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Abstract

Large Language Models (LLMs) have demon-
strated remarkable zero-shot generalization
across various language-related tasks, includ-
ing search engines. However, existing work
utilizes the generative ability of LLMs for In-
formation Retrieval (IR) rather than direct pas-
sage ranking. The discrepancy between the pre-
training objectives of LLMs and the ranking
objective poses another challenge. In this pa-
per, we first investigate generative LLMs such
as ChatGPT and GPT-4 for relevance ranking
in IR. Surprisingly, our experiments reveal that
properly instructed LLMs can deliver compet-
itive, even superior results to state-of-the-art
supervised methods on popular IR benchmarks.
Furthermore, to address concerns about data
contamination of LLMs, we collect a new test
set called NovelEval, based on the latest knowl-
edge and aiming to verify the model’s ability
to rank unknown knowledge. Finally, to im-
prove efficiency in real-world applications, we
delve into the potential for distilling the rank-
ing capabilities of ChatGPT into small special-
ized models using a permutation distillation
scheme. Our evaluation results turn out that
a distilled 440M model outperforms a 3B su-
pervised model on the BEIR benchmark. The
code to reproduce our results is available at
www.github.com/sunnweiwei/RankGPT.

1 Introduction

Large Language Models (LLMs), such as Chat-
GPT and GPT-4 (OpenAI, 2022, 2023), are revolu-
tionizing natural language processing with strong
zero-shot and few-shot generalization. By pre-
training on large-scale text corpora and alignment
fine-tuning to follow human instructions, LLMs
have demonstrated their superior capabilities in lan-
guage understanding, generation, interaction, and
reasoning (Ouyang et al., 2022).

∗Work done during an internship at Baidu.
†Corresponding authors.

Figure 1: Average results of ChatGPT and GPT-4
(zero-shot) on passage re-ranking benchmarks (TREC,
BEIR, and Mr.TyDi), compared with BM25 and
previous best-supervised systems (SOTA sup., e.g.,
monoT5 (Nogueira et al., 2020)).

As one of the most successful AI applications,
Information Retrieval (IR) systems satisfy user re-
quirements through several pipelined sub-modules,
such as passage retrieval and re-ranking (Lin et al.,
2020). Most previous methods heavily rely on
manual supervision signals, which require signifi-
cant human effort and demonstrate weak generaliz-
ability (Campos et al., 2016; Izacard et al., 2022).
Therefore, there is a growing interest in leveraging
the zero-shot language understanding and reason-
ing capabilities of LLMs in the IR area. However,
most existing approaches primarily focus on ex-
ploiting LLMs for content generation (e.g., query
or passage) rather than relevance ranking for groups
of passages (Yu et al., 2023; Microsoft, 2023).

Compared to the common generation settings,
the objectives of relevance re-ranking vary signifi-
cantly from those of LLMs: the re-ranking agents
need to comprehend user requirements, globally
compare, and rank the passages based on their rele-
vance to queries. Therefore, leveraging the LLMs’
capabilities for passage re-ranking remains a chal-
lenging and unanswered task.

To this end, we focus on the following questions:
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• (RQ1) How does ChatGPT perform on pas-
sage re-ranking tasks?

• (RQ2) How can we imitate the ranking capa-
bilities of ChatGPT in a smaller, specialized
model?

To answer the first question, we investigate
prompting ChatGPT with two existing strate-
gies (Sachan et al., 2022; Liang et al., 2022).
However, we observe that they have limited per-
formance and heavily rely on the availability of
the log-probability of model output. Thus, we
propose an alternative instructional permutation
generation approach, instructing the LLMs to di-
rectly output the permutations of a group of pas-
sages. In addition, we propose an effective sliding
window strategy to address context length limita-
tions. For a comprehensive evaluation of LLMs,
we employ three well-established IR benchmarks:
TREC (Craswell et al., 2020), BEIR (Thakur et al.,
2021), and My.TyDi (Zhang et al., 2021). Further-
more, to assess the LLMs on unknown knowledge
and address concerns of data contamination, we
suggest collecting a continuously updated evalua-
tion testbed and propose NovelEval, a new test set
with 21 novel questions.

