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Abstract

Large Language Models (LLMs) have not only
exhibited exceptional performance across var-
ious tasks, but also demonstrated sparks of in-
telligence. Recent studies have focused on as-
sessing their capabilities on human exams and
revealed their impressive competence in dif-
ferent domains. However, cognitive research
on the overall knowledge structure of LLMs is
still lacking. In this paper, based on educational
diagnostic assessment method, we conduct an
evaluation using MoocRadar, a meticulously
annotated human test dataset based on Bloom
Taxonomy. We aim to reveal the knowledge
structures of LLMs and gain insights of their
cognitive capabilities. This research empha-
sizes the significance of investigating LLMs’
knowledge and understanding the disparate
cognitive patterns of LLMs. By shedding light
on models’ knowledge, researchers can ad-
vance development and utilization of LLMs
in a more informed and effective manner.

1 Introduction

Large language models (LLMs), such as GPT se-
ries (Brown et al., 2020), Flan (Wei et al., 2022),
and PaLM (Chowdhery et al., 2022), have gained
significant attention worldwide due to their remark-
able ability. Given their unprecedented human-like
performances, researchers have started to explore
alternative evaluation metrics beyond traditional
benchmarks like MMLU (Hendrycks et al., 2021)
and Big-Bench (Ghazal et al., 2017).

Existing Works on LLMs Evaluation with Ex-
ams. Researchers have long sought models capable
of passing human exams (Nilsson, 2005). Recently,
a new approach simulates professional exams de-
signed for humans to evaluate LLMs. For example,
OpenAl (2023) reports the performance of GPT
series on a variety of exams, including AP exams,
SAT, Leetcode, and so on. There are also emerging
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benchmarks that comprise common standardized
exams, such as AGIEval (Zhong et al., 2023), C-
Eval (Huang et al., 2023), M3Exam (Zhang et al.,
2023), and CMExam (Liu et al., 2023). However,
although standardized exams contain diverse infor-
mation, these works condense them into a single
overall score, lacking structured understanding of
LLMs’ knowledge and cognitive patterns.

For example, while LLMs demonstrate excep-
tional performance on tasks challenging for hu-
mans, they might still struggle with basic knowl-
edge, as illustrated in Figure 1, which may lead to
over-estimation of the validity of model generated
contents. Therefore, there is a pressing need for fur-
ther research of models’ knowledge and cognitive
distribution in comparison to humans.

Proposed Research. To investigate this prob-
lem, we draw inspiration from psychometric meth-
ods that use cognitive psychology theories to eval-
vate LLMs. This topic has gained traction as
LLMs continue to demonstrate exceptional perfor-
mances (Chollet, 2019; Singh et al., 2023; Bubeck
et al., 2023). In this work, we adopt the Educa-
tional Diagnostic Assessment approach and lever-
age MoocRadar (Yu et al., 2023), a novel student
exercise dataset annotated with Bloom’s Taxon-
omy (Anderson and Krathwohl, 2001), to assess
the cognitive capability of LLMs. Specifically, we
delve into three primary research questions: 1)
Performance Analysis: the proficiency and robust-
ness of LLMs across various question domains; 2)
Deficit Assessment: the knowledge structure and
the extent to which LLMs are similar with humans;
and 3) Error Assessment: the error pattern of LLMs
in answers and explanations. Our findings con-
tribute to a deeper understanding of the knowledge
structure of LLLMs and insights for evaluation.

Contributions. Our main contributions are:

(i) We introduce the topic of the cognitive knowl-
edge structure of LLMs.
(i1)) We propose a method of Educational Diag-
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Dataset
Problem 1

Knowledge Type: 1 Cognitive Dimension: 2 Question Type: TF
[Question] Methane has a center of symmetry.
[Options] True, False

Problem 2

Knowledge Type: 3 Cognitive Dimension: 4 Question Type: SC
[Question] The incorrect combination of quantum numbers for outer
atomic electrons among the following is:
[Options] A: n=3, I=2, m=0, ms=+1/2, B: n=2, I=1, m=-1, ms=-1/2,
C: n=4, I=1, m=2, ms=-1/2, D: n=3, I=1, m=-1, ms=+1/2

