrices (BLM)
task

Merlo et al. (2022); Merlo (2023) describe the
Blackbird Language Matrices (BLM) task. A tar-
geted linguistic phenomenon is presented in the
form of a set of sentences that have both syntag-
matic and paradigmatic relations. This way, like
in the RPM visual version, they give rise to a ma-
trix structure. The language matrices manipulate
phrases, dependencies in the syntactic tree, and lex-
ical, grammatical and semantic attributes between
connected elements of a sentence and across sen-
tences.

A BLM task comprises a context and an answer
set: the context C' is a sequence of sentences that
share the targeted grammatical phenomenon, but
differ in other relevant aspects. BLMs are multiple-
choice problems, and each context is paired with a
set of candidate answers V. The incorrect answers
are built by corrupting the generating rules of the
context sequence. This contrastive set up enables
targeted error analyses and provides information
on structures learned and the type of mistakes a
system is prone to. More formally, a BLM task,
problem, and matrix can be defined as follows.

BLM TASK: Find (w. € W) given C,

given a 4-tuple (LP,C, W, w,.), where LP is
the definition of the linguistic grammatical
phenomenon, C' is the corresponding context
matrices, W is the answer set, and w,. is the
selected item of W that is correct.

BLM PROBLEM: A BLM problem is a
tuple(LP, C, W, Aug). It is an instance of a
BLM task, where Aug is the augmentation
method for the matrices.

BLM MATRIX: A BLM matrix is a tuple
(S,R,T) s.t. S is the shape of the matrix,
R are the relational operators that connect the
items of the matrix, 1" is the set of items of
the matrix.

2.2 The BLM Datasets

We propose two datasets encoding two different lin-
guistic phenomena, in different languages: subject-
verb agreement in French, and verb alternations in
English. We submit to the GenBench task two vari-
ations for each dataset: one where each problem
in the training data consists of a sequence of sen-
tences with minimal lexical variation (¢type I), and
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one where the lexical variation is maximal (type
I1I). Figure 2 shows the evaluation cards for the
two types of datasets (with training with minimal
lexical variation, and the training and test data sam-
pled from the same population of automatically
generated instances). Table 1 shows the dataset
statistics.

type I

Motivation

Practical Cognifive Infrinsic Fairness

Generalisation type
k Cross

. Cros
Compositional Struciuml Cross Task o Robusiness
Language Domain

Shift type
Covariafe Label Full Assumed

Shift source

Naturally occuring  Partitioned nafural Cenerated shift Fully genernted

Shift locus

Finefune frain-fesf Prefrain-froin Prefrain- fesf

Train-fest

type 111

Motivation

Practical Clagnitive Intrinsic Fairness

Generalisation type
k Cross

E Cros
Composifional Struciuml Cross Task o Robusiness
Language  Domain

Shift type

Cavariafe Label Full Assumed

Shift source

Naturally eccuring Partitioned natural Crenerafed shifi Fully generafed

Shift locus

Train-test Finefune frain-fest Prefraim-frain Pretmin- fest

Figure 2: Evaluation cards type I (top) and type III (bot-
tom).

The shift and generalisation types are as follows.

Shift source : fully generated — BLM-AgrF has
been automatically generated starting from
manually selected seeds and provided tem-
plates. + generated shift: type I variation
contains training data sampled from a differ-
ent distribution than the test data.

Shift type : covariate: for type I there is a covari-
ate shift between training and testing input
data.

Shift locus : pretrained-trained — the datasets are
designed to make use, as input, of the repre-
sentations produced by pretrained LLMs, and
use them in a novel task. + train-test — for the
type I variations.

Generalisation We aim for compositional gener-
alisation, by proposing a dataset that can be used
to probe whether different linguistic objects, their

properties, and the rules through which they com-
bine are identifiable in pretrained sentence repre-
sentations.

2.2.1 BLM-AgrF: Subject-verb agreement (in
French)

Subject-verb agreement is often used to test the
syntactic abilities of deep neural networks (Linzen
etal., 2016; Gulordava et al., 2018; Goldberg, 2019;
Linzen and Baroni, 2021). While theoretically sim-
ple, it can have several complicating factors, such
as intervening elements between nouns and the
verb, which can interfere with the proper matching
of the agreement features.

