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Abstract

In this work, we study whether multilingual
language models (MultiLMs) can transfer logi-
cal reasoning abilities to other languages when
they are fine-tuned for reasoning in a different
language. We evaluate the cross-lingual rea-
soning abilities of MultiLMs in two schemes:
(1) where the language of the context and the
question remain the same in the new languages
that are tested (i.e., the reasoning is still mono-
lingual, but the model must transfer the learned
reasoning ability across languages), and (2)
where the language of the context and the ques-
tion is different (which we term code-switched
reasoning). On two logical reasoning datasets,
RuleTaker and LeapOfThought, we demon-
strate that although MultiLMs can transfer rea-
soning ability across languages in a monolin-
gual setting, they struggle to transfer reasoning
abilities in a code-switched setting. Following
this observation, we propose a novel attention
mechanism that uses a dedicated set of param-
eters to encourage cross-lingual attention in
code-switched sequences, which improves the
reasoning performance by up to 14% and 4%
on the RuleTaker and LeapOfThought datasets,
respectively.!

1 Introduction

Recent studies show that language models (LMs)
are capable of logically reasoning over natural lan-
guage statements (Clark et al., 2020b), reasoning
with their implicit knowledge (Talmor et al., 2020),
and performing multi-step reasoning via chain-of-
thought prompting when the model size is large
enough (Wei et al., 2022b; Kojima et al., 2022; Wei
et al., 2022a). A separate line of work has focused
on pre-training language models on multilingual
corpora to enable knowledge transfer across dif-
ferent languages. These efforts led to multilingual

"Equal contribution
'Our code is available at https://github.com/negar-
foroutan/multilingual-code-switched-reasoning.

Monolingual:
Q1: The cat sees the rabbit.

U2 G B el Q2: The cat does not visit the tiger.

If the cat likes the rabbit then

the cat sees the rabbit.

Code-Switched:
Q1: Le chat voit le lapin.
Q2: Le chat ne visite pas le tigre.

The tiger is round.
The cat likes the rabbit.

Figure 1: An example of monolingual and code-
switched reasoning. In code-switched reasoning, the
context and question are in different languages.

language models (MultiLM) such as mBERT (De-
vlin et al., 2019), mT5 (Xue et al., 2021), and
XLM-R (Conneau et al., 2020), which have been
shown to generalize in a zero-shot cross-lingual
setting (Pires et al., 2019a; Conneau and Lample,
2019). The cross-lingual transfer is often enabled
by fine-tuning the MultiLM on a high-resource lan-
guage (typically English) and then evaluating it on
other target languages.

However, as most of the recent efforts on
reasoning-related tasks have been centered around
English, our knowledge of the multilingual rea-
soning capabilities of language models remains
limited. In this work, we investigate the logical
reasoning capabilities of MultiLMs, especially in
monolingual and structured code-switched? set-
tings (Figure 1). In the monolingual setting, the
context and the question are in the same language.
In the structured code-switched setting, we refer
to a setting where the context and question are in
two different languages. The code-switched set-
ting can be found in many realistic scenarios, such
as when non-English speakers may ask questions
about information that is unavailable in their native
language (Asai et al., 2021).

For both reasoning settings, we conduct exper-
iments using the RuleTaker dataset (Clark et al.,
2020b), which contains artificial facts and rules,
and the LeapOfThought dataset (Talmor et al.,
2020), which incorporates real-world knowledge

“Throughout the paper, we will use the terms “structured
code-switching” and “code-switching” interchangeably.
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into the reasoning context. Our results show that
although MultiLMs perform well when fine-tuned
in different languages (i.e., high in-language per-
formance when fine-tuning and testing on the same
language), their cross-lingual transfer can vary con-
siderably, especially in the code-switched setting.
We posit that the lack of code-switched data in
MultiLM pre-training data makes fine-tuning on
code-switched data inconsistent with pre-training.

To improve the code-switched reasoning capabil-
ities of MultiLMs, we propose two methods. First,
we propose a dedicated cross-lingual query matrix
(section 4.1) to better model cross-lingual atten-
tion when the MultiLMs receive code-switched se-
quences as input. This query matrix is pre-trained
on unsupervised code-switched data, either shared
across all language pairs or specific to a single one.
Then, we propose a structured attention dropout
(see section 4.1), in which we randomly mask atten-
tion between tokens from different languages (i.e.,
context-question attentions) during training. This
masking makes the fine-tuning phase more con-
sistent with the pre-training by regularizing cross-
lingual attention.

By mixing the two methods, we also experiment
with an interfered variant of the cross-lingual query,
which considerably improves cross-lingual gener-
alization, especially in code-switched settings. We
evaluate our methods for the code-switched setting
and show they improve the cross-lingual transfer of
MultiLMs by 14% and 4% for the RuleTaker and
LeapOfThought datasets, respectively.

2 Motivation

Most prior work on reasoning with language mod-
els remains limited to monolingual (English) sys-
tems (Han et al., 2021; Sanyal et al., 2022; Shi
et al., 2023; Tang et al., 2023). In this work, we
investigate the reasoning abilities of MultiLMs, for-
mulating an analysis in formal reasoning that eval-
uates MultiLMs on their ability to resolve logical
statements. Given a set of facts and rules as con-
text (in natural language sentences), the task is to
predict whether a given statement is true.

In our multilingual reasoning setting, we assume
a given set of languages = {L1, Lo, ..., Ly}, and
define L. and L, as the context and statement lan-
guages, respectively. Typically, MultiLMs are eval-
uated in a monolingual setup where L. = L,. How-
ever, if MultiLMs are truly multilingual, we posit
that they should also be able to reason in a scenario

where L. # L. Thus, to evaluate the multilingual
reasoning ability of MultiLMs, we first define four
different evaluation setups based on the language
of context or statement: (1) both the context and
statement are always in one language (monolingual
reasoning); (2) the context is always in one lan-
guage, and the statement can be in any language;
(3) the context can be in any language, but the state-
ment is always in one language; and (4) both the
context and statement can be in any language.

To have a reasonable baseline to compare with
the code-switched setups, we first focus on the
monolingual evaluation (1), in which we evaluate
the reasoning ability of MultiLMs for nine typolog-
ically different languages. Then, by fine-tuning the
models on code-switched data, we evaluate their
performance for setups (2) and (3) where either
the language of the context or the language of the
question is different from the training data. This
evaluation aims to study the possibility of teach-
ing models to reason across languages in a code-
switched setting, and to investigate the extent they
can transfer their reasoning to other code-switched
data formats. Finally, we hypothesize that in order
to succeed in setup (4), the model would have to
be strong in setups (2) and (3). Since our exper-
imental results show that the MultiLMs struggle
in these two setups, we focus on improving their
performance for setups (2) and (3).

3 Multilingual Reasoning

In this section, we describe our evaluation of the
logical reasoning capabilities of MultiLMs for
monolingual and code-switched settings.

3.1 Analysis Setup

We run our experiments on two datasets focusing
on multi-hop logical reasoning over natural lan-
guage knowledge:

RuleTaker. This is a set of five datasets, each
constrained by the maximum depth of inference re-
quired to prove the facts used in its questions (Clark
et al., 2020b). This dataset is generated with the
closed-world assumption (CWA), assuming a state-
ment is false if it is not provable. Each example
consists of facts and rules (i.e., context) and a state-
ment (more details in Appendix A.1).

LeapOfThought (LoT). This dataset comprises
~30K true or false hypernymy inferences, ver-
balized using manually written templates (Talmor
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et al., 2020). The hypernymy relations and proper-
ties are derived from WORDNET (Fellbaum, 1998)
and CONCEPTNET (Speer et al., 2017). This
dataset contains two main test sets; EXPLICIT REA-
SONING which performs inference over explicit nat-
ural language statements, and IMPLICIT REASON-
ING where the model must reason by combining
the context with missing information that should
be implicitly encoded by the model. We create a
modified version of LoT, and use the IMPLICIT
REASONING test set in our evaluation. The dataset
modification pipeline and the reason behind using
only the IMPLICIT evaluation setting is further dis-
cussed in Appendix A.2.

Models. We conduct all our experiments using
the cased version of multilingual BERT (mBERT;
Devlin et al. 2019) and the base version of XLM-
R (Conneau et al., 2020). We train a binary clas-
sifier on top of the model’s classification token
(e.g., [CLS] in mBERT) to predict whether a given
statement/question is true or false. The model’s
input is [CLS] context [SEP] statement [SEP] and
the [CLS] output token is used for the classification.
For evaluation, we measure the model’s accuracy.
We use full fine-tuning for these experiments. The
random baseline is 50% (binary classification).

Languages. Both RuleTaker and LoT datasets
are only available in English. We translated
these two datasets into eight languages using the
Google Translate API. We have chosen typologi-
cally diverse languages covering different language
families: Germanic, Romance, Indo-Aryan, and
Semitic, and including both high- and medium-
resource languages from the NLP perspective.
These languages include French (fr), German (de),
Chinese (zh), Russian (ru), Spanish (es), Farsi (fa),
Italian (it), and Arabic (ar).

3.2 Reasoning Over Monolingual Data

The average in-language and cross-lingual zero-
shot performance of mBERT for each source lan-
guage are depicted in Table 1. For the cross-lingual
zero-shot performance, we first fine-tune models on
a single source language, test it on other languages,
and then take an average of these results.

On the RuleTaker dataset, the model is able
to learn the task for the Depth-O subset nearly
perfectly for almost all the languages, exhibit-
ing relatively high cross-lingual transfer perfor-
mance (~87%). However, for models trained
on higher depths (i.e., requiring more reasoning

hops), the model’s performance drops for both in-
language and cross-lingual evaluation settings, and
the performance gap between different source lan-
guages increases. Moreover, when increasing the
depth, zero-shot cross-lingual performance suffers
more compared to in-language performance, show-
ing that as the complexity of the task increases, the
harder it becomes to generalize to other languages.

For the LoT dataset, the model must learn to
reason by combining its implicit knowledge of hy-
pernyms with the given explicit knowledge. How-
ever, the model’s performance differs for different
languages, suggesting that the model’s ability to
access and use the implicit knowledge is not the
same for all languages. We also observe that a lan-
guage with high in-language performance does not
necessarily have a high zero-shot cross-lingual per-
formance. We hypothesize that for some languages,
the model starts learning in-language noises that
are not generalizable to other languages.

We generally observe the same patterns for the
XLM-R model (see Appendix B) when fine-tuned
on the monolingual RuleTaker and LoT datasets.

3.3 Reasoning Over Code-Switch Data

When we fine-tune the model using a code-
switched data format, the context is in one language
and the statement is in another. In our experiments,
we use English as an anchor language for the con-
text (i.e., en-X) or for the statement (i.e., X-en).
In the fine-tuning phase, we learn the task using
the en-X data format, and evaluate it on both en-X
and X-en data formats. The models’ average in-
language and zero-shot cross-lingual performance
are shown in Table 2.

For Depth-0 of the RuleTaker dataset, mBERT
is able to learn the reasoning task almost perfectly
for most languages. As the depth of the task in-
creases, the performance of the code-switched rea-
soning declines. This decline is more pronounced
at higher depths compared to the monolingual sce-
nario. While the model is capable of learning rea-
soning within this framework, its zero-shot gener-
alization to other code-switched data, such as en-X
(where the context language remains English but
the statement language changes), is poor. Reason-
ing over two languages poses a greater challenge
than reasoning within monolingual data due to the
need for information alignment across languages.
Consequently, the transferability of such tasks to
other language pairs becomes more challenging.
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Table 1: Monolingual Setting: In-language and cross-lingual zero-shot performance (accuracy) of the mBERT
model for the RuleTaker and LeapOfThought datasets. Cross-lingual performance is the average performance of the

RuleTaker LeapOfThought

Depth-0 Depth-1 Depth-2 Depth-3
in-lang.  cross-ling. | in-lang. cross-ling. | in-lang. cross-ling. | in-lang. cross-ling. | in-lang.  cross-ling.
en 100.00 87.96 93.37 73.60 88.00 67.91 88.46 67.13 81.15 62.11
fr 99.40 87.06 90.50 74.82 86.64 65.45 83.70 67.55 80.78 65.12
fa 99.99 87.39 90.04 67.81 86.96 63.71 84.64 63.53 66.39 64.37
de 99.41 89.57 90.77 76.67 85.41 71.57 83.10 70.74 77.11 67.03
ar 99.48 80.20 90.35 72.32 84.81 67.79 82.62 62.21 69.62 67.71
es 99.99 89.68 91.84 76.20 88.16 72.29 85.79 68.75 75.25 64.22
zh 100.00 87.48 92.43 72.46 89.04 68.13 85.94 66.25 84.12 62.32
ru 99.97 89.61 90.54 78.05 86.43 70.88 84.01 67.08 70.60 68.02
it 99.81 90.09 93.14 78.28 86.95 74.01 84.64 70.43 74.99 64.68
Average | 99.78 87.67 | 91.44 7447 | 8693 69.08 [ 8477 6707 | 7556 65.06

model being fine-tuned on a single source language and then zero-shot transferred to other languages.

