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Abstract

The ability to bridge Question Generation (QG)
and Question Answering (QA) across struc-
tured and unstructured modalities has the poten-
tial for aiding different NLP applications. One
key application is in QA-based methods that
have recently been shown to be useful for au-
tomatically evaluating Natural Language (NL)
texts generated from Knowledge Graphs (KG).
While methods have been proposed for QG-QA
across these modalities, these efforts have been
in English only; in this work, we bring multi-
linguality (Brazilian Portuguese and Russian)
to multimodal (KG and NL) QG-QA. Using
synthetic data generation and machine transla-
tion to produce QG-QA data that is aligned be-
tween graph and text, we are able to train mul-
timodal, multi-task models that can perform
multimodal QG and QA in Portuguese and
Russian. We show that our approach outper-
forms a baseline which is derived from previous
work on English and adapted to handle these
two languages. Our code, data and models
are available at https://gitlab.inria.fr/
hankelvin/multlingual_kg-text_qgqa.

1 Introduction

The ability to generate and answer questions from
both Knowledge Graphs (KG) and Natural Lan-
guage (NL) text is useful in a number of ways. It
permits easing users’ access to the knowledge con-
tained in KGs without having to master complex
query languages, since an NL query from a user
may be directly applied to KG information to de-
rive the answer. It also allows for questions to be
generated and answered from both the open do-
main information contained in NL text and the fac-
tual knowledge contained in KGs/knowledge bases,
thereby widening the pool of information that is
interrogable. And it is useful also for verifying the
consistency of information between modalities. In
particular, (Rebuffel et al., 2021) recently showed
that multimodal KG/NL Question Generation (QG)

and Question Answering (QA) can be used for as-
sessing the semantic consistency between an input
KG graph and a generated English text, thereby
providing a reference-less metric to measure the
quality of KG verbalisers (RDF-to-Text models).
The intuition is that, for a match between an input
and its output, the answers that are extracted for
a given set of questions from the input should be
consistent with the answers that are extracted from
the output (for the same set of questions).

One key challenge to building multimodal QG-
QA however, is the lack of annotated QG-QA data
that is aligned between modalities that is available
for training and evaluation of such models. Fur-
thermore, to be useful for RDF-to-Text output eval-
uation, a multimodal QG-QA approach has to be
robust to surface variations since the answer to a
question likely has different surface forms in the
input graph and the output text. Its QG and QA
also have to be cross-lingual so that questions from
multilingual texts can be generated and answered
from English-centric KGs. Additionally, the set of
questions generated for a given (graph, text) pair
should be sufficiently large and the model(s) should
also perform QA with accuracy and consistency,
so as to be able to provide a fair assessment of the
semantic consistency between graph and text.

In this work, we investigate the generation and
answering of questions from graph and from text
for multiple languages besides English. We present
models enabling this for Russian and in Brazilian
Portuguese. In addition, we apply our approach to
WEBNLG, a dataset of (graph, text) pairs that is used
to train RDF-to-Text models, and we show that
our approach extends to (Rebuffel et al., 2021)’s
reference-less, semantic adequacy metric for RDF-
to-Text models for these two languages.

We make the following contributions. First, we
create training data where questions are aligned
with both their graph and their text answers, allow-
ing the training of models that show cross-modal
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consistency: i.e. for a given question, the answers
obtained from a graph and from its semantically
equivalent text are consistent.

Second, we derive silver training data from En-
glish using Machine Translation (MT) and we
demonstrate that the resulting multimodal, Por-
tuguese and Russian QG-QA models trained on
them have high internal consistency: in most cases,
applying a Russian or Portuguese question gener-
ated from a graph to the same graph returns an
answer that matches the graph entity that the ques-
tion was originally conditionally-generated from.

Third, we show that our approach has much
larger question coverage than a baseline adapting
(Rebuffel et al., 2021)’s approach to our target lan-
guages. Finally, to overcome the lack of any gold
QA/QG data that is aligned between text and graph
in these two languages, we designed our evalua-
tion suite to include multiple internal, cross-modal,
cross-approach and external checks. These checks
also demonstrate that our approach significantly
improves on the baseline.

1.1 Terminology and notations

En English
PtBr Brazilian Portuguese
Ru Russian
g (or KG graphs/graphs). A subgraph

of the Wikidata KG (Vrandečić and
Krötzsch, 2014); comprised of a set of
triples (also called facts) of the form
xsubject, predicate, objecty in English.

t (or NL texts/texts). A text in En-
glish/Portuguese/Russian

X The context of a question in one modal-
ity (text or graph)

X 1 Semantically equivalent to X in the
other modality

q A questionÝÑq A collection of questions
aX An answer in X (a graph answer (ag)

is either a subject or an object entity in
g; a text answer (at) is a span in t)

g1 A subgraph of g corresponding to a q
and its answer

nf The number of facts related to a given
q (i.e. the size of its corresponding
subgraph |g1| )

tPtBr A text in Portuguese (the superscript
distinguishes languages)

2 Approach

Since there is no cross-modal QG/QA data for
Brazilian Portuguese and Russian, we approach the
task by first creating the data necessary for training
multimodal QG-QA models for English. We then

machine translate this data to create training data
for Brazilian Portuguese and Russian. Finally, we
use this automatically translated data to train multi-
modal (KG/NL), multi-task (QG-QA) models for
these two languages. The following outlines our
approach and details are provided in the subsequent
sections.

‚ Creating Question/Answer Data for pairs of
English Texts and Wikidata Knowledge Graphs.
We first create a large synthetic dataset (Section 3)
of QA pairs for graphs and texts in English as
leveraging existing resources (datasets and mod-
els) already developed for that language allows us
to obtain QA pairs at scale. We do this by apply-
ing off-the shelf QG and QA models to texts from
KELM (Agarwal et al., 2021), a large dataset of
(Wikidata graph, English text) pairs. We call this
data Q-KELMEn.

‚ Learning Controllable QG Models for En-
glish Texts and Wikidata Knowledge Graphs.
Using the Q-KELMEn dataset for training, we learn
two controllable graph- and text-based QG mod-
els which allows for multiple, varied questions,
of different graph sizes and question types, to be
generated from the same (graph, text) pairs. This
is essential as it is through controllable generation
with these models that we can significantly increase
the QA/QG training data coverage (Section 7.2).

