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Abstract

The effectiveness of a model is heavily reliant
on the quality of the fusion representation of
multiple modalities in multimodal sentiment
analysis. Moreover, each modality is extracted
from raw input and integrated with the rest
to construct a multimodal representation. Al-
though previous methods have proposed multi-
modal representations and achieved promising
results, most of them focus on forming pos-
itive and negative pairs, neglecting the varia-
tion in sentiment scores within the same class.
Additionally, they fail to capture the signifi-
cance of unimodal representations in the fusion
vector. To address these limitations, we intro-
duce a framework called Supervised Angular-
based Contrastive Learning for Multimodal
Sentiment Analysis. This framework aims to
enhance discrimination and generalizability of
the multimodal representation and overcome
biases in the fusion vector’s modality. Our ex-
perimental results, along with visualizations
on two widely used datasets, demonstrate the
effectiveness of our approach.

1 Introduction

Through internet video-sharing platforms, individ-
uals engage in daily exchanges of thoughts, experi-
ences, and reviews. As a result, there is a growing
interest among scholars and businesses in study-
ing subjectivity and sentiment within these opinion
videos and recordings (Wei et al., 2023). Conse-
quently, the field of human multimodal language
analysis has emerged as a developing area of re-
search in Natural Language Processing. Moreover,
human communication inherently encompasses
multiple modalities, creating a heterogeneous envi-
ronment characterized by the synchronous coordi-
nation of language, expressions, and audio modali-
ties. Multimodal learning leverages diverse sources
of information, such as language (text/transcripts),
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(a) because it is a good movie

Happy (P

‘ risiing ton? ' [ ‘ I

(b) its good
High-pitched
High volume

Slightly Frown (P)

(c) makes him look too good
Heavy tone,
emphasizes “good”

Frown,

Shake the head )

5 &

Table 1: Example in CMU-Mosi dataset. All three
transcripts of the samples contain the word "Good," yet
their sentiment scores span a range from highly positive
at 3.0 to slightly negative at —0.6. (P) for positive class,
(N) for negative class.

audio/acoustic signals, and visual modalities (im-
ages/videos). This stands in contrast to traditional
machine learning tasks that typically focus on sin-
gle modalities, such as text or voice (Tay et al.,
2017,2018a,b).

As shown in Table 1, the primary objective of
Multimodal Sentiment Analysis (MSA) is to uti-
lize fusion techniques to combine data from mul-
tiple modalities in order to make predictions for
the corresponding labels. In the context of emotion
recognition and sentiment analysis, multimodal fu-
sion is crucial since emotional cues are frequently
distributed across different modalities. However,
previous studies, as highlighted by (Hazarika et al.,
2022), have pointed out that task-related infor-
mation is not uniformly distributed among these
modalities. Specifically, the text modality often
exhibits a higher degree of importance and plays
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Transcript

Video

Face
Expression

Voice

1 just got finished watching an excellent
movie called "Mars needs moms"

e

Extremely exciting

Enthusiastic Tone,
High volume, P)
emphasizes “excellent”

storyline was ok

Normal volume

Unemotional (”)

Steady tone

oh god this is bad

Angry,

Aggressive tone,

Stroking the face High volume )
and the only explanation i come up with
makes this story kind of kind of creepy
Monotone,
Frown Normal volume, (N)
Hesitant

Table 2: Example in CMU-Mosi dataset. The first two samples are positive, while the last two are negative. All four
examples demonstrate diversity in sentiment representation. The first two examples belong to the positive group,
but the first example exhibits happiness across all three modalities, whereas the second example only indicates
positivity through the phrase "ok". This pattern is similarly observed in the negative example pair (c,d).

a more pivotal role compared to the visual and au-
dio modalities. While words undoubtedly carry
significant emotional information (e.g., words like
"good", "great", "bad"), emotions are conveyed not
only through words but also other communication
channels, e.g. tone of voice or facial expressions.
We introduce a fusion scheme called Triplet
loss for triplet modality to enhance representations
of partial modalities in the fusion vector. In our
study, we found that incorporating facial expres-
sions and tone of voice is crucial in determining
communication-related scores. Neglecting these
modalities can lead to a loss of valuable informa-
tion. For instance, in Table 1, we observe that even
though all three transcripts convey positive senti-
ments about the film, the sentiment scores differ
significantly. This difference arises from the varia-
tions in facial expressions and tone of voice. When
a modality is hidden, it alters the representation
and makes it challenging to perceive the underlying
sentiment. By considering the interrelation among
triplet modalities, we propose a self-supervised task
to bridge the representation gap between the com-
plete input and missing modalities. The objective is
to ensure that an input with a concealed modality is
more similar to the complete input than containing
only one modality. This approach aims to improve
the overall representation of multimodal data.
Previous research often focused on contrastive
learning techniques, forming positive and negative
representation pairs, but overlooked distinctions
within the same class. As illustrated in Table 2,