RuleTaker LeapOfThought
Depth-0 Depth-1 Depth-2 Depth-3

in-lang. en-X  X-en | in-lang. en-X  X-en | in-lang. en-X  X-en | in-lang. en-X  X-en | in-lang. en-X  X-en
en-fr 99.29 5482 5347 | 9334 5528 51.85 | 87.78 5478 51.83 | 8326 5414 5028 | 79.57 7347 7148
en-fa 97.46 5404 5205 | 8772 6217 51.56 | 7095 53.64 5129 | 6226 5095 5052 | 7499 7382 6593
en-de 99.63 5426 52.69 | 8885 52.67 51.87 | 8397 5532 5273 | 79.08 5348 5161 | 77.60 71.16 65.09
en-ar 8593 5373 5236 | 67.05 57.83 51.92 | 6854 5533 5174 | 6129 5278 50.76 | 77.09 7535 64.57
en-es 99.99 5725 5629 | 90.18 5434 5091 | 8654 5820 53.15 | 78.09 5553 5172 | 7929  75.62 72.55
en-zh | 100.00 5268 51.81 | 9234 5470 5131 | 8141 5492 5124 | 6874 5283 50.00 | 84.85 6892 61.09
en-ru 98.03 5840 5206 | 94.02 5970 50.64 | 80.28 57.69 51.96 | 73.89 5626 50.87 | 7657 74.64 65.11
en-it 99.91 5626 54.68 | 9225 5288 50.94 | 8559 5458 5120 | 79.50 5329 51.11 | 7538  70.53 66.90
Average | 97.53 5518 53.18 | 8822 5620 5138 | 80.63 5556 S51.89 | 7326 5366 50.86 | 78.17 7294 66.59

Table 2: Code-Switched Setting: In-language and cross-lingual zero-shot performance (accuracy) of the mBERT
model for the RuleTaker and LeapOfThought datasets. In-language performance corresponds to evaluating the

model in the same language as the training data.

On the LoT dataset, the model performs quite
well on the code-switched data, outperforming the
monolingual scenario for nearly all languages. The
relatively high code-switched performance shows
that the language of the context plays an important
role in accessing the implicit knowledge encoded
in the model’s parameters, as the model must rely
on this knowledge to solve the task. Providing
the context in English facilitates access to implicit
knowledge compared to other languages. This is
also inline with the empirical observation that gen-
eralization to X-en is considerably worse than en-
X. We generally observe the same pattern for the
XLM-R (see Appendix B) when fine-tuned on the
monolingual RuleTaker and LoT datasets.

Following the empirical observations showing
MultiLMs struggle to transfer reasoning abilities
in a code-switched setting, we propose a novel
attention mechanism to mitigate the lack of code-
switched transfer in these models.

4 Cross-lingual-aware Self-Attention

Although MultiLMs have been pre-trained on mul-
tilingual corpora, individual inputs to the model

stay mostly monolingual (Devlin et al., 2019; Con-
neau et al., 2020). When these models are fine-
tuned on a code-switched downstream task, unlike
the pre-training phase, tokens from different lan-
guages can attend to each other, which, as demon-
strated in Tables 2 and 8, results in poor gener-
alization to other code-switched language pairs.
We also observe that self-attention patterns consid-
erably change when we compare code-switched
in-language and cross-lingual samples’ attention
patterns’ (see Figure 4).

4.1 Approach

In order to make the fine-tuning phase more consis-
tent with the pre-training, we propose two sets of
methods to better handle the cross-lingual interac-
tions of tokens.

Cross-lingual Query To better model the cross-
lingual attention for code-switched tasks, we pre-
train a cross-lingual query matrix QQ¢ross (While
keeping all other parameters frozen) on code-
switched unsupervised data (more experimental

3The two samples are semantically the same, only having
different statement languages.
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Context

Question

Figure 2: Illustration of the drop attention scheme. Due
to the input’s code-switched structure, we want to limit
the attention between context and question tokens. It
can be seen that tokens from the same language can
fully attend to each other, but there is a dropout (white
cells) when cross-lingual attention is being applied. In
order to ensure a reliable bridge between context and
question, the first token (e.g., [CLS] in mBERT) attends
to all tokens, and also all tokens attend to the first token.

details in section 4.2). More specifically, we use
two sets of attention masks, M7 and Ms, where
M enforces the query matrix ) to focus only
on monolingual attentions, and M> constrains the
cross-lingual query Q055 to cross-lingual atten-
tions (see Figure 3.a). Formally, the self-attention
probabilities for a given attention head, up to a
(row-wise) normalization term, are computed as
below:

T T
M, ® exp(Qj%) + My ® eavp(cm\;‘g(
where ) and K are the query and key matrices, d
is the model’s hidden dimension, and ® represents
the Hadamard product. It is worth noting that this
scheme still allows attention between all tokens;
however, monolingual and cross-lingual attentions
are handled by different query matrices.

The proposed @.ross can either be pre-trained
for a single language pair (e.g., en-fr pair where
context is in English and question/statement is in
French), or it can be shared across many language
pairs. We show in Section 4.3 that having language-
pair specific Qcross €nables modularity, meaning
a model that is trained on a given source language
pair can perform considerably better on another
language pair by just swapping the source Q¢ross
matrices with the target ones.

)

Structured Attention Dropout As mentioned
earlier, poor generalization of MultiLMs in code-
switched settings can be attributed to inconsistency
between the pre-training and fine-tuning phases,
where the former mostly deals with monolingual
attention while the latter needs to handle cross-
lingual attention as well. We propose that the con-
sistency can be improved by limiting the cross-
lingual attention in the fine-tuning phase (i.e., reg-
ularizing computational interactions between lan-
guages). As demonstrated in Figure 2, this can be
achieved by randomly masking attention scores
(i.e., attention dropout), with probability Pj,qsk,
when tokens from different languages attend to
each other. Moreover, to ensure a reliable bridge
between context and question, we never mask the
attention scores of the first token (e.g., [CLS] in
mBERT) to help the model better flow informa-
tion between two sections. Table 11 demonstrates
the importance of structured attention dropout for
better generalization in code-switched settings.

Interfering Cross-lingual Query Given the
promising performance of the attention dropout
for code-switched tasks, we experiment with a
variation of cross-lingual query, where queries
Q and Q.55 also partially handle cross-lingual
and monolingual attentions, respectively (see Fig-
ure 3b). We empirically observe that having atten-
tion masks that could randomly interfere with each
other generally results in better performance (see
Table 12) compared to the attention masks pro-
posed in Figure 3a. In this scheme, M; and My
are generated randomly and online,* but once
sampled, the same masks will be used for all the
attention heads in all layers (more details in Ap-
pendix D). Due to better empirical performance,
this variation of the cross-lingual query will be used
for all the following experiments.

4.2 Experimental Setup

All models are trained with the AdamW opti-
mizer (Loshchilov and Hutter, 2017) using the Hug-
gingFace Transformers (Wolf et al., 2020) imple-
mentation for Transformer-based (Vaswani et al.,
2017) models. The hyperparameters used for per-
forming different experiments can be found in Ap-
pendix C. All the reported scores are averaged over
three different seeds.

*A given sample can have different attention masks in
different epochs.
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Fine-tuning Setup. As Bitfit fine-tuning outper-
forms full fine-tuning for all our experiments, we
only report the Bitfit results here (Zaken et al.,
2021). In Bitfit tuning, only biases are tuned in
the MultiLM encoder, together with classifier and
pooler parameters.

Language Pairs. To show the effectiveness of
the proposed method, we fine-tune the models on
four typologically diverse languages (language of
the statement), namely fr, de, zh, and ru. Our anal-
ysis shows that combining monolingual and code-
switched data in the fine-tuning step improves the
reasoning performance. Moreover, a multilingual
reasoner should be able to reason over both mono-
lingual and code-switched data. So, for this set of
evaluations, we use a combination of English and
en-X (half of each) as the training dataset, which
we denote mix(en, en-X).

Pre-training Cross-lingual Query. We train a
shared (Shared Q.ross) Or language-pair specific
(Pair Qcross) cross-lingual query matrix. For
Shared (Q.r0ss, @ shared cross-lingual query is
trained on a parallel code-switched variant of
XNLI (Conneau et al., 2018a), where an English
premise is followed by the same premise but in
another language. For Pair (.55, We train a cross-
lingual query for each en-X language pair again
using the XNLI dataset. In both cases, only the
cross-lingual query matrix is trained and the rest
of the parameters are frozen. The training happens
for 500K iterations.

Baselines. We compare the performance of the
proposed method against two baselines: (1) The
pre-trained model (original) (2) a model pre-
trained on code-switched data (CS-baseline). For
the CS-baseline, we pre-train the model on the par-
allel code-switched variant of XNLI (similar to the
data we use to learn the shared cross-lingual query
matrix) for 500K iterations to adapt the model to
the code-switched setting.

Cross-lingual Evaluation. For all the experi-
ments, we evaluate the zero-shot performance of
the model on (1) a monolingual setting (where both
context and question are in one language), (2) an
en-X code-switched setting (where the context is
in English and the question is in other languages),
and (3) a X-en code-switched setting (where the
question is in English and the context is in other lan-
guages). For the case when we Bitfit fine-tune the

model using a language-specific query matrix (Pair
Qcross), We use the query matrix of the target lan-
guage during the inference (only the weights). For
example, while doing the zero-shot evaluation on
en-zh, we use the en-zh cross-lingual query matrix
instead of the one from the fine-tuned model.

4.3 Experimental Results

Table 3 shows the average zero-shot transfer per-
formance (accuracy) for the RuleTaker dataset. For
both mBERT and XL.M-R, introducing a shared
cross-lingual query matrix (Shared Q.rpss) im-
proves the reasoning accuracy. These results under-
score the significance of maintaining consistency
between the pre-training and fine-tuning phases in
code-switched downstream tasks to facilitate effec-
tive transfer learning.

Using a specific query matrix for each lan-
guage pair (Pair ()..0ss) further boosts the cross-
lingual transfer performance across most tested
settings (up to 18%). In this scenario, there is a
dedicated set of parameters to learn the attention
patterns for a language pair rather than having them
share the same number of parameters among many
different language pairs. In other words, dedicated
parameters help the model learn attention patterns
for specific language pairs.’

Interestingly, in many cases, our approach also
improves the transfer performance for monolingual
data (mono). We hypothesize that, by having a
separate cross-lingual query matrix, the model does
not need to learn the cross-lingual attention pattern
using the same parameters, reducing the chance of
overfitting to the code-switched format.

