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Abstract

While pre-trained language models (PLMs)
have shown evidence of acquiring vast amounts
of knowledge, it remains unclear how much of
this parametric knowledge is actually usable in
performing downstream tasks. We propose a
systematic framework to measure parametric
knowledge utilization in PLMs. Our framework
first extracts knowledge from a PLM’s parame-
ters and subsequently constructs a downstream
task around this extracted knowledge. Perfor-
mance on this task thus depends exclusively
on utilizing the model’s possessed knowledge,
avoiding confounding factors like insufficient
signal. Employing this framework, we study
factual knowledge of PLMs and measure uti-
lization across 125M to 13B parameter PLMs.
We observe that: (1) PLMs exhibit two gaps
- in acquired vs. utilized knowledge, (2) they
show limited robustness in utilizing knowledge
under distribution shifts, and (3) larger mod-
els close the acquired knowledge gap but the
utilized knowledge gap remains.

1 Introduction

Recent research has demonstrated that language
models pre-trained on vast amounts of internet data
acquire a broad range of knowledge about linguis-
tic structures (Tenney et al., 2019b; Blevins et al.,
2022), encyclopedic relations (Petroni et al., 2019;
Hao et al., 2022), levels of commonsense (Zhou
et al., 2020; Liu et al., 2022a) , and even coding
and reasoning rules (Chen et al., 2021; Wei et al.,
2022b). Recent studies on behavioral parametric
probing and prompting (Jiang et al., 2020; Qin and
Eisner, 2021; Brown et al., 2020) has demonstrated
that such knowledge, collectively referred to as
“parametric knowledge,” resides reliably within a
subset of trained parameters in pre-trained models
(PLMs). Importantly, this knowledge can be iden-
tified without additional finetuning. For instance,
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Figure 1: Parametric knowledge of PLMs Gap 1
represents the missing facts in the model’s parametric
knowledge (what the model knows). Gap 2 exists in
how much of this knowledge can actually be utilized
in downstream tasks (the usable knowledge). We find
that although the first gap mostly shrinks, the second
remains as we increase the model’s size.

given the prompt “The capital of France is”,
a PLM can be queried to complete the input and
extract the fact “Paris”.

A common assumption about parametric knowl-
edge is that if the model poses a certain type of
knowledge, it utilizes it when performing down-
stream tasks related to that knowledge. For exam-
ple, if a model knows about X and Y (such that X
and Y are similar), and is taught to perform a task
on X , the convention is that the model generalizes
the application of the task on Y and all other similar
knowledge. Such is the foundation for the recent
interest in instruction tuning (Wei et al., 2022a;
Chung et al., 2022), and the SFT-RLHF pipeline
(Ouyang et al., 2022). In this paradigm, LLMs are
finetuned to learn how to follow instructions on a
few tasks the model is capable of and are subse-
quently expected to generalize and follow instruc-
tions for novel tasks by utilizing their pre-training
knowledge (residing in their parameters).

However, it is not clear to what extent this as-
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Obama went to Stanford.
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Paris was the birthplace of Alan Turing

Alan Turing was born in London.
. . .

Steve Jobs originated from London

Mahatma Gandhi died in London.
. . .

. . .

Kθ
train

Kθ
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Figure 2: XTRAEVAL Framework: (1) From a pretrained LM, Mθ, the model’s parametric knowledge are
extracted as Dθ. (2) Following which downstream task training and test split, Kθ

train and Kθ
test, are created from Dθ.

(3) The evaluation on the application of acquired knowledge is estimated through the performance on the test split,
after finetuning Mθ on the downstream task.

sumption holds in practice, giving rise to a central
question: how much of parametric knowledge will
get applied in downstream tasks? If the causal link
between "identifiable knowledge" and its practical
application in downstream tasks is not established
(Kulmizev and Nivre, 2021), the mere presence of
knowledge within a model’s parameters does not
necessarily guarantee its utilization in such tasks.
This raises questions about the assertion of pre-
trained language models (PLMs) as differentiable
knowledge bases (Hao et al., 2022) and their overall
capabilities. For instance, as demonstrated by Qin
et al. (2023), ChatGPT’s performance lags behind
its foundational model, GPT-3.5, in areas including
commonsense and logical reasoning tasks.

Previous studies have investigated this question
within linguistic domains and have demonstrated
that although PLMs have the capacity to encode
linguistic knowledge, they may not effectively em-
ploy it in downstream tasks. For example, McCoy
et al. (2019) illustrates that PLMs employ syntactic
heuristics to solve NLI even though they are able
to represent proper linguistic hierarchies (Tenney
et al., 2019a), even after finetuning (Merchant et al.,
2020; Zhou and Srikumar, 2022). Warstadt et al.
(2020) provide evidence that RoBERTa requires
data inoculation or pre-training with extensive data
in order to effectively utilize its hierarchical lin-
guistic knowledge. In a more recent study, Lover-

ing et al. (2021) demonstrate that the quantity of
“evidence” presented in the finetuning dataset in-
fluences the features that PLMs rely on during the
finetuning process. Specifically, the model may re-
sort to lexical heuristics when the finetuning signal
toward linguistic features is insufficient.