To answer the second question, we introduce
a permutation distillation technique to imitate
the passage ranking capabilities of ChatGPT in a
smaller, specialized ranking model. Specifically,
we randomly sample 10K queries from the MS
MARCO training set, and each query is retrieved
by BM25 with 20 candidate passages. On this
basis, we distill the permutation predicted by Chat-
GPT into a student model using a RankNet-based
distillation objective (Burges et al., 2005).

Our evaluation results demonstrate that GPT-4,
equipped with zero-shot instructional permutation
generation, surpasses supervised systems across
nearly all datasets. Figure 1 illustrates that GPT-4
outperforms the previous state-of-the-art models
by an average nDCG improvement of 2.7, 2.3, and
2.7 on TREC, BEIR, and My.TyDi, respectively.
Furthermore, GPT-4 achieves state-of-the-art per-
formance on the new NovelEval test set. Through
our permutation distillation experiments, we ob-
serve that a 435M student model outperforms the
previous state-of-the-art monoT5 (3B) model by an
average nDCG improvement of 1.67 on BEIR. Ad-
ditionally, the proposed distillation method demon-
strates cost-efficiency benefits.

In summary, our contributions are tri-fold:

• We examine instructional methods for LLMs
on passage re-ranking tasks and introduce a
novel permutation generation approach; See
Section 3 for details.

• We comprehensively evaluate ChatGPT and
GPT-4 on various passage re-ranking bench-
marks, including a newly proposed NovelEval
test set; See Section 5 for details.

• We propose a distillation approach for learn-
ing specialized models with the permutation
generated by ChatGPT; See Section 4 for de-
tails.

2 Related Work

2.1 Information Retrieval with LLMs

Recently, large language models (LLMs) have
found increasing applications in information re-
trieval (Zhu et al., 2023). Several approaches have
been proposed to utilize LLMs for passage retrieval.
For example, SGPT (Muennighoff, 2022) generates
text embeddings using GPT, generative document
retrieval explores a differentiable search index (Tay
et al., 2022; Cao et al., 2021; Sun et al., 2023),
and HyDE (Gao et al., 2023; Wang et al., 2023a)
generates pseudo-documents using GPT-3. In ad-
dition, LLMs have also been used for passage re-
ranking tasks. UPR (Sachan et al., 2022) and SGPT-
CE (Muennighoff, 2022) introduce instructional
query generation methods, while HELM (Liang
et al., 2022) utilizes instructional relevance gener-
ation. LLMs are also employed for training data
generation. InPars (Bonifacio et al., 2022) gener-
ates pseudo-queries using GPT-3, and Promptaga-
tor (Dai et al., 2023) proposes a few-shot dense
retrieval to leverage a few demonstrations from the
target domain for pseudo-query generation. Fur-
thermore, LLMs have been used for content gener-
ation (Yu et al., 2023) and web browsing (Nakano
et al., 2021; Izacard et al., 2023; Microsoft, 2023).
In this paper, we explore using ChatGPT and GPT-
4 in passage re-ranking tasks, propose an instruc-
tional permutation generation method, and conduct
a comprehensive evaluation of benchmarks from
various domains, tasks, and languages. Recent
work (Ma et al., 2023) concurrently investigated
listwise passage re-ranking using LLMs. In com-
parison, our study provides a more comprehensive
evaluation, incorporating a newly annotated dataset,
and validates the proposed permutation distillation
technique.
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Figure 2: Three types of instructions for zero-shot pas-
sage re-ranking with LLMs. The gray and yellow blocks
indicate the inputs and outputs of the model. (a) Query
generation relies on the log probability of LLMs to gen-
erate the query based on the passage. (b) Relevance
generation instructs LLMs to output relevance judg-
ments. (c) Permutation generation generates a ranked
list of a group of passages. See Appendix A for details.

