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Abstract

Transition systems have been widely used for
the discourse dependency parsing task. Exist-
ing works often characterize transition states by
examining a certain number of elementary dis-
course units (EDUs), while neglecting the arcs
obtained from the transition history. In this
paper, we propose to employ GAT-based en-
coder to learn dynamic representations for sub-
trees constructed in previous transition steps.
By incorporating these representations, our
model is able to retain accessibility to all parsed
EDUs through the obtained arcs, thus better
utilizing the structural information of the docu-
ment, particularly when handling lengthy text
spans with complex structures. For the dis-
course relation recognition task, we employ
edge-featured GATs to derive better represen-
tations for EDU pairs. Experimental results
show that our model can achieve state-of-the-
art performance on widely adopted datasets
including RST-DT, SciDTB and CDTB. Our
code is available at https://github.com/lty-
lty/Discourse-Dependency-Parsing.

1 Introduction

Discourse parsing is the task to study the inner
structure of documents by analysing the relation-
ship between text spans known as elementary dis-
course units (EDUs). It is an important research
topic in natural language processing and benefits
many downstream tasks, including sentiment anal-
ysis (Bhatia et al., 2015), text categorization (Ji and
Smith, 2017), summarization (Xu et al., 2020) and
so on.

Existing methods for discourse parsing include
transition-based models (Jia et al., 2018; Yu et al.,
2018; Hung et al., 2020) and graph-based models
(Li et al., 2014a). Recent works also employ top-
down models (Koto et al., 2021; Zhang et al., 2020;
Zhang et al., 2021b). However, their results are not
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Figure 1: The hierarchical parsing process for structure
prediction. Sub-trees are built for each sentence and
subsequently merged into a complete dependency tree
for the entire document.

satisfactory when compared with syntactic pars-
ing, mainly attributed to the difficulty of encoding
EDUs properly and transferring information over
long text spans.

Utilizing hierarchical models is a natural way to
alleviate the problem. Figure 1 shows the hierarchi-
cal parsing process of a document with 5 sentences,
a total of 19 EDUs. If we parse the document in a
normal manner, it is challenging to connect EDU
4 with EDU 18 correctly due to their considerable
distance. But it is much easier when we parse the
document at intra-sentence level and inter-sentence
level, respectively.
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Recent research has demonstrated the advan-
tages of hierarchical discourse parsers across
transition-based, graph-based, and top-down mod-
els. Kobayashi et al. (2020) utilizes a top-down
parsing approach with three levels of granularity:
paragraphs in each document, sentences in each
paragraph, and EDUs in each sentence. Zhang
et al. (2021a) adopts Eisner’s algorithm (Eisner,
1996) for structure and relation prediction at intra-
sentence, intra-paragraph and intra-document lev-
els. Zhou and Feng (2022) proposes a hierarchical
transition model to predict the dependency tree
structure at intra-sentence and inter-sentence lev-
els and employs a stacked LSTM (Hochreiter and
Schmidhuber, 1997) model to predict the relations.

The previous transition-based and top-down
models, despite benefiting from hierarchical struc-
tures, suffer from a common issue: they do not
effectively utilize lower-level structures for upper-
level parsing. Kobayashi et al. (2020) represents a
span as a whole by employing a weighted sum over
word representations. Zhang et al. (2021a) only
assigns complete and incomplete scores to each
span. Zhou and Feng (2022) focuses exclusively
on root EDUs of sentences for inter-sentence pars-
ing. These approaches fail to leverage the structural
information acquired from preceding lower-level
parsing stages during the upper-level parsing pro-
cess. This may hurt the model performance. For
example, during inter-sentence parsing in Figure
1, the key information in EDU 13 (monolingual,
backtranslation) is crucial when we consider the
relationship between EDU 4 and EDU 14. There-
fore, it is important for us to leverage the parsing
history in subsequent steps.