CONTEXT

1 Levase avec la fleur est cassé.

2 Lesvases avec la fleur sont cassés.
3 Levase avec les fleurs est cassé.

4 Lesvases avec les fleurs sont cassés.
5 Levase avec la fleur du jardin  est cassé.

6 Lesvases avec la fleur du jardin  sont cassés.
7 Le vase avec les fleurs  du jardin  est cassé.

8 M

ANSWER SET
1 Le vase avec la fleur et le jardin est cassé. coord

2 Les vases avec les fleurs du jardin sont cassés. correct

3 Le vase avec la fleur est cassé. WNA
4 Le vase avec la fleur du jardin sont cassés. AE
5 Les vases avec les fleurs du jardin sont cassés. ~ WN1

6 Les vases avec les fleurs des jardins sont cassés. WN2

Figure 3: BLM instances for verb-subject agreement,
with two attractors (fleur (flower), jardin (garden)), with
candidate answer set. WNA=wrong number of attrac-
tors, AE=agreement error, WN1=wrong nr. for 1t at-
tractor noun (N1), WN2=wrong nr. for 274 attractor
noun (N2)

In BLM-AgrF (An et al., 2023),> a BLM prob-
lem for subject-verb agreement consists of a con-
text set of seven sentences that share the subject-
verb agreement phenomenon, but differ in other
aspects — e.g. number of intervening noun phrases
between the subject and the verb, called attractors
because they can interfere with the agreement, dif-
ferent grammatical numbers for these attractors,
and different clause structures. Each context is
paired with a set of candidate answers. The answer
sets contain minimally contrastive examples built
by corrupting some of the generating rules. This
helps investigate the kind of information and struc-
ture learned, by error analysis. An example is given
in Figure 3.

>The names of the datasets are composed of a descriptor

of the grammatical phenomenon (usually three letters) and the
initial of the language (Agr = Agreement; F = French).
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EXAMPLE OF CONTEXT
The girl sprayed the wall with paint.
Paint was sprayed by the girl
Paint was sprayed onto the wall by the girl
Paint was sprayed onto the wall
The wall was sprayed by the girl
The wall was sprayed with the paint by the girl

The wall was sprayed with paint
77

0NN N AW~

EXAMPLE OF ANSWERS
The girl sprayed paint onto the wall Correct
The girl was sprayed paint onto the wall AgentAct
The girl sprayed paint the wall Altl
The girl sprayed with paint onto the wall Alt2

The girl sprayed paint for the room NoEmb
The girl sprayed paint under the wall LexPrep
Paint sprayed the girl onto the wall SSM
The wall sprayed the girl with paint SSM
Paint sprayed the wall with the girl AASSM

Figure 4: Verb alternations (ALT-ATL): a minimally
lexicalised data instance. The labels indicate which
(sub)rules are corrupted to create the error. See text for
explanation.

2.2.2 BLM-s/IE: verb alternations (in English)

The study of the argument-structure properties of
verbs and semantic role assignments is also a test-
bed for the core syntactic and semantic abilities
of neural networks (Kann et al., 2019; Yi et al.,
2022). Specifically, Yi et al. (2022) demonstrates
that transformers can encode information on the
two alternants of the well-studied spray-load alter-
nation (Levin, 1993).

The BLM dataset for investigating the encoding
of alternation properties is BLM-s/IE (Samo et al.,
2023).3 A naturally occurring example for each
verb was extracted from the Spike Amazon sub-
corpus (Shlain et al., 2020), adopted as seeds for
data-augmentation with a fill-mask task. Details are
given in (Samo et al., 2023). A BLM s/IE matrix
consists of a context set comprising one alternant
(e.g. The girl sprayed the wall with paint) of the
spray-load alternation and other sentences that pro-
vide the syntactic properties of the arguments of
the alternation (e.g. passivization strategies). The
target sentence is the other alternant (in our case,
The girl sprayed paint onto the wall) to be chosen
from an answer set of superficially minimally, but,
syntactically and semantically, deeply different can-
didates. An example matrix is shown in Figure 5.
We created two templates, one for each of the two
alternates. One group has the alternant AGENT-

The name follows our convention: s/l = spray/load; E
= English. The dataset is created on the basis of a class of
30 verbs belonging to the same class of spray and load in
VERBNET (Schuler 2005).

