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Abstract
The potential of large language models (LLMs)
to simultaneously perform a wide range of
natural language processing (NLP) tasks has
been the subject of extensive research. Al-
though instruction tuning has proven to be a
data-efficient method for transforming LLMs
into such generalist models, their performance
still lags behind specialist models trained ex-
clusively for specific tasks. In this paper,
we investigate whether incorporating broad-
coverage generalist instruction tuning can con-
tribute to building a specialist model. We
hypothesize that its efficacy depends on task
specificity and skill requirements. Our ex-
periments assess four target tasks with dis-
tinct coverage levels, revealing that integrat-
ing generalist instruction tuning consistently
enhances model performance when the task
coverage is broad. The effect is particularly
pronounced when the amount of task-specific
training data is limited. Further investigation
into three target tasks focusing on different ca-
pabilities demonstrates that generalist instruc-
tion tuning improves understanding and rea-
soning abilities. However, for tasks requiring
factual knowledge, generalist data containing
hallucinatory information may negatively affect
the model’s performance. Overall, our work
provides a systematic guide for developing spe-
cialist models with general instruction tuning.
Our code and other related resources can be
found at https://github.com/DavidFanzz/
Generalist_or_Specialist.

1 Introduction

The latest generation of large language models
(LLMs), such as ChatGPT (OpenAI, 2022) and
GPT4 (OpenAI, 2023), are often referred to as
generalist models for their exceptional generaliz-
ability to perform various natural language pro-
cessing (NLP) tasks. Recent studies (Taori et al.,
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2023; Zhou et al., 2023; Gudibande et al., 2023)
suggest that (1) the foundation of their superior
performance (i.e., knowledge and capabilities) is
predominantly acquired during large-scale unsuper-
vised pre-training; and (2) instruction tuning (Sanh
et al., 2022; Wei et al., 2022a; Mishra et al., 2021;
Ouyang et al., 2022) is an incredibly data-efficient
method for unleashing the power of LLMs to com-
plete realistic NLP tasks. However, under rigorous
evaluation, the performance of those instruction-
following generalist models often falls short com-
pared to traditional task-specific specialist models
(Jiao et al., 2023b; Qin et al., 2023; Fang et al.,
2023; Liu et al., 2023). Recently, there has also
been a growing trend towards developing specialist
models using instruction tuning (Jiao et al., 2023a;
Wang et al., 2023b; Zhang et al., 2023; Cheng et al.,
2023; Wang et al., 2023a).

In this paper, we study how to better harness the
power of LLM for specific NLP tasks using instruc-
tion tuning. Our research is motivated by the exis-
tence of various broad-coverage general-purpose
instruction-following datasets (Taori et al., 2023;
Peng et al., 2023; Labs, 2023; Xu et al., 2023; Zhou
et al., 2023; Su et al., 2023b) and their surprising ef-
ficiency for turning LLMs into capable instruction-
following generalists. For instance, Zhou et al.
(2023) shows that merely one thousand supervised
input-output pairs are necessary to build a compe-
tent generalist. In contrast to general-purpose in-
struction tuning, our preliminary experiments show
that a sufficiently large set of task-specific data
is still required for transforming an LLM into a
superior specialist. This leads us to a pivotal re-
search question: How to better unleash the power
of LLMs for specific NLP tasks by marrying the
best of two worlds? More specifically, can general-
purpose instruction-following datasets aid in the
transformation of an LLM into a specialist? If so,
when and how?

We hypothesize the answers to the previous ques-
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tions depend on (1) how specific the target task is;
and (2) what skills the target task requires. To
test this hypothesis, we first assess four target
tasks with distinct levels of coverage. Our find-
ings reveal that integrating general instruction tun-
ing—that is, training with generalist data enhances
the model’s performance on specific NLP tasks
with broad task coverage, particularly when the
amount of task-specific training data is limited. To
gain a deeper understanding of the improvements
elicited by training with generalist data, we sub-
sequently examine three target tasks that focus on
distinct skill sets. Our results suggest that gen-
eral instruction tuning improves the model’s un-
derstanding and reasoning capabilities. However,
when it comes to tasks that demand factual knowl-
edge from the LLM, instructional data generated
through self-instruct (Wang et al., 2022a) harms
the model’s performance due to the intrinsic hallu-
cinations brought by such data creation approach.