To address this issue, we propose a solution in
the form of a hierarchical transition-based model.
Our approach mitigates the aforementioned prob-
lem by employing graph attention networks (GATs
Veličković et al., 2018) to extract features for the
sub-trees constructed in the preceding parsing steps.
In contrast to Zhou and Feng (2022), where an
EDU becomes inaccessible once it is popped from
the stack, our method maintains accessibility to
it through the obtained arcs, enabling its reuse in
subsequent parsing procedures. For example, when
we consider the relationship between EDU 4 and
EDU 8, we can use information from both intra-
sentence parsing history (arc 4 → 2) and parsing
history of the current inter-sentence sequence (arc
4 → 0), instead of relying solely on the isolated

root EDU of the sentence. Furthermore, we im-
prove the performance of discourse relation recog-
nition by employing edge-featured graph attention
networks (EGATs; Chen and Chen, 2021). When
compared to existing sequence labeling models,
EGATs outperform in leveraging precise structure
information and predicting relations between dis-
tant EDU pairs. Experimental results demonstrate
that by utilizing more contextual information with
GATs, our models achieve state-of-the-art perfor-
mance on RST-DT (Carlson et al., 2001), SciDTB
(Yang and Li, 2018) and CDTB (Li et al., 2014b)
for both structure prediction and relation recogni-
tion.

Our main contributions are as follows: (1) We
propose a new transition-based model that incor-
porates a GAT-based sub-tree encoder, effectively
leveraging the parsing history. (2) We evaluate
two different types of graphs and demonstrate that
besides EDUs, the structure information also mat-
ters in predicting head-dependant relations, espe-
cially when dealing with long text spans with com-
plex structures. (3) We apply EGATs, instead of
sequence labeling models, to discourse relation
recognition to better leverage structure information.
(4) Our model outperforms existing methods by a
large margin in popular discourse parsing datasets
of different languages and genres.

2 Related work

Pre-trained Language Models Recent works
have shown that pre-trained language mod-
els(PLMs) have achieved good results in discourse
parsing (Koto et al., 2021; Nguyen et al., 2021;
Hung et al., 2020). These works prove that pre-
trained language models can better capture rela-
tionship between EDUs than hand-crafted features.
Yu et al. (2022) points out that PLMs are trained
with sentence-level contexts, rather than the EDU-
level structure in discourse parsing. They per-
form second-stage EDU-level pre-training with two
tasks, next EDU prediction and discourse marker
prediction, and these adaptations achieve great im-
provements. For fair comparison, our model and
the baselines in this paper use the same PLMs: bert-
base-uncased for English and bert-base-chinese for
Chinese.

Discourse Dependency Parsing Compared to
discourse constituency parsing, discourse depen-
dency parsing receives relatively less attention. Li
et al. (2014a) converts constituency trees in RST-
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DT to dependency trees, and employ two graph
models on the new dataset. Yang and Li (2018)
presents SciDTB, a discourse dependency tree-
bank for scientific abstracts from ACL Anthology
and implements transition-based and graph-based
parsers on the dataset. Yi et al. (2021) adapts
three Chinese discourse corpora to the dependency
framework. We use these datasets to evaluate our
model.

Hierarchical Discourse Parsing Hierarchical
models are employed to improve the discourse de-
pendency parsing performance for transition-based
(Zhou and Feng, 2022), graph-based (Zhang et al.,
2021a), and top-down (Kobayashi et al., 2020)
models. These methods improve parsing results
but they do not make full use of the parsing his-
tory, as is described in the introduction part. We
store the predicted arcs and expand each EDU to
a sub-tree and use a GAT-based encoder to merge
information from EDUs in the sub-tree.

3 Methodology

Given a document composed of a sequence of
EDUs E = (e1, e2, . . . , en), a discourse depen-
dency parser is expected to predict a tree struc-
ture that represents the relationships between the
EDUs. For each EDU ei ∈ E, excluding the sin-
gle root EDU of the document, a head EDU hi is
selected from the set of EDUs E, and a relation
ri is assigned from a pre-defined set of relations
R to describe the relationship between the EDU
pair (ei, hi). We adopt a pipelined approach (Wang
et al., 2017) for the task. We construct a depen-
dency tree structure for each document and then
leverage this tree structure to predict the relations
between EDUs.

3.1 Structure Prediction

In the structure prediction step, we utilize a hierar-
chical variant of transition systems. This section
begins by introducing our hierarchical setting and
transition system, followed by detailed implemen-
tations of our model.

3.1.1 Hierarchical Setting
Our method parses the document at three levels
for RST-DT: EDU-to-sentence (E2S), sentence-
to-paragraph (S2P), and paragraph-to-document
(P2D). For SciDTB and CDTB, in which paragraph
structures are absent, we refer to the first two levels
as intra-sentence and inter-sentence. The parsing

process follows a bottom-up approach, where the
sub-trees constructed in the preceding steps are
utilized in the subsequent steps.