EXAMPLE OF CONTEXT
The girl sprayed paint onto the wall.
Paint was sprayed by the girl
Paint was sprayed onto the wall by the girl
Paint was sprayed onto the wall
The wall was sprayed by the girl
The wall was sprayed with the paint by the girl

The wall was sprayed with paint
7?7

0NN B W

EXAMPLE OF ANSWERS
The girl sprayed the wall with paint Correct
The girl was sprayed the wall with paint AgentAct
The girl sprayed the wall the paint Altl
The girl sprayed onto the wall with paint Alt2
The girl sprayed the wall of the room NoEmb
The girl sprayed the wall under the paint LexPrep

The wall sprayed the girl with the paint SSM
Paint sprayed the girl onto the wall SSM
The wall sprayed the paint with the girl AASSM

Figure 5: Verb alternation (ATL-ALT), a minimally
lexicalised data instance. The labels indicate which
(sub)rules are corrupted to create the error. See text for
explanation.

LOCATIVE-THEME (hencefort ALT, e.g. The girl
sprayed the wall with paint) in the context and
the correct answer is the alternant whose configu-
ration is AGENT-THEME-LOCATIVE (henceforth
ATL, e.g. The girl sprayed paint onto the wall).
ALT-ATL data is the data produced from the matrix
in Figure 5.4

The answer set is contrastive — see caption of
Figure 5. The answer labelled as AGENTACT mini-
mally deviates from the correct answer, since the
verb is inflected in a passive mood; in ALT errors,
the verb of the alternate is followed by two NPs
and one PPs; in NOEMB errors, the PP is syntac-
tically embedded in the NP; LEXPREP errors in-
volve a preposition which does not grammatically
belong to the alternation. Finally, violations of
the syntax-semantic mapping (SSM1 and SSM?2)
and simultaneous violations of AGENTACT and
SSM (AASSM) involve reorderings of the lexical
constituents and functional elements (e.g. preposi-
tions).

3 Benchmarking

We used two baselines to benchmark the proposed
datasets. They are designed to test whether we
can access the relevant information for the targeted
phenomena in a given BLM task, in transformer-
based sentence representations. Figure 6 shows

*The name of the data subset, ALT-ATL, is transparent
towards this logic: ALT is given in the context set, ATL is the
correct answer. The second group’s template (ATL-ALT) is
the converse.
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the general process flow. The two baselines are a
feed-forward neural network (FFNN) and a convo-
lutional neural network (CNN).

The FFNN baseline is a three-layer feed-forward
neural network. It transforms the context C' of a
BLM instance into a 1D-tensor which is a concate-
nation of the representation of each sentence. This
is passed through three fully-connected layers. The
output is a vector that we take to represent the em-
bedding of the answer sentence. This architecture
allows the system to find patterns within and across
sentences through the nodes in the successive lay-
ers.

The CNN baseline consists of three convolu-
tional steps, followed by a linear layer to compress
the output to the desired dimensions. The input
consists of a stack of context sentence representa-
tions. This setup finds localized patterns within
sentence representation and across the sequence of
sentences.

The output of the two networks is the same — a
vector representing the sentence embedding of the
correct answer. The learning objective is to max-
imize the probability of the correct answer from
the candidate answer set. Because the incorrect an-
swers in the answer set are specifically designed to
be minimally different from the correct answer, we
implement the objective through the max-margin
loss function. This function combines the distances
between the predicted answer and the correct and
erroneous ones. We first compute a score for the
embedding e; of each candidate answer a; in the
answer set .4 with respect to the predicted sentence
embedding e,,,..4 as the cosine of the angle between
the respective vectors:

score(€j, epred) = €05(€5, €pred)

The loss uses the max-margin between the score
for the correct answer e, and for each of the incor-
rect answers e;:

loss = Z[l—score(ec, epred)tscore(e;, emed)]+

€q

At prediction time, we take the answer with the
highest score value from a candidate set as the
correct answer.