In this work, we are interested in a more general
sense of knowledge and propose XTRAEVAL —
EXTRACT, TRAIN, AND EVALUATE — to system-
atically measure how much of parametric knowl-
edge is utilized in downstream tasks. XTRAEVAL

sidesteps potential confounders (such as shortcuts
or insufficient signal) that arise from the nature of
arbitrary crowd-sourced tasks used in prior work
by carefully creating the downstream task from
the model’s own knowledge. Specifically, given
a pre-trained language model, our framework first
identifies and extracts knowledge residing in its pa-
rameters. Subsequently, using the extracted knowl-
edge, we construct a downstream task on which
we finetune the model. Finally, we measure knowl-
edge utilization based on its performance on the
downstream task. By constructing the task based
on the model’s pre-existing knowledge, we ensure
that (1) the model is evaluated solely on its pos-
sessed knowledge, avoiding penalties for lacking
information and (2) successful task completion re-
lies explicitly on utilizing the model’s parametric
knowledge, eliminating the insufficient training sig-
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nal issue and dataset shortcuts.
In this paper, we provide the first instantiation

of this paradigm based on encyclopedic knowledge
facts and conduct an extensive study to measure
knowledge utilization of PLMs across a wide range
of parametric scales (ranging from 125M to 13B).
We observe the following:

• PLMs show two different but equally impor-
tant gaps: (1) The gap in the acquired knowl-
edge and (2) and the gap in parametric knowl-
edge that can be actively applied to down-
stream tasks (Section 3).

• PLMs are not robust to finetuning distribution
shifts, and failure to utilize knowledge wors-
ens with such shifts, further questioning their
generalization capabilities (Section 4).

• Although scaling the number of parameters
helps to close the first gap, the second still
remains in larger sizes (Section 5).

In the next sections, we first describe our frame-
work and its instantiation in detail (Section 2),
and finally present our experimental results in Sec-
tions 3 to 5.

2 Framework

2.1 EXTRACT, TRAIN, AND EVALUATE

Principles The primary objective of our evalu-
ation framework is to measure how much of the
knowledge present in the model’s parameters is
actually usable in downstream tasks. Ideally, down-
stream tasks must be designed in a way that solely
attributes any success to the model’s knowledge
being used, while ensuring that failure in perform-
ing the task is not due to a lack of pre-training
knowledge.
The Paradigm To this end, we propose EX-
TRACT, TRAIN, AND EVALUATE , which consists
of three main steps:

Step 1. Given a pre-trained model Mθ with
parameters θ and a diagnostic dataset D (e.g. a
set of encyclopedic facts or coding problems), we
first extract and identify parametric knowledge as
a set of data instances x ∈ D the model can solve
without further training (zero-shot). We denote
such a set as Dθ, a realization of Mθ’s parametric
knowledge w.r.t D.

Step 2. We construct a downstream task K
around the model’s own knowledge Dθ (e.g. fact

retrieval or following instructions in coding) such
that the model can only solve the task by utilizing
the knowledge identified in the first step. More
formally, we create Kθ

train and Kθ
test as the non-

overlapping train and test sets of downstream task
K, where the model learns the task from Kθ

train.
Step 3. Finally, the performance on the test set

Kθ
test is used as a measure of the model’s ability to

utilize its knowledge.
Constructing the downstream task based on the

model’s knowledge ensures that the model is not
evaluated on the knowledge it did not acquire dur-
ing pre-training. Also, the I.I.D. nature of this
paradigm (i.e. the model is only exposed to inputs
it is already familiar with) allows us to measure
whether the model can utilize its knowledge at all.

2.2 Encyclopedic Knowledge
Factual parametric knowledge as in encyclopedic
facts is well-studied in PLMs (Petroni et al., 2019;
Jiang et al., 2020) and allows for an objective and
systematic evaluation of our framework (Figure 2).
Therefore, in this paper, we instantiate XTRAEVAL

to measure the utilization of parametric knowledge
concerning encyclopedic facts. In this case, the
diagnostic dataset D is a set of encyclopedic facts
D = {⟨h, r, t⟩i}ni=1 acquired from an off-the-shelf
knowledge base (e.g. Wikipedia). Each fact xi ∈
D is a tuple of the form ⟨head, relation, tail⟩, such
as ⟨Barack Obama,GraduatedFrom,Harvard⟩.

In the extraction phase, a pre-trained model Mθ

has to zero-shot predict the tail entity t given the
head entity h and the relation r. We use soft-
prompting (Qin and Eisner, 2021) to obtain the
model’s predictions, as it enhances prediction con-
sistency compared to discrete prompts, particularly
for moderate-sized models. The extracted knowl-
edge Dθ ⊂ D is the subset of tuples the model can
predict correctly.