In sum, to the best of our knowledge, our work
is the first effort to present a systematic guide for
building and improving specialist models with gen-
eral instruction tuning.

2 Background: Instruction Tuning

In recent years, large language models (LLMs)
have undergone rapid development and have dom-
inated the field of natural language processing
(NLP) (Radford et al., 2018; Devlin et al., 2019;
Radford et al., 2019; Brown et al., 2020). To-
day’s LLMs, such as ChatGPT (OpenAI, 2022)
and GPT-4 (OpenAI, 2023), can perform complex
and diverse tasks in the unified form of follow-
ing natural language instructions. Generally, these
models are trained in three separate stages: (1)
large-scale unsupervised pre-training on raw text;
and (2) instruction tuning via supervised learning
(Sanh et al., 2022; Wei et al., 2022a; Mishra et al.,
2021; Su and Collier, 2022; Su et al., 2023b); and
(3) reinforcement learning from human feedback
(Stiennon et al., 2020; Bai et al., 2022; Ouyang
et al., 2022). Recent studies (Zhou et al., 2023;
Gudibande et al., 2023) argued that almost all capa-
bilities of LLMs are learned during unsupervised
pre-training, and instruction tuning with a limited
amount of supervised data is sufficient. However,
this observation refers to the process of construct-
ing general-purpose instruction-following models—
generalists. In the following, we separately intro-
duce broad-coverage “generalist” and task-specific

“specialist” instruction tuning.

Generalist Instruction Tuning. Early attempts
on instruction tuning (Wang et al., 2022b; Sanh
et al., 2022; Wei et al., 2022a; Chung et al., 2022,
inter alia) transform a range of public NLP datasets
into an instructional format, with a few manually
crafted templates for each task. They then fine-tune
an LLM on a portion of the transformed data and
evaluate on another set of held-out tasks. Each
work affirms that the model’s generalization ability
to unseen tasks improves when increasing the task
and template diversity. However, template-based
instructions are not sufficiently diverse for build-
ing a truly competent generalist (Ouyang et al.,
2022). In contrast, state-of-the-art generalist mod-
els such as ChatGPT (OpenAI, 2022) are trained
with proprietary instructions collected from real
human users. In the pursuit to replicate the success
of ChatGPT, various open-source broad-coverage
instruction-tuning datasets are proposed. Some are
gathered via crowd-sourcing (Labs, 2023; Zhou
et al., 2023) while others use the outputs from
strong proprietary models (Taori et al., 2023; Peng
et al., 2023; Xu et al., 2023; Su et al., 2023a; Li
et al., 2023) with techniques such as self-instruct
(Wang et al., 2022a). Existing results suggest that
these models can achieve near parity with propri-
etary models in various aspects (Chiang et al., 2023;
Zhou et al., 2023; Taori et al., 2023).

Specialist Instruction Tuning. There is also an
emerging trend to continue instruction tuning on
specific NLP tasks, such as machine translation
(Jiao et al., 2023a), information extraction (Wang
et al., 2023b), medical QA (Wang et al., 2023a;
Fleming et al., 2023), and writing-assistant (Zhang
et al., 2023). These works typically transform ex-
isting task-specific datasets into the same instruc-
tional format as generalist instruction tuning and
yield better model performance in specific tasks.
Different from previous work, this study aims to
provide a comprehensive and in-depth investigation
of the role of generalist instruction data in specialist
instruction tuning.

Our work is most related to the initial studies
on the cross-task generalization of instruction tun-
ing such as FLAN (Wei et al., 2022a). The dif-
ferences between our work and previous work are:
(1) we use broad-coverage generalist data, while
they use template-based data; and (2) they focus on
zero/few-shot performance on unseen tasks, while
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we assume an adequate amount of task-specific
training data is available.

3 Incorporating Specialist Training with
Generalist Training

3.1 Data Collection

We sort the instruction-following data into two
groups: (1) specialist data and (2) generalist data.

Specialist data. primarily originates from exist-
ing NLP datasets with a focus on particular tasks.
To facilitate our research, we mainly utilize the
SuperNI dataset (Wang et al., 2022b), a compre-
hensive benchmark containing 1,616 NLP datasets
coupled with their respective natural language in-
structions, as the source of specialist data. The de-
tails are described in Section 4.1. We also leverage
existing question answering datasets (Kwiatkowski
et al., 2019; Berant et al., 2013; Joshi et al., 2017) ,
reading comprehension datasets (Lai et al., 2017)
reasoning datasets (Bowman et al., 2015; Talmor
et al., 2019; Ling et al., 2017) to evaluate different
aspects of model skills, detailed in Section 5.1.