Figure 1 illustrates the parsing process employed
for structure prediction. The document selected in
SciDTB comprises five sentences with a total of 19
EDUs. Our approach involves initially constructing
a sub-tree for each sentence, followed by merging
these sub-trees to form a comprehensive tree repre-
sentation.

We adopt the hierarchical setting for several rea-
sons:

(1) The hierarchical structure reduces the aver-
age length of the sequence.

(2) Our approach aligns with the target of form-
ing a tree structure.

(3) Observations of datasets: We define an EDU
as an out-EDU if its head is in another paragraph.
In RST-DT, 89.5% of paragraphs have only one out-
EDU (root), and 86.1% of out-EDUs have another
out-EDU as its head. These results are acceptable
due to the relatively loose connections between
paragraphs. The percentage is even higher for sen-
tences. These observations encourage us to employ
this simplified approach.

3.1.2 Transition System

At each level of structure prediction, we utilize
an arc-eager transition system (Nivre, 2003) as our
parsing approach. We employ a queue Q initialized
with the input sequence and an initially empty stack
S to store the EDUs. During the parsing process,
we maintain a set A to record the acquired arcs
derived from the transition history.

For each transition state (Q,S,A), the discourse
parser takes one of the following actions: Shift,
Reduce, LeftArc and RightArc. The Shift ac-
tion removes the first EDU in the queue Q and
pushes it to the top of the stack S. The Reduce
action pops the top EDU from the stack S. The
LeftArc action adds an arc to the set A, where
the head is the first EDU in the queue Q and the
dependent is the top EDU in the stack S. After
adding the arc, the parser performs the Reduce ac-
tion. The RightArc action adds an arc to the set
A, where the head is the top EDU in the stack S
and the dependent is the first EDU in the queue Q.
After adding the arc, the parser proceeds with the
Shift action. The parsing process continues until
the queue Q is empty and only a single root EDU
for the input sequence remains in the stack S.
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3.1.3 Our Model

In this section, we introduce how our transition
system handles the current state.

(1) Select four source EDUs if available, includ-
ing the top two EDUs from the stack and the first
two EDUs from the queue.

(2) Construct a sub-tree for each source EDU
with the arcs obtained in previous steps.

(3) Derive contextualized representations for
each EDU in the sub-trees.

(4) Calculate representations for each sub-tree
based on inner EDUs using GATs.

(5) Concatenate the sub-tree representations and
employ a fully-connected layer for predicting the
subsequent action.

We will also elucidate the implementation details
of our model, specifically focusing on the methods
for deriving representations for EDUs, sub-trees,
and transition states..

EDU Representations To capture contextual rep-
resentations of EDUs, we employ a pre-trained
BERT (Devlin et al., 2019) model to encode each
EDU within its corresponding context. For RST-
DT, we consider the entire paragraph as the context
for each EDU. For SciDTB and CDTB, we pro-
vide BERT with the sentence containing the EDU,
as well as the preceding and succeeding sentences
if available, to capture the contextual information.
Sentences are delimited by [SEP ] tokens, while
each sentence comprises EDUs separated by addi-
tional special tokens [ES] representing "edu-sep".
For each EDU, we compute its contextual repre-
sentation by taking the token-level average of the
corresponding EDU span.

Sub-Tree Representations In our hierarchical
model, it is important to highlight that the set A
not only stores arcs generated from preceding steps
within the current EDU sequence but also captures
lower-level parsing results, which should be uti-
lized in upper-level parsing. For instance, in inter-
sentence parsing, even though only the root EDUs
from the intra-sentence sub-trees are used as input
for the model, the sub-trees can be reconstructed
using the intra-sentence arcs contained within A.

Given a source EDU, we expand it into two dis-
tinct types of sub-trees: the Star Graph and the
Full Graph. The methods to construct the sub-
trees and calculate the sub-tree representations will
be introduced in detail in section 3.1.4.

Transition State Representations For each tran-
sition state (Q,S,A), we consider the top two
EDUs in the stack S and the first two EDUs in
the queue Q as source EDUs. We expand each
source EDU into a sub-tree and calculate the sub-
tree representation as we mentioned above. Finally,
we obtain representations for the transition state by
concatenating the representations of the four sub-
trees. To predict the transition action, we employ a
fully-connected layer.

3.1.4 Sub-Tree Construction
In this section, we present two distinct methods for
expanding a source EDU into a sub-tree: the Star
Graph and the Full Graph.