2.2 LLMs Specialization

Despite their impressive capabilities, LLMs such as
GPT-4 often come with high costs and lack open-
source availability. As a result, considerable re-
search has explored ways to distill the capabilities
of LLMs into specialized, custom models. For in-
stance, Fu et al. (2023) and Magister et al. (2023)
have successfully distilled the reasoning ability of
LLMs into smaller models. Self-instruct (Wang
et al., 2023b; Taori et al., 2023) propose iterative
approaches to distill GPT-3 using their outputs. Ad-
ditionally, Sachan et al. (2023) and Shi et al. (2023)
utilize the generation probability of LLMs to im-
prove retrieval systems. This paper presents a per-
mutation distillation method that leverages Chat-
GPT as a teacher to obtain specialized re-ranking
models. Our experiments demonstrate that even
with a small amount of ChatGPT-generated data,
the specialized model can outperform strong super-
vised systems.

3 Passage Re-Ranking with LLMs

Ranking is the core task in information retrieval ap-
plications, such as ad-hoc search (Lin et al., 2020;
Fan et al., 2022), Web search (Zou et al., 2021),
and open-domain question answering (Karpukhin
et al., 2020). Modern IR systems generally employ
a multi-stage pipeline where the retrieval stage fo-
cuses on retrieving a set of candidates from a large

Figure 3: Illustration of re-ranking 8 passages using
sliding windows with a window size of 4 and a step size
of 2. The blue color represents the first two windows,
while the yellow color represents the last window. The
sliding windows are applied in back-to-first order, mean-
ing that the first 2 passages in the previous window will
participate in re-ranking the next window.

corpus, and the re-ranking stage aims to re-rank
this set to output a more precise list. Recent stud-
ies have explored LLMs for zero-shot re-ranking,
such as instructional query generation or relevance
generation (Sachan et al., 2022; Liang et al., 2022).
However, existing methods have limited perfor-
mance in re-ranking and heavily rely on the avail-
ability of the log probability of model output and
thus cannot be applied to the latest LLMs such as
GPT-4. Since ChatGPT and GPT-4 have a strong
capacity for text understanding, instruction follow-
ing, and reasoning, we introduce a novel instruc-
tional permutation generation method with a slid-
ing window strategy to directly output a ranked
list given a set of candidate passages. Figure 2
illustrates examples of three types of instructions;
all the detailed instructions are included in Ap-
pendix A.

3.1 Instructional Permutation Generation

As illustrated in Figure 2 (c), our approach involves
inputting a group of passages into the LLMs, each
identified by a unique identifier (e.g., [1], [2],
etc.). We then ask the LLMs to generate the per-
mutation of passages in descending order based
on their relevance to the query. The passages are
ranked using the identifiers, in a format such as [2]
> [3] > [1] > etc. The proposed method ranks pas-
sages directly without producing an intermediate
relevance score.

3.2 Sliding Window Strategy

Due to the token limitations of LLMs, we can only
rank a limited number of passages using the per-
mutation generation approach. To overcome this
constraint, we propose a sliding window strategy.
Figure 3 illustrates an example of re-ranking 8 pas-
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sages using a sliding window. Suppose the first-
stage retrieval model returns M passages. We re-
rank these passages in a back-to-first order using a
sliding window. This strategy involves two hyper-
parameters: window size (w) and step size (s). We
first use the LLMs to rank the passages from the
(M − w)-th to the M -th. Then, we slide the win-
dow in steps of s and re-rank the passages within
the range from the (M −w− s)-th to the (M − s)-
th. This process is repeated until all passages have
been re-ranked.

4 Specialization by Permutation
Distillation

Although ChatGPT and GPT-4 are highly capable,
they are also too expensive to deploy in commercial
search systems. Using GPT-4 to re-rank passages
will greatly increase the latency of the search sys-
tem. In addition, large language models suffer from
the problem of unstable generation. Therefore, we
argue that the capabilities of large language models
are redundant for the re-ranking task. Thus, we can
distill the re-ranking capability of large language
models into a small model by specialization.