despite belonging to the same class, the examples
possess varying sentiment levels. Particularly, the
first positive example (2a) has a score of 3.0, while
the second positive example has a score of 0.6,
indicating a significant difference. Similarly, the
negative examples in (2c) and (2d) differ in senti-
ment. Therefore, these representations should not
be considered closely related in the feature space.
Furthermore, the distance between the (2a-c) pair
should be greater than that of the (2a-d) pair, con-
sidering the sentiment.

To address this challenge, we challenge the as-
sumption that all positive samples should be repre-
sented similarly in the feature space. In the process
of sampling positive and negative pairs, we take
into account the sentiment score difference between
each sample. When the difference in sentiment
score does not exceed a predefined threshold, we
consider the input as positive. We propose a Super-
vised Angular Margin-based Contrastive Learning
approach that enhances the discriminative repre-
sentation by strengthening the margin within the
angular space while capturing the varying degrees
of sentiment within the samples. By not assum-
ing uniform representation for all positive/negative
samples in the feature space, our method effectively
handles the differences between their sentiment lev-
els.

Our contributions can be summarized as follows:

* We propose a novel approach called Su-
pervised Angular Margin-based Contrastive
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Figure 1: Implementation of our framework. The framework consists of three inputs for text, visual and audio
modalities, finally, the whole model is train with three objectives: Supervised Angular Margin-based Contrastive

Learning and Triplet Modalities Triplet lossl.

Learning for Multimodal Sentiment Analysis.
This method enhances the discriminative rep-
resentation of samples with varying degrees
of sentiment, allowing for more accurate clas-
sification.

* We introduce a self-supervised triplet loss
that captures the generalized representation
of each modality. This helps to bridge the
representation gap between complete inputs
and missing-modality inputs, improving the
overall multimodal fusion.

» Extensive experiments were conducted on
two well-known Multimodal Sentiment Anal-
ysis (MSA) datasets, namely CMU-Mosi and
CMU-Mosei. The empirical results and visu-
alizations demonstrate that our proposed ap-
proach significantly outperforms the current
state-of-the-art models in terms of sentiment
analysis performance.

2 Related Work

Recently, multimodal research has garnered atten-
tion because of its many applications and swift
expansion (Wang et al., 2019; Nguyen et al., 2022,
2023; Wei et al., 2022, 2024). In particular, mul-
timodal sentiment analysis (MSA) predicts senti-
ment polarity across various data sources, like text,
audio, and video. Early fusion involves concate-
nating the features from different modalities into
a single feature vector (Rosas et al. 2013; Poria
et al. 2016b). This unified feature vector is then
employed as input. Late fusion entails construct-
ing separate models for each modality and subse-
quently combining their outputs to obtain a final re-
sult (Cai and Xia 2015; Nojavanasghari et al. 2016).

Some works such as (Wollmer et al., 2013) and (Po-
ria et al., 2016a) have explored the utilization of
hybrid fusion techniques that integrate both early
and late fusion methods. In addition, MAG-BERT
model (Rahman et al., 2020) combines BERT and
XLNet with a Multimodal Adaptation Gate to in-
corporate multimodal nonverbal data during fine-
tuning. Besides, (Tsai et al., 2020) introduced a
novel Capsule Network-based method, enabling
the dynamic adjustment of weights between modal-
ities. MMIM (Han et al., 2021) preserves task-
related information through hierarchical maximiza-
tion of Mutual Information (MI) between pairs of
unimodal inputs and the resulting fusion of multi-
ple modalities. Recently, several works (Ma et al.,
2021a; Sun et al., 2022; Zeng et al., 2022) have
focused on uncertainly solving the missing modali-
ties problem.