We also conducted a comparison with a code-
switched baseline in which the MultiLM is pre-
trained on a code-switched version of XNLI. The
code-switched baseline (CS-baseline) showed im-
proved transfer results for en-X format and, in
some cases, performed competitively with the
Pair Q055 approach. However, it negatively af-
fected performance in monolingual and X-en sce-
narios, particularly for the mBERT model. In
essence, the model exhibited overfitting to the lan-
guage pairs in en-X format it was trained on, mak-
ing it unable to generalize effectively to monolin-
gual and other code-switched formats. On the other
hand, both Shared ().;,ss and Pair Q.55 demon-
strated the ability to generalize their reasoning to

There is no Pair Qcross for en-fa and en-it (as they are
not part of the XNLI dataset), and all the transfer results for
these two languages are fully zero-shot.
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mBERT
Train Data Method Depth-0 Depth-1 Depth-2 Depth-3
mono en-X X-en | mono en-X X-en | mono en-X X-en | mono en-X X-en
Original 89.14 6538 60.81 | 70.76  60.48 58.16 | 67.43 62.14 5555 | 6248 57.94 51.04
mix(en, en-fr) CS-baseline 7893 7472 5498 | 67.59 6825 5390 | 63.16 67.50 52.60 | 62.57 66.89 50.95
Shared Qcross | 92.52  70.07 65.16 | 77.72  67.26 63.93 | 74.81 64.23 5897 | 7046 63.86 55.75
Pair Qcross 93.65 77.79 68.27 | 77.44 68.55 63.76 | 73.78 6823 61.27 | 71.39 67.70  60.12
Original 88.71 66.75 59.10 | 68.98 58.64 56.69 | 73.39 62.88 55.66 | 63.45 57.36 50.84
mix(en, en-de) CS-baseline 8477 7473 57.06 | 68.08 67.88 53.99 | 63.58 6747 5242 | 6223 66.18 50.73
Shared Qcross | 91.39  70.10 64.78 | 76.74 65.88 61.64 | 71.82 64.38 59.92 | 71.98 62.21 57.26
Pair Qcross 94.11 76.32 69.85 | 77.38 68.31 63.22 | 73.79 68.42 62.16 | 70.56 67.23 61.86
Original 91.69 69.25 6023 | 7649 6040 57.09 | 68.99 57.62 5293 | 65.60 57.70 50.05
mix(en, en-ru) CS-baseline 83.65 7592 54.68 | 71.06 69.96 5549 | 6480 66.84 52.47 | 60.06 58.93 48.71
Shared Qcross | 93.22 7622 7035 | 79.80 68.77 65.44 | 7406 65.68 59.14 | 71.89 63.50 57.19
Pair Qcross 9223 7722 7187 | 7831 7400 64.50 | 74.67 67.97 63.47 | 70.98 66.73 60.10
Original 91.20 6558 59.80 | 7643 63.02 5720 | 68.23 5540 5247 | 65.03 56.55 50.85
mix(en, en-zh) CS-baseline 83.16 70.22 5746 | 6734 66.87 5429 | 66.29 65.73 53.01 | 60.72 63.64 52.21
Shared Qcross | 93.70  68.49 6459 | 75.11 65.11 62.00 | 7342 62.66 58.03 | 69.98 62.01 57.62
Pair Qcross 9321 72.09 69.83 | 7893 67.12 64.22 | 75.82 66.65 60.52 | 71.34 66.35 60.05
\ \ XLM-R
Original 95.39 6943 64.09 | 79.85 6535 59.55 | 76.34 6294 58.89 | 7471 62.68 5584
mix(en, en-fr) CS-baseline 94.890 71.03 61.41 | 81.11 67.08 57.16 | 75.78 6532 5233 | 72.28 63.77 51.16
Shared Qcross | 9592 7478 70.87 | 79.82 68.46 63.84 | 79.99 70.64 62.14 | 77.26 68.55 60.81
Pair Qcross 95.94 7836 75.80 | 83.64 70.17 63.94 | 81.39 71.59 64.37 | 76.03 69.04 60.12
Original 9495 6572 6494 | 82.58 6499 62.03 | 78.74 63.88 57.02 | 75.06 64.87 58.02
mix(en, en-de) CS-baseline 9192 7253 57.14 | 76.70 66.64 5429 | 73.25 65.58 5220 | 7478 62.87 51.87
Shared Qcross | 9623 7129 7095 | 81.95 67.25 6427 | 82.14 7048 63.28 | 7526 67.16 57.01
Pair Qcross 96.19 73.61 70.89 | 84.33 68.40 6523 | 80.11 71.72 64.55 | 76.73 69.89 59.78
Original 9446 7286 6394 | 80.80 66.55 59.53 | 7823 6590 5578 | 7433 63.05 53.32
mix(en, en-ru) CS-baseline 95.02 74.63 6042 | 80.96 71.53 54.85 | 7830 67.56 52.84 | 68.59 64.93 4943
Shared Qcross | 95.43 8020 77.23 | 83.73 72.16 68.02 | 81.39 7131 63.25 | 75.60 69.17 56.23
Pair Qcross 95.14 81.77 7849 | 86.64 74.04 64.15 | 80.53 7142 60.72 | 77.03 6896 58.29
Original 95.61 71.13 6580 | 82.29 6544 60.53 | 76.93 6236 53.87 | 7593 61.67 5335
mix(en, en-zh) CS-baseline 94.67 73776 5792 | 81.86 67.79 5541 | 7840 65.58 5274 | 7439 62.67 49.57
Shared Qcross | 96.56 77.10 74.84 | 8452 7196 61.35 | 81.39 7131 63.25 | 75.61 6742 5540
Pair Qcross 96.71 75.00 7239 | 87.55 71.83 62.88 | 80.09 71.08 60.04 | 76.03 68.70 61.42

Table 3: Average cross-lingual transfer of mBERT and XLM-R models on RuleTaker datasets to monolingual
samples (mono) and code-switched language pairs (en-X and X-en). The original is the pre-trained model and the
CS-baseline is the model that pre-trained on code-switched data. Shared Q.,oss and Pair Q.;..ss, refer to cases
where the cross-lingual query matrix Q.,.ss is either shared across many language pairs or is specific to each

language pair, respectively.

the X-en format. We also perform a qualitative
analysis of self-attention patterns for our proposed
method in Figure 5, showing that the attention pat-
terns remain more similar between in-language and
cross-lingual code-switched samples (unlike Fig-
ure 4). We hypothesize that the attention pattern sta-
bility makes the MultiLM more language-neutral.

Regarding the cross-lingual transfer across lan-
guages, we observe that the reasoning ability of
the model is not transferred across languages
equally (Appendix F). The more similar the lan-
guages, the higher the transfer performance is. For
example, the model trained on en-fr has its highest
transfer performance in Latin languages (e.g., es, it,
en-es, and en-it). For almost all cases, and regard-
less of the training data language, en-fa and en-ar
are the hardest languages to transfer to.

To study the effect of the cross-lingual query ma-
trix on an implicit reasoning task, we expand our ex-
perimentation to include the LeapOfThought (LoT)

dataset. Table 4 illustrates the average zero-shot
transfer performance for this dataset. For this
dataset, our proposed method also enhances the
reasoning ability of the models for all examined
language pairs. However, the degree of improve-
ment observed is smaller compared to the Rule-
Taker dataset. In the case of the implicit reasoning
task within the LoT dataset, the model must rely
on both contextual cues and implicit knowledge
to successfully solve the task. Conversely, for the
RuleTaker dataset, the model is required to fully
reason over the context. Consequently, for implicit
reasoning, the model only partially uses contextual
information, resulting in a lesser impact on per-
formance when improving cross-lingual context-
question attentions.

4.4 Generalization to other Reasoning Tasks

So far, our experiments have focused on the logical
reasoning ability of MultiLMs, either in monolin-
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mBERT XLM-R

Source Data Method mono en-X X-en | mono en-X X-en

Original 6571 7189 67.69 | 69.81 7339 71.70

. CS-baseline 62.18 6692 62.79 | 70.00 70.92 69.48
mix(en, en-fr)

Shared Qcross | 69.61 7327 7145 | 69.87 7451 72.22

Pair Qcross 6795 7579 7113 | 71.12 7420 73.09

Original 68.05 7451 7053 | 69.97 71.77 7148

mix(en, en-de) CS-baseline 63.07 6778 64.25 | 69.58 72.57 70.19

Shared Qcross | 6748 7552 71.52 | 70.00 7322 72.07

Pair Qcross 69.09 76.17 72.62 | 70.03 73.55 7275

Original 6746 7387 67.88 | 7028 71.60 70.82

mix(en, en-ru) CS-baseline 62.37 68.03 6248 | 70.11 7385 70.18

Shared Qcross | 67.84 7459  69.85 | 70.10 7320 7191

Pair Qcross 68.57 76.07 71.99 | 70.34 74.63 7242

Original 6799 73.62 7052 | 70.05 7227 72.80

mix(en, en-zh) CS-baseline 6425 67.84 6461 | 6996 7242 7023

Shared Qcross | 69.19  74.88 7145 | 70.20 73.00 72.15

Pair Qcross 69.08 7638 7296 | 7024 73.28 7251

Table 4: Average cross-lingual transfer of mBERT and
XLM-R on LoT dataset to monolingual samples (mono)
and code-switched language pairs (en-X and X-en). The
original is the pre-trained model and CS-baseline refers
to the model pre-trained on code-switched data. Shared
Qeross and Pair Q....ss, refer to cases where cross-
lingual query is either shared across many language
pairs or is specific to each language pair, respectively.

Source Data Model mono en-X X-en
en Original 6942 | 63.16 | 68.79
Original 68.35 | 67.43 | 65.18

mix(en, en-fr) CS-baseline 68.26 | 70.58 | 65.89
’ Shared Qcross | 68.30 | 69.22 | 70.16

Pair Qcross 69.31 | 71.53 | 72.40

Table 5: Performance (accuracy) of mBERT model
for the XNLI dataset in both monolingual and code-
switched evaluation settings.

gual or code-switched settings. However, to demon-
strate the proposed method’s generalization to other
reasoning tasks, we extend our experiments to the
XNLI dataset. To create structured code-switched
inputs for this task, we change the language of the
premise and the hypothesis for a given input. More
specifically, in a code-switched setting (e.g., en-
fr), the premise is in English, and the hypothesis
is in French. We fine-tune the mBERT model on
a combination of EN and code-switched EN and
FR data (mix(en, en-fr)), then zero-shot transfer
it to other languages for monolingual evaluations
(excluding en and fr) and other language pairs for
code-switched evaluation (excluding en-fr and fr-
en pairs). Table 5 presents the performance of the
mBERT model with the cross-lingual query com-
pared to the baselines in both monolingual and
code-switched settings. We observe ~4% improve-
ment on en-X, ~7% on X-en, and competitive per-
formance on monolingual evaluation setups, indi-
cating the effectiveness of our proposed method on
downstream tasks other than logical reasoning.

5 Related Work

Reasoning in NLP. Language models (LMs)
have demonstrated their ability to perform logical
reasoning over natural language statements (Clark
et al., 2020b; Chen et al., 2023). They can also
leverage their implicit knowledge for reasoning pur-
poses (Talmor et al., 2020) and exhibit multi-step
reasoning capabilities by utilizing chain-of-thought
prompting, even with minimal demonstrations or
instructions, when the model size is sufficiently
large (Wei et al., 2022b; Kojima et al., 2022; Wei
et al., 2022a; Tang et al., 2023). In parallel to
English-centric efforts on reasoning tasks, there
have been attempts to create multilingual reasoning
datasets to evaluate the cross-lingual abilities of pre-
trained MultiLMs (Conneau et al., 2018b; Artetxe
et al., 2020; Clark et al., 2020a; Hu et al., 2020; Shi
et al., 2022). Recent pre-trained large MultiLMs
like BLOOM (Scao et al., 2022), BLOOMZ (Muen-
nighoff et al., 2022), and XGLM (Lin et al., 2021),
exhibited promising few-shot performance on a
variety of cross-lingual reasoning datasets using in-
context learning (Brown et al., 2020). Prior works
studied the reasoning ability of MultiLMs in the
context of open-retrieval answer generation (Asai
et al., 2021), and mathematical problem-solving in
a multilingual setting via chain-of-thought reason-
ing (Shi et al., 2022). This work conducts the first
investigation of the logical reasoning capability of
MultiLMs and proposes a cross-lingual-aware at-
tention mechanism to improve their performance.