4 Results and Error Analysis

The train/test data splits are presented in Table 1.
As the task is set-up as multiple choice, we mea-
sure the results in terms of F1 scores for identifying
the correct answer. The results below also show

Sentence
representation

w::> e B | E>

Sentence sequence Candidate answers Prediction

Figure 6: Illustration of the baseline setup experiments.

Datasets type 1 type 111
BLM-AgrF 2073/3840  34650/3840
ALT-ATL | 3375/1500  13500/1500
BLM-s/IE
s ATL-ALT | 3375/1500  13500/1500

Table 1: Datasets statistics in terms of train/test counts.

the performance on the test set for varying amounts
of training data to show their impact, and com-
pares two types of pretrained sentence embeddings
— RoBERTa (Liu et al., 2019) and Electra (Clark
et al., 2020).

4.1 Varying the training data

The results below show the performance on the
test set in terms of F1 averages over five runs for
each of the two datasets, for RoOBERTa and Electra
sentence embeddings.’ The plots in Figure 7 show
the results for the type I1I dataset variations (with
train and test data sampled from the same popula-
tion with maximal lexical variation), and the results
for the rype I dataset variations (with training data
with minimal lexical variation within an instance).
The results obtained with the overall baseline sys-
tem (FFNN with Electra sentence embeddings) are
shown in the tables in the left column.

The results shown in Figure 7 reveal interesting
distinguishing properties of the two tasks. For the
subject-verb agreement, which is a syntactic task,
both types of sentence embeddings lead to similar
results when using the FFNN system. Instead, a
difference arises across architectures. The fact that
the CNN leads to lower performance indicates that
it finds more localised patterns and it also indicates
that patterns capturing subject-verb agreement are
more spread throughout the sentence embeddings.
For the verb alternation task, which has a strong
semantic component, the embedding type makes
more of a difference than the system used to detect
patterns. Electra seems to encode verb semantics
better for this task, as Yi et al. (2022) also note.
Because both the FFNN and the CNN detect suc-
cessfully these patterns, this indicates that patterns

SFor all sets of five runs the standard deviation was less
than 1le — 10, so it is not included in the tables.
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Results for best base-
line (Electra + FFNN)

type 1

type 111

Training data analysis for subject-verb agreement (Fr)

Training data analysis for subject-verb agreement (Fr)
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1500 1 0.676  0.711 o = e = e

2000 0702 0741 o o= eonies) o = s
C T mgraldation st G020 OB mgralidation data G020

tr+dev type 1 type 11 Training data analysis for verb alternation ALT-ATL (En) o Training data analysis for verb alternation ALT-ATL (En)
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2000 0798 0938 0.4 electra_CNN_1DxSeq 0.4 electra_CNN_1DxSeq

3000 [0.803 0929 ey e oen
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Figure 7: Result plots in terms of F1 averages over five runs, when using the two baselines and RoBERTa and
Electra sentence embeddings, and numeric results in the tables for the best combination: Electra with FFNN baseline

system

encoding verb alternations are more localised.

Having training data with minimal lexical varia-
tion makes the targeted pattern more obvious. On
the other hand, it may provide shallow indicators
that can confound the system. Comparing the re-
sults on type I and type 111, we note that there is a
drop of about 0.1 in the F-score for all settings, al-
though for the subject-verb agreement this is lower
(0.04). This is probably not surprising and under-
lines the more structural nature of the subject-verb
agreement problem, where lexical variation does
not detract from the number agreement pattern. For
the verb alternation the drop is higher. This may
suggest that since the task is more semantic in na-
ture, variation in the lexical material of the sentence
shifts the underlying patterns. Some transformation

of the sentence representations may make such pat-
terns more obvious, and separate them from the lex-
ical signal. However, the performance is still high,
even with a smaller amount of training data, indi-
cating that the signal that encodes the spray-load
alternation is strong in the sentence embeddings.