4.1 Permutation Distillation

In this paper, we present a novel permutation dis-
tillation method that aims to distill the passage re-
ranking capability of ChatGPT into a specialized
model. The key difference between our approach
and previous distillation methods is that we directly
use the model-generated permutation as the tar-
get, without introducing any inductive bias such as
consistency-checking or log-probability manipula-
tion (Bonifacio et al., 2022; Sachan et al., 2023).
To achieve this, we sample 10,000 queries from
MS MARCO and retrieve 20 candidate passages
using BM25 for each query. The objective of distil-
lation aims to reduce the differences between the
permutation outputs of the student and ChatGPT.

4.2 Training Objective

Formally, suppose we have a query q and M pas-
sages (p1, . . . , pM ) retrieved by BM25 (M = 20
in our implementation). ChatGPT with instruc-
tional permutation generation could produce the
ranking results of the M passages, denoted as
R = (r1, . . . , rM ), where ri ∈ [1, 2, . . . ,M ] is
the rank of the passage pi. For example, ri = 3
means pi ranks third among the M passages. Now
we have a specialized model si = fθ(q, pi) with

parameters θ to calculate the relevance score si of
paired (q, pi) using a cross-encoder. Using the per-
mutation R generated by ChatGPT, we consider
RankNet loss (Burges et al., 2005) to optimize the
student model:

LRankNet =

M∑

i=1

M∑

j=1

1ri<rj log(1 + exp(si − sj))

RankNet is a pairwise loss that measures the cor-
rectness of relative passage orders. When using
permutations generated by ChatGPT, we can con-
struct M(M − 1)/2 pairs.

4.3 Specialized Model Architecture
Regarding the architecture of the specialized model,
we consider two model structures: the BERT-like
model and the GPT-like model.

4.3.1 BERT-like model.
We utilize a cross-encoder model (Nogueira and
Cho, 2019) based on DeBERTa-large. It concate-
nates the query and passage with a [SEP] token
and estimates relevance using the representation of
the [CLS] token.

4.3.2 GPT-like model.
We utilize the LLaMA-7B (Touvron et al., 2023)
with a zero-shot relevance generation instruction
(see Appendix A). It classifies the query and pas-
sage as relevance or irrelevance by generating a
relevance token. The relevance score is then de-
fined as the generation probability of the relevance
token.

Figure 5 illustrates the structure of the two types
of specialized models.

5 Datasets

Our experiments are conducted on three benchmark
datasets and one newly collected test set NovelEval.

5.1 Benchmark Datasets
The benchmark datasets include, TREC-
DL (Craswell et al., 2020), BEIR (Thakur
et al., 2021), and Mr.TyDi (Zhang et al., 2021).
TREC is a widely used benchmark dataset in IR
research. We use the test sets of the 2019 and 2020
competitions: (i) TREC-DL19 contains 43 queries,
(ii) TREC-DL20 contains 54 queries.
BEIR consists of diverse retrieval tasks and do-
mains. We choose eight tasks in BEIR to evaluate
the models: (i) Covid: retrieves scientific articles
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for COVID-19 related questions. (ii) NFCorpus is
a bio-medical IR data. (iii) Touche is an argument
retrieval datasets. (iv) DBPedia retrieves entities
from DBpedia corpus. (v) SciFact retrieves evi-
dence for claims verification. (vi) Signal retrieves
relevant tweets for a given news title. (vii) News
retrieves relevant news articles for news headlines.
(viii) Robust04 evaluates poorly performing topics.

Mr.TyDi is a multilingual passages retrieval dataset
of ten low-resource languages: Arabic, Bengali,
Finnish, Indonesian, Japanese, Korean, Russian,
Swahili, Telugu, and Thai. We use the first 100
samples in the test set of each language.