‚ Creating Question & Answer Data for the
WebNLG Dataset (from both English Texts and
Graphs). By applying our controllable QG models
to the (graph, text) pairs of the WEBNLG (Gardent
et al., 2017) dataset, we create a large dataset of
(question, answer) pairs from texts and graphs that
can be used to train models used in verifying the
semantic match between WEBNLG graphs and texts
generated from these graphs.

‚ Learning Multimodal, Multi-task QG-QA
Models for Brazilian Portuguese and for Rus-
sian. By further using MT, heuristics and qual-
ity filters (Section 5), we obtain silver-aligned, in-
domain QA pairs that enable us to train QG-QA
models for WEBNLG graphs and their texts in Por-
tuguese or Russian.

‚ Testing on WEBNLG and with an indepen-
dent QA model. We apply our Portuguese and
Russian, multimodal QG-QA models to WEBNLG

Portuguese and Russian evaluation data and com-
pute correlation (Section 7.4) with human judge-
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ment of semantic adequacy (i.e. Does a generated
text match the semantic content of its input graph?).
We also apply the generated questions to a retrieval-
based multilingual QA model (Section 7.5) to fur-
ther verify the quality of the QG (i.e. How well can
the generated questions be answered by an external
model?).

We show that our approach brings substantial
improvements over the baseline, to question cov-
erage, QA consistency, correlations with human
judgments of semantic adequacy as well as answer-
ability by a retrieval-based multilingual QA model.

3 Data

‚ WEBNLG has 38,872 (graph, English texts)
pairs where each graph is a Wikidata graph and
each English text was crowdsourced to match the
input graph.1

‚ WEBNLGRu: (Shimorina et al., 2019) created a
Russian version of WEBNLG by machine translat-
ing 16,522 English texts from the original WEBNLG

dataset, followed by crowdsourced post-editing.
This dataset was used in the 2020 WebNLG Chal-
lenge (Castro Ferreira et al., 2020).

‚ WEBNLGPtBr: Similarly, (Almeida Costa et al.,
2020), created a Brazilian Portuguese version of
the WEBNLG test set by using MT and a pool of
native Portuguese speakers for post-editing.

‚ KELM consists of 15M (Wikidata, English
Texts) pairs. The English texts were synthetically
generated from Wikidata graphs using a T5 pre-
trained model that was itself fine-tuned on TekGen,
a large dataset of (graph, text) pairs that was created
using distant supervision.

We reserve the test sets of WEBNLGPtBr and
WEBNLGRu — 1,606 (g, tPtBr) and 1,102 (g, tRu)
pairs respectively — for evaluation as the parallel
(g, t) in these test sets means that if a question can
be answered by a text (or graph), it can also be an-
swered by the graph (or text) that it is paired with
— this allows us to test cross-modal QG and QA for
consistency (Section 7.3). We use the training por-
tion of WEBNLG to produce our QA/QG datasets,
which is done in two phases and which we describe
in the following sections and illustrate in Figure 1.

1In WEBNLG, the graphs are from the DBpedia KG. Here
we use a version where some of the DBPedia graphs have been
mapped to Wikidata (Han et al., 2022), or else removed of
underscores and camelcase to align with the Wikidata format.

4 Creating QA/QG Data for English

Our first phase generates synthetic (question, an-
swer) pairs for WEBNLG graphs and English texts
in three main steps as follows.

Step 1: Synthetic QA data In the first step, we
derive (t, at, q) triplets from KELM texts2 using
off-the-shelf models for textual QG and QA.3 We
first use the QG model to generate questions from
texts. Next we use the QA model to generate an-
swers from the resulting (text, question) pairs. Us-
ing a set of heuristics, we then align (i) each text
answer at to an entity in g giving us the graph an-
swer ag and (ii) each question to the subgraph g1 of
g matching its content, which in turn allows us to
obtain the question size, nf . The set of generated
questions is then filtered to ensure the quality of the
silver data; this includes posing each question to a
second deepset textual QA model for English and
only accepting questions which both QA models
found answerable and whose answers are the same
or overlap. Questions whose text answer could not
be matched to a graph answer were also removed.
This gives us an initial synthetic QA/QG dataset
of pg, ag, t, at, nf, q, g1q tuples, which we call Q-

KELMEn.

Step 2: English Text/KG QG models Using
Q-KELMEn, we train two QG models that can con-
trollably generate simple (one KG graph fact) and
complex (>1 KG graph fact) questions from either
text or graph. The controls we use are: the size of
the question in terms of KG triples (nf ), and plau-
sible question types (e.g., who, what, when, where,
which, how (to)) in the case of simple questions
generation. These controllable QG models enable
our generation of wide-coverage in-domain QG-
QA data that also allows us to generate multiple
questions per input (see next point and Section 6).

2We used a version of KELM filtered for (g, t) pairs where
g has between 2 and 5 triples (as larger sizes lead to unnatural
questions). We also filtered out the KELM (g, t) pairs (i)
whose properties in g were not found in the Wikidata SPARQL
endpoint or have a functional nature, i.e. containing terms such
as ‘image of’, ‘instance of human’, ‘list of’, ‘disambiguation’
which gives rise to superfluous t in KELM; and (ii) t that do
not have a high fidelity with their g, using a similarity measure
(Scao and Gardent, 2023) trained via contrastive loss on RDF
graph-text pairs.

3https://huggingface.co/valhalla/
t5-base-e2e-qg, a T5-base QG model fine-tuned on
SQuAD 1.0 data, as well as https://huggingface.
co/deepset/roberta-base-squad2 and https:
//huggingface.co/deepset/deberta-v3-base-squad2
which are RoBERTa/DeBERTa-base QA models that are both
fine-tuned on SQuAD 2.0.
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Figure 1: Comparing our approach against the baseline. Using KELM and controllable QG increases coverage.
Aligning questions with contexts and answers across modalities improves consistency. Machine translation provides
multilingual training data.

Step 3: In-domain training data Finally, these
two models are applied to the training portion of
WEBNLG. By cycling through the set of possible
graph and text answers, and leveraging the con-
trols we introduced in Step 2 (question sizes and
question types), we ensure wide coverage of the
resulting set of questions.