Our downstream task K is a standard document
retrieval task (Karpukhin et al., 2020). Given a
query q, the model retrieves the relevant document
from a set of candidates. We construct Kθ from the
extracted knowledge in Dθ by converting each fact
x ∈ Dθ into a retrieval instance k ∈ Kθ. This
conditions the downstream task on the model’s
knowledge. The conversion generates a query q
by removing the tail entity t from x. It then gen-
erates relevant and irrelevant documents using a
stochastic generator

d ∼ P(d | H = h,R = r, T = t), (1)
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Encyclopedic Fact:
x = ⟨h, r, t⟩ = ⟨Barack Obama,GraduatedFrom,Harvard⟩

Input Sampled Document

(h, r, t)
Barack Obama graduated from Harvard.
Gold document (d+)

(h, r, ·) Barack Obama earned a degree from Stanford.
Randomly replacing the tail entity.

(·, r, t) Bill Gates received his degree from Harvard.
Randomly replacing the head entity.

(h, ·, t) Barack Obama was born in Harvard.
Randomly replacing the relation.

(·, ·, t) Steve Jobs died in Harvard.
Keeping the tail entity and sampling others entities.

(·, r, ·) McGill is the alma mater of Justin Trudeau.
Keeping the relation and sampling others entities.

(h, ·, ·) Barack Obama is located in London.
Keeping the head entity and sampling others entities.

(·, ·, ·) Michael jordan was a football player by profession.
Unconditional sampling.

Table 1: All possible inputs to the document generator
P(d | H,R, T ) per each fact x and examples of the
corresponding sampled documents. The dot means that
the corresponding entity or relation is not given, and the
document generator will randomly choose it from Dθ.
The gray text provides an explanation of the sampled
document. Note that we do not force the document
generator to generate a factual document and the model
itself has to predict the relevancy of each document.

where d depends on the head entity h, relation r,
and tail entity t. The document generator, P(d | ·),
selects a template at random and fills in the blanks
with the input entities. If H , R, or T are missing,
the generator chooses a random entity from Dθ

to complete the input. Specifically, we generate
relevant document d+ by sampling from P(d | ·)
with gold entities in x as input, and create irrelevant
documents d− by omitting one or more entities.
Each k comprises a tuple (q, {d+, d−1 , . . . , d−m}),
where m is the number of irrelevant documents.

We partition Dθ randomly (60%-40%) to gen-
erate Kθ

train and Kθ
test, which serve as the training

and test sets for the downstream task, respectively.
We finetune the model on Kθ

train in cross-encoder
setup (Nogueira and Cho, 2020) with the InfoNCE
objective (van den Oord et al., 2019):

L(k) = − log
exp(sim(q, d+))∑

d∈{d+,d−1 ,...,d−m} exp(sim(q, d))
.

The similarity score sim(., ) is computed as

sim(q, d) = h(Mθ([CLS]; q; d)),

where h is a randomly initialized value head that
takes the representation of the [CLS] token (or the

last token for decoder-only models) and outputs a
scalar as the similarity measure (Figure A.1). Fi-
nally, we evaluate the model on Kθ

test by measuring
its accuracy in retrieving the relevant document d+

among {d+, d−1 , . . . , d−m} for a given query q.
The task design ensures that the association be-

tween knowledge query qi and gold fact document
d+i relies solely on the parametric knowledge repre-
sented by xi ∈ Dθ This is because other variables,
like text overlap, are randomly sampled from the
same distribution for both query and documents.

Thus, the model can only solve the task by uti-
lizing its internal knowledge. Finetuning on Kθ

train

should only trigger the utilization of the parametric
knowledge.

Training The document generator P(d | ·) can
generate various types of documents for each fact
x ∈ Dθ. Please refer to Table 1 for a list of all the
types. For training, we use three types for negative
documents d−’s with uniform weights: (h, r, ·),
(·, r, t), and (h, ·, t) as they are the hardest ones
since they only differ in one entity from the query.
To keep the GPU memory usage under control, we
sample four documents per each type (refer to Sec-
tion 3.1 for the effect of the number of negatives
on the results), which results in a total of m = 12
negatives. We resample the documents on each
epoch to avoid overfitting and use a validation set
to choose the best checkpoint. Also, we keep the
learning rate low and use no weight decay to pre-
vent any forgetting. We use three seeds for the
extraction phase, three seeds for splitting Dθ into
train and test, and three seeds for finetuning on the
downstream task, which results in 27 different runs
per each model.

Inference During inference, the model must iden-
tify the gold document d+ amidst distractor docu-
ments d−’s. To ascertain that the model genuinely
recognizes the correct answer, we employ a varied
assortment of distractors. Initially, we use doc-
ument type (h, r, ·), ensuring all non-gold tails
are included. Subsequently, we utilize the remain-
ing non-gold document types listed in Table 1 as
distractors, sampling 50 documents for each type.
Lastly, we also sample 50 irrelevant but factually
correct documents from the test set to assess the
model’s sensitivity to factual accuracy.
We evaluate pre-trained models across various fam-
ilies: OPT (Zhang et al., 2022), GPT-Neo (Black
et al., 2021), RoBERTa (Liu et al., 2019), and
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Figure 3: (a) The fraction of encyclopedic facts the pre-trained LM can predict correctly without any training.
Reported over three seeds (standard deviation σ ≤ 0.004 for all models). (b) The model performance in downstream
task (created based on correctly predicted facts) measured as top-1 retrieval accuracy. Averaged over 27 runs per
each model (σ ≤ 0.011 for all models). Refer to Appendix B for detailed results.