5.2 A New Test Set – NovelEval

The questions in the current benchmark dataset
are typically gathered years ago, which raises the
issue that existing LLMs already possess knowl-
edge of these questions (Yu et al., 2023). Further-
more, since many LLMs do not disclose informa-
tion about their training data, there is a potential
risk of contamination of the existing benchmark
test set (OpenAI, 2023). However, re-ranking
models are expected to possess the capability to
comprehend, deduce, and rank knowledge that is
inherently unknown to them. Therefore, we sug-
gest constructing continuously updated IR test sets
to ensure that the questions, passages to be ranked,
and relevance annotations have not been learned by
the latest LLMs for a fair evaluation.

As an initial effort, we built NovelEval-2306, a
novel test set with 21 novel questions. This test
set is constructed by gathering questions and pas-
sages from 4 domains that were published after the
release of GPT-4. To ensure that GPT-4 did not
possess prior knowledge of these questions, we pre-
sented them to both gpt-4-0314 and gpt-4-0613.
For instance, question "Which film was the 2023
Palme d’Or winner?" pertains to the Cannes Film
Festival that took place on May 27, 2023, render-
ing its answer inaccessible to most existing LLMs.
Next, we searched 20 candidate passages for each
question using Google search. The relevance of
these passages was manually labeled as: 0 for not
relevant, 1 for partially relevant, and 2 for relevant.
See Appendix C for more details.

6 Experimental Results of LLMs

6.1 Implementation and Metrics

In benchmark datasets, we re-rank the top-100 pas-
sages retrieved by BM25 using pyserini1 and use
nDCG@{1, 5,10} as evaluation metrics. Since
ChatGPT cannot manage 100 passages at a time,
we use the sliding window strategy introduced in
Section 3.2 with a window size of 20 and step
size of 10. In NovelEval, we randomly shuffled
the 20 candidate passages searched by Google and
re-ranked them using ChatGPT and GPT-4 with
permutation generation.

6.2 Results on Benchmarks

On benchmarks, we compare ChatGPT and GPT-4
with state-of-the-art supervised and unsupervised
passage re-ranking methods. The supervised base-
lines include: monoBERT (Nogueira and Cho,
2019), monoT5 (Nogueira et al., 2020), mmar-
coCE (Bonifacio et al., 2021), and Cohere Rerank 2.
The unsupervised baselines include: UPR (Sachan
et al., 2022), InPars (Bonifacio et al., 2022), and
Promptagator++ (Dai et al., 2023). See Appendix E
for more details on implementing the baseline.

Table 1 presents the evaluation results obtained
from the TREC and BEIR datasets. The follow-
ing observations can be made: (i) GPT-4, when
equipped with the permutation generation instruc-
tion, demonstrates superior performance on both
datasets. Notably, GPT-4 achieves an average im-
provement of 2.7 and 2.3 in nDCG@10 on TREC
and BEIR, respectively, compared to monoT5 (3B).
(ii) ChatGPT also exhibits impressive results on
the BEIR dataset, surpassing the majority of super-
vised baselines. (iii) On BEIR, we use only GPT-4
to re-rank the top-30 passages re-ranked by Chat-
GPT. The method achieves good results, while the
cost is only 1/5 of that of only using GPT-4 for
re-ranking.

Table 2 illustrates the results on Mr. TyDi of ten
low-resource languages. Overall, GPT-4 outper-
forms the supervised system in most languages,
demonstrating an average improvement of 2.65
nDCG over mmarcoCE. However, there are in-
stances where GPT-4 performs worse than mmar-
coCE, particularly in low-resource languages like
Bengali, Telugu, and Thai. This may be attributed
to the weaker language modeling ability of GPT-4

1https://github.com/castorini/pyserini
2https://txt.cohere.com/rerank/
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Method DL19 DL20 Covid NFCorpus Touche DBPedia SciFact Signal News Robust04 BEIR (Avg)