Answerability, consistency and alignment We
add an answerability+consistency filter on the
questions generated from either graph or text of
WEBNLG, by posing them to the two deepset tex-
tual QA models — we then keep only questions
where both QA models return an answer which (i)
has a confidence score ě 0.7, (ii) shares at least a
token overlap with the other model’s answer, and
(iii) has a token overlap with the answer used to
condition QG (i.e. a text answer for questions from
text; a graph answer for questions from graph). In
this way, for all questions that are generated from a
graph, we ensure that they have a matching graph
and text answer. We call the resulting dataset —
of graph- and text-based (question, answer) pairs,
Q-WEBNLGEn.

5 Creating QA/QG Data for Russian and
Portuguese

In the second phase, we leverage MT and multi-
lingual KG entity labels from Wikidata to trans-

form Q-WEBNLGEn into Portuguese and Russian
versions.

We describe the process for Portuguese first. We
translate both the English texts of WEBNLG training
data and the set of questions from Q-WEBNLGEn

using a T5 English-Portuguese translation model4.
We filter these translations using checks (details in
Appendix A.2) that include back-translation and
keeping only those whose automatic scores are
above a cut-off. Since we machine translate the
questions from English, the semantics of the ques-
tions might be affected; as such for each translated
question q, we then use a textual QA model trained
on Portuguese SQuAD data to obtain the answer
to that question from the (automatically translated)
Portuguese text (aPtBr

t ) and we use heuristics (Ap-
pendix A.2.1) to align this text answer to an entity
ag in the matching graph5. We discard any QA pair
for which aPtBr

g is different from the graph answer
aeng associated with the original English question
(the question q is a translation of).

We do the same for Russian, except that we
do not translate WEBNLG training data to Russian
as it is already available (Shimorina et al., 2019).
To translate the Q-WEBNLGEn questions into Rus-

4https://huggingface.co/unicamp-dl/
translation-en-pt-t5

5Recall that in WEBNLG, each text is paired with a match-
ing graph with semantically equivalent content.

13743

https://huggingface.co/unicamp-dl/translation-en-pt-t5
https://huggingface.co/unicamp-dl/translation-en-pt-t5


nf Q-KEn Q-WEn Q-WPtBr Q-WRu

1 44,464 19,467 7,557 3,250
2 341,082 61,346 15,463 8,736
3 234,170 25,170 5,446 3,612
4 22,607 13,918 2,411 2,004
5 7,031 - - -

TOTAL 1,149,354 119,901 30,877 17,602

Table 1: Data Statistics. Number of questions in the
QA datasets; nf : the size of the question (no. of facts)

.

sian, we use NLLB-200-1.3B6 (NLLB Team et al.,
2022), an MT model achieving state-of-the-art for
200 languages.

We call the resulting QA datasets, Q-

WEBNLGPtBr and Q-WEBNLGRu. Table 1
summarises their statistics and example instances
of the data can be seen in Table 7 in Appendix A.

6 Multimodal multi-task QG-QA model

We train monolingual models (i.e. one each for
Portuguese and Russian) to limit the effect of cross-
lingual transfer during training (i.e. only English-
Portuguese or English-Russian when generating
and answering with graph). Each language-specific
model — which is fine-tuned from the public check-
point of the 300M-parameter mT5-small (Xue et al.,
2021) for 10 epochs (to be comparable with the
baseline) — is trained in a multimodal (graph and
text), multi-task (QG and QA) manner, where each
training batch contains a mix of all the tasks, i.e.
Text QG, Text QA, KG QG and KG QA. This gives
us a single unified model that can generate and
answer questions from text and from graph.

It takes approximately 20 hours to fine-tune
one of our language-specific multimodal multi-task
models using a single Nvidia A40 GPU.

Maximising Coverage To maximise coverage,
we train the QG model to generate multiple ques-
tions from the same input and we extend the set
of possible sources for a (question, answer) pair
thereby facilitating question answering.

For QG, we gather into a set the questions gen-
erated from each X (t or g) in Q-WEBNLGPtBr/Q-

WEBNLGRu, and add to it questions that were gen-
erated from other contexts whose semantic content
is contained in X . QG coverage is then maximised
by gathering all nf -sized questions that shared the
same answer in this set — by doing so, each of

6https://huggingface.co/facebook/
nllb-200-distilled-1.3B

our QG training instance can then contain multi-
ple questions, enabling the generation of multiple
questions from a given (X, aX , nf ) input.

For QA, we associate each (q, aX ) pair from a
given X to other contexts in the data that encom-
pass X to give (X, aX ,ÝÑq ); every (X, aX , q) triplet
in this set is then created as a QA training instance,
thereby allowing QA coverage to be increased.

Handling Unanswerable Questions. To allow
our model to abstain from an answer if the ques-
tion cannot be answered from the context, we use
two strategies (details in Appendix B.1) to obtain
negative unanswerable (q,␣X) pairs.

7 Evaluation and results

7.1 Baseline: single-task models

Dataset Portuguese Russian

SQuAD 118,678 50,364
WebNLG 125,957 62,007

TOTAL 244,635 112,371

Table 2: Baseline training data. Number of pt, at, qq
triplets in the obtained datasets for each language.

The baseline we compare against comprises four
different models for each language and is similar to
the approach described for the Data-QuestEval met-
ric (Rebuffel et al., 2021) for English, which they
have shown to be useful for reference-less evalua-
tion of English RDF-to-Text models. First, textual
QG and QA models are trained on SQuAD data
for Portuguese and Russian.7 The textual QG mod-
els are then applied to the Portuguese and Russian
texts of the WEBNLG training data; whereby the
entities from the graph that is paired with each text
are used to condition QG. This provides pg, ag, qq
triplets that can be used for training the KG QG and
KG QA models. Table 2 contains statistics about
the training data for the baseline. To remain in the
same model paradigm as (Rebuffel et al., 2021), ev-
ery model here is also fine-tuned from mT5-small
for 10 epochs.

7For Portuguese we use a version of SQuaD v1.0
(Rajpurkar et al., 2016) we understand is produced
with MT and post-edited by native speakers, avail-
able at https://huggingface.co/datasets/ArthurBaia/
squad_v1_pt_br; for Russian we use the SberQuad (Efimov
et al., 2020) dataset.
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7.2 Evaluating Question Coverage
We use two measures to assess question cover-
age. We first compare the number of unique
questions generated by each approach on the
WEBNLGPtBr/WEBNLGRu test sets. We further use
BERTScore (BSc) (Zhang et al., 2020) to assess
their semantic overlap by taking one approach’s
question for a given X as prediction and the
other’s generated questions for the same X as
multi-references. The intuition is that if approach
A scores higher with approach B’s questions as
references than vice-versa, A’s questions are "con-
tained" in B’s and conversely, B has wider semantic
coverage.