BERT (Devlin et al., 2019). Unless otherwise
stated, we use the base size (125M) of these mod-
els. We investigate the scaling behavior of OPT
and LLaMa (Touvron et al., 2023) in Section 5.
We initialize the diagnostic dataset D from LAMA
(Petroni et al., 2019), which has 34K facts over
40 relations. Our results are reported over 1134
finetuning runs (Refer to Appendix A for detailed
hyperparameters.)

3 Evaluating the Knowledge Utilization

We separately report the fraction of facts (D) that
can be extracted and the downstream performance
of models in Figure 3.

First, we find that, on par with previous work
(Qin and Eisner, 2021), there is a significant gap
in the encyclopedic facts the models can correctly
predict and the entire facts present in the diagnostic
dataset D (Figure 3a). Note that one can arbitrarily
increase the number of correctly predicted by con-
sidering a prediction as correct if the gold entity is
among the model’s top-k predictions. However, we
only consider k = 1 to only focus on the facts that
the model can confidently predict. Nonetheless, we
find that BERT and RoBERTa extract slightly more
encyclopedic facts than GPT-Neo and OPT.

Critically, all models demonstrate a pronounced
gap in downstream task performance, or knowledge
utilization, (Figure 3b). This unexpected outcome
occurs despite the downstream task being seem-
ingly simple since (1) models are trained and eval-
uated on examples based on their accurate encyclo-
pedic knowledge predictions, and (2) both Kθ

train

and Kθ
test are sampled from the same distributions

(I.I.D), so the models only encounter seen entities.
Notably, OPT and GPT-Neo manage to outperform
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Figure 4: (a) Knowledge utilization when using dif-
ferent fractions of parametric knowledge to create the
downstream task. (b) The effect of number of negative
training documents (d−’s) used for creating the down-
stream task.

BERT and RoBERTa by a small margin.
This finding suggests that models struggle to

utilize their entire parametric knowledge in down-
stream tasks. In the next sections, we investigate
the potential causes of this gap.

3.1 Role of Downstream Training Data
The effect of initial knowledge Dθ As we utilize
Dθ to create the downstream task, examining the
impact of its size (|Dθ|) on knowledge utilization
is crucial. If consistent behavior is observed for
different sizes, it implies that the utilization gap
does not stem from the amount of initial knowl-
edge and must be rooted in inductive biases (e.g.,
the model or finetuning process), allowing us to
measure and compare utilization with different ini-
tial knowledge.

To measure such effect, for each model, we first
compute Dθ, and then instead of directly using it
for Kθ, we sub-sample smaller sets of it at various
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fractions and construct the downstream task using
each sub-sampled Dθ. In Figure 4.a, we observe
the knowledge utilization is fairly consistent (at
least for fractions > 0.4) across different sizes of
Dθ for all models. Larger fractions seem to have
less variance as well. This suggests that the uti-
lization performance is intrinsic to the downstream
knowledge transfer rather than the initial knowl-
edge residing in the model.

The effect of the number of negatives The
model learns to apply its parametric knowledge
by optimizing the retrieval objective. To ensure
the training signal, produced by contrastive loss
on Kθ

train, is strong, we vary the number of nega-
tive documents for creating Kθ

train. If the training
signal is weak, we expect knowledge utilization to
improve with more negatives.

To answer this question, we follow the same
setup as described in Section 2 and increase the
number of negative documents sampled per type
from 4 to 10. We also consider reducing it to 2 neg-
atives per type to better understand its effectiveness.
We keep the initial knowledge Dθ fixed.

Figure 4.b summarizes our findings. Knowledge
utilization remains the same for all models as we
increase the number of negatives. This pattern is
observed even with as few as two negatives per
type. This suggests that the training signal is strong
enough across the board and the gap in knowledge
utilization is not rooted in the training objective.

3.2 Gap 1 vs. Gap 2

Findings in Section 3.1 shows that the gap in knowl-
edge utilization (i.e. accuracy on Kθ

test) does not
depend on the size of Dθ and is fairly consistent
across different number of negatives. Moreover, we
find that the variation across the random splitting of
Dθ to create train and test sets of the downstream
task is negligible.

The robustness to such design choices allows
us to define Usable Knowledge, which basically
indicates the portion of facts from D that the model
can actually utilize in the downstream task. We
compute this metric by multiplying the accuracy
on Kθ

test by the fraction of correctly predicted facts
in D. We report the results in Figure 5.

These results clearly demonstrate that there exist
two gaps in the models’ knowledge. Gap 1 is in
how many facts the model knows after pre-training.
Gap 2 is in how many of facts the model knows
can be truly utilized in downstream tasks. Indeed,
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Figure 5: Gaps in parametric knowledge Gap 1
represents the missing facts in parametric knowledge
Dθ (what the model knows). Gap 2 exists in how
many of the known facts the model can actually utilize
in downstream tasks (the usable knowledge).

we see that although RoBERTa manages to extract
more facts than GPT-Neo, due to Gap 2, it performs
the same as GPT-Neo in downstream tasks.