BM25 50.58 47.96 59.47 30.75 44.22 31.80 67.89 33.05 39.52 40.70 43.42

Supervised

monoBERT (340M) 70.50 67.28 70.01 36.88 31.75 41.87 71.36 31.44 44.62 49.35 47.16
monoT5 (220M) 71.48 66.99 78.34 37.38 30.82 42.42 73.40 31.67 46.83 51.72 49.07
monoT5 (3B) 71.83 68.89 80.71 38.97 32.41 44.45 76.57 32.55 48.49 56.71 51.36
Cohere Rerank-v2 73.22 67.08 81.81 36.36 32.51 42.51 74.44 29.60 47.59 50.78 49.45

Unsupervised

UPR (FLAN-T5-XL) 53.85 56.02 68.11 35.04 19.69 30.91 72.69 31.91 43.11 42.43 42.99
InPars (monoT5-3B) - 66.12 78.35 - - - - - - - -
Promptagator++ (few-shot) - - 76.2 37.0 38.1 43.4 73.1 - - - -

LLM API (Permutation generation)

gpt-3.5-turbo 65.80 62.91 76.67 35.62 36.18 44.47 70.43 32.12 48.85 50.62 49.37
gpt-4† 75.59 70.56 85.51 38.47 38.57 47.12 74.95 34.40 52.89 57.55 53.68

Table 1: Results (nDCG@10) on TREC and BEIR. Best performing unsupervised and overall system(s) are
marked bold. All models except InPars and Promptagator++ re-rank the same BM25 top-100 passages. †On BEIR,
we use gpt-4 to re-rank the top-30 passages re-ranked by gpt-3.5-turbo to reduce the cost of calling gpt-4 API.

Method BM25 mmarcoCE gpt-3.5 +gpt-4

Arabic 39.19 68.18 71.00 72.56
Bengali 45.56 65.98 53.10 64.37
Finnish 29.91 54.15 56.48 62.29
Indonesian 51.79 69.94 68.45 75.47
Japanese 27.39 49.80 50.70 58.22
Korean 26.29 44.00 41.48 49.63
Russian 34.04 53.16 48.75 53.45
Swahili 45.15 60.31 62.38 67.67
Telugu 37.05 68.92 51.69 62.22
Thai 44.62 68.36 55.57 63.41

Avg 38.10 60.28 55.96 62.93

Table 2: Results (nDCG@10) on Mr.TyDi.

in these languages and the fact that text in low-
resource languages tends to consume more tokens
than English text, leading to the over-cropping of
passages. Similar trends are observed with Chat-
GPT, which is on par with the supervised system
in most languages, and consistently trails behind
GPT-4 in all languages.

6.3 Results on NovelEval

Table 3 illustrates the evaluation results on our
newly collected NovelEval, a test set containing 21
novel questions and 420 passages that GPT-4 had
not learned. The results show that GPT-4 performs
well on these questions, significantly outperform-
ing the previous best-supervised method, monoT5
(3B). Additionally, ChatGPT achieves a perfor-
mance level comparable to that of monoBERT. This
outcome implies that LLMs possess the capability
to effectively re-rank unfamiliar information.

Method nDCG@1 nDCG@5 nDCG@10

BM25 33.33 45.96 55.77

monoBERT (340M) 78.57 70.65 77.27
monoT5 (220M) 83.33 77.46 81.27
monoT5 (3B) 83.33 78.38 84.62

gpt-3.5-turbo 76.19 74.15 75.71
gpt-4 85.71 87.49 90.45

Table 3: Results on NovelEval.

DL19 DL20
Method nDCG@1/5/10 nDCG@1/5/10

curie-001 RG 39.53 / 40.02 / 41.53 41.98 / 34.80 / 34.91
curie-001 QG 50.78 / 50.77 / 49.76 50.00 / 48.36 / 48.73
curie-001 PG 66.67 / 56.79 / 54.21 59.57 / 55.20 / 52.17
davinci-003 RG 54.26 / 52.78 / 50.58 64.20 / 58.41 / 56.87
davinci-003 QG 37.60 / 44.73 / 45.37 51.25 / 47.46 / 45.93
davinci-003 PG 69.77 / 64.73 / 61.50 69.75 / 58.76 / 57.05
gpt-3.5 PG 82.17 / 71.15 / 65.80 79.32 / 66.76 / 62.91
gpt-4 PG 82.56 / 79.16 / 75.59 78.40 / 74.11 / 70.56

Table 4: Compare different instruction and API end-
point. Best performing system(s) are marked bold. PG,
QG, RG denote permutation generation, query genera-
tion and relevance generation, respectively.