Cross-lingual Transfer. MultiLMs such as
mBERT (Devlin et al., 2019), XLM-R (Con-
neau et al., 2020), mT5 (Xue et al., 2021), and
XGLM (Lin et al., 2021) have achieved state of the
art results in cross-lingual understanding tasks by
jointly pre-training Transformer models (Vaswani
et al., 2017) on many languages. These mod-
els have shown effective cross-lingual transfer
for many tasks, including named entity recogni-
tion (Pires et al., 2019b; Wu and Dredze, 2019;
Foroutan et al., 2022), cross-lingual natural lan-
guage inference (Conneau et al., 2018a; Hu et al.,
2020), question answering (Lewis et al., 2019), and
commonsense reasoning (Tikhonov and Ryabinin,
2021). This study focuses on the cross-lingual
transfer performance of MultiLMs in the context
of logical reasoning.

Code-switched NLP. Code-switching is a lin-
guistic phenomenon of alternating between two
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or more languages within a single conversation
or text. In recent years, code-switching-related
research has been growing in the NLP commu-
nity. The growth is motivated by the increasing
need for NLP systems to handle code-switched
data and call to pay more attention to multilingual-
ism and low-resource languages (Dogrudz et al.,
2021; Winata et al., 2022; Jose et al., 2020; Sitaram
et al., 2019). Previous research has been done for a
diverse range of tasks such as Language Identifica-
tion, Part of Speech Tagging, Sentiment Analysis,
and Automatic Speech Recognition (Winata et al.,
2021; Khanuja et al., 2020; Ostapenko et al., 2022;
Tarunesh et al., 2021). To the best of our knowl-
edge, this work is the first to study logical reasoning
in the context of code-switched NLP. Furthermore,
a majority of prior studies have focused on word-
level code-switching, where the language of certain
words in a text randomly changes. However, our
investigation delves into the realm of “structured
code-switching”, wherein language transitions oc-
cur at a section level.

6 Discussion

In this study, we explored the effectiveness of
MultiLMs in a code-switched setting and found
that while these models exhibit strong reasoning
capabilities in monolingual settings, they strug-
gle when it comes to code-switching. To ad-
dress this, we first proposed the structured at-
tention dropout, which encourages the model to
rely less on cross-lingual attention when dealing
with code-switched data. This simple method con-
siderably improved cross-lingual transfer to other
code-switched languages, demonstrating the impor-
tance of structured attention for this setting. We
then proposed a novel structured attention mech-
anism, incorporating the cross-lingual query, that
helps the model to better handle cross-lingual at-
tention in the code-switched setting. The pro-
posed cross-lingual query matrix, pre-trained on
unsupervised code-switched data, significantly im-
proved the cross-lingual transfer to other code-
switched language pairs in all studies settings,
demonstrating the importance of code-switched
alignment for MultiLMs. We also observed bet-
ter cross-lingual code-switched performance for
the LeapOfThought dataset (real-world knowledge
contexts) compared to RuleTaker (utilizing artifi-
cial facts and rules). We attribute LeapOfThought’s
better code-switched performance to the usage

of real-world knowledge in the reasoning context
(compared to artificial facts and rules in RuleTaker),
in line with Tang et al. (2023) observation that lan-
guage models perform better when provided with
commonsense-consistent context, and struggle with
artificial ones.

7 Limitations

In this work, we evaluate our proposed method on
encoder-only language models, and the impact of
this method on autoregressive models and encode-
decoder-only models has not been explored, leav-
ing room for further investigation and evaluation.
Moreover, our experiments are limited to relatively
small language models (less than one billion param-
eters), and the results and our findings do not nec-
essarily extend to large language models. Further-
more, we should highlight that the scope of our ex-
periments is constrained by the availability of mul-
tilingual data and computational resources. Con-
sequently, our evaluation is limited to two specific
datasets and covers only nine languages. While
we strive for diversity in our selection, it is impor-
tant to recognize that broader and more extensive
datasets encompassing a wider range of languages
could offer additional perspectives and potentially
reveal new insights.
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A Dataset Details

This section further elaborates on the datasets that
are used in our experiments. Both datasets in this
study are translated using Google Translate API
to investigate our proposed method’s cross-lingual
transfer. Starting from the English dataset, the
samples are translated into eight other languages,
namely, French (Fr), Farsi (Fa), German (De), Ara-
bic (Ar), Spanish (Es), Chinese (Zh), Russian (Ru),
and Italian (It). Below we discuss in more detail
each studied dataset.

A.1 RuleTaker Dataset

RuleTaker dataset (Clark et al., 2020b) is a set of
five datasets, requiring various depths of inference
to answer the questions. Each dataset consists of
examples in the form of a triple: (context, state-
ment, answer). The context is composed of a series
of facts and rules, while the statement represents
the question that needs to be proven and the answer
is either “T” (true) if the statement logically follows
from the context, or “F” (false) if it does not (false
under a closed-world assumption, CWA). All the
facts, rules, and question statements are expressed
in synthetic English. Essentially, each example
represents a self-contained logical theory in lin-
guistic form, with a question asking, “Is it true?”
The dataset generation procedure ensures that ev-
ery question can be answered by a formal reasoner,
given the closed-world assumption (CWA).

Each dataset limited by the maximum level of
inference needed to validate the facts employed
in its corresponding questions. These datasets are
categorized based on their depth restrictions (up
todepths D =0, D < 1,D <2,D < 3and
D < 5 respectively). A depth of D = 0 implies
that the accurate facts can be readily “proven” by
directly looking them up within the given context,
without requiring any inference. The fifth dataset,
encompasses questions that span up to a depth of 5.
This dataset serves as a test to assess the ability to
generalize to depths not encountered during train-
ing on the other four datasets. In our experiments,
we use datasets with depths O to 4. Each dataset
contains 100k examples randomly split 70/10/20
into train/dev/test partitions.

A.2 LeapOfThought (LoT) Dataset

The primary focus of the LoT dataset (Talmor et al.,
2020) revolves around a specific form of inference
that integrates implicit taxonomic knowledge (such
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Experiment EXPLICIT REASONING  IMPLICIT REASONING

Context-only 94.56 68.98
Subject swap 83.08 51.46
Object swap 91.85 53.6
Subject & Object swap 87.5 52.36

Table 6: This table investigates the artifacts present in
the LeapOfThought dataset. We evaluate the model’s
performance when either different parts of a given sam-
ple are removed (e.g., context-only model) or different
noises are injected into the statement (e.g., swapping
the subject in the statement with a randomly selected
entity). The experiments that involve swapping entities
in the statement are performed on the modified version
of LoT, as discussed in section A.2.1.

as hypernymy and meronymy) with explicit rules
derived from natural language. The hypernymy
relations and properties are derived from WORD-
NET (Fellbaum, 1998) and CONCEPTNET (Speer
et al., 2017). Each example consists of two com-
ponents: (1) a hypothesis, which is a textual state-
ment that can be either true or false, and (2) ex-
plicit knowledge, represented as a list of textual
statements. These statements can be classified as
either facts, which describe properties of specific
entities, or rules, which describe properties of a par-
ticular class. The explicit knowledge is carefully
constructed to ensure that the truth value of the
hypothesis cannot be determined solely based on
the provided information. It necessitates the inclu-
sion of additional knowledge encoded within the
language model. This dataset contains two main
test sets; EXPLICIT REASONING which performs
inference over explicit natural language statements,
and IMPLICIT REASONING where the model must
reason by combining the context with missing in-
formation that should be implicitly encoded by the
model. The dataset consists of 30,906 training ex-
amples, 1,289 development examples, and 1,289
test examples.

A.2.1 Discussion on LoT Dataset Artifacts

LoT dataset was designed to test how well NLP
models can (possibly) reason using real-world
knowledge. However, as we show in this section,
the dataset has some artifacts that causes the NLP
models to take shortcuts instead of actually per-
forming the reasoning. In the following analysis,
we only focus on the original English LoT dataset
(and not on the translated samples).

In our preliminary experiments on this dataset,
we observed that MultiLMs perform surprisingly
high in cross-lingual code-switched settings (on

EXPLICIT dev set), even if the statement is in
a medium-resource language like Farsi or Ara-
bic (context being in English). We hypothesized
that the model is mostly relying on the context
for reasoning; therefore, the statement being in a
medium/low-resource language does not necessar-
ily impact the model’s performance. We validate
this hypothesis by training a context-only model
(without having access to respective statements),
and surprisingly this model performs ~94% on the
EXPLICIT dev set (see Table 6). In order to ensure
that the model can not get non-random accuracy by
relying only on the context, we randomly negate
50% of statements (also negating the respective la-
bels), so that a context-only model would perform
randomly. The resulting dataset is the modified
LoT that is used in all experiments in the paper.

In order to further investigate artifacts present
in the modified LoT dataset, we inject noise into
the statement (without changing the context) as
following:

* Swapping statement’s subject with a randomly
selected entity from the whole dataset

* Swapping statement’s object with a randomly
selected entity from the whole dataset

* Swapping statement’s subject and object with
a randomly selected entity from the whole
dataset

As demonstrated in Table 6, given the EXPLICIT
evaluation results, the model can still get high rea-
soning performance even when the entities in the
context and statement are not consistent. However,
as reasoning performance on IMPLICIT evaluation
set drops to (almost) random when noise are in-
jected into the statement entities, we believe that
LoT artifacts have less effect on this evaluation set-
ting. Therefore, to evaluate the MultiLM’s reason-
ing performance, we use the IMPLICIT evaluation
set throughout the paper.

B Multilingual Reasoning: XLM-R
results

Sections 3.2 and 3.3 discussed the in-language and
cross-lingual performance of the mBERT model on
monolingual and code-switched data. This section
evaluates the XLM-R model on the same evaluation
settings as mBERT.

Table 7 demonstrates the average in-language
and cross-lingual zero-shot performance of XLM-R
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RuleTaker LeapOfThought

Depth-0 Depth-1 Depth-2 Depth-3
in-lang.  cross-ling. | in-lang. cross-ling. | in-lang. cross-ling. | in-lang. cross-ling. | in-lang.  cross-ling.
en 100.00 94.95 87.23 77.75 87.24 76.26 82.78 71.21 76.70 70.36
fr 99.40 95.83 87.10 81.53 83.92 77.78 81.33 73.78 74.64 66.68
fa 100.00 90.05 87.65 80.49 85.46 72.97 80.70 67.41 72.11 69.07
de 99.33 94.73 85.48 80.10 84.92 79.08 81.15 73.60 78.32 69.09
ar 99.13 85.95 84.65 76.29 84.43 71.13 81.13 66.68 69.70 71.71
es 99.96 94.46 90.53 82.00 84.34 75.61 83.20 71.83 80.60 71.25
zh 99.96 86.03 85.99 77.63 82.56 69.10 81.95 67.69 82.62 66.35
ru 99.81 93.36 87.20 77.37 82.34 70.16 81.35 73.40 73.47 71.36
it 99.75 92.18 87.21 78.38 84.72 78.41 82.85 74.34 73.89 72.29
Average | 99.70 91.95 | 87.00 79.06 | 8444 7450 | 8183 7110 | 7578 69.80

Table 7: Monolingual Setting: In-language and cross-lingual zero-shot performance (accuracy) of the XLM-R

model for the RuleTaker and LeapOfThought datasets.