Contrastive Learning (Chopra et al., 2005) has
led to its wide adoption across various problems
in the field and is widely applied in many appli-
cations (Nguyen and Luu, 2021; Wu et al., 2022).
Noteworthy training objectives such as N-Pair Loss
(Sohn, 2016), Triplet Margin Loss (Ma et al.,
2021b), Structured Loss (Song et al., 2016), and
ArcCSE (Zhang et al., 2022), directly apply the
principles of metric learning. In supervised down-
stream tasks, softmax-based objectives have shown
promise by incorporating class centers and penaliz-
ing the distances between deep features and their
respective centers. Center Loss (Wen et al., 2016),
SphereFace (Liu et al., 2017), CosFace (Wang et al.,
2018), and ArcFace (Deng et al., 2018) have be-
come popular choices in deep learning applications
in computer vision and natural language processing.
However, these loss functions are designed specifi-
cally for classification tasks and are not appropriate
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Figure 2: The framework of Supervised Angular
Margin-based Contrastive Learning

for regression labels. Consequently, we put forward
a novel training objective called SupArc, which ex-
hibits enhanced discriminative capabilities when
modeling continuous sentiment scores compared
to conventional contrastive training objectives.

3 Methodology

3.1 Problem Statement

We aim to discern sentiments in videos by utilizing
multimodal signals. Each video in the dataset is
broken down into utterances—an utterance is a
segment of speech separated by breaths or pauses.
Every utterance, a mini-video in itself, is treated as
an input for the model.

For each utterance U, the input is comprised
of three sequences of low-level features from the
language (t), visual (v), and acoustic (a) modali-
ties. These are denoted as Uy, U,, and U,, each
belonging to its own dimensional space, where
Un € Rimxdm with [, represents the sequence
length and d,, represents the dimension of the
modality m’s representation vector, m € t,v,a.
Given these sequences U, (where m can be ¢, v,
or a), the primary objective is to predict the emo-
tional direction of the utterance U. This can be
from a predefined set of C' categories, represented
as y, or a continuous intensity variable, represented
as y.

3.2 Model Architecture

As shown in Figure 1, each sample has three raw
inputs: a text - transcript of video, video, and audio.
Before feeding into the model, our model firstly
processes raw input into numerical sequential vec-
tors. We transform plain texts into a sequence of
integers for the transcripts using a tokenizer. We
use a feature extractor to pre-process raw format
into numerical sequential vectors for visual and
audio. Finally, we have the multimodal sequential

data X,,, € Rlm>dm_

Mono-modal representation

h: = Text_Encoding (X}) (1)
h, = Visual_Encoding (X,) 2)
he = Audio_Encoding (X,) 3)

where  h,, € R=,  m € t,v,a,
Visual and Audio _Encoding are bidirectional
LSTMs and Text _Encoding is BERT model.

h = FUSION ([h¢, hy, ha]) 4)

where FUSION module is a multi-layer perceptron
and [.,.,.] is the concatenation of three modality
representations.

Inference Finally, we take the output of fusion
and feed it into a predictor to get a predicted score

~

Yy
§ = PREDICTOR (h) (5)

where ¢ ranges from —3 to 3 and PREDICTOR
module is a multi-layer perceptron.

4 Training objective

In this section, we introduce the objective function
of our model with two different optimization objec-
tives: Supervised Angular Margin-based Con-
trastive Learning and Triplet Modalities Triplet
loss. The model’s overall training is accomplished
by minimizing this objective:

L = Liain + Lsuparc + B Lui (6)

Here, «, 3 is the interaction weights that deter-
mine the contribution of each regularization compo-
nent to the overall loss £. Lpain 1S @ main task loss,
which is mean absolute error. Each of these com-
ponent losses is responsible for achieving the de-
sired subspace properties. In the next two sections,
we introduce two different optimization objectives:

4.1 Supervised Angular Margin-based
Contrastive Learning

This section explains the formulation and its deriva-
tion from our Supervised Angular Margin-based
Contrastive Learning (SupArc).