6.4 Compare with Different Instructions

We conduct a comparison with the proposed permu-
tation generation (PG) with previous query genera-
tion (QG) (Sachan et al., 2022) and relevance gen-
eration (RG) (Liang et al., 2022) on TREC-DL19.
An example of the three types of instructions is
in Figure 2, and the detailed implementation is in
Appendix B. We also compare four LLMs provided
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Method nDCG@1 nDCG@5 nDCG@10

BM25 54.26 52.78 50.58
gpt-3.5-turbo 82.17 71.15 65.80

Initial passage order
(1) Random order 26.36 25.32 25.17
(2) Reverse order 36.43 31.79 32.77

Number of re-ranking
(3) Re-rank 2 times 78.29 69.37 66.62
(4) Re-rank 3 times 78.29 69.74 66.97
(5) gpt-4 Rerank 80.23 76.70 73.64

Table 5: Ablation study on TREC-DL19. We use
gpt-3.5-turbo with permutation generation with dif-
ferent configuration.

in the OpenAI API3: curie-001 - GPT-3 model
with about 6.7 billion parameters (Brown et al.,
2020); davinci-003 - GPT-3.5 model trained with
RLHF and about 175 billion parameters (Ouyang
et al., 2022); gpt-3.5-turbo - The underlying
model of ChatGPT (OpenAI, 2022); gpt-4 - GPT-
4 model (OpenAI, 2023).

The results are listed in Table 4. From the
results, we can see that: (i) The proposed PG
method outperforms both QG and RG methods
in instructing LLMs to re-rank passages. We
suggest two explanations: First, from the result
that PG has significantly higher top-1 accuracy
compared to other methods, we infer that LLMs
can explicitly compare multiple passages with PG,
allowing subtle differences between passages to
be discerned. Second, LLMs gain a more com-
prehensive understanding of the query and pas-
sages by reading multiple passages with potentially
complementary information, thus improving the
model’s ranking ability. (ii) With PG, ChatGPT
performs comparably to GPT-4 on nDCG@1, but
lags behind it on nDCG@10. The Davinci model
(text-davinci-003) performs poorly compared
to ChatGPT and GPT-4. This may be because of
the generation stability of Davinci and ChatGPT
trails that of GPT-4. We delve into the stability
analysis of Davinci, ChatGPT, and GPT-4 in Ap-
pendix F.

6.5 Ablation Study on TREC

We conducted an ablation study on TREC to gain
insights into the detailed configuration of permuta-
tion generation. Table 5 illustrates the results.

3https://platform.openai.com/docs/
api-reference

Initial Passage Order While our standard imple-
mentation utilizes the ranking result of BM25 as
the initial order, we examined two alternative vari-
ants: random order (1) and reversed BM25 order
(2). The results reveal that the model’s performance
is highly sensitive to the initial passage order. This
could be because BM25 provides a relatively good
starting passage order, enabling satisfactory results
with only a single sliding window re-ranking.

Number of Re-Ranking Furthermore, we stud-
ied the influence of the number of sliding window
passes. Models (3-4) in Table 5 show that re-
ranking more times may improve nDCG@10, but
it somehow hurts the ranking performance on top
passages (e.g., nDCG@1 decreased by 3.88). Re-
ranking the top 30 passages using GPT-4 showed
notable accuracy improvements (see the model (5)).
This provides an alternative method to combine
ChatGPT and GPT-4 in passage re-ranking to re-
duce the high cost of using the GPT-4 model.