~

Instructions Results Diagnostic
True or False Response 1 Performance
L Please determine true or false | Ly (ChatGPT) \‘l Disciplines
and provide your reason. True. Contexts
Because ...
Single Choice Deficit
Whgt's the answer of this single Knowledge
— choice question? why? ~—» Response 2 Cognitive
Multiple Choice (ChatGPT)
What's th £ thi il C is correct. Error
at's the answer of this multiple: i
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Figure 1: ChatGPT correctly answers a question that is challenging with higher knowledge type and cognitive
dimensions right (problem 2) but encounters difficulties in an easier one (problem 1). We design specific instructions
to evaluate LLMs and assess their performances in three aspects.

nostic Assessment to evaluate LLMs on their
cognitive knowledge structure.

(iii)) We assess LLMs’ performance, deficits, and
errors, gaining insights into their capabilities.

2 Method

2.1 Educational Diagnostic Assessment

In education scenarios, Diagnostic Assessment
is a widely employed method to gauge students’
knowledge structure (Falmagne et al., 2006), dis-
covering their proficiency on certain subject mat-
ters and learning styles (Vuong et al., 2021), typi-
cally through sets of questions (Leighton and Gierl,
2007). Two main approaches of Diagnostic Assess-
ment include deficit assessment, which focuses
on identifying and addressing knowledge gaps in
various domains and the degree of knowledge mas-
tery, and error assessment, which focuses on error
patterns and strategies for correction (Bejar, 1984).
Drawing inspiration from Diagnostic Assessment
methods, in this work, based on Bloom’s Taxon-
omy, we use deficit assessment to test the accuracy
of models on a wide range of exercises, and error
assessment on their answers and explanations.

2.2 Experimental Setup

Dataset. In this section, we introduce the dataset
utilized for assessment, MoocRadar, offering an
extensive overview of its general information.
MoocRadar is a fine-grained and multi-aspect ex-
ercise repository designed for cognitive modeling
and educational diagnostic assessment. According
to Bloom’s Taxonomy, questions in MoocRadar are
categorized into four Knowledge-Types: Factual-
knowledge, Conceptual-knowledge, Procedural-
knowledge, and Meta-knowledge; and six cognitive
dimensions: Remember, Understand, Apply, Ana-

lyze, Evaluate, and Create. Table 1 demonstrates a
detailed description of Bloom’s Taxonomy.

Cognitive Dimensions \ Descriptions

Remembering ‘ Remember, Know, Identify, ...
Understanding | Translate, Explain, Induce, ...
Applying | Prove, Estimate, Execute, ...
Analyzing ‘ Compare, Select, Organize, ...
Evaluating ‘ Evaluate, Judge, Criticise, ...
Creating \ Design, Create, Program, ...
Knowledge Types \ Descriptions
Factual ‘ Terminology and Details
Conceptual | Relationships and Theories
Procedural | Processes and Methods
Meta | Strategy and Self-knowledge
Table 1: A detailed descriptions and examples of

Bloom’s Taxonomy in MoocRadar.

We carefully select 8453 questions appropriate
for model evaluation, which fall into three types:
single choice (SC), multiple choice (MC), and true
or false (TF). Additionally, we exclude the dimen-
sion of Create because of the scarcity of related
exercises. We further classify these questions into
four disciplines by their course information, includ-
ing STEM, social science, humanity, and others.
We test the performance of models on them and
analyze the distribution of these features. More de-
tails of MoocRadar are illustrated in the appendix.

Model Selection. We carefully choose 3 ad-
vanced models that have consistently demonstrated
leading performance and are widely recognized
in the field, including: 7Text-Davinci-003, Chat-
GPT, and GPT-4, which represent a series of most
acknowledged models. All experiments are per-
formed using the APIs provided by OpenAl. Specif-