Generalist data is characterized by its exten-
sive scope and diversity. For our research, we
select two representative broad-coverage general-
purpose datasets: GPT4-Instruct (Peng et al., 2023)
and LIMA (Zhou et al., 2023). GPT4-Instruct
(Peng et al., 2023) contains 52k unique instruction-
response pairs, where the instructions are collected
through self-instruct (Wang et al., 2022a) and the
responses are generated by GPT-4 (OpenAI, 2023).
LIMA (Zhou et al., 2023) consists of 1k carefully
curated instruction-response pairs derived from
human-authored community questions and answers.
Notably, we emphasize that GPT4-Instruct serves
as an example of generalist data synthesized by
LLMs and LIMA represents another distinct exam-
ple of generalist data written by humans.

Unified Format. We follow the template used
in Stanford’s Alpaca project (Taori et al., 2023)
(See Appendix A). Each instance in the general-
ist and specialist data is transformed in a pair of
{instruction, response}.

3.2 Training

Specialist/Generalist Data Combination. For
each target task, we construct the training and test
set with 50k and 5k instances, respectively. For
target tasks that span over multiple datasets, we

uniformly sample training/test instances from the
corresponding datasets such that each dataset has
an equal proportion. For generalist data, we con-
sider the GPT4-Instruct and LIMA datasets as dis-
cussed above. We first train models on generalist
data and then specialist data. We vary the amounts
of specialist data across {2k, 4k, 6k, 8k, 10k} to
study the effect of generalist data under different
circumstances of data scarcity.

Model and Training Details. We conduct our
experiments with the popular LLaMA 7B and 13B
models (Touvron et al., 2023). For training on
generalist data, we follow the original setups in the
respective papers (Zhou et al., 2023; Taori et al.,
2023). Specifically, for GPT4-Instruct, we train
for 3 epochs with a batch size of 128, while for
LIMA, we train for 15 epochs with a batch size of
64. In the subsequent specialist training phase, we
train for 3 epochs with a batch size of 128. In both
stages, we use the Adam optimizer (Kingma and
Ba, 2015) with a learning rate of 2e-5 and utilize
the standard language modeling objective:

L = − 1

|y|

|y|∑

i=1

log pθ(yi|x,y<i), (1)

where θ denotes the model parameters and {x,y}
is an instruction-response pair.

4 Experiments I: The Coverage of the
Target Tasks

4.1 Coverage Taxonomy

To assess our model’s performance on a variety of
target tasks with distinct levels of generality, we
construct a hierarchy of four specialist tasks using
the SuperNI dataset (Wang et al., 2022b). This
taxonomy encompasses tasks with varying scopes
of coverage, as detailed below.

SuperNI (multiple tasks, multiple formats). At
the most comprehensive level, we incorporate all
the English tasks from the SuperNI dataset, which
encompasses a total of 756 datasets. Unlike LIMA
and GPT4-Instruct, which accommodate a broad
spectrum of user-oriented inquiries, the datasets in
SuperNI focus on specific NLP tasks distilled from
real-world demands. Therefore, we treat them as
specialist data at the highest coverage level.

Classification (multiple tasks, single format).
The tasks in SuperNI can be grouped based on
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Figure 1: Comparison of models trained with different combinations of specialist and generalist data across different
tasks. We report Rouge-L for SuperNI and accuracy for other levels.

their task types, such as classification, summariza-
tion, and question answering. For the second level,
we focus on the classification subset. Specifically,
we select 252 classification datasets. To measure
the model’s cross-task generalization capability, we
allocate 223 datasets for training and reserve the
remaining 29 datasets as held-out datasets for eval-
uation.

Sentiment (single tasks, multiple domains). The
classification tasks selected above can be further
categorized based on their specific topics, such as
sentiment analysis, toxic language detection, com-
monsense categorization, and others. Among these,
we designate 32 sentiment analysis datasets as the
third level.

Yelp (single tasks, single domain). The sentiment
analysis datasets mentioned above span various
domains, such as movie and restaurant reviews. At
the most fine-grained level, we choose the Yelp
dataset (Zhang et al., 2015) as the representative
task to evaluate the model’s performance in a highly
specialized domain.