Figure 2: Full-Graph and Star-Graph for the source
EDU 4. The source EDU is depicted with circular bor-
ders, whereas the expanded EDUs are represented with
square borders. The graphs are constructed based on
arcs stored in the above-mentioned transition states after
three steps. The arc between EDU 4 and EDU 0 comes
from the current inter-sentence sequence, while the oth-
ers come from intra-sentence sequences.

Star-Graph Model A single EDU may not con-
tain all the information we need and EDUs linked
to it in precious steps may also convey important
information. Therefore, we take these EDUs into
consideration. Given the source EDU es and its cor-
responding sub-tree T , we construct a star graph
where es is directly connected to all the other EDUs
within T , as illustrated in Figure 2. Subsequently,
we calculate a weighted average V (T ) over the
EDUs in T to represent the sub-tree.

V (T ) =
∑

e∈T
w(e)V (e) (1)

Here V (e) is the representation of EDU e. The
weights w(·) are determined by the similarity be-
tween each EDU and the source EDU es. We sim-
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ply take the inner product as the similarity score.

w(e) =
exp(sim(V (e), V (es)))∑

ek∈T exp(sim(V (ek), V (es)))
(2)

Full-Graph Model The star graph connects all
EDUs in the sub-tree T directly to the source EDU
es, destructing the original structure of the sub-tree.
We argue that the structure can also convey valu-
able information aside from the EDUs. For the
full graph, we retain the complete structure of T .
We view the sub-tree T as an undirected graph,
where each node corresponds to an EDU. We lever-
age GATs (Veličković et al., 2018) to incorporate
neighboring information into the source EDU es.

In each graph attention layer, we conduct self-
attention on node representations to calculate aij ,
which quantifies the significance of ej to ei.

aij =
exp(sij)∑

k:ek∈N (ei)
exp(sik)

(3)

The attention weight is applicable only when ej ∈
N (ei). Here N (ei) denotes the set of first-order
neighbors of ei, which includes ei itself. The simi-
larity score sij is defined as

sij = LeakyReLU
(
α⊤[Wvi∥Wvj ]

)
(4)

Here LeakyReLU is defined as follows and we set
λ = 0.2.

LeakyReLU(x) =

{
x , x ≥ 0

λx , x < 0

vi, vj are representations for ei, ej , and the matrix
W denotes a linear projection applied to the nodes.
W ∈ Rdout×din and α ∈ R2dout are learnable
parameters. din refers to the dimension of EDU
representations and ∥ is the concatenation opera-
tion. Then the representations for ei can be updated
as follows:

v′i = ELU
(
Σj:ej∈N (ei) aijWvj

)
(5)

Here ELU is defined as follows and we set λ = 1.

ELU(x) =

{
x , x ≥ 0

λ(ex − 1) , x < 0

According to Vaswani et al. (2017), multi-head at-
tention enhances performance by simultaneously
capturing information from different representa-
tion subspaces. Therefore we employ multi-head

attention in our model. To merge information from
multi-hop neighbors, we utilize multiple graph at-
tention layers. This allows us to incorporate knowl-
edge from distant nodes in the graph. We also apply
residual connections and layer normalization tech-
niques to further enhance the model performance.
We extract the representations of the source EDU
in the final layer as the sub-tree representations.

3.2 Relation Recognition

After the structure prediction step, we generate
a dependency tree that includes nodes represent-
ing EDUs and edges representing relations be-
tween them. For the relation recognition step, we
fine-tune two distinct BERT models for the nodes
and edges within the tree structure. Subsequently
we employ edge-featured GATs (Chen and Chen,
2021) to derive structure-aware contextualized rep-
resentations for EDU pairs.

NodeBERT Given a constructed discourse de-
pendency tree, we employ the same method de-
scribed in section 3.1.3 to obtain representations
for each EDU. For each EDU pair connected by an
edge (ei, hi), we concatenate their respective rep-
resentations and utilize a fully-connected layer to
predict their relation. We fine-tune the NodeBERT
model with gold dependency tree structures in the
training set.

EdgeBERT Similar to Zhou and Feng (2022), for
each edge (ei, hi) in the dependency tree, we con-
catenate the two EDUs in the order they appear in
the original sequence. The concatenated sequence
is then fed into a BERT model. Subsequently, the
embedding of the special token [CLS] is employed
to predict the relation ri using a fully-connected
layer. We also fine-tune the EdgeBERT model with
gold dependency tree structures in the training set.

Node+Edge Model After the fine-tuning step,
we utilize NodeBERT to encode each node and
EdgeBERT to encode each edge. For each edge
(ei, hi) in the dependency tree, We concatenate
the representations of the edge with those of the
corresponding two nodes and predict the relation
using a fully-connected layer.