Figure 2: Portuguese: Comparative QG coverage
— Baseline vs. Our Approach. Number of generated
questions is much higher for our approach across both
modality and input size.

Figure 3: Russian: Comparative QG coverage —
Baseline vs. Our Approach. Number of generated
questions is also much higher for our approach across
both modality and input size.

‚ Wider q coverage Our approach has a sub-
stantially higher question coverage (up to 4x more
for Portuguese and nearly 7x more for Russian)
than the baseline (Figure 2-3). In terms of seman-
tic coverage (Table 3), we outperform the baseline
in all modalities for Portuguese; we also outper-
form in graph for Russian, and are on par in the
text modality there.

7.3 Evaluating QA Consistency
In what follows, the answer aX that is used to
condition the generation of qX is referred to as the

Modality As reference Portuguese Russian

Text Baseline 83.1 81.3
Ours 85.0 81.3

Graph Baseline 80.7 75.9
Ours 84.6 80.1

Table 3: Avg BSc, where questions generated by Sys-
tem A for a given g or t are scored against the set of
generated questions by System B for the same g or t.

ground truth (GT). âX denotes a generated answer
from context X. We use superscripts distinguish
outputs from different models — for e.g., âAX is the
answer derived from input context X by model A.

We evaluate the multimodal QG-QA models by
computing three consistency metrics that consider
the various answers that a question q can be asso-
ciated with: aX , the ground truth; âX , the answer
generated from source X (e.g., a text); and âX 1 ,
the answer generated from the other modality X 1
(e.g., a graph). Internal Same-mod (GT) compares
âX with the ground truth answer aX , indicating the
approach’s self-consistency. Internal X-mod (GT)
compares aX with âX 1 the answer derived from the
other modality. Internal X-mod (Gen Ans) com-
pares âX 1 and âX , the answers from each modality.

By also posing the questions generated by one
approach to the other approach’s QA in a cross
approach manner, we gain an external indication
of their QG-QA capabilities. For this, we ex-
amine the two answers that approach B can gen-
erate (âBX and âBX 1) when given qAX , a question
generated by A. We do this on three levels: (i)
X-Appr Same-mod (GT) compares âBX against aAX
on the same modality that qAX came from; (ii)
X-Appr X-mod (GT) compares B’s generated an-
swer with the GT answer across modalities (i.e.
âBX 1 vs aAX ); and (iii) X-Appr X-mod (Gen Ans)
where âBX 1 is compared against âAX . A graphical
overview of these comparisons is in Figure 4.

Both approaches usually generate a different
number of questions for a given X; therefore, to
ensure a fair evaluation, when an Approach A gen-
erates more questions for X , we randomly sample
from its set as many questions that Approach B
generates for X . We also added a self-consistency
filter removing those questions that are unanswer-
able from their own context. Settings for these are
in Appendix B.3.

As the token F1 metric commonly used in extrac-
tive textual QA cannot account for lexical variation

13745



Figure 4: QA Accuracy. Bold lines denote QA com-
parisons within/between modalities and/or approaches.
Dotted arrows indicate the context X or X 1 that the
question (qX ) is posed against to obtain the answers.
Lcross: cross-lingual answer comparison (e.g. PtBr/Ru
against En); Lsame denote comparison in the same lan-
guage.

present in cross-modal QA, we follow (Rebuffel
et al., 2021)’s use of BERTScore (BSc) for eval-
uation; however, we also computed token F1 and
exact match scores for verification, and these are
provided in Tables 8-9 in Appendix C.1.

Table 4 show the results of the QA consistency
tests for Portuguese and Russian. We observe simi-
lar trends for both languages, though the BScs for
Russian are noticeably lower under the cross-modal
(and cross-lingual too, since ag is in English) set-
tings. This is likely due to (i) the smaller size of the
training data for Russian (Table 1), (ii) more fre-
quent transliteration of foreign names into Cyrillic,
and (iii) potentially, the freer word order in Rus-
sian which relies on case instead of S-V-O order to
mark the subject and object (as it is for English and
Portuguese).

‚ More self-consistent QA Our approach con-
sistently leads to higher scores compared to the
baseline in the Internal comparisons for all lan-
guages, showing that multimodal, multi-task train-
ing using silver aligned data (even at much smaller
scale — nearly 4 times less for Portuguese and
more than 3 times less for Russian; cf. Table 1 and
2), improves QA self-consistency.

‚ More consistent cross-modal QA We also
improve by between 8.9 (29.7 over 20.8, Rus-
sian) to 22.9 (65.6 over 43.7, Portuguese) BSc

Portuguese
Internal X-Appr

QG Baseline Ours Baseline Ours
QA Baseline Ours Ours Baseline

Self (GT)
T Ñ T 86.3p˘0.01q 94.7p˘0.14q 73.6p´12.7q

p˘0.10q 60.1p´34.6q
p˘0.25q

G Ñ G 85.4p˘0.03q 96.8p˘0.05q 58.2p´27.2q
p˘0.12q 61.0p´35.8q

p˘0.53q

X-mod (GT)
G Ñ T 43.7p˘0.15q 65.6p˘0.37q 47.0p `3.3q

p˘0.11q 47.8p´17.8q
p˘0.30q

T Ñ G 40.0p˘0.08q 62.9p˘0.46q 45.7p `5.7q
p˘0.12q 37.8p´25.1q

p˘0.35q

X-mod (Gen Ans)
G Ñ T 39.9p˘0.14q 67.1p˘0.34q 42.5p `2.6q

p˘0.09q 47.7p´19.4q
p˘0.30q

T Ñ G 40.0p˘0.08q 65.0p˘0.37q 44.3p `4.3q
p˘0.11q 39.0p´26.0q

p˘0.34q

Russian
Internal X-Appr

QG Baseline Ours Baseline Ours
QA Baseline Ours Ours Baseline

Self (GT)
T Ñ T 84.6p˘0.02q 89.8p˘0.11q 57.8p´26.8q

p˘0.10q 57.2p´32.6q
p˘0.18q

G Ñ G 79.4p˘0.03q 96.2p˘0.13q 48.9p´30.5q
p˘0.10q 57.1p´39.1q

p˘0.53q

X-mod (GT)
G Ñ T 20.8p˘0.04q 29.7p˘0.26q 24.5p `3.7q

p˘0.06q 20.6p ´9.1q
p˘0.21q

T Ñ G 20.2p˘0.06q 30.0p˘0.08q 17.3p ´2.9q
p˘0.03q 21.5p ´8.5q

p˘0.06q

X-mod (Gen Ans)
G Ñ T 18.6p˘0.04q 31.1p˘0.27q 22.8p `4.2q

p˘0.06q 20.3p´10.8q
p˘0.23q

T Ñ G 18.4p˘0.07q 30.8p˘0.10q 15.0p ´3.4q
p˘0.03q 22.2p ´8.6q

p˘0.06q

Table 4: Consistency Results. Average of BScs be-
tween answers. In subscripts are std. dev. across 5 random
runs; in superscripts are the difference between X-Appr and
Internal, the differences provides a meaningful compari-
son between the baseline and our approach since each
of their QA performances are different. Whenever our
QA is used, the drop in performance is reduced.