4.2 Error Analysis

Error analysis on the best baseline — RoBERTa
sentence embeddings with the CNN system — is
given in Figure 8. The upper panel refers to BLM-
AgrF, the lower panel provides information about
the errors within the ALT-ATL dataset BLM-s/IE.
In both datasets, we observe clear trends. First,
more data reduces errors roughly uniformly. Min-
imal variation is observed in BLM-AgrF, where
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Error data analysis for subject-verb agreement (Fr) electra-FFNN

error rate
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Figure 8: Error analysis (averages over 5 runs) for varying amounts of training data, for the best performing baseline:

RoBERTa sentence embeddings with the CNN system.

WN?2 (wrong number for 2"¢ attractor noun) re-
mains the most frequent error across size of the
training data. This error has two interesting char-
acteristics: it is the most frequent error also for
human speakers, and also it is exhibited by sen-
tences that are grammatical, but do not respect the
global pattern of the matrix.

Conversely, a conspicuous trend is distinctly ob-
servable within the BLM-s/IE dataset (ALT-ATL).
The distribution of mistake types concentrates on
lexical mistakes of functional elements (preposi-
tions) with small training sets. However, as the
dataset size increases, the SSM error increases pro-
portionally. This error is associated with the se-
mantic properties of the alternation, specifically
the semantic roles of the arguments of the verb.

5 Related work

The GenBench taxonomy differs sometimes from
the meaning of some existing terms elsewhere re-
ferring to generalisation. In situating our work in
comparison to other related work, we reason based
on the actual nature of the generalisation being
sought rather than the terminology.

Our closest related dataset in spirit, in terms of

motivation and goals, is the COGS dataset (Kim
and Linzen, 2020). It is also different from our
dataset in implementation. The COGS dataset aims
at providing out-of-distribution test cases to test
compositionality of structure and meaning. To this
goal, a training set is generated with a CFG and
parallel lambda-expressions and a test set with a
different CFG, specifically designed to exhibit test-
ing constructions that are previously unseen as such
and whose solution requires compositional gener-
alisation of components seen at training.

These unseen constructions comprise both struc-
tural and lexical generalisation: the former aiming
to test the ability to create new structures from ex-
isting parts, the latter to test ability to adapt existing
structures to novel content.

While our dataset strives for similar goals, the
way to go about it is different in one relevant re-
spect. The COGS dataset determines by design
the combinatorics that the network needs to find,
imposing therefore preexisting hard independence
assumptions generated by a CFG in the test set.
These pre-existing discrete rules of combination
must be discovered to find a correct parsing solu-
tion.

Our approach is more in the spirit of hidden rep-
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resentation learning. We do not require that the
network has explicitly learnt new generative ways
of combining elements. But we encourage repre-
sentations that learn soft constraints, in the form of
disentangled representations that correspond to the
generative underlying factors. Beside testing soft
constraints on structural generalisation, we also
provide tests of lexical generalisation (through the
different types of lexical variability in the matrix).

In this respect, the datasets provided here are
related to those used in the literature on disentan-
glement in computer vision. For example, van
Steenkiste et al. (2020) developed a dataset for
computer vision similar to RPMs. They evaluate
the usefulness of the representations learned for
abstract reasoning. They note that learning dis-
entangled representations leads to faster few-shot
learning. Also, recently Zheng and Lapata (2022)
propose a different method for disentangling re-
lations expressed in a sentence which may share
arguments. This is implemented as an extension to
sequence-to-sequence (seq2seq) models, where at
each decoding step the source input is re-encoded
by conditioning the source representations on the
newly decoded target context. These specialized
representations make it easier for the encoder to ex-
ploit relevant-only information for each prediction.