EGAT Model We view each EDU as a node in
the graph and head-dependant pairs as edges in the
graph. Besides the edge itself and its corresponding
nodes, the other nodes and edges may also contain
important information for predicting the relation
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for the edge. Based on the representations for nodes
and edges, we apply EGATs (Chen and Chen, 2021)
to the graph. EGAT is similar to GAT introduced
in section 3.1.4, except for the following rules:

(1) Edge features are employed to compute atten-
tion scores between nodes. We adapt the similarity
score (Eq. 4) between node i and j as follows:

sij = LeakyReLU(α⊤[Wnvi∥Wnvj∥Weuij ])
(6)

Here, α ∈ R3dout , Wn,We ∈ Rdout×din denote
linear projections for nodes and edges, respectively.
The representations for nodes and edges are de-
noted as v and u.

(2) In addition to updating node representations,
we construct a dual graph to update edge representa-
tions. Each node in the dual graph G′ corresponds
to an edge in the original graph G. Two nodes in
G′ are connected if and only if their corresponding
edges in G share a common node. Consequently,
we can update node representations in G′ (as well
as edge representations in the original graph G)
using the same method as described in (1).

(3) Self-loops are added for both G and G′. In
the original graph G, each node is assigned a self-
loop that aggregates the features of all edges con-
nected to it by taking their average. In the dual
graph G′, each node possesses a self-loop with
zero-valued features. More details can be found in
Chen and Chen (2021).

After applying multiple EGAT layers to update
the representations of nodes and edges, we charac-
terize each EDU pair (ei, hi) by concatenating the
representations of the two EDUs and the edge con-
necting them. Finally, we utilize a fully connected
layer to predict the relation.

4 Experiments

4.1 Dataset and Evaluation Metric

We evaluate our model on three datasets: RST-
DT (Carlson et al., 2001), SciDTB (Yang and Li,
2018) and CDTB (Li et al., 2014b). RST-DT is a
dataset that consists of Wall Street Journal articles.
SciDTB is a dataset comprising scientific abstracts
from the ACL Anthology. CDTB is a dataset con-
taining Chinese newswire articles. To convert the
constituency trees into dependency trees, we follow
the approach proposed by Li et al. (2014a) for RST-
DT and the method introduced by Yi et al. (2021)
for CDTB. More detailed information about these
datasets is provided in Table 1.

RST-DT SciDTB CDTB

#doc (train) 312 743 1599
#doc (dev) 30 154 350
#doc (test) 38 152 374

#rel (coarse) 19 17 18
#rel (fine) 111 26 –

#para/docu 10.03 1 1
#sent/para 2.01 5.33 2.03
#edu/sent 2.76 2.63 2.23
#token/edu 10.85 11.10 22.76

Table 1: Detailed information about the datasets, in-
cluding the dataset split, the number of coarse-grained
and fine-grained relation types and the average number
of paragraphs in documents, sentences in paragraphs,
EDUs in sentences and BERT tokens in EDUs.

We employ the unlabeled attachment score
(UAS) and labeled attachment score (LAS) as eval-
uation metrics to assess the performance of our
model. The UAS measures the percentage of EDUs
in which the model correctly predicts the head,
while the LAS measures the percentage of EDUs
where the model correctly predicts both the head
and the relation.

4.2 Baselines

Since there are only a few works in discourse de-
pendency parsing, we only compare our model
with the state-of-the-art transition-based and graph-
based models. For fair comparison, the pre-trained
language models used are bert-base-uncased for
English and bert-base-chinese for Chinese.

(1) Zhou22 : Zhou and Feng (2022) proposes
a hierarchical transition-based model for structure
prediction and uses a sequence labeling model to
predict discourse relations.

(2) Zhang21 : Zhang et al. (2021a) utilizes a
hierarchical Eisner model with neural CRF autoen-
coders to simultaneously predict heads and rela-
tions. For fair comparison, we consider the fully-
supervised version of their approach.

4.3 Hyper-Parameters

Here we present the value of several important
hyper-parameters:

(1) The dimension of token, EDU and sub-tree
representations is set to 768. In Equation 4 and
6, we set din to 768 and dout to 768/H , where H
represents the number of attention heads.