4 Robustness of Knowledge Utilization

We intentionally design the downstream task Kθ

to be straightforward and free of any distributional
shift as we want to measure the maximum knowl-
edge utilization of the model. However, in real-
world applications, it is likely that the model en-
counter samples that are different from the training
distribution. In this section, we investigate the ro-
bustness of knowledge application in the presence
of such distributional shifts.

4.1 Non-I.I.D. Kθ
train and Kθ

test

Recall that we randomly divide Dθ into two sets
as the data source for the creation of Kθ

train and
Kθ

test. In this experiment, however, we split Dθ

such that the relation types (r) in Kθ
train and Kθ

test

are disjoint. Specifically, we randomly select 60%
of the relations and their corresponding facts for
Kθ

train and the rest for Kθ
test. We repeat this pro-

cess over three seeds to create three different splits.
We still follow the same procedure for converting
knowledge triples to document retrieval examples
as explained in Section 2. In this way, we ensure we
don’t change the task’s nature, i.e. the model still
needs to apply its parametric knowledge to solve
the task, but the distributional shift between Kθ

train

and Kθ
test can represent real-world scenarios. If

the model learns to systematically apply its knowl-
edge, we expect its downstream performance to be
similar to or close to the I.I.D. setting (Section 3).

We observe downstream task performance drops

4310



BERT RoBERTa GPT-Neo OPT

0

0.2

0.4

0.6

0.8

1
A

cc
ur

ac
y

on
D

ow
ns

tr
ea

m
T

as
k

(K
θ te

st
)

IID OOD Relation (r)

Figure 6: Robustness to distributional shift In the
OOD setting, we produce a distributional shift (over the
relation types) between the examples in the train and
test set of the downstream task Kθ. All models fail to
generalize to unseen relations. The IID setting is the
same as the one described in Section 2 and repeated
from Figure 3b for comparison.

significantly for all models when evaluated OOD
(Figure 6). This indicates the models cannot use
their knowledge on examples with unseen relation
types, though all relations and facts originate in
Dθ. Thus, knowledge usage in downstream tasks is
sensitive to distribution shifts, suggesting failure to
apply pre-training knowledge may be more severe
in real-world applications.

5 Effect of Scaling law On The Gaps

Recent NLP success has come from scaling up pre-
training model parameters (Brown et al., 2020).
With larger models and increased compute, capa-
bilities such as in-context learning and chain-of-
thought reasoning emerge (Wei et al., 2022b). The
expanded capacity allows these models to absorb
more knowledge from pre-training data, improving
their usefulness as knowledge sources. However,
it remains uncertain if scaling boosts the propor-
tion of pre-training knowledge applicable to down-
stream tasks. Ideally, we like to see a narrowing
gap in pre-training knowledge alongside superior
knowledge utilization.

To investigate this, we evaluate XTRAEVAL

on increasing sizes of OPT and LLaMa models.
Specifically, at each scale, we first extract the
model’s parametric knowledge and then create the
downstream task based on it using the same proce-
dure as described in Section 2. Figure 1 reports the
results of this experiment.

First, we confirm that a greater fraction of knowl-
edge triples in D can be identified in larger models,
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Figure 7: Gaps in parametric knowledge Knowl-
edge gaps directly compute across different model sizes.
Specifically, we use 1 − (Accuracy on Dθ) for Gap 1
and (Accuracy on Dθ)×(1−downstream accuracy) for
Gap 2†.

suggesting they acquire more knowledge from pre-
training data. Secondly, we find that the gap be-
tween identifiable and usable knowledge persists in
larger models, and their ability to apply knowledge
in downstream tasks does not improve with scaling.
Figure 7 illustrates these gaps directly, demonstrat-
ing that while Gap 1 decreases in larger models,
Gap 2 remains relatively unchanged.

The results suggest that while PLMs, even at
small scales, pose considerable knowledge, ex-
tracting an equivalent amount of usable knowl-
edge necessitates much larger models. For in-
stance, OPT-125M accurately predicts 34% of en-
cyclopedic facts, but only OPT-13B (approximately
100× larger) can reliably apply the same volume
in downstream tasks. Enhanced pre-training rou-
tines, including the use of more data or higher qual-
ity data, can bolster knowledge acquisition, as is
clearly demonstrated by LLaMa models. Notably,
LLaMa-7B significantly outperforms OPT-13B.
While LLaMa models possess a greater amount of
usable knowledge due to superior initial knowledge,
a gap in knowledge utilization remains discernible
(Figure 7).

6 Discussion

Lately, pre-trained language models with chat-
bot interfaces have increasingly been served as
knowledge bases (Ouyang et al., 2022). These
chatbots typically employ the model’s parametric

†We conducted the experiments for OPT-6.7B multiple
times, and observed a dip in performance in all runs. We
suspect that this consistent decline may be attributed to issues
that arose during the pre-training phase.
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knowledge to respond to queries and offer infor-
mation. Our study examines the dependability of
this knowledge and its impact on downstream task
performance. We discover that, regardless of in-
ductive biases, PLMs face difficulty utilizing their
full knowledge in downstream tasks (Section 3).
This unreliability of parametric knowledge could
constrain the concept of “PLMs as differentiable
knowledge bases.”