over the baseline in Internal X-mod (GT). This
is particularly pertinent for the Data-QuestEval
metric, as the metric is computed by com-
paring the generated answer aX 1 against the
GT answer aX . Our approach also always
leads to gains in Internal X-mod (Gen Ans) over
Internal X-mod (GT), which does not happen for
the baseline. This means that our QG-QA gener-
ates answers that are more consistent between both
modalities. This improvement could have come at
the expense of the QG-QA’s performance vis-a-vis
the GT answer (i.e. Internal X-mod (GT)), but this
is not the case for our approach, which further val-
idates our multimodal multi-task training to give
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more consistent cross-modal QG-QA.

‚ QG-QA externally validated Whenever the
baseline’s QA is used to answer questions gener-
ated by our approach, QA accuracy drops signif-
icantly less (in some cases, there is a gain) than
vice-versa (Table 4). This could be predominantly
the result of either (i) better QG by our approach;
or (ii) better QA by the baseline — however, our ap-
proach’s stronger performance in all the Internal,
X-mod and X-Appr comparisons suggests that the
former is the likely factor. This gives an indication
of the quality of the questions generated by our
approach over the baseline.

‚ QA consistent over q size Finer-grained anal-
ysis (Table 10 and 11 in Appendix C.2) shows
that our approach’s QA performance is consistent
across nf , i.e. it is also generating and answering
questions of consistent quality across questions of
different "sizes" (i.e. simple and complex).

7.4 Data-QuestEval metric

The QA consistency tests above reflect a "gold"
setting where both modalities (texts and graphs)
are semantically aligned. To evaluate whether our
approach brings improvements to settings where
this does not hold (i.e. Can it generate and answer
questions across modalities where one modality
has missing, or additional, information vis-a-vis
the other?), we compared it against the baseline
when used to compute the Data-QuestEval metric.

We do this by comparing the metric’s result-
ing correlation with human judgments of semantic
quality when using each approach. For this, we
used the sampled set of system submissions to the
Russian RDF-to-Text task in the 2020 WebNLG
Challenge, together with their human ratings8, com-
prising 660 generated texts from six submissions.9

Since the texts here were machine-generated given
a WEBNLG graph input, these texts may contain
errors or are ill-formed, therefore the approach giv-
ing a higher correlation with the human ratings
indicates that it is better able to answer questions
that cannot be answered by the other modality (i.e.
detect a difference in information content).

8https://github.com/WebNLG/challenge-2020
9We use the ratings of Data Coverage, Relevance and Cor-

rectness (summing their normalised scores). Since the out-
puts for the challenge’s human evaluations were sampled in
a random stratified manner, we computed correlation using
Pearson’s r.

‚ Better correlations with human judgments
Using our approach to compute the Data-
QuestEval metric leads to a gain of more than
12 points in its correlation with human judgments
(Table 5). Together with the more consistent inter-
nal and cross-modal QA above, this shows that
our approach leads to more robust QG-QA. It
also indicates that QA-based reference-free evalua-
tion methods like Data-QuestEval can be improved
upon with wider QG coverage.

Baseline Our Approach

16.4 (4.78E-06) 28.7 (4.21E-16)

Table 5: Correlations (Pearson’s r ) with human judg-
ments. The baseline vs our approach used to compute
the Data-QuestEval metric. All (p-values) « 0.001.

7.5 Multilingual Retrieval-based QA
For a further verification of the QG abilities of
the baseline and our approach, we also posed the
questions generated by each (the same ones as in
Table 4) to mGEN (Asai et al., 2021). This is a mul-
tilingual retrieval-based QA model that was fine-
tuned from a mT5-base (Xue et al., 2021) check-
point to generate the answer to a question given a
collection of retrieved input contexts.10

Portuguese
External Retrieval-QA

QG Baseline Ours
QA mGEN mGEN

Self (GT)
T Ñ T 71.4p˘0.07q 78.0p˘0.58q
G Ñ G 57.7p˘0.13q 72.8p˘0.48q

Russian
External Retrieval-QA

QG Baseline Ours
QA mGEN mGEN

Self (GT)
T Ñ T 65.9p˘0.13q 68.5p˘0.18q
G Ñ G 66.9p˘0.15q 76.0p˘0.77q

Table 6: QA consistency (BSc) comparing the QG of
Baseline and Ours, using mGEN for QA.

‚ Better answerable questions Compared to the
baseline, our approach’s questions were answered

10We use the version of the code and weights that
was released as part of the MIA-2022 Shared Task (Asai
et al., 2022). See https://github.com/mia-workshop/
MIA-Shared-Task-2022/tree/main.
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better by mGEN — we see (Table 6) an increase
of between 2.6 BSc for TextQG (Russian) and 15.1
BSc (Portuguese) in answer accuracy, providing a
further independent verification of our approach’s
QG capabilities.

8 Related work

Joint QG & QA and data Existing work on joint
QG & QA (Wang et al., 2017; Duan et al., 2017;
Lyu et al., 2021; Luo et al., 2022) have mostly
focused on the text modality and in English only.
Where more than one modality or multiple lan-
guages are considered, these have usually been for
QA alone. This is partly because available anno-
tated multilingual QA/QG datasets (Lewis et al.,
2020; Artetxe et al., 2020) are limited in size and
primarily reserved for testing, as well as built for
one modality only. While there exists moderate-
sized KG QA datasets, including the long-running
QALD (Usbeck et al., 2023) and LC-QuAD (Dubey
et al., 2019) KG QA challenges, these are still of
a limited size (and coverage). Furthermore, none
of these QA/QG datasets have alignment of QA
pairs across modalities, as well as across languages.
Notably, since open KGs such as Wikidata (though
large and with wide and growing fact coverage)
remain English-centric, the setting we examine has
to involve cross-linguality when carrying out QG
and QA in the graph modality.