With the appropriate dataset, such approaches
can be used to probe the abilities of pretrained
LLMs. The datasets we propose in this paper have
the necessary properties: they focus on specific lin-
guistic phenomena, they display lexical and struc-
tural variation, and include known confounding
factors for the targered phenomena. They are, then,
close to the work that investigates network repre-
sentations. For example, Lasri et al. (2022) focus
on how BERT encodes grammatical number in En-
glish and how this information is used for perform-
ing number agreement. The focus is on word em-
beddings and quantifying how much number infor-
mation they encode at various layers of the BERT
architecture. Using a combination of probing ap-
proaches, they discover that subjects and predicates
embeddings do encode number information, but at
different layers. Further investigations into where
and how the number information is shared reveals
that number information is not directly shared, but
rather passed through intermediate tokens. The
study of the argument-structure properties of verbs
and semantic role assignments is also a test-bed
for the core syntactic and semantic abilities of neu-

ral networks (Kann et al., 2019; Yi et al., 2022).
In particular, Yi et al. (2022) demonstrates that
transformers can encode information on the two
alternants of the spray-load alternation.

6 Conclusions

In this paper, we describe an approach to generate
compositional, structured data, inspired from vi-
sual intelligence tests. We presented two datasets,
each focused on a different linguistic phenomenon,
and in a different language. Solving each prob-
lem instance depends on the system detecting the
relevant linguistic objects, and their absolute and
relative properties. These datasets can be used to
investigate whether this type of information can be
detected in, and whether it is used by, pretrained
LLMs. Because the datasets are formatted in the
same way, they can be used separately, or in various
combinations, to test cross-task and cross-language
model properties. Additional such datasets are un-
der development, thus potentially expanding the
scope of the exploration.

Further experiments are also ongoing. One of
our goals is to understand how information is en-
coded in pretrained transformer-based sentence em-
beddings. We investigate whether there are patterns
within sentence representations that reveal specific
linguistic phenomena. Towards this end, we have
developed architectures designed to discover such
patterns that can be applied successfully, without
adaptation (in terms of architecture or hyperparam-
eters) to different problems in different languages.
This provides insight into how transformers encode
sentence-level information.

Limitations

The approach is evaluated on a limited range of
syntactic phenomena and models. Expanding the
scope could better demonstrate the general utility.
In particular, we would like to expand in many
directions: (i) the structures that are tried in the dif-
ferent test sets; (ii) the different phenomena under
study; (iii) the complexity of the matrices, which
can be made progressively harder by combining
linguistic phenomena in a single matrix. Finally,
we need to tackle the complex problem of how
to generate more naturally structured data, while
retaining the controllable nature of synthetic, ex-
perimental data.

170



Ethics Statement

To the best of our knowledge, this paper raises no
ethics concerns.

Acknowledgements

We gratefully acknowledge the partial support of
this work by the Swiss National Science Foun-
dation, through grants #51NF40_180888 (NCCR
Evolving Language) and SNF Advanced grant
TMAG-1_209426 to PM.

References

Aixiu An, Chunyang Jiang, Maria A. Rodriguez, Vivi
Nastase, and Paola Merlo. 2023. BLM-AgrF: A new
French benchmark to investigate generalization of
agreement in neural networks. In Proceedings of the
17th Conference of the European Chapter of the As-
sociation for Computational Linguistics, pages 1363—
1374, Dubrovnik, Croatia. Association for Computa-
tional Linguistics.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. ELECTRA: Pre-
training text encoders as discriminators rather than
generators. In /ICLR.

Yoav Goldberg. 2019. Assessing bert’s syntactic abili-
ties. arXiv preprint arXiv:1901.05287.

Kristina Gulordava, Piotr Bojanowski, Edouard Grave,
Tal Linzen, and Marco Baroni. 2018. Colorless green
recurrent networks dream hierarchically. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1195-1205, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Katharina Kann, Alex Warstadt, Adina Williams, and
Samuel R. Bowman. 2019. Verb argument structure
alternations in word and sentence embeddings. In
Proceedings of the Society for Computation in Lin-
guistics (SCiL) 2019, pages 287-297.

Najoung Kim and Tal Linzen. 2020. COGS: A compo-
sitional generalization challenge based on semantic
interpretation. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 9087-9105, Online. As-
sociation for Computational Linguistics.

Karim Lasri, Tiago Pimentel, Alessandro Lenci, Thierry
Poibeau, and Ryan Cotterell. 2022. Probing for the
usage of grammatical number. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
8818-8831, Dublin, Ireland. Association for Compu-
tational Linguistics.