RuleTaker LeapOfThought
Depth-0 Depth-1 Depth-2 Depth-3

in-lang. en-X  X-en | in-lang. en-X X-en | in-lang. en-X X-en | in-lang. en-X X-en | in-lang. en-X X-en
en-fr 9847 5418 5238 | 88.18 61.10 57.61 | 8554 5454 5045 | 83.14 5250 50.66 | 84.02 7841 7540
en-fa 98.61 6370 5551 | 8899  60.63 5639 | 8590 6059 5632 | 7438 5492 5278 | 8596 8257 72.06
en-de 99.62  59.59 5298 | 92.68 5841 53.06 | 85.17 5725 5514 | 86.09 5475 5045 | 8720 80.55 74.45
en-ar 98.99 6036 57.55 | 76.16 57.40 50.58 | 83.65 6221 5545 | 7012 5621 5120 | 80.84 77.06 70.16
en-es 100.00  60.01 5232 | 9259 63.06 5699 | 87.97 59.17 53.61 | 7748 5570 5133 | 8689 8130 77.60
en-zh 99.98 6236 5445 | 87.00 63.01 5823 | 8555 5878 5699 | 8296 57.59 5371 | 8875  82.13 79.24
en-ru 99.93  64.07 5585 | 80.11 6459 51.57 | 86.85 5740 51.32 | 8535 5695 4885 | 81.85 7855 74.13
en-it 99.89  64.16 5625 | 89.11 61.03 5445 | 8594 6031 5339 | 8508 56.80 50.73 | 80.44 7496 70.41
Average | 99.44 6105 5466 | 8685 61.15 5486 | 8582 5878 5408 | 8058 5568 5121 | 8449 7944 7418

Table 8: Code-Switched Setting: In-language and cross-lingual performance (accuracy) of the XLM-R model for

the RuleTaker and LeapOfThought datasets.

RuleTaker
Training Language | Training Method Depth-0 ‘ Depth-1

mono ‘ en-X ‘ X-en ‘ mono ‘ en-X ‘ X-en

. Full FT 87.57 | 63.05 | 59.40 | 68.95 | 59.72 | 58.03
mix(en, en-fr) L

Bitfit 89.14 | 65.38 | 60.81 | 70.76 | 60.48 | 58.16

. Full FT 91.00 | 62.85 | 56.56 | 75.30 | 62.94 | 57.02
mix(en, en-zh) .

Bitfit 91.20 | 65.58 | 59.80 | 76.43 | 63.02 | 57.20

. Full FT 89.72 | 62.00 | 58.42 | 79.13 | 58.34 | 56.67
mix(en, en-de) .

Bitfit 88.71 | 66.75 | 59.10 | 68.98 | 58.64 | 56.69

. Full FT 90.22 | 63.17 | 56.73 | 73.33 | 59.94 | 55.65
mix(en, en-ru) L

Bitfit 91.69 | 69.25 | 60.23 | 76.49 | 60.40 | 57.09

Table 9: Performance of fully fine-tuned versus Bitfit-
tuned mBERT models on the RuleTaker dataset. Bitfit-
tuned models perform better or competitively to the
fully fine-tuned setting, especially on the code-switched
evaluation setups.

for each source language in a monolingual setting.
Code-switched evaluation results are depicted in
Table 8.

C Experimental Setup Details

C.1 Full Fine-tuning Versus Bitfit

As discussed in section 4.2, our proposed model
and the baselines’ performances in Tables 4 and 3
are achieved by Bitfit tuning (Zaken et al., 2021).
It has been previously observed by Tu et al. (2022)
that parameter-efficient fine-tuning (PEFT) has

better cross-lingual generalization than full fine-
tuning. In our experiments, we also found out that
using a PEFT method like Bitfit considerably im-
proves our cross-lingual transfer across different
languages.

Table 9 demonstrates the generalization improve-
ment brought by Bitfit over full fine-tune base-
line for the RuleTaker dataset, especially in code-
switched settings. We observed similar pattern for
other RuleTaker depths and the LoT dataset. It is
worth noting that using a PEFT method especially
helps with transfer to code-switched tasks, which
is our main focus in this paper.

C.2 Curriculum Learning

For depths 2 and 3 of RuleTaker dataset, which
involves more reasoning hops, we observed that
curriculum learning (Bengio et al., 2009) makes
the XLM-R training more robust. The curriculum
learning is performed by first training the MultiLM
for 3 epochs on a subset of dataset that has depth 0
(i.e., no hop is needed for reasoning), and then the
training is continued on the full dataset. This tech-
nique not only makes the XLM-R training more
robust, but also improves the final reasoning per-
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formance.

C.3 Hyperparameters

The hyperparameters for all the experiments is pro-
vided in Table 10 for both mBERT and XLM-R
models. We use the AdamW optimizer with a
warmup ratio of 0.1 for all experiments.

D Cross-lingual Query

This section further discusses the methods pro-
posed in section 4.1.

D.1 Structured Attention Dropout

As previously discussed in section 4.1, limiting the
cross-lingual attention in the fine-tuning makes this
phase more consistent with the pre-training, where
the MultiLM mostly deals with monolingual atten-
tions. Table 11 demonstrates that applying dropout
on cross-lingual attenions (see Figure 2) consider-
ably improves cross-lingual generalization in code-
switched settings. Table 11 results are achieved
by a 40% dropout on cross-lingual attentions (i.e.,
Prask = 0.4)

D.2 Interfering Cross-lingual Query

Inspired by the promising performance of the struc-
tured attention dropout, we propose a setting where
the query matrix Q also partially handles the cross-
lingual attentions, and cross-lingual query Q¢ross
partially handles monolingual attentions. The only
difference between the interfering cross-lingual
query and the non-interfering scheme is their re-
spective attention masks, M7 and Mo, as illustrated
in Figure 3. We also empirically demonstrate in Ta-
ble 12 that the interfering scheme consistently per-
forms better generalization than the non-interfering
one, especially in the code-switched settings. For
all the fine-tuning experiments with the interfering
cross-lingual query, we use a 70% attention dropout
(i.e., Pnask = 0.7), meaning that 70% of cross-
lingual attentions for query Q, and 70% of mono-
lingual attentions for query Q¢ross are masked.

E Attention Visualization

As discussed earlier, MultiLMs perform well on in-
language, but when they are transferred to other lan-
guages (especially code-switched languages) their
performance hinders considerably (see Table 2).
This section first analyzes the attention pattern of
baseline models, both on in-language and cross-
lingual evaluation settings. Then, we analyze the

attention pattern of our proposed model which in-
corporates cross-lingual query.

We hypothesize that in order to have a reason-
able cross-lingual performance, the cross-lingual
samples’ attention pattern should not change sig-
nificantly compared to the in-language samples.
Figure 4 visualizes the attention pattern between
tokens in the last (baseline) mBERT layer across all
attention heads. The mBERT model is fine-tuned
on the mix(en, en-fr) depth-0 of RuleTaker dataset,
so the en-fr sample is considered in-language and
the en-ar sample is considered a zero-shot transfer.
It is worth noting the two samples are semantically
the same and only the questions are in different
languages. Comparing the two samples’ attention
patterns, we can see that the attention pattern con-
siderably changes (especially the strong attention
signals getting much weaker when en-ar sample is
given as input), which to some extent explains the
poor generalization of the baseline models to other
code-switched tasks.

In contrast, as demonstrated by Figure 5, the
attention pattern of our proposed method, which in-
corporates cross-lingual query, is much more stable
between in-language (i.e., en-fr sample), and the
zero-shot transfer (i.e., en-ar sample). We believe
that the observed stability in the attention patterns
makes our models more language-neutral com-
pared to the baseline, which is also demonstrated
by the significant cross-lingual improvements over
the baselines in Tables 3 and 4.

F Detailed Cross-lingual Query Results

Tables 3 and 4 demonstrated the average cross-
lingual transfer to either monolingual or code-
switched settings. This section demonstrates the
detailed cross-lingual performance of models with
cross-lingual query and the Original and CS-
baseline. Tables 13 and 14 present the detailed
cross-lingual transfer of mBERT trained on the
RuleTaker and LeapOfThought datasets, respec-
tively. Tables 15 and 16 present similar detailed
cross-lingual performance of XLM-R model on
the RuleTaker and LeapofThought datasets, respec-
tively.
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mBERT

Train Method Dataset ‘ Epoch / Iteration ‘ Batch Size ‘ Learning Rate  Evaluation Metric | Attention Dropout Probability
Full FT RuleTaker 5 32 le-5 Accuracy N/A
LeapOfThought 10 32 le-5 Accuracy N/A
BitFit RuleTaker 35 32 4e-4 Accuracy 0.7
LeapOfThought 30 32 4e-4 Accuracy 0.7
Pre-training Q | XNLI dataset 500,000 16 2e-5 Perplexity 1.0

XLM-R

Train Method ‘ Dataset ‘ Epoch / Iteration ‘ Batch Size ‘ Learning Rate ‘ Evaluation Metric | Attention Dropout Probability
Full ET RuleTaker 5 32 Se-6 Accuracy N/A
LeapOfThought 10 32 Se-6 Accuracy N/A
BitFit RuleTaker 35 32 3e-4 Accuracy 0.7
LeapOfThought 30 32 4e-4 Accuracy 0.7
Pre-training Q | XNLI dataset 500,000 8 2e-6 Perplexity 1.0

Table 10: Hyperparameters of the pre-training and fine-tuning experiments for mBERT and XLM-RoBERTa models.
Learning rate decays linearly from the initial value to zero.

Transfer Setting

Training Method | Drop attention .
Monolingual ~ en-X  X-en

. Yes 90.00 65.57 62.74
Full Fine-tune
No 89.48 62.68 59.53
. Yes 82.98 73.20 68.24
Bitfit
No 89.14 65.38  60.81

Table 11: Average cross-lingual transfer of mBERT
model when tuned on a mixture of English and English-
French (mix(en, en-fr)) RuleTaker dataset (depth-0).
The (zero-shot) cross-lingual transfer to code-switched
tasks gets considerably better with structured attention
dropout (see section 4.1), either in full fine-tune or Bit-
fit (Zaken et al., 2021) tuning.

Training Method ‘ Interfering ‘ M I-Tran?fer Sell)l(ng X
onolingual  en- -en

‘ Yes ‘ 93.65 7779 6827

Bitfit
No 91.96 73.08 66.28

Table 12: Average cross-lingual transfer of mBERT
model when fine-tuned on a mixture of English and
English-French (mix(en, en-fr)) RuleTaker dataset
(depth-0). Both models incorporate language-pair-
specific cross-lingual query (i.e., Pair Q.0ss) and are
trained with Bitfit tuning. The only difference between
the two runs is whether an interfered version of the
cross-lingual query is used or not. We can observe that
the interfered variant consistently outperforms the other
variant, in monolingual and code-switched settings.
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RuleTaker Depth-0
en fr  fa de ar e zh ru it enfr enit en-es enzh enru ende enfa enar fren deen faen esen iten ruen zh-en ar-en
Original | 99.97 9476 70.59 9328 8721 93.84 8048 8921 9289 9723 7752 7293 5031 5536 6925 4927 5113 80.07 6503 5301 6372 6552 5348 53.14 5247
CS-baseline | 99.95 8324 5516 78.65 7405 8497 69.79 8129 8330 9925 7275 8419 7979 7236 7649 4841 6451 59.69 5553 5190 5816 5786 53 5153 5215
Shared Quross | 100 9629 77.19 9448 95.09 9596 8581 9271 9518 9873 8333 7601 6239 6062 7496 5033 5416 9332 70.52 5271 6938 7389 5504 5394 5250
Pait Quross | 9999 97.04 8105 9497 9492 9669 89.05 9287 9623 99.07 8344 86.13 81.04 7265 80.61 5219 67.15 92.84 7204 5578 7174 7586 6197 5958 5636
Original | 99.94 9441 7312 93.18 8504 9251 7971 8644 9401 7631 6779 71.61 56.14 6178 9592 5122 5326 6852 73.02 5225 5865 61.83 5297 5382 5175
CS-baseline | 99.97 87.99 67.21 86.12 8159 8873 80.73 8272 87.84 84.58 69.56 8047 7806 7266 9935 5054 6259 6521 6423 5263 59.64 5761 5271 5195 5249
Shared Qeross | 99.98 9442 8277 9434 89.09 9426 8284 9124 9359 8038 7348 7531 6382 6435 9933 SLI3 5297 7499 90.72 5495 65.14 70.36 54.86 5440 5283
Pair Quross | 9999 9477 9158 9551 94.09 9558 8669 9321 9560 85 7230 8255 8216 7TLI1 99.18 5397 6431 79.12 9383 5670 7252 7160 61.77 6596 57.32
Original | 99.81 9496 8331 9229 8606 94.88 90.80 8938 9370 71.81 7046 6873 70.54 9255 6502 60.04 5486 6833 6427 5458 6268 6598 5870 5489 5244
CS-bascline | 99.97 8843 6430 8149 7532 89.72 8250 78.64 9252 81.63 6588 7935 80.30 99.82 8049 5416 6571 6271 5656 50.590 5987 57.14 5101 4974 49.79
Shared Q | 99.98 95.02 8443 9375 9128 9563 90.07 93.94 9492 77.52 77.01 7642 79.19 9822 7740 63.67 6024 75 7023 6374 7314 7509 7992 66.65 59
Pair Quross | 9993 9449 8183 9280 89.75 9504 8920 9252 94.50 8252 7497 7926 81 9620 79.86 6045 6352 7711 7592 6276 75 7486 7789 7164 59.81
Original | 99.84 9378 8244 9307 88.84 9324 8555 90 9405 6530 6575 6566 9194 6049 6469 5649 5432 69.67 6203 5455 6094 6394 5379 6125 5219
CS-baseline | 99.96 8626 67.56 79.58 76.14 87.50 74.97 8445 9202 77.62 6496 7541 9987 6872 6846 4977 5692 65 5997 5262 6040 5786 5352 57.89 5243
Shared Quross | 99.99 9450 88.33 9297 94 9545 9137 9162 9508 7457 6844 6716 98.50 6380 66.63 5449 5434 7488 6503 5779 6757 6785 5784 7283 5296
Pair Quoss | 100 9620 69.73 9447 9504 9676 9654 9385 9626 78.80 7138 7373 9946 6336 7205 6137 5655 7677 7203 5888 7269 7581 60.18 8873 53.57
RuleTaker Depth-1