(2) For GATs, we explore different settings for
the number of layers (L) chosen from {1, 2, 3, 5},
the number of attention heads (H) selected from
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stage L H bs lr epochs

structure(E2S) 2 3 16 2e-5 5
structure(S2P&P2D) 3 6 8 2e-5 5
relation 3 3 32 * 10

Table 2: Hyper-parameters in different stages of our
model. The cell with an asterisk: lr=1e-6 for BERT
parameters and 1e-4 for the others

{1, 3, 6, 12}, batch size (bs) from {8, 16, 32}, as
well as the learning rate (lr) and the number of
training epochs.

We list the values in different stages in Table 2.

4.4 Main Results

We report the results of our model with Full Graph
in section 3.1.4 for structure prediction and EGATs
in section 3.2 for relation recognition, and compare
our model with the baselines mentioned above.

We conduct a comparison between our model
and Zhou22 on SciDTB (with 26 fine-grained re-
lations) and CDTB (with 18 relations). The corre-
sponding results are presented in Table 3. These
results demonstrate that our model surpasses the
most recent transition-based model for discourse
dependency parsing. The increase in UAS (3.20%
for SciDTB and 2.60% for CDTB) highlights the
advantages of our GAT-based sub-tree encoder, as
our model incorporates GATs to capture sub-tree
representations for transition states instead of solely
considering isolated EDUs. The improvement in
LAS (4.89% for SciDTB and 4.98% for CDTB) in-
dicates the superiority of our EGAT-based relation
classifier over sequence labeling models. By com-
paring the mean and standard deviation of UAS
and LAS score, we can see that our model outper-
forms Zhou22 by a large margin in both structure
construction and relation recognition, even when
compared with the higher reported results, indicat-
ing the superiority of our GAT-based model. We
will provide a comprehensive comparison between
our model and Zhou22 in section 4.5.

Besides, we compare our model with Zhang21
on RST-DT (with 19 coarse-grained relations) and
SciDTB (with 17 coarse-grained relations). As
shown in Table 4, our model exhibits significant
improvements over the latest graph-based discourse
dependency parsing model, even when applied to
longer documents in the RST-DT dataset. This
finding suggests that our model effectively handles
distant EDU pairs within a lengthy context.

UAS LAS

Zhou22-rep 79.3 65.0
SciDTB Zhou22-run 78.08 ± 1.06 62.42 ± 0.72

Our model 81.28 ± 0.34 67.31 ± 0.44

Zhou22-rep 82.2 64.8
CDTB Zhou22-run 81.76 ± 1.18 62.63 ± 0.87

Our model 84.36 ± 0.05 67.61 ± 0.36

Table 3: Discourse dependency parsing results on
SciDTB (with 26 fine-grained relations) and CDTB
(with 18 relations). We run both Zhou22(Zhou22-run)
and our model for six times, and we report the mean and
standard deviation of the results for each model. Our
re-implemented results of Zhou22 is lower than those
reported in the paper, so we also list the reported results
here(Zhou22-rep).

SciDTB (c) RST-DT (c)
UAS LAS UAS LAS

Zhang21 79.1 65.0 70.2 51.8
Our model 81.28 71.23 71.41 55.64

Table 4: Discourse dependency parsing results on
SciDTB (with 17 coarse-grained relations) and RST-DT
(with 19 coarse-grained relations). We use the reported
results in Zhang21. For our model, we take the average
results of three runs.

4.5 Detailed Results

Since our model follows a similar pipeline proce-
dure as Zhou22, we present the results of each step
and conduct a thorough comparison on SciDTB.

Discourse Structure Prediction We partition the
EDUs, excluding the root EDU of each document,
into two subsets: Eintra and Einter. An EDU is
categorized as part of Eintra if it belongs to the
same sentence as its head EDU, and as part of
Einter otherwise. We evaluate model performance
on these two subsets.

We conduct experiments at intra-sentence and
inter-sentence levels and define the Intra score as
the percentage of EDUs in Eintra for which the
head EDU is correctly predicted. Inter_p and In-
ter_g are similar scores for Einter based on pre-
dicted and gold intra-sentence structure separately.