Additionally, our findings show that the utiliza-
tion gap persists even with scaling (Section 5). No-
tably, while models at each scale capture more
knowledge from pre-training data, obtaining the
same amount of usable knowledge requires sig-
nificantly larger models. This exposes a potential
constraint in the recent trend of adopting mid-sized
PLMs (Li et al., 2023).

Lastly, we discover that knowledge utilization
depends on the peculiarities of finetuning data for
downstream tasks. Specifically, as seen in Sec-
tion 4, PLMs struggle to apply their knowledge
to relation types not encountered during finetun-
ing, even if they accurately predicted such facts
in step 1. This generalization gap could highlight
challenges within the recent SFT-RLHF paradigm
(Ouyang et al., 2022). For instance, the model
may only adhere to instructions and excel at tasks
resembling the finetuning data. Consequently, it
might be necessary to meticulously craft finetuning
data to activate and utilize all aspects of parametric
knowledge in downstream tasks. However, it re-
quires elaborate studies to establish the systematic
issues in knowledge application beyond encyclope-
dic knowledge like procedural and task knowledge.

7 Related Work

Parametric Knowledge Petroni et al. (2019)
constructed a probing dataset to measure the fac-
tual knowledge present in PLMs. They showed that
many encyclopedic facts can be extracted without
further training of the model and proposed PLMs as
a new type of knowledge base, which can be trained
on the unstructured text and queried using natural
language. Follow-up work improves the methods
for probing and extracting world knowledge from
PLMs (Jiang et al., 2020; Shin et al., 2020; Qin and
Eisner, 2021; Newman et al., 2022). Apart from
encyclopedic facts, studies have explored PLMs’
parametric knowledge in other areas, such as lin-
guistic structures (Tenney et al., 2019b; Blevins
et al., 2022), and commonsense (Zhou et al., 2020;

Liu et al., 2022a). Recently, the emergent abilities
of LLMs have shown that they acquire skills like
coding (Chen et al., 2021), reasoning (Chowdh-
ery et al., 2022), and in-context learning (Brown
et al., 2020), in addition to the previously men-
tioned knowledge.

Using the Parametric Knowledge Roberts et al.
(2020) finetune a pre-trained T5 model for question
answering in a closed-book setting and showed that
it can perform on par or better than models that use
explicit knowledge bases. Wang et al. (2021) made
a similar observation for the BART model. More
recently, PLMs are being used to generate facts
and documents for knowledge-intensive tasks (Li
et al., 2022; Liu et al., 2022b; Yu et al., 2023). In
this paradigm, in order to answer factual questions,
instead of retrieving relevant documents, the model
has to first generate the facts and then answer the
question with those facts as context. This paradigm
shows that the models may not be able to use their
parametric knowledge on their own and need ex-
plicit grounding to be able to use it. Furthermore,
there is a plethora of work that investigates whether
the model employs its linguistic knowledge when
solving downstream language understanding tasks.
McCoy et al. (2019) shows that RoBERTa does not
use its linguistic knowledge for solving NLI. In-
stead, it relies on shallow heuristics. Lovering et al.
(2021)’s observation aligns with this finding and
shows the training data used for the downstream
task needs to have enough evidence to trigger the
model’s linguistic knowledge. In our work, we use
a more general notation of parametric knowledge
and investigate utilization in cases where sufficient
evidence is present in the finetuning data.

8 Conclusion

In this study, we presented EXTRACT, TRAIN,
AND EVALUATE (XTRAEVAL ), a framework de-
signed to assess the parametric knowledge of pre-
trained language models. Employing XTRAEVAL

we identified a previously unnoticed gap in what
models know and how much of it they can actually
use. Our findings reveal that this gap exists not
only in smaller models but also persists in larger
ones. Additionally, we demonstrate that a distri-
butional shift in finetuning data can result in even
larger gaps between the model’s knowledge and its
practical application in downstream tasks.
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Limitations

Although XTRAEVAL is agnostic to the specific
type of parametric knowledge, our work primarily
focuses on encyclopedic facts as one type of world
knowledge that PLMs can acquire. It is plausible
that similar results would hold for other knowledge
types, however, further work is needed for a precise
investigation.

While there are various downstream tasks that
could be evaluated, we primarily focus on doc-
ument retrieval as it allows us to systematically
demonstrate the key issue of knowledge applica-
tion that we aim to highlight. We also acknowledge
that our study was limited to a few model families
and parameter scales due to compute constraints.
However, our evaluation protocol is model agnostic,
enabling future work to explore this phenomenon
on other tasks and with different models.
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Value Head

Pre-trained Model 

Where did Obama graduate from? Obama graduated from Harvad.

Similarity Score

Figure A.1: Cross-encoder document retrieval setup
(Nogueira and Cho, 2020). For decoder-only models,
the value head takes the representation of the last input
token.

A Training Details

A.1 Knowledge Extraction

We adopt the same procedure as outlined by Qin
and Eisner (2021) for extracting knowledge facts
from a frozen PLM. Specifically, we utilize soft-
prompts instead of discrete prompts. We insert
three soft prompts before and after the head entity
and allocate distinct soft-prompts for each rela-
tion type. We then train them using the training
set provided by Qin and Eisner (2021) and em-
ploy a validation set to select the best checkpoint.
The hyperparameters used in this stage, borrowed
from Qin and Eisner (2021), are summarized in
Table A.1.