Train Data Method

mix(en, en-fr)

mix(en, en-de)

mix(en, en-ru)

mix(en, en-zh)

Original 83.29 7371 5934 7521 65.18 7293 6743 67.66 7208 7475 67.69 6452 5336 56.65 6149 5226 53.09 6748 60.50 53.80 60.47 60.70 5372 53.90

mix(en, en-fr) CS-baseline | 83.65 66.62 55.62 6696 66.70 68.61 6696 69.22 64 82.24 7033 72,68 7097 6747 7055 51 60.76  54.49 5334 5384 5442 5479 5332 53.67
Shared Qcross | 87.18  81.53  70.64 82.66 69.82 78.72 7342 7641 79.10 81.93 7549 7280 6430 61.12 71.04 5597 5546 7842 6777 56.12 67.13 70.16 58.65 54.99

Pair Qcross 86.40 79.87 67.05 80.94 7496 7922 7449 7566 7840 82.55 74 7150 6787 65.60 72.01 5481 60.05 7749 67.07 5447 68.82 64.99 59.51 5932

Original 7791 7126 61.15 6561 67.52 69.42 6895 6858 7042 6288 62.07 60.85 52.77 57 66.66 53.17 5371 61.22 61.10 53.71 5883 57.40 53.58 53.67

mix(en, en-de) CS-baseline | 82.98 68.85 59.59 64.13 66.65 68.75 64.24 6858 68.97 7474 64.09 71.19 7236 68.07 80.06 51.73 60.76 56.01 5592 52.59 54.64 53.88 5329 5257
Shared Qcross | 86.89  79.15  70.21 80.56 72.57 76.37 7150 7553 77.88 73.07 6857 68.15 6247 6219 8117 5450 5695 6922 7570 54.61 63.17 6529 5507 54.72

Pair Qeross 87.91 8022 7121 81.78 6443 80.57 7470 7559 80.04 70.59 67.53 7022 69.72 6645 83.90 5481 65.57 70.17 7452 5541 6567 65.76 59.66 5577

Original 8587 7991 6778 7880 71.32 7869 7422 7322 78.63 6394 6249 6076 5685 68.16 61.17 5521 5460 62.68 60.03 53.87 5857 59.33 53.69 5372

. CS-baseline | 84.22 74.01 5492 70.21 69.50 73.90 68.54 70.34 73.86 7623 6688 7569 7153 81.13 71.96 51.02 6526 57.70 5721 53.55 57.50 56.07 53.54  53.60
mix(en, en-rw) Shared Qcross | 88.04  80.84 7444 81.84 76.01 80.86 7694 79.29 7991 72.86 69.48 67.57 70.51 7824 7133 6166 58.54 70.17 67.94 6032 66.67 69.08 64.25 5750
Pair Qcross 87.16 8048 7171 81.04 71.75 79.72 76.69 76.04 8024 7532 7322 7345 7539 9827 7842 58.68 5925 7208 66.35 55.68 6399 67.77 6233 56.32

Original 85.68 79.22 70.71 7848 7263 7859 7231 7357 76.69 6685 64.10 6259 7890 5896 61.85 5575 55.19 62.84 59.08 54.09 5841 5898 56.51 53.67

mix(en, en-zh) CS-baseline | 83.97 68 5829 63.72 6229 6797 62.67 6822 70.89 71.97 61.76 70.82 8294 66.10 69.17 51.61 60.58 57 5491 5347 5578 55.54 5253 51.89
Shared Qcross | 86.21  79.80 59.52 77.54 63.58 79.94 7566 7562 7809 69.18 6732 6525 7871 63.18 6531 5647 5543 69.61 6324 5659 63.76 63.98 64.84 5542

Pair Qcross | 8828 80.15 66.84 81.34 7499 80.83 79.34 77.24 8140 70.56 6140 6884 80.82 69.33 70.10 5542 60.51 6752 68.17 5420 70.38 60.43 73.86 5825

RuleTaker Depth-2
Original 84.82 71.80 5428 73.04 5609 7097 62.55 6230 71.06 79.10 66.76 64.55 5626 58.84 60.94 5490 5574 67.77 57.66 50.75 5730 57.77 51.33 50.89 50.94
CS-baseline | 83.53 6226 57.33 5871 60.59 6225 60.03 61.07 62.67 81.92 6833 7434 66.16 6590 70.33 5148 61.52 5476 5297 5081 5443 54.82 50.86 51.98 50.14
Shared Qcross | 85.98 77.34  61.59 80.03 67.17 77.35 73.56 73.06 77.18 83.92 7092 69.23 59.31 57.80 67.84 5151 5327 7597 60.77 51.63 62.06 63.53 5329 5287 51.62
Pair Qcross 84.04 7541 6594 7657 69.78 76.40 69.11 71.69 7507 8347 70.16 7278 67.17 68.11 71.85 5327 59.05 7327 6573 51.52 6635 6225 5743 56.60 57.04
Original 84.26 75.64 6594 7686 6872 7406 72.14 70 7289 68.23 64 6552 56.05 62.60 7885 5434 5343 62.07 6235 51.37 5740 58.09 51.50 51.64 50.84
CS-baseline | 83.87 6327 57.76 59.33 59.59 62.55 60.24 59.44 66.15 7453 6331 7354 69.79 66.76 81.65 50.69 59.47 5576 5545 50.13 54.17 5253 5035 50.73 50.26
Shared Q 8493 7655 63.23 76.68 6574 71.69 64.09 7028 73.18 69.75 66.44 6628 62.16 61.70 7841 5427 5599 6622 7596 51.66 61.95 63.04 5424 53.83 5243
Pair Qcross | 8528 7646 65.63 77.02 65.65 74.10 7535 71.04 7356 7323 6734 70.09 69.34 6851 82.13 5634 6039 6745 75.18 53.65 6206 6392 59.92 5864 5648
Original 80.34 7159 60.20 7279 63.99 69.44 6638 6699 69.24 5931 5822 56.72 5625 6623 5590 5433 5403 5642 5491 50.81 53.16 5420 5236 50.79 50.84
CS-baseline | 83.24 6490 5477 61.17 5879 6591 64.89 6149 6807 7077 6233 69.12 7037 77.97 6870 5237 63.07 5496 5290 5120 5422 53.11 5143 5179 50.18
Shared Qross | 85.08 76.80 64.73 78.00 69.59 74.68 70.15 72.69 74.84 67.62 6557 6542 6592 80.81 6791 56.66 5556 64.96 59.97 5229 60.00 61.53 66.69 55.06 52.63
Pair Qcross | 8484 77.38 65.67 78.04 6824 7645 7222 7299 76.16 7122 64.66 68.54 71.06 77.86 6948 5805 62.87 69.78 6571 53.63 6530 6326 69.03 6244 5861
Original 79.05 7129 57.96 71.68 64.44 6945 6351 6739 69.35 57.14 5570 5479 6475 5320 5466 5130 5170 55.16 5347 5098 52.86 53.02 51.09 5232 50.84
CS-baseline | 83.70 67.30 5805 62.12 61.68 67.60 62.55 66.57 67.08 68.60 60.72 7085 83.02 63.75 67.37 50.97 60.54 5672 54.67 51.10 5437 5212 5126 5320 50.61
Shared Qcross | 85.13  75.37 5897 7631 68.68 75.67 73.88 71.55 7524 6640 63.10 6284 8097 60.59 61.50 52.65 53.26 65.19 59.63 52.54 59.50 5821 53.74 6331 52.14
Pair Qcross 85.84 77.68 65.88 79.35 69.83 77.51 7444 7403 77.83 69.78 61.06 7041 8441 64.64 66.73 5598 60.18 6550 62.16 54.81 63.94 6029 5937 63.00 55.12

RuleTaker Depth-3
Original 73.14 6453 5627 6543 5820 63.39 5779 6027 63.35 6937 6337 62.14 5330 5421 5822 50.12 5277 5735 5244 4823 5208 5277 4892 4830 4822
CS-baseline | 81.14 6144 57.71 59.62 59.98 61.67 57.72 60.66 6321 79.67 6599 7252 69.99 6644 70.13 5020 60.14 5356 5225 4858 5237 5154 49.79 5028 49.19
Shared Qcross | 81.82 7177 62.97 7484 6451 7270 6547 6872 71.36 7536 69.71 68.63 59.77 60.17 67.60 5393 5574 70.50 59.66 4872 57.89 60.60 50.08 50.05 48.47
Pair Qcross | 81.22 7574  62.89 76 6553 73.87 6754 68.94 7079 78.80 69.84 7345 6539 6450 7071 5759 6132 70.14 63.32 5347 6256 62.86 5729 56.10 55.23
Original 7547 67.03 57.36 6477 59.18 64.51 5897 59.01 64.73 6133 5946 5837 51.54 5537 69.15 51.58 52.04 5434 5681 48.16 S5I.11 51.19 48.69 48.18 48.22
CS-baseline | 81.01 62.66 56.65 59.06 56.94 62.67 5749 5936 6422 7186 60.81 7101 7103 67.64 7744 4899 60.67 5375 5436 48.05 51.36 4991 4994 4975 4872
Shared Qcross | 83.58 73.82 6032 77.01 65.60 7422 6851 7046 7433 66.71 6336 6399 57.51 5948 8228 51.31 53.02 6341 7341 49.52 58.60 60.23 51 52,10 49.85
Pair Qcross 81.95 7247 63.94 7520 6451 71.37 6595 67.73 71.95 7212 63.61 70.71 67.12 6852 7861 5566 6149 6938 7157 5227 63.10 6322 6247 60.04 52.85
Original 7449 6745 61.34 68.13 6240 6530 6221 6293 66.17 5780 58.01 5646 5881 6558 5440 5542 5512 5298 5146 4832 51.05 50.56 4937 4840 4824
CS-baseline | 65.79 61.80 52.81 60.92 57.93 61.38 58.66 60.99 60.26 61.52 55.15 61.01 61.12 6449 61.54 4830 5833 4981 4975 4789 49.01 4848 48.11 4857 48.03
Shared Qcross | 83.35 7244 6346 7606 6555 7441 6812 70 7358 6523 6201 62.01 63.69 8203 6405 5519 5381 61.10 5585 5283 57.10 5832 63 5435 5494
Pair Qcross 83.64 7277 5850 7521 6741 7166 68.61 6820 7281 70.80 62 6823 6596 8253 64.64 5502 64.62 62.01 6030 5296 60.45 5894 67.72 6229 56.13
Original 7449 66.84 5726 6620 61.11 6634 6206 6479 66.19 57.62 5740 5565 70.57 5347 5410 5210 5145 5454 5140 4849 51.34 51.60 49.16 52 48.31
CS-baseline | 81.62 59.50 53.35 55.86 57.82 60.25 56.39 57.14 64.58 6844 5583 67.68 80.20 6326 65.54 49.85 5833 56.64 5395 4885 5586 51 50.51 5077 50.12
Shared Qcross | 8170 73.12 54.83 7241 6497 72.18 7032 67.85 7241 6413 6278 62.99 7597 5992 61.60 5586 52.84 63.07 59.02 5092 5850 59.55 5344 65.15 51.29
Pair Qcross 81.97 7341 56.51 73.12 66.06 7397 7347 70.10 7343 6725 6047 7028 81.64 65.12 6834 5391 63.81 6499 61.65 5022 59.70 57.81 6030 67.36 58.34

mix(en, en-fr)

mix(en, en-de)

mix(en, en-ru)

mix(en, en-zh)

mix(en, en-fr)

mix(en, en-de)

mix(en, en-ru)

mix(en, en-zh)