4.2 Evaluation Setup

For the SuperNI level, we follow the same evalua-
tion protocol as in Wang et al. (2022b) and report
Rouge-L (Lin, 2004). For the decoding strategy, we
adopt greedy search with a maximum generation

Task Coverage GPT4-Instruct LIMA specialist

SuperNI 25.54 12.65 54.92
Classification 53.20 46.84 80.02
Sentiment 68.66 51.46 90.71
Yelp 91.68 65.52 98.11

Table 1: The performance of generalists and specialists
on tasks of different coverage levels on LLaMA-7B. The
specialists are trained with 10k task-specific instances.
For SuperNI, the performance is measured by Rouge-L,
while the others are measured by accuracy.

length of 512.1 For the Classification, Sentiment,
and Yelp levels, we follow previous studies (Brown
et al., 2020; Sanh et al., 2022) and utilize a classifi-
cation with options approach, where we prompt the
model with a set of options and compute the likeli-
hood of each option being the response. The one
with the highest probability is taken as the model’s
prediction, and we report the model’s accuracy.

4.3 Main Results

Generalist models lag behind specialist models
across all coverage levels. We compare general-
ist models that are solely trained on generalist data
(i.e., LIMA or GPT4-Instruct) to those specialist
models that are solely trained on specialist data
(the 10k training instances we collect for each cov-

1We leave the study on more advanced decoding meth-
ods (Holtzman et al., 2019; Su et al., 2022; Yang et al., 2023)
as future work.
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Figure 2: Results on held-out tasks (Classification) with
LLaMA-7B.

erage level), using LLaMA-7B. From the results
presented in Table 1, we can see that generalist
models fall short in performance when compared
to specialist models on all coverage levels. Notably,
even as the coverage level becomes more encom-
passing, the performance gap between generalist
models and specialist models does not shrink. For
instance, on the most specific Yelp task, the special-
ist model outperforms the generalist model (GPT4-
Instruct) by 6.43% absolute points. On the SuperNI
task, the performance gap between the specialist
and the generalist (GPT4-Instruct) is 29.38. These
results validate the necessity of specialist tuning
for specific NLP tasks.

Transforming an LLM into a superior specialist
demands a substantial amount of task-specific
data. Figure 1 depicts the performance of spe-
cialist models on different tasks with varying num-
bers of training data (from 2k to 10k). From the
results, we see that, for tasks with broader cover-
age (e.g. SuperNI and Classification), the model’s
performance does not seem to converge with the
10k training instances. Even for narrow tasks such
as Sentiment, at least 10k task-specific data is re-
quired to fully unlock the LLM’s potential. These
results reveal the data-hungry nature of building
specialist models.

Generalist data can improve specialist perfor-
mance when the task coverage is broad. Figure
1 also demonstrates that the inclusion of generalist
data consistently results in performance improve-

ments for both SuperNI and Classification across
LLaMA 7B and 13B models. On average across
different settings of specialist data, the introduction
of generalist data leads to an improvement of 0.96
for LLaMA-7B and 0.74 for LLaMA-13B on Su-
perNI tasks, while for Classification tasks, it results
in an enhancement of 1.53% for LLaMA-7B and
0.82% for LLaMA-13B. It is also worth noting that
LIMA only has 1k instances, but it can even help
improve performance when the number of special-
ist data is 10× larger. However, the results are the
opposite for Sentiment and Yelp. For instance, the
introduction of LIMA leads to a minor performance
degeneration on Sentiment with 2k specialist data
(a reduction of 0.25% for LLaMA-7B and 0.56%
for LLaMA-13B). In the case of the Yelp task, the
impact of including generalist data (both GPT4-
Instruct and LIMA) appears to be minimal on the
overall model performance.

The performance gain is most evident when the
amount of specialist data is limited. We can
see that the performance gap between specialists
trained with and without generalist data shrinks
as the amount of specialist data increases. For
example, at the Classification level, when the spe-
cialist data comprises only 2k instances, the in-
clusion of GPT4-Instruct enhances LLaMA-7B’s
accuracy from 65.36% to 71.31% (+5.95%) and
LLaMA-13B’s accuracy from 70.59% to 73.13%
(+2.54%). However, when the number of specialist
data reaches 10k instances, the addition of GPT4-
Instruct only leads to smaller improvements, from
80.02% to 80.17% (+0.15%) for LLaMA-7B, and
from 81.01% to 81.93% (+0.92%) for LLaMA-
13B, respectively.