Bridging modalities Early efforts to bridge QA
between modalities focused on supplementing lim-
ited KG coverage by extracting relational infor-
mation from more abundant texts. For instance,
(Fader et al., 2014; Das et al., 2017) leveraged both
structured (KB, tables, lists etc) and unstructured
(text) information and used information extraction
methods such as OpenIE (Banko et al., 2007) and
UniversalSchema (Yao et al., 2012) so as to employ
semantic parsing- or rules-based KG QA methods.
More recent work instead casts structured infor-
mation as text to access their knowledge through
textual QA methods. (Agarwal et al., 2021) con-
structed KELM as a verbalisation of a large KG
(Wikidata) to add to a retrieval LM corpus, obtain-
ing performance improvements on benchmark QA
datasets. (Oguz et al., 2022) obtain improvements
by adding Wikipedia tables and lists to the data
mix. In a similar vein as (Agarwal et al., 2021),
(Zhang et al., 2023) verbalise a multilingual KG
QA dataset to utilise textual QA methods.

Synthetic data Other work has investigated the
use of synthetically-generated data with round trip
filtering techniques and shown improved textual
QA performance (Alberti et al., 2019; Puri et al.,
2020; Kwiatkowski et al., 2019). (Riabi et al., 2021;
Agrawal et al., 2023) have also examined multilin-
gual synthetic QA/QG data generation. Similarly,
we used data augmentation and round trip filter-
ing to improve generalisation; however, these other
work are aimed at improving textual QA only; un-
like ours which aims to improve multilingual QG
and QA jointly, which is also cross-modal for text
and graph while also ensuring wide QG coverage.

QA-based evaluation of texts Our work is most
similar to (Rebuffel et al., 2021) who use an ap-
proach like our baseline to show that QG and QA
can be useful for assessing the semantic adequacy
of generated texts in RDF-to-Text tasks in English.
Contemporaneous work by (Cohen et al., 2023)
also similarly leverage consistency measures to ver-
ify the factuality of a model’s generated answers.
Nonetheless, these works remain in one modality
and language only (English texts).

9 Conclusion

In this work, we examine the task of multimodal
QG and QA from text and from graph in multiple
languages which has application in QA-based eval-
uation of text generated from KG. By generating
synthetic QA/QG data in English that has questions
and answers aligned between text and graph, and
using MT, heuristics and quality filters, we obtain
"silver" data for Brazilian Portuguese and Russian
that enables the training of multimodal multi-task
models. Our models provide wider QG coverage,
is cross-lingual for QG-QA from KG graphs, and
achieves greater internal and cross-modal QA con-
sistency over a baseline that is derived from work
in English (Data-QuestEval) (Rebuffel et al., 2021)
recently shown to be useful as a metric for eval-
uating the semantic consistency of RDF-to-Text
generations. In fact, using our approach leads to
> 12 points gain in the metric’s correlation with
human judgments for Russian. We also see strong
performance in QA accuracy of up to 15.5 BSc
when our approach’s questions are posed to a mul-
tilingual retrieval-based QA model. Holistically,
our approach’s consistently better performance in
coverage and QA consistency, demonstrates the
improvements that it brings over the baseline.
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11 Limitations

Our data generation process relies on the KELM

dataset (Agarwal et al., 2021), which was gener-
ated using a single pretrained language model (T5-
large). As such, KELM — and hence the texts
in our generated data (Q-KELMEn) too — reflects
only the set of factual or linguistics characteris-
tics in this model. For instance, there is certainly
more than one way a KG graph (or set of facts)
can be lexicalised in text, however KELM only
contains one lexicalisation for each of the KG
graph within it. In addition, we only use a sin-
gle QG model for generating our initial sets of
synthetic QA pairs Q-KELMEn. Although by using
Q-KELMEn to train our two general QG models,
we may have introduced new varieties of questions
into Q-WEBNLGEn (and therefore Q-WEBNLGPtBr

and Q-WEBNLGRu), it is unlikely we have obtained
the full range of questions possible for a given
context-answer pair. This limitation of KELM may
however be alleviated by for example, ensembling
the KELM dataset with generations from different
LMs on the same subgraphs used to generate the
KELM sentences/passages.

When setting up the KG QA training instances
from Q-WEBNLGPtBr/Q-WEBNLGRufor complex
questions, we chose quality over quantity and only
used those originating from KG graphs (i.e. we ex-
cluded complex questions originated from texts).11

This is because answers for questions generated
from text may not be constrained to a single KG

11Note that, without this step, our KG QA model would be
steered towards generating Text QA-like answers. This would
then bias the cross-modal comparisons (i.e. X-mod (GT) and
X-mod (Gen Ans) and will also likely negatively affect the
reliability of the Data-QuestEval metric to accurately assess
the presence of KG facts mentioned in a given text.

entity. This results in there being more textual QA
instances than KG QA. For balance, it may be pos-
sible to using beam search (or variants of it such as
diverse beam search (Vijayakumar et al., 2016) and
constrained beam search (Post and Vilar, 2018))
to increase the generation of complex questions
from graph using the Q-KELMEn-trained general
purpose QG model. Finally, although we used the
agreement of two state-of-the-art QA models when
checking for QG acceptability, we cannot be cer-
tain that questions rejected by the QA models are
not actually valid questions — in such cases, it
means that the coverage of QA pairs in our datasets
is constrained.

12 Ethics Statement

As advancements in generative technologies ac-
celerate in terms of capabilities, scale and public
access, so too must the need for the the ability to
understand if such machine-generated information
are reliable.