Table 13: Cross-lingual transfer of mBERT model on the RuleTaker datasets to either monolingual samples or
code-switched language pairs (en-X and X-en). The original is the pre-trained model, and the CS-baseline is the
model that continues pre-training on code-switched data. Shared Q.,.ss and Pair Q.55 refer to cases where the
cross-lingual query is either shared across many language pairs or is specific to each language pair, respectively.
Scores are averaged across three different seeds.
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LeapOfThought (Implicit Evaluation Set)
en fr fa de  ar e zh ru it enfr  enit enes enzh enru en-de enfa  enar fren de-en fa-en  esen  iten ru-en  zh-en ar-en
Original | 7607 69275 53645 63305 57.76 69.51 7436 60.355 67.105 7506 7351 73155 7781 69315 72845 66.175 67.265 72575 6536 59815 7281 7048 65635 71.565 63305
CS-baseline | 7199  67.03 5027  64.16 6563 6742 5625 5958 7075 6687 6967 7455 6486 6897 5648 6323 6843 6649 5198 6827 5888 5935 6625 62.68
Shared Qeross | 7580 7029 6625  72.30 7355 7649 6455 6695 7533 7362 7370 7758 7145 7611 7091 6742 7192 7339 7052 7424 6897 7099 7517 6641
Pair Qeross | 7929 7207 5345 6641 7230 7758 6214 68.11 7835 7688 7757 8037 7367 7851 6889 7207 7440 7476 6175 7454 7238 6896 7579 6648
Original | 77425 7118 5504 7114 7005 7754 63925 67145 7483 75525 7568 8123 73 7727 6894 6963 74.63 7215 63.66 72975 70.645 6882 73355 68
CS-baseline | 7424 6641 5097  66.80 66.87 68.04 5741 5834 6943 6718 6874 7649 67.88 7199 5687 63.69 6843 6843 5299 6897 59.19 6253 7036 63.07
Shared Quross | 7773 69.98 5733 7145 7036 73.55 6268 6602 7572 7586 7548 8061 7494 77.66 7137 7254 7261 7261 67.88 7494 714 6943 7525 6827
Pair Qeross | 7983 7067 5784 7184 7145 7626 6508 6865 7803 7541 7764 8106 7538 8021 6959 7207 7578 7494 6408 7671 7176 7144 7718  69.10
Original | 7817 6998 5466 6691 7009 7584 6443  67.03 7329 7472 7403 7899 7340 7603 6972 7083 7173 6730 59 7374 69.17 6606 70.60 6548
CS-bascline | 72.54 6695 50.66 64.62 6579 6447 5749 6121 7052 6773 6951 7564 6711 69.05 6020 6447 6610 6517 5237 6664 63.15 5958 6455 6230
Shared Quross | 7944 68.81 5663 68.11 7075 7393 6462 68.19 7486 7541 7502 7867 7417 7603 7161 7091 7246 7091 6323 7347 703  68.66 7238 6757
Pair Qeross | 7998 69.51  57.64  68.96 69.82 7571 6618 68.011 7664 7680 7633 8229 7633 7834 7145 7314 7331 7245 6253 7470 6959 7026 7401  79.03
Original | 7611 6994 5675 69.63 7041 7940 6362 6789 7354 7471 7425 8181 7192 7479 6971 6824 7285 7137 6591 7409 7107 6878 7336 6672
CS-baseline | 74.17 6680 50.66 67.03 6695 7440 5803 5997 7083 6742 6897 8076 6672 6990 5578 6237 6796 67.88 5291 6974 6230 6323 6982 63.07
Shared Qurose | 7905 7113 5701  69.81 7114 8185 6453 6920 7448 7355 7448 8410 7517 7688 6990 7044 7409 7292 6486 7564 7230 6928 7665 6587
Pair Qeross | 7929 7168 5T.18  69.67 TLI4 8076 6416 69.05 7695 7572 7626 8386 7663 7019 7192 7252 7416 7463 6827 7525 7347 7067 7913  68.10

Train Data Method

mix(en, en-fr)

mix(en, en-de)

mix(en, en-ru)

mix(en, en-zh)

Table 14: Cross-lingual transfer of mBERT model on the LeapOfThought dataset to either monolingual samples or
code-switched language pairs (en-X and X-en). The original is the pre-trained model, and the CS-baseline is the
model that continues pre-training on code-switched data. Shared Q.,.ss and Pair Q)..,ss refer to cases where the
cross-lingual query is either shared across many language pairs or is specific to each language pair, respectively.
Scores are averaged across three different seeds.

RuleTaker Depth-0
en fr fa de ar es zh ru it enfr  en-it en-es en-zh enru  en-de en-fa  en-ar fren de-en fa-en esen  iten ru-en zh-en  ar-en
Original | 10000 96.57 9387 9598 9380 9657 9177 9448 9551 9929 7705 7386 5799 6550 7136 5533 5508 8527 6558 5463 6427 6936 5792 6221 5350
CS-baseline | 10000 9332 9070 9461 9304 9686 9461 9405 9679 9933 7635 504 6184 6695 7153 5894 5814 7978 6470 5209 6604 68 5633 5248 5189
Shared Qeross | 10000 9642 9537 9653 9364 9668 9389 9471 9605 9929 8006 7925 69.19 7074 7612 6224 6133 9268 7347 5920 7229 77 6403  69.99 5830
Pair Quoss | 9996 9681 9557 9566 9475 9691 9251 9446 9681 98.13 8675 80.18 7423 7696 8463 6090 6509 9094 8236 6407 7664 8323 7423 7395 6098
Original | 10000 95675 9181 9723 9409 97.81 8771 9412 96.125 6946 6865 67.925 5281 59435 99315 5605 52075 69485 87.595 56475 6541 67935 S8.775 60605 53.255
CS-baseline | 10000 9314 87.09 9083 9043 9518 8775 8996 9289 TS84 7859 TS558 6101 T0.85 9967 6026 5845 6338 6938 5035 5967 6126 5158 5143 5003
Shared Qeroes | 100.00  95.62 9559 9720 9421 9855 9337 9506 9649 7803 77Ul 7407 5970 6623 9918 5907 5689 7612 9530 6003 7086 7406 6406 7119 5596
Pair Quross | 10000 9575 9623 9698 9450 97.61 9453 9469 9541 8037 7638 7451 6546  7TLIS 9911 5676 6512 7509 9539 5991 6789 7182 6659 7107 5934
Original | 99.99  96.10 9475 9152 9707 8985 9354 9566 7125 72 7097 6549 9942 7223 6525 6203 7223 (988 5806 6505 69.05 7966 5681 5433
CS-baseline | 100.00  96.59 94.87 9260 9673 90.02 9670 9609 7385 7363 7335 6938 9995 7699 6576 6411 67.64 6442 5193 6558 6335 6414 5436 5196
Shared Qeross | 9978 96.53 94.64 9307 9658 9453 9440 9486 8403 8206 7687 7690 9556 8207 7543 6867 8255 8008 7304 7593 8269 89.68 7286 6102
Pair Quyoss | 9959 9638 9482 9344 9552 0435 9466 9467 8565 8311 7975 8136 9316 8430 7410 7270 8262 8039 7457 8056 7981 8457 7686 6857
Original | 100.00  95.46 9547 9440 9797 9421 9244 9641 7067 7052 7159 9993 6598 6712 6314 6010 7298 7016 5739 6592 69.84 6422 7169 5417
CS-baseline | 100.00 9549 95.19 9127 9776 9235 9286 9602 7214 7387 7524 10000 7434 7051 6383 6011 67.54 6189 SI83 6417 6102 5190 5325 5177
Shared Qeross | 9999 96.05 9640 9459 9812 97.66 9385 9628 7661 7970 7644 9993 7381 7880 6851 6302 7694 7994 6531 7433 7485 7367 9351 60.14
Pair Qeross | 100.00 96,30 96.15 9365 9894 9877 9513 9657 7670 7344 7426 10000 7555 7504 6135 6363 7195 7112 6294 7010 71 7338 9827 6037

RuleTaker Depth-1

Train Data Method

mix(en, en-fr)

mix(en, en-de)

mix(en, en-ru)

mix(en, en-zh)

Original 8626 8137 7984 8159 8579 7028 67.60 5843 6152 6583 6325 5638 6191 56.01

mix(en, en-fry | CS-buscline | 8975 8153 8078 8277 70.28 59.18 6185  68.60 5715 5360 5995 5 54.17
Shared Qerone | 8565 80.88 80.12 8268 74.88 62.14 6691  69.58 6748 5793 6599 6702 6025

Pair Qurons | 8877 84.19 8282 8489 74.36 6827 6681  70.92 67.12 5249 6636 6076 63.94

Original 87.10 8497
CS-baseline | 86.96  77.69
Shared Qeross | 85.66  84.10
Pair Qurons | 9157 84.58
Original 86.80  80.81
CS-baseline | 8870  80.39
Shared Qeross | 9175 83.46
Pair Quross | 9686 85.69
Original | 8682 82.69
CS-baseline | 87.61  81.06
Shared Qeross | 9593 85.09
Pair Quross | 9725 8750

8156 8264 6744 6875
7403 79.685 69.885 6879
7995 8273 7099 7036
8221 8556 71.08 6978

5481 5995 9036
5749 6352 85735
6030 6537 8143
6223 6534 9081
6242 8405 6528
6821 9339 7053
68.485 8942 71785
7225 9588 7172
8478 6221 64.23