The performance gain is less pronounced when
the model scale is larger. As shown in Figure 1,
when comparing the results of the 7B and 13B mod-
els, the trend of change in the effect of integrating
generalist data is consistent for both models. How-
ever, it is worth noting that as the model scale is
larger, the performance gain is less pronounced.
Specifically, when the model scales up from 7B to
13B, the average improvement achieved by adding
GPT4-Instruct on SuperNI decreases from 1.49
to 0.58, and the improvement in Classification re-
duces from 2.00% to 1.18%.

4.4 Further Analysis
For a deeper understanding of the impact of gen-
eralist data, here we present additional analyses.
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Figure 3: Results using different amounts of generalist
data (Classification, 10k specialist data) with LLaMA-
7B.

Unless otherwise specified, all experiments use
LLaMA-7B as the foundation model.

Cross-task Generalization. For the Classifica-
tion level, recall that we exclude some classification
tasks when constructing the training data. These
tasks can be used as hold-out tasks to examine the
specialist’s cross-task generalization ability. The
results are shown in Figure 2. It can be observed
that the accuracy on held-out tasks fluctuates in
small ranges from 50.98% to 57.55% across dif-
ferent amounts of specialist data. However, upon
incorporating LIMA, the average absolute accu-
racy improvement on the hold-out task increases
by 2.70%, while adding GPT4-Instruct results in a
6.12% rise in absolute accuracy. This indicates that
generalist data can greatly improve the cross-task
generalization of specialist models.

Number of Generalist Data. To study the effect
of the amount of generalist data, we additionally
partition the GPT4-Instruct dataset into five ran-
dom parts and test the model’s performance when
using different proportions of the dataset. The ex-
periments are conducted at the Classification level
with a fixed quantity of 10k specialist data. As
shown in Figure 3, even with only 10k generalist
data, the model’s accuracy is raised from 78.12% to
82.48%. Another interesting finding is that further
increasing the generalist data to 50k merely brings
small improvements (from 82.48% to 84.0%). The
results together with our experiments with LIMA
suggest that adding a small number of generalist

Figure 4: The results using different test instructions
(Classification) with LLaMA-7B.

data is sufficient to improve the specialist perfor-
mance.

Cross-instruction Robustness. In all previous
experiments, the models are trained and tested us-
ing the same instructions for each dataset. Now,
we assess the model’s robustness when confronted
with alternative instructions that have not appeared
during training. To do so, we employ ChatGPT
(OpenAI, 2022) to generate 20 semantically equiv-
alent instructions based on the original instruction.
Figure 4 reports the results of these unseen instruc-
tions. As seen, the models trained with the addi-
tion of generalist data exhibit substantial improve-
ment in average accuracy compared to the mod-
els trained with specialist data only. For instance,
when the specialist data is limited to 2k instances,
incorporating generalist data leads to a 6.64% ab-
solute improvement on average compared to the
specialist model. In the meantime, the incorpo-
ration of generalist data also alleviates the perfor-
mance variation between the best-performing and
worse-performing runs from 4.04% to 2.42%.

5 Experiments II: The Required Skills of
the Target Tasks

We hypothesize that the model’s ability to perform
specific NLP tasks can be attributed to the mix of
several core capabilities. As such, we set up three
target tasks that focus on three key skills which are
detailed below.
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Figure 5: Comparison of models trained with different combinations of specialist and generalist data across different
tasks. We report F1 score for Factual Knowledge and accuracy for other levels.

Task Coverage GPT4-Instruct LIMA specialist

Factual Knowledge 14.78 17.28 46.37
Understanding 35.10 30.82 76.77
Reasoning 28.02 26.58 63.40

Table 2: The performance of generalists and specialists
on tasks focusing on different skills. The specialists are
trained with 10k task-specific instances on LLaMA-7B.
For Factual Knowledge, the performance is measured
by F1 score, while the others are measured by accuracy.

5.1 Skill Taxonomy

Factual Knowledge is essential for models
to serve information needs. We use three
knowledge-intensive datasets: Natural Questions
(Kwiatkowski et al., 2019), WebQuestions (Berant
et al., 2013), and TriviaQA (Joshi et al., 2017). All
these three datasets consist of entity-centric ques-
tions, making them suitable for probing models’
ability to activate and utilize factual knowledge.
Following previous work (Brown et al., 2020), we
evaluate under the closed-book setting where mod-
els are required to answer questions without the
help of any external knowledge grounding.