In order to represent the pairwise associations
between samples as positive or negative, we first
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create fusion representations and categorize them
into positive and negative pairs. These pairs are
then used as input for a training objective we aim
to optimize. In classical NLP problems - text-only
tasks - this classification hinges on the specific rela-
tionships we wish to highlight - positive pairs may
represent semantically similar or relevant sentences.
In contrast, negative pairs typically consist of un-
related or contextually disparate sentences. In this
multi-modal setting, we consider a fusion represen-
tation h from equation 4. Previous works consider
samples whose sentiment score is more significant
than O (or less than 0) to be the same class in their
objective function. However, we get each posi-
tive (and negative) sample in a batch by looking
at the difference between the sentiment scores of
the two examples. A pair of fusion representations
considering to same class have its sentiment score
difference under a threshold T'H:

el | <
tij = {1 if ly; — y;| < threshold o

0 other

After gathering the positive and negative pairs,
we put them into a training objective:

esim(hi,hf)/T
Z?:l €

where sim is the cosine similarity, 7 is a tempera-
ture hyper-parameter and n is the number of sam-
ples within a batch, ¢* is a positive sample where
ti,i* =1.

Past research (Zhang et al., 2022) had proposed
an ArcCos objective to enhance the pairwise dis-
criminative ability and represent the entailment re-
lation of triplet sentences:

L = —log )

sim(hi,hj)/T

6(;5(01»72* +m)/7’

—log

»Carccos =

€¢>(9¢,¢*+m)/T + Z;;éz ed)(@j’j)/T
)]

where angular 0; ; is denoted as follow:

hTh;
0; ; = arccos (”)
! [[hall = (175

and m is an extra margin, ¢ is cos function cos.
However, there are differences between samples
if considering examples 2c¢ and 2c are both nega-
tive samples of example 2a, moreover in the fusion
space, for example, the distance between, we mod-
ify the contrastive which can work on supervised

(10)

Margin
[] Text
& Visual
[ ] Audio
V) Masking
> Getclose

» Push away

Y

4

Figure 3: Implementation of Triplet Modalities Triplet
loss.

dataset how can model the volume of the difference
of a pair of samples. To overcome the problem,
we propose a new training objective - Supervised
Angular-based Contrastive Loss modified from 4.1
for fusion representation learning by adding a be-
tween opposing pair h; and h;. Figure2 illustrates
our implementation, g is the positive sample of a,
while b, c are two negative samples. Moreover, the
difference between pair a — c is more significant
than a — b. Thus, the margin (dashed line) of ¢ (pur-
ple) is further than b (blue). The objective function
called SupArec is formulated as follows:

€¢(9i,i*)/7

L = —log
suparc 8¢(91‘,¢*)/T + Z;l;éz e®(0ij—mA; ;) /T

(11)

where A; ; = |y; — y;| is the difference of senti-
ment score between two samples 7 and j.

4.2 Triplet Modalities Triplet loss

Previously the training objectives only considered
the fusion representation between different samples
with similarities or differences in features within a
given space. In reality, each type of input (visual,
text, audio) plays a vital role in predicting the sen-
timent score. For example, examples 1a, 1b, 1c
all have almost similar compliments (containing
“good” in the sentence), thus if we consider only
text in this task, the sentiment scores should not be
too much different, however, with the difference
between facial expressions (visual) and phonetic-
prosodic properties (audio), the sentiment scores
now are varying degrees. Thus, losing one or two
modalities before integration can cause lacking in-
formation. Existing methods cannot handle such
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problems between modalities and can cause a bias
problem in one modality (Hazarika et al., 2022).
To distinguish the slight differences in semantics
between different sentences, we propose a new self-
supervised task that models the entailment relation
between modalities of an input. For each triplet
modality {¢, v, a} in the dataset, we will mask one
and two in three modalities before feeding into the
fusion module. We will have h,,, for masking one
modality = and hy, ,, for masking two z, y of three.

hy =FUSION ([0 Ay, hy, h2])
Iy =FUSION ([0 Ay, 0 % hy, h.])

(12)
(13)

As masking only one modality will keep more
information than masking two, thus, in the fusion
space, it must be nearer to the complete. h is more
similar to h\, than h\,,. As illustrated in Fig-
ure 3, three vectors that are losing one modality
(one masking) must be closed to the completed one
in the center, while others with only one modality
left have to be moved far away. We apply a triplet
loss as an objective function:

Ltm’ — Z mCLIL‘(O, S(ha h\a},y)

x?ye(t7v7a)

_S(h7 h\a:) + mt’ri)

(14)

where s(a, b) is the similarity function between
a and b - we use cosine similarity in this work, m,;
is a margin value.