We evaluate three models using these scores,
all of which are transition-based models. The pri-
mary difference among them lies in the represen-
tations of sub-trees. Zhou22 exclusively utilizes
the source EDU for representation, therefore we
refer to this approach as the No-Graph model. In
contrast, our two graph models expand the source
EDU to encompass a sub-tree by incorporating the
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No-Graph 87.45 ± 0.86
Intra Ours (Star Graph) 88.85 ± 0.70

Ours (Full Graph) 89.09 ± 0.35

No-Graph 63.21 ± 1.49
Inter_p Ours (Star Graph) 65.36 ± 1.28

Ours (Full Graph) 67.81 ± 0.88

No-Graph 66.54 ± 1.30
Inter_g Ours (Star Graph) 68.73 ± 1.13

Ours (Full Graph) 71.16 ± 0.66

Table 5: Structure prediction results on SciDTB. To ob-
tain results for the No-Graph model, we re-implement
the approach described in Zhou22, for some of the
scores defined here are not reported in the original pa-
per. We present here the mean and standard deviation
of results for six runs.

arcs obtained during preceding parsing steps. Our
Star-Graph model constructs a star graph by di-
rectly connecting all other EDUs in the sub-tree to
the source EDU and our Full-Graph model per-
forms GATs on the original sub-tree structure. We
provide detailed explanations in section 3.1.4. The
results are presented in Table 5. By comparing the
mean and standard deviation of the results, we can
draw the following conclusions.

For intra-sentence parsing, both our Star-Graph
and Full-Graph models surpass the performance
of the No-Graph model, emphasizing the need
to integrate information from all EDUs within the
sub-tree. However, the Full-Graph model demon-
strates only marginal improvements compared to
the Star-Graph model. This observation can be
attributed to the relatively small number of EDUs
in each sentence and the simple sentence structures,
suggesting that a simplified star graph is sufficient
for merging information between EDUs within a
sentence.

For inter-sentence parsing, our Star-Graph and
Full-Graph models outperform the No-Graph
model by a larger margin. This superiority arises
from their ability to leverage arcs obtained from
intra-sentence parsing to enhance inter-sentence
parsing. Unlike results in intra-sentence parsing,
the Full-Graph model significantly outperforms
the Star-Graph model. This observation high-
lights the critical role of the graph structure in
comprehending text spans with a larger number
of EDUs and more complex structures.

Discourse Relation Recognition We evaluate
discourse relation recognition models based on
gold dependency trees. We define Intra_g, In-

Intra_g Inter_g LAS_g

Seq-label 82.4 62.2 77.4
Ours (Node+Edge) 83.5 64.4 78.6
Ours (EGAT) 83.3 66.2 79.0

Table 6: Relation recognition results on SciDTB with
fine-grained relations and gold tree structure. We use
the results reported in Zhou22 for the Seq-label model,
and for our model, we report the average results of six
runs.

ter_g and LAS_g as the accuracy score for rela-
tion recognition in Eintra, Einter and all the EDUs.
Zhou22 treats discourse relation recognition as a
sequence labeling task, and we refer to it as Seq-
label. We compare it with our Node+Edge and
EGAT models introduced in section 3.2. The re-
sults are presented in Table 6.

Node+Edge achieves superior performance com-
pared to Seq-label primarily due to the integra-
tion of two fine-tuned BERT models. NodeBERT
captures contextual representations for each EDU,
while EdgeBERT facilitates direct interactions be-
tween EDU pairs. The Seq-label model contains
only the latter. EGAT outperforms Seq-label at
inter-sentence level, further emphasizing the signif-
icance of graph structures in handling complex text
spans.

5 Analysis

It is evident that discourse dependency parsing per-
formance declines when applied to lengthy text
spans with complex structures. In this section, we
conduct experiments on SciDTB to show the capa-
bility of our model in handling complex structures.
Additionally, we perform experiments on RST-DT
to showcase the superiority of our model in dealing
with long text spans.

5.1 Results over complex structures
We perform inter-sentence experiments on SciDTB
using gold intra-sentence structures. We divide the
root EDUs of sentences into subsets based on the
number of EDUs in the sentence and the sentence
containing the head EDU.

The results are presented in Table 7. For most of
the subsets, both the Star-Graph and Full-Graph
models outperform the No-Graph model, indicat-
ing the necessity of merging information from all
the elementary discourse units (EDUs) within a
sub-tree. Furthermore, when comparing the Full-
Graph model with the Star-Graph model, it is ev-
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N_edu No-Graph Star-Graph Full-Graph

2 (24) 66.67 65.28 64.58 (-0.70)
3 (98) 58.50 62.24 62.41 (+0.17)
4 (148) 65.99 64.98 66.55 (+0.57)
5 (157) 63.06 63.27 65.50 (+2.23)
6 (108) 66.36 68.21 72.53 (+4.32)
7 (69) 58.94 59.66 64.01 (+4.35)
8 (30) 64.44 63.89 73.33 (+9.44)
>8 (32) 58.31 58.84 62.50 (+3.66)