A.2 Finetuning

For fine-tuning the models, we follow a straight-
forward procedure, training the models in a
cross-encoder setup (Figure A.1). The hyper-
parameters used for fine-tuning are listed in Ta-
ble A.2. In initial experiments, we tried lr ∈
1× 10−5, 3× 10−5, 5× 10−5, but we did not find
any significant difference between them for all
models. Thus, we opted to use the same learning
rate for all models.

A.3 Dataset Details

We employ the LAMA dataset (Petroni et al., 2019)
as our diagnostic set, consisting of 34,039 facts.
The training and validation sets for soft-prompt
training, provided by Qin and Eisner (2021), con-
tain 29,029 and 7,255 triples, respectively. The size
of the downstream dataset varies from one model
instance to another, as we construct the downstream
task based on its extracted knowledge. The size
of such datasets can be easily calculated by multi-
plying the number of facts in D by the knowledge

Parameter Value

Optimizer AdamW
Learning rate 1× 10−4

Weight Decay 0
Batch size 64
Learning Rate Scheduler Polynomial
Warm Up 6% of training steps
# Train Epochs 20

Table A.1: Summary of hyperparameters used in knowl-
edge extraction stage (stage 1).

Parameter Value

Optimizer AdamW
Learning rate 1× 10−5

Weight Decay 0
Batch size 32
Learning Rate Scheduler Polynomial
Warm Up 6% of training steps
# Train Epochs 20

Table A.2: Summary of hyperparameters used in fine-
tuning on downstream task (stage 2).

extraction accuracy obtained by the model.

A.4 Scaling Experiment Details

We adhere to the same procedure as other models
in the scaling experiments of OPT and LLaMa.
For larger models, we only increase the batch size
following Iyer et al. (2023) to ensure better fine-
tuning stability. Due to the extensive computational
and cost requirements of fully fine-tuning the 7B
and 13B models, we limit the number of seeds
for these variants. Specifically, we trained four
seeds for LLaMa-7B, two for OPT-13B, and one
for LLaMa-13B.

A.5 Computational Resources

For the experiments in this study, we exclusively
use NVIDIA V100-32GB GPUs. Models with ≤
350M parameters were trained on a single GPU.
For knowledge extraction, we utilized parallel train-
ing implemented by DeepSpeed for larger parame-
ter sizes. Table A.4 displays the number of GPUs
used and the approximate duration of a single train-
ing run.

A.6 Reproducibility

For the experiments in this study, we exclusively
use NVIDIA V100-32GB GPUs. Models with ≤
350M parameters were trained on a single GPU.
For knowledge extraction, we utilized parallel train-
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Model Knowledge Extraction Downstream Finetuning

OPT

125M 64 32
350M 64 32
1.3B 64 32
2.7B 64 32
6.7B 128 64
13B 128 64

LLaMa

7B 128 64
13B 128 64

Table A.3: Batch size used in the scaling experiments.

Model Knowledge Extraction Downstream Finetuning

OPT

125M 1 (0h 30m) 1 (0h 30m)
350M 1 (0h 30m) 1 (1h 0m)
1.3B 2 (1h 40m) 2 (1h 40m)
2.7B 4 (3h 30m) 4 (3h 50m)
6.7B 8 (1h 20m) 8 (8h 40m)
13B 8 (5h 20m) 8 (1d 4h 40m)

LLaMa

7B 8 (8h 30m) 8 (17h 40m)
13B 8 (17h 30m) 8 (1d 15h 15m)

Table A.4: Number of GPU and approximate training
time for each model size.

ing implemented by DeepSpeed for larger parame-
ter sizes. Table A.4 displays the number of GPUs
used and the approximate duration of a single train-
ing run.

B Full Results

B.1 Detailed IID Results
We present the comprehensive results of our exper-
iments from Section 3 in Tables B.5 to B.8.

B.2 Detailed OOD Results
Table B.9 provides a detailed account of the experi-
ment results in Section 4.

B.3 Detailed Scaling Results
The detailed results of Section 5 are presented in
Tables B.10 and B.11.
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Model Knowledge Extraction Accuracy Downstream Accuracy

BERT 0.4722 ± 0.0006 0.7760 ± 0.0112
RoBERTa 0.3681 ± 0.0007 0.7852 ± 0.0092
GPT-Neo 0.3531 ± 0.0005 0.8081 ± 0.0099
OPT 0.3444 ± 0.0038 0.8177 ± 0.0083

Table B.5: Mean±standard deviation of results presented in Figure 3a and Figure 3b Each number is computed over
27 runs and models are in 125M parameter regime.