5 Experimental Setup

In this part, we outline certain experimental aspects
such as the datasets, metrics and feature extraction.

5.1 Datasets

We perform experiments on two open-access
datasets commonly used in MSA research:
CMU-MOSI (Zadeh et al., 2016) and CMU-
MOSEI (Bagher Zadeh et al., 2018).

CMU-MOSI This dataset comprises YouTube
monologues where speakers share their views on
various topics, primarily movies. It has a total of 93
videos, covering 89 unique speakers, and includes
2,198 distinct utterance-video segments. These
utterances are hand-annotated with a continuous
opinion score, ranging from -3 to 3, where -3 sig-
nifies strong negative sentiment, and +3 indicates
strong positive emotion.

CMU-MOSEI The CMU-MOSEI dataset ex-
pands upon the MOSI dataset by including a greater
quantity of utterances, a wider range of samples,
speakers, and topics. This dataset encompasses
23,453 annotated video segments (utterances), de-
rived from 5,000 videos, 1,000 unique speakers,
and 250 diverse topics.

5.2 Metrics

In our study, we adhere to the same set of evalua-
tion metrics that have been persistently used and
juxtaposed in past research: Mean Absolute Er-
ror (MAE), Pearson Correlation (Corr), seven-class
classification accuracy (Acc-7), binary classifica-
tion accuracy (Acc-2), and F1 score.

The Mean Absolute Error (MAE) is a popularly
used metric for quantifying predictive performance.
It calculates the average of the absolute differences
between the predicted and actual values, thereby
providing an estimate of the magnitude of predic-
tion errors without considering their direction. It
gives an intuition of how much, on average, our
predictions deviate from the actual truth values.

Pearson Correlation (Corr) is a statistical mea-
sure that evaluates the degree of relationship or as-
sociation between two variables. In our context, it
indicates the extent of skewness in our predictions.
This measure is particularly crucial as it helps un-
derstand if our prediction model overestimates or
underestimates the true values.

The seven-class classification accuracy (Acc-7)
is another significant metric. It denotes the ratio
of correctly predicted instances that fall within the
same range of seven defined intervals between -
3 and +3, in comparison with the corresponding
true values. This metric is essential for understand-
ing how accurately our model can classify into the
correct sentiment intervals.

Furthermore, we also employ binary classifica-
tion accuracy (Acc-2), which provides insights into
how well our model performs in predicting whether
a sentiment is positive or negative. It is computed
as the ratio of the number of correct predictions to
the total number of predictions.

Lastly, the F1 score is computed for posi-
tive/negative and non-negative/negative classifica-
tion results. This metric is a harmonic mean of
precision and recall, providing a balanced measure
of a model’s performance in a binary or multi-class
classification setting. It’s particularly useful when
the data classes are imbalanced, helping us assess
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Models CMU-MOSI CMU-MOSEI

MAE F1 Corr  Acc-7 Acc-2 \ MAE F1 Corr  Acc-7 Acc-2
ICCN 0.862 -/83.0 0.714  39.0 -/83.0 0.565 -/84.2 0.713 51.6 -/84.2
MulT 0.861 80.6/83.9 0.711 - 81.5/84.1 0.580 -/82.3 0.703 - -182.5
MISA 0.804 80.77/82.03 0.764 - 80.79/82.10 | 0.568 82.67/83.97 0.724 - 82.59/84.23
MAG-BERT | 0.731 82.6/84.3 0.789 - 82.5/84.3 0.539 83.7/85.1 0.753 - 83.8/85.2
Self-MM 0.713  84.42/85.95 0.798 - 84.00/85.98 | 0.530 82.53/85.30 0.765 - 82.81/85.17
MIMM 0.700 84.00/85.98 0.800 46.65 84.14/86.06 | 0.526 82.66/85.94 0.772 5424  82.24/85.97
Ours \ 0.679 84.32/86.25 0.806 48.11 84.40/86.28 \ 0.520 84.71/85.82 0.774 55.01 84.57/85.97