77.69 6239 6524 5731
56295 51905 55875 5588 51855
7386 59.50 6726 60.73
8353 5881 6513 60.10
61.68 5540 6171 6236 59.84
5440 5344 5705 5520 5339
68715 61835 68.905 69.675 80.58
6549 5666 6543 6265 7824
63.18 5602 6412 6491 60.13
86.91 65.51 66.52 5485 5359 57.21 55.76 53.70
95.41 72 67.84 6482 5698 6398 6470 62.14
85.81 88.41 7042 7153 7030 9641 7059 7054 6384 6097 6766 6618 5765 6413 6309 6457
RuleTaker Depth-2
Original 8474 7841 65.01 8098 7434 8006 69.05 7533 79.15 8267 69.82 68 5320 61.02 6413 5199 5268 6762 61.12 5468 6173 6264 56.33 5485 5215
CS-baseline 86.67 7876 6939 7870 7120 77.10 70.10 7395 76.14 8548  70.14 7259 5591 6147 6451 56.31 56.11 57.07 5177 5074 5332 5074 5074 50.74
Shared Qross | 93.85 81.66 7336 8276 7298 8265 7477 77.05 80.82 92,61 74.11 7514 6322 6784 7110 6094 6021 75.81 6434 5547 6483 59.68 5857 5323
Pair Qcross 93.55 8373 7463 8366 7413 8380 7822 7888 8192 9224 7510 7450 6721 71.63 7404 5640 6157 7875 6643 5488 6635 64 63.36 5577
Original | 8629 7851 7538 8249 7468 7987 7538 7633 7976 6586 6544 G488 5682 5973 8526 5721 5585 5890 G69.17 5340 5731 5802 5447 5349 54l
CSbaseline | 8638 7530 6656 7328 6882 7906 6362 6931 7690 6964 6792 6811 5541 6299 8515 5797 5742 5585 5280 5023 5416 5380 5006 5059  50.10
Shared Qurous | 9345 8125 7628 8704 7432 8469 7849 8151 8225 7240 7175 7185 6340 6983 9221 6315 5927 6673 7920 5594 6407 6456 6272 6043 5261
Pair Qcross 94.57 8194 7359 8507 7293 8324 7296 7606 8067 7378 7125 7409 7031 7189 93.01 5895 6050 6857 8138 54.71 64.64  63.04 6403 6325 56.74
Original | 8647 7731 7455 8167 7453 7816 7608 7724 7805 6634 6515 6311 6105 8412 6564 6129 6050 6009 5926 5203 5750 3869 5629 5146 5091
CSbaseline | 8598 7770 7449 8067 7308 8056 7414 7782 8029 6665 6738 6631 6401 8526 6656 6296 6131 5743 5452 5067 5556 5225 5083 5075 5068
Shared Quros | 9409 8192 7710 8443 7451 8324 7692 8062 8145 7136 TL66 6947 6652 9224 7105 6617 6158 6593 6570 5434 6208 6189 7273 5671 5277
Pair Quows | 9277 7962 7466 8247 7553 8LI12 7784 8071 80.04 7132  67.89 7044 6982 9130 7528 6383  6L50 6370 6331 5490 6035 5862 6835 6092 5558
Original | 8595 7728 7297 7958 7272 7846 7214 7563 7763 6064 6237 6084 7390 6258 6092 5994 5772 5687 5614 5143 5495 5568 5431 5081 5079
CSbaseline | 8591 7701 7291 8105 7363 8135 7801 7634 7940 6541 6435 6421 8516 6382 6399 6038 5728 5791 5267 5074 5521 5306 5076 5080 5074
Shared Qurous | 9294 8130 7644 8316 7380 8368 8167 7846 8102 7092 7272 7042 9217 7080 6822 6468 6056 6666 6596 5545 6638 6546 6445 6774 5389
Pair Qurone | 9505 8210 7361 8067 7334 8142 7773 7663 8025 7059 7210 7054 9342 7040 6596 6434 6129 6349 6157 5509 6027 5866 6258 6344 5525
RuleTaker Depth-3
Original | 8348 7578 71145 7813  69.65 7543 7035 7362 7481 8053 6736 6587 5643 59 6348 5536 5337 6253 5973 5268 5906 5735 5338
CS-baseline 6555 7459 68 7434 6576 7222 7295 8181 6725 6866 5696 6222 6424 5386 5512 5893 S04l 4815 5327 4880

mix(en, en-de)

8118 8135 6651 6785
80.18 8050 70.08 7051

mix(en, en-ru)

mix(en, en-zh)

mix(en, en-fr)

mix(en, en-de)

mix(en, en-ru)

mix(en, en-zh)

mix(en, en-fr)

Shared Qerous 7126 8001 6878 7974 7169 7612 7731 8903 7341 7122 6221 6553 7077 5946 5678 7369 6217 5554 6125 6046

Pair Qeross 7037 7974 68.80 7706 7176 7472 7593 8836  73.07 7003 6483 6507 7040 5858 6197 6932 6157 5519 60.32  59.19

Original 7035 7987 6743 7522 69.63 7313 7450 6825 6812 6614 5542 6180 8685 5747 5490 6092 69.10 5252 5816 6038 5734

mixen, en-dey | CS-baseline 6881 7660 6838 7844 6983 7419 7737 6434 6429 6477 5709 5943 8263 5629 5415 5612 5603 4815 5425 5457 4956
Shared Qerous 6872 7814 6693 7682 6886 7346 7496 6998 69.09 6739 5692 6689 9194 5932 5575 5985 6757 5291 5858 5926 5620

Pair Qerons 7037 8137 69.60 7798 7129 7422 7514 7152 7062 7047 6669 7160 9052 5772 5998 6275 67.63 5341 5991 6163  59.62

Original 6979 7724 70075 7524 70745 73785 74065 6359 6338 61455 6157 7472 6185 5902 58775 5778 56145 50525 S54.69 5497 5308

aseline 6894 6724 6517 6992 6251 6975 68.59 6498 6534 6503 6501 7320 6224 6214 5151 49.55 4816 SLT1 4963 4837

i . 6705 7983 6725 719 7149 7566 7578 6914 69.02 6625 6628 8883 70.13 60.17 5999 5893 5208 56.63 5582 59.14
Pair Quross 6941 8025 6889 7874 7485 7725 7619 6892 6618 6658 67.16 9001 6842 6LI12 6113 59.69 5252 5851 5686  66.09

Original 7206 7798 7174 7791 7343 7389 7601 6193 6121 5950 7885 6075 S04 5887 5509 5993 5688 4949 5491 5642 5248

CS-baseline 68.52 7645 6845 7721 7197 7363 7433 6242 6187 5965 8260 6217 5996 5790 5481 5251 52 4815 S0.63 4876 48.18
Shared Qeross | 9233 76 6830 7848  68.07 7893 70.89 7189 7558 6730 6867 6647 9154 6565 6465 6057 5449 5886 5881 5143 5662 5587 5555
Pair Quross | 8367 7554 7349 7753 7283 7623 7428 7404 7670 6802 6951 6889 8208 6901 6747 6431 6033 6594 6218 5612 6439 6036 6283

Table 15: Cross-lingual transfer of the XLM-R model on the RuleTaker datasets to either monolingual samples or
code-switched language pairs (en-X and X-en). The original is the pre-trained model, and the CS-baseline is the
model that continues pre-training on code-switched data. Shared Q.,.,ss and Pair Q)..,ss refer to cases where the
cross-lingual query is either shared across many language pairs or is specific to each language pair, respectively.
Scores are averaged across three different seeds
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(a) Non-interfering Attention Masks
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(b) Interfering Attention Masks

Figure 3: Illustration of the attention masks in Section 4.1. In the proposed scheme, two sets of independent query
matrices (Q and Q.ss) collaborate to compute the attention scores. Matrix M; enforces the () matrix to mostly
focus on monolingual attentions, and matrix M, constrains the Q.,-,ss to mostly handle cross-lingual attentions.
The difference between masks in the two figures are the structured attention dropout probability being either one
(left) or less than one (right). It is worth noting that the first token (e.g., [CLS] in mBERT) is used as a bridge in

both M; and M,, meaning its respective attentions are not masked.

Train Data

Method

LeapOfThought (Implicit Evaluation Set)

en fr fa de ar es zh ru it en-fr en-it en-es en-zh en-ru en-de en-fa en-ar fr-en de-en fa-en es-en it-en ru-en zh-en ar-en

Original 76.50 69.94 6622 7287 60.92 7285 7673 6622 67.15 7557 7340 7414 7581 7177 7631 69.67 7048 7207 7254 70.76 73.86 71.34 7033 74.09 68.62

mix(en, en-f) CS-baseline | 76.34 69.28 6540 72.07 60.82 73.93 78.04 68.11 66.02 73.86 70.16 72.16 70.97 7038 73.65 69.46 66.74 7331 68.62 69.83 70.78 67.20 69.06 70.85 66.18
Shared Qcross | 77.11 7223 65.63 72.15 60.90 70.67 76.96 66.72 66.49 76.80 7386 74.09 77.81 7424 7673 7277 69.82 7331 7207 7083 7417 7021 7176 7533 70.05

Pair Qcross 7735 7230 67.18 7424 63.07 7463 78.12 66.80 6641 7440 7448 7393 7812 7331 76.11 7269 70.52 74.17 74.86 7223 7587 7254 69.90 7541 69.74

Original 76.34 67.88 67.80 7192 6191 7331 7828 6687 6548 7261 7246 7247 7611 69.12 7595 70.13 6533 66.80 7254 71.92 7448 70.13 70.67 7517 70.13

mix(en, en-de) CS-baseline | 76.42 66.02 67.42 72.61 6253 72.69 7727 66.56 64.70 7332 7154 7417 7405 7246 7426 70.92 69.90 67.73 7246 7331 72.69 66.80 69.12 72.54 66.87
Shared Qcross | 76.88  66.87 6649 7370 61.13 7238 77.89 6742 6726 73.55 7285 74.01 77.11 7153 7688 7199 67.88 6827 7471 7122 7463 69.51 7254 77.50 68.19

Pair Quross | 76.65 69.36 6633 74.55 5888 7347 77.04 66.02 68.04 7292 7409 7393 7820 72.14 7680 7036 70.03 71.02 7580 73.62 74.16 7021 7167 76.15 69.41

Original 7626 69.51 69.05 7285 60.59 73.62 76.11 67.11 6749 7114 71.85 7208 7486 71.76 7448 70.13 66.51 6645 71.30 70.63 7448 7038 70.75 76.34 66.30

. CS-baseline | 75.04 67.18 67.34 71.69 60.68 74.86 7898 69.05 66.18 73.70 7331 76.11 7797 7132 7466 7355 7021 6589 7217 7199 72.17 68.66 71.76 7334 6549
mix(en. en-ru) Shared Qcross | 76.25 68.87 69.11 71.14 59.19 75.17 77.66 6725 6633 73.31 7254 7417 7657 73.08 7572 7153 68.74 6843 7215 7176 7626 7036 71.14 77.04 68.19
Pair Qeross | 7727 6711 69.67 73.08 59.12 7471 78.04 6742 66.64 7447 7401 7479 7866 7432 76.64 7339 7083 7059 74.86 7254 7595 6835 7214 77.19 67.80

Original 7588 68.20 66.73 72 6245 7393 79.99 6633 6502 7024 7193 7278 79.60 69.80 74.71 70.61 68.52 69.74 74.65 7223 7494 70.67 73.31 7843 68.50

mix(en, en-zh) CS-baseline | 77.35 67.80 66.74 7238 60.74 7271 8092 66.02 6501 7079 7339 7248 80.92 6838 7465 70.01 6874 69.90 7331 7192 7370 67.73 69.36 73.08 62.84
Shared Qcross | 77.66 6625 66.18 7331 60.05 74.63 8045 66.80 66.49 71.37 71.84 73.16 80.61 7137 7548 7199 68.19 68.19 7424 7153 7595 69.90 7261 76.65 68.19

Pair Qeross | 77.33  67.56  66.80 7322 60.82 7355 79.60 66.10 67.18 7145 7207 7330 8045 71.14 7693 7222 6873 70.13 7408 71.99 7494 7021 72.84 76.18 69.74

Table 16: Cross-lingual transfer of XLM-R model on the LeapOfThought dataset to either monolingual samples or
code-switched language pairs (en-X and X-en). The original is the pre-trained model, and the CS-baseline is the
model that continues pre-training on code-switched data. Shared Q.,,ss and Pair Q.55 refer to cases where the
cross-lingual query is either shared across many language pairs or is specific to each language pair, respectively.
Scores are averaged across three different seeds.
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(b) en-ar sample (zero-shot transfer)

Figure 4: Attention visualization of the baseline mBERT model for in-language (en-fr) and zero-shot transfer (en-ar),
both from depth-0 of the RuleTaker dataset. The underlying mBERT model is fine-tuned on the mix(en, en-fr)
of the RuleTaker depth-0 dataset. We hypothesize that the poor cross-lingual transfer of baseline models to other
code-switched languages partially originates from instability of attention patterns across different languages as
depicted in above figures.
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Figure 5: Attention visualization of the mBERT model with cross-lingual query for in-language (en-fr) and zero-shot
transfer (en-ar), both from depth-0 of the RuleTaker dataset. The underlying mBERT model is fine-tuned on the
mix(en, en-fr) of the RuleTaker depth-0 dataset. We can see that attention patterns for our proposed model is more
stable between in-language and cross-lingual samples, compared to baseline model in Figure 4.
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