Downstream Accuracy (Per Number of Negatives)

Model 6 12 18 27 30

BERT 0.7604 ± 0.0190 0.7760 ± 0.0112 0.7908 ± 0.0075 0.7965 ± 0.0081 0.7970 ± 0.0055
RoBERTa 0.7660 ± 0.0192 0.7852 ± 0.0092 0.7889 ± 0.0086 0.7961 ± 0.0100 0.7927 ± 0.0117
GPT-Neo 0.8000 ± 0.0115 0.8081 ± 0.0099 0.8129 ± 0.0128 0.7577 ± 0.2186 0.7586 ± 0.2189
OPT 0.7966 ± 0.0109 0.8177 ± 0.0083 0.8179 ± 0.0113 0.8294 ± 0.0054 0.8269 ± 0.0095

Table B.6: Mean±standard deviation of results presented in Figure 4. Each number is computed over 27 runs and
models are in 125M parameter regime.

Downstream Accuracy (Per Fraction of Dθ)

Model 0.2 0.4 0.6 0.8 1

BERT 0.5371 ± 0.0707 0.7015 ± 0.0272 0.7376 ± 0.0173 0.7678 ± 0.0138 0.7760 ± 0.0112
RoBERTa 0.7329 ± 0.0554 0.7763 ± 0.0153 0.7824 ± 0.0122 0.7769 ± 0.0145 0.7852 ± 0.0092
GPT-Neo 0.8139 ± 0.0633 0.8313 ± 0.0268 0.8149 ± 0.0318 0.7948 ± 0.0164 0.8081 ± 0.0099
OPT 0.7542 ± 0.0710 0.8312 ± 0.0135 0.8100 ± 0.0158 0.8065 ± 0.0119 0.8177 ± 0.0083

Table B.7: Mean±standard deviation of results presented in Figure 4. Each number is computed over 27 runs and
models are in 125M parameter regime.

Fraction of Encyclopedic Facts Knowledge Gaps

Model Identifiable Usable Gap 1 Gap 2

BERT 0.4722 ± 0.0006 0.3665 ± 0.0052 0.5277 ± 0.0006 0.1058 ± 0.0053
RoBERTa 0.3681 ± 0.0007 0.2890 ± 0.0035 0.6319 ± 0.0008 0.0791 ± 0.0034
GPT-Neo 0.3531 ± 0.0005 0.2854 ± 0.0035 0.6468 ± 0.0006 0.0678 ± 0.0035
OPT 0.3444 ± 0.0038 0.2816 ± 0.0036 0.6556 ± 0.0038 0.0628 ± 0.0030

Table B.8: Full results including mean±standard deviation of experiments presented in Figure 5.

Downstream Accuracy

BERT RoBERTa GPT-Neo OPT

IID 0.7760 ± 0.0112 0.7852 ± 0.0092 0.8081 ± 0.0099 0.8177 ± 0.0083

OOD Relation (r) - All 0.2467 ± 0.0396 0.3559 ± 0.0415 0.1312 ± 0.0365 0.0976 ± 0.0458
OOD Relation (r) - Seen entities 0.2451 ± 0.0337 0.3778 ± 0.0474 0.1330 ± 0.0346 0.1001 ± 0.0489
OOD Relation (r) - Unseen entities 0.2361 ± 0.0608 0.3176 ± 0.0616 0.1317 ± 0.0503 0.0971 ± 0.0499

Table B.9: Full results including mean±standard deviation of experiments presented in Figure 6. Each number is
computed over 27 runs.
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Model Knowledge Extraction Accuracy Downstream Accuracy

OPT

125M 0.3677 ± 0.0045 0.6836 ± 0.0049
350M 0.3839 ± 0.0017 0.7451 ± 0.0053
1.3B 0.4403 ± 0.0052 0.7485 ± 0.0026
2.7B 0.4761 ± 0.0019 0.7458 ± 0.0149
6.7B 0.5090 ± 0.0016 0.3819 ± 0.0220
13B 0.5407 ± 0.0008 0.7155 ± 0.0013

LLaMa

7B 0.6952 ± 0.0078 0.7548 ± 0.0099
13B 0.7014 ± 0.0025 0.7508

Table B.10: Results of stage 1 and stage 2 for various parameter sizes, which is used to present plots in Figures 1
and 7

Fraction of Encyclopedic Facts Knowledge Gaps

Model Identifiable Usable Gap 1 Gap 2

OPT

125M 0.3677 ± 0.0045 0.2513 ± 0.0013 0.6323 ± 0.0033 0.0941 ± 0.0234
350M 0.3839 ± 0.0017 0.2860 ± 0.0019 0.6161 ± 0.0015 0.0811 ± 0.0174
1.3B 0.4403 ± 0.0052 0.3289 ± 0.0037 0.5606 ± 0.0037 0.0945 ± 0.0166
2.7B 0.4761 ± 0.0019 0.3551 ± 0.0077 0.5239 ± 0.0016 0.1029 ± 0.0196
6.7B 0.5090 ± 0.0016 0.1944 ± 0.0112 0.4910 ± 0.0014 0.2712 ± 0.0467
13B 0.5407 ± 0.0008 0.3874 ± 0.0007 0.4586 ± 0.0000 0.1325 ± 0.0249

LLaMa

7B 0.6952 ± 0.0078 0.5282 ± 0.0062 0.3002 ± 0.0010 0.1382 ± 0.0358
13B 0.7014 ± 0.0025 0.5288 0.2957 ± 0.0000 0.1503 ± 0.0356

Table B.11: Mean±standard deviation of results presented in Figures 1 and 7.
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