Table 3: Results on CMU-MOSI and CMU-MOSEI are as follows. We present two sets of evaluation results for Acc-2 and
F1: non-negative/negative (non-neg) (left) and positive/negative (pos) (right). The best results are indicated by being marked in
bold. Our experiments, which are underlined, have experienced paired t-tests with p < 0.05 and demonstrated overall significant

improvement.
Models MAE F1 Corr | Acc-7 Acc-2
Our model 0.520 | 84.71/85.82 | 0.774 | 55.01 | 84.57/85.97
WI0 Lsupare 0.527 | 79.82/83.83 | 0.766 | 54.61 | 79.21/83.76
w/0 Lir; 0.523 | 83.53/85.41 | 0.771 | 54.37 | 83.24/85.63
Ww/0 Lsupare; Lori | 0532 | 81.87/85.28 | 0.758 | 54.21 | 81.40/85.32

Table 4: Ablation results on CMU-MOSEI.

the effectiveness of our model in handling such
scenarios.

5.3 Feature Extraction

For fair comparisons, we utilize the standard low-
level features that are provided by the respective
benchmarks and utilized by the SOTA methods.

5.3.1 Language Features

Previous studies used GloVe embeddings for each
utterance token, however, recent works have started
to apply a pre-trained transformers model (like
BERT) on input transcripts. We also follow this
setting which uses a BERT tokenizer - a WordPiece
tokenizer. It works by splitting words either into
full forms (e.g., one word becomes one token) or
into word pieces — where one word can be broken
into multiple tokens.

5.3.2 Visual Features

The MOSI and MOSEI datasets use Facet to gather
facial expression elements, including facial action
units and pose based on FACS. Facial expressions
are vital for understanding emotions and senti-
ments, as they serve as a primary means of con-
veying one’s current mental state. Smiles are par-
ticularly reliable in multimodal sentiment analysis,
and OpenFace, an open-source tool, can extract
and interpret these visual features. This process is
performed for each frame in the video sequence.
The dimensions of the visual features are d,, with
47 for MOSI and 35 for MOSEI

5.3.3 Acoustic Features

Multimodal sentiment analysis relies on crucial
audio properties like MFCC, spectral centroid,
spectral flux, beat histogram, beat sum, most pro-
nounced beat, pause duration, and pitch. Extracted
using COVARERP, these low-level statistical audio
functions contribute to the 74-dimensional acous-
tic features (d,) in both MOSI and MOSEI. These
features comprise 12 Mel-frequency cepstral coef-
ficients, pitch, VUV segmenting attributes, glottal
source parameters, and more related to emotions
and speech tonality.

5.4 Settings

We use BERT (Devlin et al., 2018) (BERT-base-
uncased) as the language model for the text extrac-
tor, we load the BERT weight pre-trained on Book-
Corpus and Wikipedia from Pytorch framework
Huggingface, and we also use BERT tokenizer for
feature extractor on text, on top of the BERT, we
apply an MLP to project the hidden representation
into smaller space. For acoustic and visual, we use
1-layer BiLSTM with feature sizes of input are 74,
36, respectively, and the hidden state’s sizes are
both 32. The fusion module is the MLP, with an
input size of 32x3 (text, visual, acoustic) and for
fusion vector size is 32. We seta = 0.1, 8 = 0.1
for both objectives. We trained our model is trained
with a learning rate [, = 1e~ in 12 epochs using
AdamW as an optimizer; we set the batch size of
32 on 1 V100 GPU and trained about 2-4 hours
for CMU-MOSEI and about 30 minutes for CMU-
MOSI.

6 Experimental Results

6.1 Baseline

We conducted a comparison between our method
and other baselines
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Figure 4: Visualization of the masking fusion representation in the testing set of the MOSEI dataset using PCA
technique. We conduct on 3 pairs: text-visual, text-audio, visual-audio on 2 models: base model and ours.

(a) Base model

(b) Original contrastive loss

a®

(c) Our model

Figure 5: Visualization of the fusion representation in
the testing set of the MOSEI dataset using PCA tech-
nique. We conduct on 3 three settings: (a) base model,
(b) original contrastive loss, (c) our model.

¢ Multimodal Transformer MulT (Tsai et al.,
2019) develops an architecture that incorpo-
rates separate transformer networks for uni-
modal and crossmodal data. The fusion pro-
cess is achieved through attention mecha-
nisms, facilitating a comprehensive integra-
tion of the different modalities.

e Interaction Canonical Correlation Network
ICCN (Sun et al., 2019) minimizes canoni-
cal loss between modality representation pairs
to ameliorate fusion outcome.