1644



ically, we use the completion API for Text-Davinci-
003 and the chat completion API for ChatGPT and
GPT-4. To ensure consistency in the quality of the
responses, we set the temperature to 0 to get greedy
search responses generated by each model.
Experimental Design. As shown in Figure 1,
we design different prompts tailored to each type of
exercises to query LLMs for both answers and ex-
planation. All tasks are conducted in zero-shot sce-
nario. To simulate human-like behavior that solv-
ing exercises with relevant knowledge, we leverage
the BM25 algorithm to retrieve the two most related
discussions from the subtitles in the corresponding
courses in MOOCCubeX (Yu et al., 2021) and test
their effect. Moreover, we extract real student be-
haviors on MoocRadar dataset from MOOCCubeX
and calculate their average scores to serve as a refer-
ence of humans. Based on both results from human
and LLMs, this work provides a road map with
investigation to the following research questions:
(RQ1) Performance Analysis: What’s the fea-
tures of LLMs’ basic performance on different dis-
ciplines and their robustness to these questions?
(RQ2) Deficit Assessment: According to
Bloom Taxonomy, compared with humans, what
knowledge distribution does LLMs demonstrate?
Are they similar to humans in knowledge structure?
(RQ3) Error Assessment: Based on answers
and explanations, what’s their pattern of errors?

3 Experiment

In this section, we conduct experiments and ana-
lyze the results from three perspectives in the fol-
lowing subsections. We assign a score of 1 to each
question type. Following standardized exams, for
multiple questions, models receive a score of 0.5
if they fail to select all correct options. We then
calculate the average score across questions.

3.1 Performance Analysis

Firstly, we assess their performance both with and
without contexts, compare their performance in
different disciplines, and examine their robustness.

Disciplines and Context. We exhibit scores of
model answers with or without context on the four
disciplines (STEM, social science, humanity, and
others). As shown in Table 2, the later versions
of GPT significantly outperform previous models,
with GPT-4 being the most advanced, but not bet-
ter than humans’ average. Additional knowledge
from context indeed enhances the performance of

the models. Comparatively, STEM exercises are
more challenging as illustrated in human results,
while LL.Ms demonstrate impressive capability in
STEM knowledge. GPT-4 even outperforms hu-
mans with context. However, it is surprising that
LLMs don’t perform as effectively in social sci-
ence and humanities exercises, even though these
disciplines primarily involve natural language.

Models | Total | STEM  S.S. Human. Others
GPT-3.5 | 0436 | 0.418 0.461 0.483 0.421
-context | 0.508 | 0.468  0.554 0.614 0.504
ChatGPT | 0.506 | 0.480  0.547 0.533 0.525
-context | 0.526 | 0.441  0.642 0.639 0.601
GPT-4 | 0.657 | 0.613 0.732 0.684 0.690
-context | 0.687 | 0.629  0.765 0.774 0.733
Human | 0.746 | 0.625  0.924 0.854 0.791

Table 2: Models and human performance. S.S. and

Human. are short for social science and humanity, and
context is the result of models with context. Bold figures
denote best performance.

Robustness. In single choice questions, we ma-
nipulate the order of the options by either placing
the correct answer at the beginning or the end. This
allows us to examine if such modifications affect
the model’s accuracy. As shown in table 3, we
find that 1) ChatGPT is more robust to changing
of options, while the other two exhibits a cognitive
bias as Primacy Effect (Deese and Kaufman, 1957)
that early appearance aids performance; 2) if the
correct answer appears later in GPT-3.5 and GPT-4,
they mistakenly change their answers and explana-
tions; 3) later appearance causes less consistency
in answers and explanations in less robust models.

Models \ Answer Explanation Real
GPT-3.5 0.405 0.436 0.390
~first 0.576 0.554 0.476
-last 0.362 0.390 0.296
ChatGPT 0.489 0.501 0.487
~first 0.440 0.438 0.438
-last 0412 0.430 0.412
GPT-4 0.635 0.643 0.632
-first 0.727 0.728 0.727
-last 0.520 0.529 0.473

Table 3: Single choice accuracy of three models. First
and last indicate the place of the correct answers. Real
is when answers and explanations are both correct. Bold
figures denote the best performance.
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3.2 Deficit Assessment

We utilize Bloom’s Taxonomy in MoocRadar to
demonstrate models’ distribution in cognitive di-
mensions and knowledge types and design a score
to measure similarities of models to humans.
Bloom Taxonomy Distribution. As shown in
Figure 2, we demonstrate the distribution based on
Bloom’s taxonomy, where deeper colors represent
better performance. The O and 1 grids are due to
the limited number of exercises, typically only one.
Generally, both in knowledge types and cognitive
dimensions, questions in the intermediate range
are more challenging for models and humans. We
design a similarity score for deeper understanding.