Understanding acts as an important perspective
as the capability to interpret input text. We choose
the RACE dataset (Lai et al., 2017). RACE com-
prises data collected from English examinations
in China and is specifically designed to assess the
model’s ability to read and deeply comprehend
texts in real-world scenarios.

Reasoning is another fundamental ability for
models to solve complex tasks. We use the SNLI
(Bowman et al., 2015) dataset for implicit reason-
ing, the CQA (Talmor et al., 2019) for common-
sense reasoning, and the AQUA (Ling et al., 2017)
dataset for arithmetic reasoning.

5.2 Evaluation Setup

For the Factual Knowledge tasks, we use greedy
search with a maximum generation length of 512.
We adopt the F1 score as the evaluation metric fol-
lowing (Brown et al., 2020). For the Understating
and Reasoning tasks, we utilize the same classifi-
cation with options method detailed in Section 3.2
and report the model accuracy.
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5.3 Results and Analysis
Generalist models lag behind specialist models
across all task skills. Similar to Experiment I, we
commence by comparing specialist and generalist
models across three target tasks, each concentrat-
ing on distinct skills. The outcomes presented in
Table 2 indicate that the generalist models consis-
tently underperform the specialist models. For the
Factual Knowledge task, the specialist model out-
performs the generalist model with a 29.09 points
higher F1 score. For the Understanding task, the
specialist model surpasses the generalist model
with a 41.67% increase in accuracy. For the Rea-
soning task, the specialist model excels beyond
the generalist model, attaining a 35.38% absolute
accuracy difference. Collectively, these findings
substantiate the necessity of specialist tuning for
accomplishing specific tasks.

Incorporating GPT4-Instruct impairs the
model’s factual knowledge, while integrating
LIMA offers benefits. As illustrated in Figure
5, we observe the varying impact of different
generalist data on the model’s performance in
the Factual Knowledge task. In particular, when
GPT4-Instruct is incorporated, the F1 score
experiences a decline. Conversely, when LIMA
data is integrated, the F1 witnesses an increase.
We argue that this difference stems from the
fact that GPT4-Instruct is machine-generated,
while LIMA is human-authored. The rationale
is that machine-generated data may contain
hallucinations, thus impairing the model’s ability
to recall factual knowledge.

To validate our hypothesis, we conduct experi-
ments using additional generalist datasets, namely
Dolly (Labs, 2023), and Evol-Instruct (Xu et al.,
2023). Dolly consists of manually curated data
generated by Databricks employees. Evol-Instruct
uses more complex instructions than GPT4-Instruct
and collects responses from ChatGPT (Fang et al.,
2023). As observed in Figure 6, adding Dolly does
not impair the performance, but incorporating Evol-
Instruct leads to similar performance degradation
as GPT4-Instruct. The above results are consistent
with our hypothesis that machine-generated gener-
alist data might adversely affect the model’s factual
knowledgeability due to hallucinations.

For a more rigorous comparison, we use Chat-
GPT to generate responses for the 1k instructions
in LIMA. The new 1k instruction-response pairs
form a new generalist dataset, which we call LIMA-

Figure 6: Results on the Factual Knowledge with
LLaMA-7B.

Chat. The only difference between LIMA-Chat
and LIMA is that the responses in LIMA-Chat
are machine-generated, while those in LIMA are
human-written. From Figure 6, we can see that
LIMA-Chat indeed harms the performance while
LIMA improves the performance. The above re-
sults suggest that the choice of generalist data is
crucial for target tasks that heavily rely on factual
knowledge.

Adding generalist data enhances the under-
standing ability. The results of the Understand-
ing task are presented in Figure 5. It is evident that
the addition of GPT4-Instruct greatly improves the
model’s performance when the specialist data is
only 2k or 4k instances. However, as the number
of specialist data further increases, the improve-
ment diminishes. This suggests that the inclusion
of generalist data can enhance the model’s compre-
hension ability when the specialist data is limited.