We believe that our multilingual KG/NL-
QA/QG data creation method and multimodal
multi-task QG-QA modeling has the potential
to contribute positively in the following man-
ner: (i) a cross-lingual (English-Brazilian Por-
tuguese/Russian) QG-QA model with cross-modal
consistency can aid in tasks that includes but are
not limited to automated fact verification, KG-to-
text/text-to-KG quality estimation and KG comple-
tion; and (ii) the ability to generate multilingual in-
domain QA data can help improve downstream QA
performance and dialogue systems to aid human-
machine interactions with KGs in English as well
as other languages. On the other hand, a direct ap-
plication of our method and model for a task such
as fact verification could lead to a failure to cap-
ture misinformation, which have the potential for
substantive societal harm. This risk arises because
KELM is based on a snapshot of the Wikidata KG
from circa 2019. Additionally, the T5 pre-trained
language models used in producing KELM, and
also the mT5 pretrained checkpoints used in all our
models, were trained with data up to 2020/2021.
These constrain the extent and validity of factual
knowledge in our model up to these points in time.
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A Data details

A.1 Synthetic QA data in English

We used a subset of KELM filtered for (g, t) pairs
where g has between 2 and 5 triples; this is because
larger sizes typically lead to unnatural questions.
KELM (Agarwal et al., 2021) has 15M (g, t) pairs
of which we used a subset of about 2M pairs to
seed the generation of synthetic QA data on; about
1.1M texts remain in Q-KELMEn after our QA pair
filtering steps. The distribution of Q-KELMEn’s
questions by nf can be found in Table 1.

A.2 Synthetic QA data in Portuguese and
Russian

Quality filters for machine translation

‚ Verifying MT on Portuguese texts To en-
sure the quality of the machine translations of the
texts from English to Portuguese, we backtrans-
lated them and used two automatic scores: (i)
BERTScore (BSc) (Zhang et al., 2020) and (ii)
Google BLEU (GLEU) (Wu et al., 2016) to assess
the semantic and lexical similarity of the transla-
tions and the original text — we used cut-offs of
ě0.7 for BERTScore and ě0.3 for GLEU. We also
used a regular expression to check for the presence
of 10 or more consecutively repeated words which
is a typical error in MT, indicating issues with the
quality of the translation.

‚ Verifying MT on questions For questions,
we also use the same BSc and GLEU cutoffs above
(ě0.7 and ě0.3) on the backtranslations of the
questions to filter out poor quality translations.

A.2.1 Aligning text answer to graph entity
The process here involves mapping g to Por-
tuguese/Russian using Wikidata multilingual labels
for entity names. If a multilingual label for the
language cannot be found, the name is translated
from English using Google Translate API; here,
we found that a commercial-grade MT system can
be better suited to translate entity names. These
multilingual versions of g are only used to aid the
mapping of aPtBr

t /aRu
t to a graph entity and are set

aside thereafter (i.e. we do not use them in training)

B Training and evaluation details

B.1 Negative sampling for QA

For the textual QA and KG QA tasks, negative
examples were created so as to allow the model to
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Table 7: Q-WEBNLGEn instances derived from WebNLG Data and translated into Portuguese and Russian to give
Q-WEBNLGPtBr and Q-WEBNLGRu. Enclosed letters refer to the triple/text above.

recognise questions that are unanswerable given
the context. These samples are created using a
random (i.e. 50-50) assignment to one of these two
strategies:

‚ Strategy 1: simple negatives for a given
(X, q, aX ) instance are created by picking another
(Xother, q

1, aX 1) instance in the QA training set
where X and Xother do not share any common
entities/values between them. If X is a text, we
use the graph that it is paired with in WEBNLG to
check for common entities. A new instance (X, q1,
“unanswerable”) is then created in the training data.

‚ Strategy 2: hard negatives are created in the
following manner: a mapping M is first created
ahead of time where every entity e that can be
found in the training data is associated with the set
of all the (X, q, aX ) instances where e is mentioned
in X (e P X). If X is a text, we use the graph it is
paired with in WEBNLG when creating M .

For a given (X, q, aX ) instance, another instance,
i.e. (Xother, q

1, aXother
) is randomly chosen using

M and a random e P X . If a single token from the
answer aXother

overlaps with (i) any of the tokens
for any e (an entity or value) found in X or (ii) any
of the tokens of X , then this (Xother, q

1, aXother
)

candidate is rejected. Otherwise, a new instance
(X, q1, “unanswerable”) is created in the train-
ing data using the instance and the process for
(X, q, aX ) terminates. When a candidate instance

is rejected, a new (Xother1 , q1, aXother1 ) is drawn
from M using another e P X . After 10 tries or
when all e P X has been exhausted, a simple nega-
tive is created instead.

Baseline: negative QA instances For training
the baseline’s textual QA and KG QA models, we
create unanswerable instances in a 2:1 ratio by ran-
domly replacing the context for a question with
another in the data.

B.2 Upsampling

We carry out upsampling on two levels when
preparing Q-WEBNLGPtBr and Q-WEBNLGRu (the
training data for our language specific multimodal
multi-task QG-QA models).

‚ Between modalities for QG subtasks and be-
tween modalities for the same task For QG this
is done between complex textual and complex KG
QG, simple textual and simple KG QG to ensure
that the QG subtasks are balanced. It is also done
between modalities for the QA tasks (e.g. textual
QA and KG QA) to ensure that the tasks are bal-
anced between modalities. The negative samples
for the QA tasks are also upsampled in the same
way.

For instance, m1 and m2 are the sets of samples
for modality 1 and modality 2 respectively, and
suppose | m1 | > | m2 |.
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If | m2 | { | m1 |ě 0.5, we randomly sample
| m1 | - | m2 | from m2 to balance them.

If however | m2 | { | m1 | < 0.5, we upsample
m2 up to at most 1{3¨ | m1 |. This is to ensure that
we do not overrepresent m2 in the data and overfit
on it during training.

‚ Globally for certain tasks This was done for
simple QG as a whole (i.e. after simple textual
and simple KG QG have been consolidated as one).
This is because they are significantly less instanti-
ated samples of this task in the data than the rest.
The number of samples for these tasks were tripled.

B.3 Evaluation settings
BERTScore We use the same settings, except
the following for a clearer analysis: (i) lower-
casing, (ii) “unanswerable” strings were set to
an empty string to avoid non-zero BSc for these
and "over-counting" them, and (iii) rescaling BScs
against a baseline (computed following the official
method12) for a wider spread.

Self-consistency filter Since the models are
trained on machine-translated synthetic data, some
generated questions may be ill-formed and pose an
impact on QA. We therefore filter from both our
model and the baseline, the questions: (i) which
cannot be answered from their source context; or
(ii) whose generated answer âX has a BSc < 0.7
when compared against the reference aX . We fo-
cus our analysis for QA Consistency (Section 4),
the Data-QuestEval (Section 7.4) and mGEN (Sec-
tion 7.5) evaluations on the results after filtering
as this is the upper bound of the approaches’ per-
formance. For congruence with our QG Coverage
analysis, if the filtering will leave a given approach
A — and therefore B as well — with no QA pairs
(i.e. no coverage), we keep one QA pair for A.