ChatGPT
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meta
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Knowledge Types
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fact.

Student
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Cognitive Dimensions

Figure 2: The distributions of accuracy in Bloom’s Tax-
onomy of different models and average of students.

Similarity Score. According to the accuracy of
models in various dimensions of knowledge and
cognition, we develop a metric to measure their
similarity to humans, which primarily considers
knowledge structure, beyond mere performance,
and estimates the extent to which their cognitive
structure is proportional to that of humans. Specifi-
cally, given a model M, the 4*5 vector of the model
distribution in bloom’s taxonomy z and human dis-
tribution y, convert x and y into 1*20 vectors &
and g, the similarity between M and human can
be defined as: Likeness(M) = p(&,7), where
p(Z, 7) represents the Pearson Correlation Coeffi-
cient of Z and . We calculate the Likeness of the
three models in Table 4. The likeness also exhibits
a rising tendency as the models evolve. Models
that follow human instructions better are also more
similar to humans in knowledge structure.

Models | GPT-3.5 ChatGPT GPT-4
0.262 0.396 0.474

Likeness |

Table 4: Models’ similarity to human, measured by Pear-
son Correlation Coefficient of knowledge structures.

3.3 Error Assessment

In this section, we analyze the error of each models,
by delving into their explanation of their answers.
Explanation Accuracy. Table 5 demonstrate
the accuracy of answers in each type. We mainly
find that: 1) Models perform best on TF and worst
on MC. MC could be more difficult than SC and
TF, because of more thinking steps (determine TF
of each options, and select multiple ones). 2) Ex-
planations and answers are more consistent in TF
than in SC and MC for the same reason, as there are
more chances to make errors. 3) Accuracy of expla-
nations falls behind answers in MC, where models
can select some of the correct options for the wrong
reason. 4) Context does not necessary aid and even
hurt explanation performances, but indeed aids an-
swer accuracy. More advanced models are more
consistent in their answers and explanations.

-context

Models | TF SC MC
GPT-3.5 | 0.531(0.531) 0.437 (0.405)  0.383 (0.483)
_context | 0.617 (0.617)  0.376 (0.480)  0.280 (0.527)
ChatGPT | 0.617 (0.592) 0.501 (0.488)  0.298 (0.496)
—context | 0.715(0.706) 0.492 (0.482)  0.333 (0.541)
GPT-4 ‘ 0.751 (0.746)  0.643 (0.635)  0.555 (0.663)

0.775 (0.771)  0.605 (0.667)  0.578 (0.691)

Table 5: Accuracy of explanations. TF, SC, and MC
are short for the three question types. The numbers in
parentheses represent answer accuracy.

3.4 Discussion

In this section, we discuss our findings on the pro-
posed three research questions:

Performance Analysis. We exhibit different
models’ performance. Comparing with humans,
they are less proficient in disciplines primarily
involve natural language, but better at STEM.
Though with sufficient knowledge, they might have
hallucination on specific long-tail concepts in hu-
manity and social science. LLMs are not robust
in option orders, and exhibit a cognitive bias as
Primacy Effect rather than Recency Effect.

Deficit Assessment. Models are less proficiency
in the intermediate range of Bloom’s Taxonomy.
The reason could be that application-based ques-
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tions, such as solving mathematical problems and
making deductions using chemical theorems, are
prone to errors and are inherently challenging for
models. For analyzing and evaluating questions,
the strong linguistic capabilities of models allow
them to excel in these tasks, and perform even
better than intermediate-level questions. More ad-
vanced models demonstrate more similarity with
humans in knowledge structure, which might be an
additional effect of human alignment.

Error Assessment. By comparing different
kinds of questions, we find that gap exists for mod-
els between knowledge and answers. They perform
worse in multiple choices, as there are more think-
ing steps and error chances. Accuracy of explana-
tions can be worse than answers: as models were
asked to generate answers first, their explanation
could shift due to wrong answers and question or-
ders, and cause their hallucinations. Due to the
limitations of autoregressive architecture (Bubeck
et al., 2023), their errors could snowball.