Table 7: Inter-sentence level structure prediction re-
sults in different subsets of SciDTB. The numbers in
the brackets in the first column represent the size of
each subset and the numbers in the brackets in the
last column indicate the performance gain Full-Graph
achieves compared to Star-Graph.

ident that the Full-Graph model achieves greater
improvements when there are more EDUs in the
corresponding sentences. When sentences contain
a higher number of Elementary Discourse Units
(EDUs), they often exhibit more complex struc-
tures. This finding demonstrates the capability of
our GAT-based sub-tree representations to handle
text spans with complex structures.

5.2 Results over long text spans

We conduct experiments with our model on RST-
DT, a dataset consisting of documents with an av-
erage of 10.03 paragraphs. We evaluate the results
of P2D-level parsing. For the score P2D_g, we
use gold E2S and S2P structures and for P2D_p,
we utilize E2S and S2P structures predicted by our
Full-Graph model.

We present the performance of three approaches
in Table 8: No-Graph, Star-Graph, and Full-
Graph. The No-Graph approach is a modified
version of our model where the sub-tree represen-
tation utilizes only the source EDU. Based on the
results, it is evident that our Full-Graph model sur-
passes the performance of the No-Graph model,
highlighting the superiority of our GAT-based sub-
tree encoder. The Star-Graph model achieves a
lower score, possibly due to the destruction of the
original sub-tree structure. Since there are numer-
ous EDUs in a sub-tree during S2P-level parsing,
when we simplify the sub-tree to a star graph, the
information carried by nearby nodes may be con-
taminated by distant nodes.

For further study on this topic, we partition the
root EDUs of paragraphs into subsets of approx-
imately equal size, taking into account their dis-
tance from the head EDU. The distance between

No-Graph Star-Graph Full-Graph

P2D_p 25.6 22.4 30.0
P2D_g 36.3 33.3 41.1

Table 8: P2D-level structure prediction results on RST-
DT.

Dis_edu No-Graph Star-Graph Full-Graph

1~4 (130) 45.4 28.5 50.0
5~8 (110) 31.0 28.2 41.0
9~18 (106) 22.6 20.8 35.9
>18 (93) 21.5 35.5 12.9

Table 9: P2D-level structure prediction results in differ-
ent subsets of RST-DT. The numbers in the brackets in
the first column represent the size of each subset.

two EDUs is measured by the number of EDUs be-
tween them, with a value of 1 for adjacent EDUs.

We compute the P2D_g scores for these subsets
and present the results in Table 9. Based on the
obtained results, we can draw the following con-
clusions: (1) Our Full-Graph model demonstrates
superior performance compared to the No-Graph
model across all subsets, except for the subset in-
volving extremely long distances. Furthermore,
this superiority becomes more pronounced as the
subsets involve longer distances. These findings
indicate that our Full-Graph model exhibits a re-
markable capability to handle longer spans. (2)
The Star-Graph model yields a lower score for
adjacent EDU pairs but excels in the case of distant
ones. This observation provides evidence that the
destruction of the sub-tree structure indeed results
in data contamination mentioned above. The ef-
fectiveness of our GAT-based sub-tree encoder is
validated by these experiments.

6 Conclusion

In this paper, we enhance hierarchical transition
systems by integrating a GAT-based sub-tree en-
coder, which enables the parser to leverage the
parsing history more effectively and have a better
understanding of the whole document. Addition-
ally, we apply edge-featured GATs to predict re-
lations based on the complete discourse structure,
where two separate BERT models are fine-tuned
to capture features for EDUs and EDU pairs, re-
spectively. Experimental results demonstrate that
our model outperforms existing methods, particu-
larly when applied to long text spans with complex
structures.
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Limitations

Since the sub-tree changes during the transition-
based parsing process, we have to encode different
sub-trees for each transition state, which is time-
consuming. As a result, our structure prediction
model requires more time compared to existing
models. This issue becomes particularly prominent
when dealing with long documents in RST-DT. In
future works, We will design a more efficient graph
structure for encoding sub-trees. Besides, when
evaluating our model on CDTB, we encounter a sig-
nificant issue of data imbalance, particularly in the
stage of inter-sentence structure prediction, where
Shift and RightArc comprise the majority of the
actions. Consequently, our model has a tendency
to produce fully right-branching trees. We leave
the problem for future works.
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