* Modality-Invariant and -Specific Representa-
tions MISA (Hazarika et al., 2020) involves
projecting features into two distinct spaces
with specific constraints, one for modality-
invariant representations and the other for
modality-specific representations.

* Multimodal Adaptation Gate for BERT MAG-
BERT (Rahman et al., 2020) designs and in-
tegrates alignment gate into the BERT model
to enhance and fine-tune the fusion process.

* Self-supervised Multi-Task Learning SELF-
MM (Yu et al., 2021) assigns a specific uni-
modal training task to each modality, utiliz-
ing automatically generated labels. This work
aims to modify gradient back-propagation.

e Multimodal-informax MMIM (Han et al.,
2021): utilizes a two-level mutual information
(MI) maximization approach to synthesize fu-
sion results from multi-modality.

6.2 Results

Following the methodology of previous studies,
we conducted five times of our model using the
same hyper-parameter settings. The average per-
formance is presented in Table 2. Our findings
indicate that our model achieves better or compara-
ble results compared to various baseline methods.
To provide further details, our model demonstrates
a significant performance advantage over the state-
of-the-art (SOTA) in all metrics on CMU-MOSI,
as well as in MAE, Corr, Acc-7, Acc-2 (non-neg),
and F1 (non-neg) scores on CMU-MOSEI. Regard-
ing others, our model exhibits very similar perfor-
mance on Acc-2 (pos) and is slightly lower than
MMIM on F1 (pos). These results offer initial
evidence of the effectiveness of our approach in
addressing this task.

7 Analysis

7.1 Regularization

To validate the significance of our objectives, we
select top-performing models for each dataset and
gradually remove one loss at a time. Setting the cor-
responding variables («, 3) to 0 nullifies a specific
loss. Results are presented in Table 4, indicating
that incorporating all losses leads to the best per-
formance. While the triplet loss shows a slight
improvement, the contrastive loss significantly en-
hances performance. These findings suggest that
distinct representations of fusion spaces are truly
beneficial. Combining the triplet and contrastive
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losses can further improve performance. The triplet
loss helps avoid modality bias (e.g., text), thus opti-
mizing fusion space when used in conjunction with
contrastive loss.

7.2 Visualizing Contrastive Representation

When applying contrastive objectives, it is impor-
tant to analyze the generalization of these charac-
teristics. To do so, we visualize fusion vector repre-
sentations for test samples. Figure 5 shows that the
angular-based contrastive loss performs better than
the base model and original contrastive. Both con-
trastive losses effectively map vectors for sentiment
similarity, unlike the base model’s representations,
which lack clarity.

7.3 Visualizing Masked-modality fusion

We visualize masked modality fusion vectors to
compare different representations when removing
a modality. Following previous settings, we vi-
sualize fusion vectors with one modality masked
out for two models: the base model and our ap-
proach. In Figures 4, the text-visual and text-audio
patterns resemble the complete version. However,
the base model’s representation has a heavy over-
lap between data points, while our method shows
more generalization. For the audio-visual pair, both
models poorly represent the features, but the base
model mixes data points with different label scores.
On the contrary, our model with dual training ob-
jectives separates neutral points and divides posi-
tive/negative nuances into two distinct groups.

8 Conclusion

In conclusion, our framework, Supervised Angular-
based Contrastive Learning for Multimodal Senti-
ment Analysis, addresses the limitations of existing
methods by enhancing discrimination and gener-
alization in the multimodal representation while
mitigating biases in the fusion vector. Through ex-
tensive experiments and visualizations, we have
demonstrated the effectiveness of our approach
in capturing the complexity of sentiment analy-
sis. The publicly available implementation of our
framework paves the way for further research and
development in this field, benefiting applications
such as opinion mining and social media analysis.

9 Limitations

Our model works on two popular datasets: CMU-
Mosi and CMU-Mosei. These datasets are cat-

egorized as multimodal sentiment analysis task,
which is inherited from traditional text-based senti-
ment analysis tasks. However, we are only working
on annotation with sentiment in the range [—3, 3]
while traditional text-based sentiment analysis can
extend as an emotion recognition which is a multi-
class classification task. We have not studied our
methods on emotion and we acknowledge these ar-
eas as opportunities for future research, aiming to
enhance our framework’s optimization in various
contexts and utilize it in a wider range of applica-
tions.
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