4 Conclusion

In this work, we introduce a new research ques-
tion on LLMs analyzing, which calls for a deeper
understanding of the knowledge structure of these
models. We use Educational Diagnostic Assess-
ment as a tool to test the performance of LLMs
on various dimensions, and develop a metric to
measure the similarity of their knowledge structure
with humans. We provide findings and discussion
for insight into research on the cognition of LLMs.

Limitations

In this section, we describe the limitations of this
work in terms of the dataset and experiments.

Dataset. We investigated the knowledge distri-
bution of LLMs based on the MoocRadar dataset.
MoocRadar is a fine-grained, well-structured
dataset that is distinct from commonly used bench-
marks in terms of knowledge annotation. However,
as a dataset for educational diagnostic assessment,
it’s still limited in the following aspects: 1) Dif-
ferent categories of exercises (e.g. question type,
disciplines) have an unbalanced distribution; 2) As
demonstrated in the Robustness section, the per-
formance of the models can vary due to different
forms of exercises.

Experiment. Due to time and cost constrains, 1)
we only included three LLMs by OpenAl, which
are all closed-source models. Therefore, we did

not conduct experiments at the parameter level. 2)
though we have discovered some phenomena, fur-
ther experiments and deeper analysis are not con-
ducted. We include some of them in the case study
section in the appendix.

Future Works. Future works include 1) more
models for experiments, 2) further exploration on
robustness and similarity with humans, and 3) as
the next step of diagnostic assessment, investigate
how to optimize the knowledge structure of LLMs.
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sonal information.
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A Appendix

A.1 Details of Experiment

This subsection shows details of the dataset we use,
and experiment for diagnostic assessment.

Problem Statistics. Table 6 demonstrates the
details of the dataset we use, which is selected
from the original MoocRadar. Generally, we in-
clude three question types (single choice, multiple
choice, and true or false), four knowledge types
(factual knowledge, conceptual knowledge, proce-
dural knowledge, and meta knowledge), and five
cognitive dimensions (remember, understand, ap-
ply, analyze, and evaluate), to form a total dataset
of 8430 questions.

b | ]
SC 5968 | Factual 2020 | Remember 1715
MC 1086 | Conceptual 4032 | Understand 4066
TF 1376 | Procedural ~ 2268 | Apply 1667
total 8430 | Meta 110 | Analyze 640
/ A /| Evaluate 342

Table 6: Categories of data. Ex., SC, MC, and TF are
short for Exercise, Single Choice, Multiple Choice and
True or False questions.

Types | Questions | Options | Answers

Which of the
following works | A: Les Nymphéas
SC was created by B: Sunflowers B
Vincent van C: Grande Odalisque
Gogh?
Which of the A: Uranium
MC following are B Lutec1urp B.C.D
rare earth C: Dysprosium
elements? D: Samarium
Light only
TF exhlblts_ the True False
properties of False
waves.

Table 7: Question types examples: single choice (SC),
multiple choice (MC), and true or false (TF). SC have
only one correct option, while MC have 2 or more than
2 correct options. TF should be determined as True or
False.

Problem Examples. Table 7 demonstrates ex-
amples for each type of questions. There are two
or more than two options in single choices and
only one correct options, while multiple choices
have more than one correct options. True or false
questions should be answered as True or False.

Querying Details. For context settings, we use
the BM25 algorithm to retrieve the two most related
contexts from the subtitles of the corresponding
class. As illustrated in Figure 3, for the question
about the pioneer of mathematical logic, the BM25
algorithm retrieves context about the emergence
and development of logic and the concept of math-
ematical logic. The two contexts will be placed
before instruction, along with the questions and
options to form the prompt, and fed into LLMs. In
non-context settings, the context position will sim-
ply be empty. We also test different instructions to
make sure that models will follow them to provide
answers and explanations.

( Context ) Prompt
Context 1
Today we will introduce ‘
the emergence and [Question]

Who is the pioneer of
mathematical logic?

development of logic ...

Context 2 [Options]
A: Leibniz,
The basic part of mathe- B: Boole,
matical logic is the two C: DeMorgan,
calculations ... D: Frege
_ J

Figure 3: Construction of prompts in experiments.

Annotation details. To accurately assess the
models’ performance on both answers and explana-
tions, we first invited educational experts to filter
questions, because a part of questions in the dataset
have accompanying pictures, which can’t be input
into models. Then we asked human annotators
to evaluate the answers and explanations gener-
ated by the three models respectively, to prevent
misjudgment in automatic evaluation tools. These
annotators are familiar with MOOC exercises, and
provided with the original questions and correct an-
swers, and have access to the internet to determine
accurately.