Adding generalist data enhances the reasoning
ability. We further evaluate the consequences of
incorporating generalist data on the model’s rea-
soning ability, as demonstrated in Figure 5. No-
tably, unlike Understanding, where the improve-
ments from adding generalist data gradually dimin-
ish, the benefits of incorporating generalist data
on the Reasoning tasks are persistent across dif-
ferent amounts of specialist data (an average im-
provement of 0.65% on LLaMA-7B and 1.12%
on LLaMA-13B). This phenomenon could be at-
tributed to the fact that the activation of reasoning
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capabilities relies on diverse instruction data, and
specialist data can be too narrow to fully unlock
the true potential of LLMs.

Effect of Model Scale. For Factual Knowledge,
increasing the model size from 7B to 13B results in
more substantial performance improvements com-
pared to increasing the amount of specialist data.
This observation aligns with previous work (Brown
et al., 2020), which indicates that an LLM’s knowl-
edge is mostly obtained through its pre-training.
For Understanding, increasing the model size is as
beneficial as adding more specialist data. For Rea-
soning, increasing the model size does not yield
improvements as noticeable as Factual Knowledge
and Understanding. We speculate that the emer-
gence of strong reasoning abilities requires a larger
model scale (Wei et al., 2022b).

Generalist data plays a vital role in enhancing
a model’s understanding and reasoning capa-
bilities, thereby increasing its effectiveness in
addressing task-specific objectives. We dissect
the model’s capabilities into three core components:
(i) factual knowledge, (ii) understanding, and (iii)
reasoning abilities. We demonstrate that incorpo-
rating generalist data does not improve the model’s
factual knowledge and, in some cases, may even be
detrimental if it includes hallucinated information.
Nevertheless, comparative experiments focusing
on understanding and reasoning abilities reveal that
generalist data effectively fosters the model’s com-
prehension and significantly augments its reasoning
capabilities.

This observed efficacy can be ascribed to the
capacity of generalist data to facilitate the model’s
understanding and execution of diverse tasks. The
wide range of instructions embedded within the
generalist data stimulates the model’s comprehen-
sion and reasoning faculties, empowering it to
grasp specific requirements associated with vari-
ous tasks more effectively. Moreover, by activating
the model’s reasoning abilities, it showcases en-
hanced performance across an assortment of tasks
involving different levels of complexity.

The activation of comprehension and reasoning
abilities further broadens the model’s cognitive ca-
pacity, allowing it to derive a more comprehen-
sive understanding based on existing information
pertinent to the given task. Consequently, the in-
clusion of generalist data amplifies the model’s
task-specific capabilities, as it becomes adept at

utilizing its expanded cognitive capacity to achieve
superior performance.

6 Conclusions

In this study, we thoroughly investigated the inter-
action between specialist data and generalist data
in the context of targeting specific NLP tasks. Our
findings consistently demonstrate that the addition
of generalist data leads to performance improve-
ment when the task coverage is broad. This high-
lights the potential benefits of incorporating gen-
eralist data, particularly when the availability of
specialist data is limited. Furthermore, we exten-
sively examined the impact of integrating general-
ist data on the model’s core capabilities. Surpris-
ingly, we observed that the inclusion of generalist
data did not enhance the model’s factuality. In
fact, generalist data containing hallucinatory infor-
mation can have a negative impact. On the other
hand, our experiments also revealed that the intro-
duction of generalist data has positive effects on
the model’s understanding and reasoning abilities.
Overall, our findings highlight the importance of
leveraging generalist data to enhance the under-
standing and reasoning capabilities of NLP models,
thereby enabling them to tackle various tasks more
effectively. However, careful consideration should
be given to the quality and reliability of the gener-
alist data to avoid adverse effects on the model’s
factual knowledge.

Limitations

While this work aims to provide a comprehensive
investigation, we note that we do not exhaustively
cover all possible evaluations. For example, we
do not discuss NLP tasks such as summarization,
translation, etc. Instead, we focus on constructing a
hierarchy of four target tasks of different coverage
levels and three target tasks focusing on different
core skills. In addition, due to resource constraints,
we only use LLaMA 7B/13B as our foundation
models. We leave the investigation on different
types and/or larger scales of models to our future
work.
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A Instruction Template

============ INSTRUCTION FORMAT ===========

Below is an instruction that describes a task, paired with an
input that provides further context. Write a response that
appropriately completes the request.

###Instruction:
[Task Prompt]

###Input:
[Input Text]

###Response:
[Output Text]
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