Settings for mGEN experiments Since mGEN
was trained with language tokens to produce an-
swers in different languages for a question in lan-
guage L, we leverage these tokens to replicate the
same language setting for the inputs and outputs
as our experimental set-up: (i) when the answer-
ing modality is a text, the input (both question and
context) are in Portuguese/Russianand the output
answer is in the same language. (ii) When the
answering modality is a graph, we use the lineari-
sation scheme from (Oguz et al., 2022) to utilise

12https://github.com/Tiiiger/bert_score/blob/
master/journal/rescale_baseline.md

mGEN for KG QA. The question in the input is in
Portuguese/Russian and the context is in English;
the output answer is in English.

13754

https://github.com/Tiiiger/bert_score/blob/master/journal/rescale_baseline.md
https://github.com/Tiiiger/bert_score/blob/master/journal/rescale_baseline.md


C Detailed results

C.1 QA consistency: Token F1 and Exact
Match

Portuguese
Internal X-Appr

QG Baseline QTT Baseline QTT
QA Baseline QTT QTT Baseline

Same-mod (GT)
T Ñ T 89.9p˘0.02q 94.9p˘0.25q 77.6p´12.3q

p˘0.09q 67.9p´27.0q
p˘0.26q

G Ñ G 80.5p˘p0.04q 90.4p˘0.31q 56.6p´23.9q
p˘0.11q 52.2p´38.2q

p˘0.26q

Russian
Internal X-Appr

QG Baseline QTT Baseline QTT
QA Baseline QTT QTT Baseline

Same-mod (GT)
T Ñ T 86.7p˘0.10q 84.7p˘0.14q 53.1p´33.6q

p˘0.06q 42.5p´42.2q
p˘0.11q

G Ñ G 72.6p˘0.05q 95.2p˘0.27q 61.2p´11.4q
p˘0.15q 48.9p´46.3q

p˘0.58q

Table 8: Consistency Results. Average of Token F1
between answers. In the first brackets () are the standard
deviations across 5 random runs; for the right column,
in the second brackets() are the difference between X-
Appr and Internal.

Portuguese
Internal X-Appr

QG Baseline QTT Baseline QTT
QA Baseline QTT QTT Baseline

Same-mod (GT)
T Ñ T 72.5p˘0.08q 87.5p˘0.61q 58.1p´14.4q

p˘0.16q 43.2p´44.3q
p˘0.21q

G Ñ G 73.2p˘0.10q 87.2p˘0.36q 48.9p´24.3q
p˘0.21q 41.9p´45.3q

p˘0.26q

Russian
Internal X-Appr

QG Baseline QTT Baseline QTT
QA Baseline QTT QTT Baseline

Same-mod (GT)
T Ñ T 58.3p˘0.23q 66.0p˘0.33q 33.8p´24.5q

p˘0.12q 36.6p´29.4q
p˘0.12q

G Ñ G 60.9p˘0.16q 92.9p˘0.52q 39.3p´21.6q
p˘0.14q 33.9p´59.0q

p˘0.74q

Table 9: Consistency Results. Average of Exact Match
between answers. In the first brackets () are the standard
deviations across 5 random runs; for the right column,
in the second brackets() are the difference between X-
Appr and Internal

C.2 Finer-grained QA consistency tests

Portuguese
Num Facts

1 2 3 4

Same-mod (GT)
T Ñ T 93.6 96.0 95.5 95.4
G Ñ G 95.7 98.1 97.8 98.5

Cross-mod (GT)
T Ñ G 65.6 62.5 58.2 54.6
G Ñ T 67.1 66.0 61.0 57.0

Cross-mod (Gen Ans)
T Ñ G 68.6 63.7 59.3 55.7
G Ñ T 69.2 67.0 61.1 57.4

Table 10: Fine-grained analysis of QTT’s QA perfor-
mance (BSc) for Portuguese. Num Facts denote the
number of facts (nf ) the set of QA-pairs relate to (i.e. 1
denotes an SQ of 1 fact, 2 denotes a CQ of 2 facts etc...).
The nf sets are mutually exclusive.

Russian
Num Facts

1 2 3 4

Same-mod (GT)
T Ñ T 90.2 90.6 90.6 86.0
G Ñ G 93.8 97.6 98.0 96.8

Cross-mod (GT)
T Ñ G 29.8 30.1 30.8 29.5
G Ñ T 29.6 29.3 30.0 31.0

Cross-mod (Gen Ans)
T Ñ G 30.8 30.3 30.9 31.6
G Ñ T 32.8 29.5 30.7 30.9

Table 11: Fine-grained analysis of QTT’s QA per-
formance (BSc) for Russian. Num Facts denote the
number of facts (nf ) the set of QA-pairs relate to (i.e. 1
denotes an SQ of 1 fact, 2 denotes a CQ of 2 facts etc...).
The nf sets are mutually exclusive.
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C.3 Multilingual Retrieval-based QA

Portuguese
External Retrieval-QA

QG Baseline Ours
QA mGEN mGEN

Self (GT)
T Ñ T 73.1p˘0.04q 75.8p˘0.60q
G Ñ G 56.3p˘0.10q 70.0p˘0.39q

Russian
External Retrieval-QA

QG Baseline Ours
QA mGEN mGEN

Self (GT)
T Ñ T 61.7p˘0.19q 60.6p˘0.17q
G Ñ G 59.4p˘0.17q 67.2p˘0.82q

Table 12: QA consistency (Token F1) comparing the
QG of Baseline and Ours, using mGEN for QA.

Portuguese
External Retrieval-QA

QG Baseline Ours
QA mGEN mGEN

Self (GT)
T Ñ T 52.4p˘0.13q 63.5p˘0.79q
G Ñ G 45.2p˘0.15q 59.3p˘0.74q

Russian
External Retrieval-QA

QG Baseline Ours
QA mGEN mGEN

Self (GT)
T Ñ T 36.4p˘0.13q 42.2p˘0.14q
G Ñ G 45.8p˘0.20q 58.8p˘1.08q

Table 13: QA consistency (Exact Match) comparing
the QG of Baseline and Ours, using mGEN for QA.
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