A.2 Cases

In this subsection, we demonstrate some of the
error cases we have seen during our experiments,
and hope to provide insights into the model’s error
patterns.
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If all birds can fly, then ostriches can fly.
Questi Ostriches are birds.
uestion Therefore, ostriches can fly.
Does this reasoning contain any formal errors?
Correct
Answer No.
Model Yes. ... While the premises state that every bird
Answer is capable of flying, it does not mean that every
(ChatGPT) individual bird, including the ostrich, is capable
of flying. Ostriches are actually flightless birds.
If all birds can fly, then sparrows can fly.
Question ;Earro\\ N a.re b'1'rds.‘ . The term "logic" originally derives from:
erefore, sparrows can fly. Question A: Enclish. B French. C: Lafin. D: Greek
Does this reasoning contain any formal errors? - Bngish, B M :
Correct Correct D: Greek
A No. Answer
nswer
. - The term "logic" originally derives from the
rr?sdv::er g;iigi;ﬁ?:;gi; s ar;rf));ﬁrgpl(:l::la ;/(?hiial Model language: C.Latin. The term "logic" originated
(ChatGPT) | standpoint %he ar u.r}lent itsel?is Va)l,i d g Answer from the Latin word "logica" which itself was
P > g ) . (ChatGPT) | derived from the Greek word '"logike."
Therefore, ...
Table §8: Case 1: Changing the entities infects the - e e ———
answer. If the question is consistent with its knowledge, Question A %f;ih (E.ICFIS:C%HE_YG gggesl)-r(fr‘:iin
ChatGPT indeed follows the task of focusing on the C :
. . . . orrec
formal errors or purely logic. Otherwise, it fails to Answer C: Greek
follow the question, as it refuses to override its own The term "logic" originally derives from:
knowledge. This phenomenon indicates ChatGPT might k’l(’del C: Greek. The Greek phil};sopher Aristotle is
be less robust when there are knowledge conflicts. (Cnlf:gPT) often credited as one of the founders of formal
logic and his work on reasoning and ...
. Which language does the term ’logic’ originally
Question derives from?
"When undergoing uniform acceleration, the Correct Greek
. direction of velocity always lies along the same Answer ree
Question . . . e
line as the direction of acceleration." Is it correct? The term "logic” originally derives from the
A.No, B. Yes 1ginacy derty
° b ZIOdel Greek word "logike," which is derived from
Correct A.No ((;llf:;gPT) "logos," meaning "word," "reason," or "thought."
Answer : The study of logic can be traced back to ...
The answer is A: No. The reason is that uniform
Model accelgration only requires.the gcceleration.to Table 10: Case 3: Easier question forms aid per-
Answer | remain constant, but the direction of velocity formances. We have discussed the effect of different
(GPT-4) and acceleration can be different. For example, i
in uniform circular motion, ... question types. ChatGPT have the correct knowledge
about the origin of this word, but it cannot give correct
"When undergoing uniform acceleration, the .
direction of velocity al lies alona th answers, as the first question demonstrates. The fol-
Question lirection of velocity always lies along the same ' . .
line as the direction of acceleration." Is it correct? lowing two questions types improve the performance
A. Yes, B.No of ChatGPT, by two different ways: moving the correct
Correct B. No option forward which is consistent to Case 2, or ease the
Answer | burden of models to answer by simplifying the question
Model The answer is A. Yes. This is because uniform form. This case corroborates the findings that models
Answer | 2cceleration refers to ... In this case, the are better at TF than SC or MC, because there are fewer
(GPT-4) change in velocity is aligned with the direction hinki
of acceleration. thinking steps.

Table 9: Case 2: the Primacy Effect of GPT-4. For
the exactly same questions, switching options causes
a direct change in GPT-4’s answer, and both answers
are accompanied with solid but conflict explanations,
which proves the instability of its knowledge. Statisti-
cally, models have a tendency to choose more forward
contents, which influence their rationale more, just like
the Primacy Effect in cognitive psychology. This phe-
nomenon is also observed in GPT-3.5.
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