171

Beth Levin. 1993. English verb classes and alterna-
tions: A preliminary investigation. University of
Chicago Press.

Tal Linzen and Marco Baroni. 2021. Syntactic structure
from deep learning. Annual Review of Linguistics,
7(1):195-212.

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg.
2016. Assessing the ability of LSTMs to learn syntax-
sensitive dependencies. Transactions of the Associa-
tion for Computational Linguistics, 4:521-535.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Paola Merlo. 2023. Blackbird language matrices
(BLM), a new task for rule-like generalization in neu-
ral networks: Motivations and formal specifications.
ArXiv, cs.CL 2306.11444.

Paola Merlo, Aixiu An, and Maria A. Rodriguez. 2022.
Blackbird’s language matrices (BLMs): a new bench-
mark to investigate disentangled generalisation in
neural networks. ArXiv, cs.CL 2205.10866.

John C. Raven. 1938. Standardization of progressive
matrices. British Journal of Medical Psychology,
19:137-150.

Giuseppe Samo, Vivi Nastase, Chunyang Jiang, and
Paola Merlo. 2023. BLM-s/IE: A structured dataset
of English spray-load verb alternations for testing
generalization in LLMs. In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing, Singapore.

Karin Kipper Schuler. 2005. VerbNet: A broad-
coverage, comprehensive verb lexicon. University of
Pennsylvania.

Micah Shlain, Hillel Taub-Tabib, Shoval Sadde, and
Yoav Goldberg. 2020. Syntactic search by example.
In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics: System
Demonstrations, pages 17-23, Online. Association
for Computational Linguistics.

Sjoerd van Steenkiste, Francesco Locatello, Jiirgen
Schmidhuber, and Olivier Bachem. 2020. Are dis-
entangled representations helpful for abstract visual
reasoning? In NeurIPS 2019.

David Yi, James Bruno, Jiayu Han, Peter Zukerman,
and Shane Steinert-Threlkeld. 2022. Probing for un-
derstanding of English verb classes and alternations
in large pre-trained language models. In Proceedings
of the Fifth BlackboxNLP Workshop on Analyzing
and Interpreting Neural Networks for NLP, pages
142-152, Abu Dhabi, United Arab Emirates (Hybrid).
Association for Computational Linguistics.


https://aclanthology.org/2023.eacl-main.99
https://aclanthology.org/2023.eacl-main.99
https://aclanthology.org/2023.eacl-main.99
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
https://openreview.net/pdf?id=r1xMH1BtvB
https://doi.org/10.18653/v1/N18-1108
https://doi.org/10.18653/v1/N18-1108
https://doi.org/10.7275/q5js-4y86
https://doi.org/10.7275/q5js-4y86
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2022.acl-long.603
https://doi.org/10.18653/v1/2022.acl-long.603
https://doi.org/10.1146/annurev-linguistics-032020-051035
https://doi.org/10.1146/annurev-linguistics-032020-051035
https://doi.org/10.1162/tacl_a_00115
https://doi.org/10.1162/tacl_a_00115
https://doi.org/10.48550/arXiv.2306.11444
https://doi.org/10.48550/arXiv.2306.11444
https://doi.org/10.48550/arXiv.2306.11444
https://doi.org/10.48550/ARXIV.2205.10866
https://doi.org/10.48550/ARXIV.2205.10866
https://doi.org/10.48550/ARXIV.2205.10866
https://doi.org/10.18653/v1/2020.acl-demos.3
https://aclanthology.org/2022.blackboxnlp-1.12
https://aclanthology.org/2022.blackboxnlp-1.12
https://aclanthology.org/2022.blackboxnlp-1.12

Hao Zheng and Mirella Lapata. 2022. Disentangled
sequence to sequence learning for compositional gen-
eralization. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 4256-4268, Dublin,
Ireland. Association for Computational Linguistics.

172


https://doi.org/10.18653/v1/2022.acl-long.293
https://doi.org/10.18653/v1/2022.acl-long.293
https://doi.org/10.18653/v1/2022.acl-long.293