6.6 Results of LLMs beyond ChatGPT
We further test the capabilities of other LLMs be-
yond the OpenAI series on TREC DL-19. As
shown in Table 6, we evaluate the top-20 BM25 pas-
sage re-ranking nDCG of proprietary LLMs from
OpenAI, Cohere, Antropic, and Google, and three
open-source LLMs. We see that: (i) Among the
proprietary LLMs, GPT-4 exhibited the highest re-
ranking performance. Cohere Re-rank also showed
promising results; however, it should be noted that
it is a supervised specialized model. In contrast,
the proprietary models from Antropic and Google
fell behind ChatGPT in terms of re-ranking effec-
tiveness. (ii) As for the open-source LLMs, we ob-
served a significant performance gap compared to
ChatGPT. One possible reason for this discrepancy
could be the complexity involved in generating per-
mutations of 20 passages, which seems to pose a
challenge for the existing open-source models.

We analyze the model’s unexpected behavior in
Appendix F, and the cost of API in Appendix H.

7 Experimental Results of Specialization

As mentioned in Section 4, we randomly sample
10K queries from the MSMARCO training set and
employ the proposed permutation distillation to dis-
till ChatGPT’s predicted permutation into special-
ized re-ranking models. The specialized re-ranking
models could be DeBERTa-v3-Large with a cross-
encoder architecture or LLaMA-7B with relevance
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Figure 4: Scaling experiment. The dashed line indicates the baseline methods: GPT-4, monoT5, monoBERT, and
ChatGPT. The solid green line and solid gray line indicate the specialized Deberta models obtained by the proposed
permutation distillation and by supervised learning on MS MARCO, respectively. This figure compares the models’
performance on TREC and BEIR across varying model sizes (70M to 435M) and training data sizes (500 to 10K).

Method ND1 ND5 ND10

OpenAI text-davinci-003 70.54 61.90 57.24
OpenAI gpt-3.5-turbo 75.58 66.19 60.89
OpenAI gpt-4 79.46 71.65 65.68

Cohere rerank-english-v2.0 79.46 71.56 64.78

Antropic claude-2 66.66 59.33 55.91
Antropic claude-instant-1 81.01 66.71 62.23

Google text-bison-001 69.77 64.46 58.67
Google bard-2023.10.21 81.01 65.57 60.11

Google flan-t5-xxl 52.71 51.63 50.26
Tsinghua ChatGLM-6B 54.26 52.77 50.58
LMSYS Vicuna-13B 54.26 51.55 49.08

Table 6: Results of different LLMs on re-ranking
top-20 passages on DL-19. ND{1,5,10} denote
nDCG@{1,5,10}, respectively.

Label Method DL19 DL20 BEIR (Avg)

∅ BM25 50.58 47.96 43.42
∅ ChatGPT 65.80 62.91 49.37

MARCO monoT5 (3B) 71.83 68.89 51.36

MARCO DeBERTa-Large 68.89 61.38 42.64
MARCO LLaMA-7B 69.24 58.97 47.71

ChatGPT DeBERTa-Large 70.66 67.15 53.03
ChatGPT LLaMA-7B 71.78 66.89 51.68

Table 7: Results (nDCG@10) of specialized mod-
els. Best performing specialized model(s) are marked
bold. The label column denotes the relevance judge-
ments used in model training, where MARCO denotes
use MS MARCO annotation, ChatGPT denotes use the
outputs of permutation generation instructed ChatGPT
as labels. BEIR (Avg) denotes average nDCG on eight
BEIR datasets, and the detailed results are at Table 13.

generation instructions. We also implemented the
specialized model trained using the original MS
MARCO labels (aka supervised learning) for com-

parison4.

7.1 Results on Benchmarks
Table 7 lists the results of specialized models, and
Table 13 includes the detailed results. Our findings
can be summarized as follows: (i) Permutation dis-
tillation outperforms the supervised counterpart on
both TREC and BEIR datasets, potentially because
ChatGPT’s relevance judgments are more compre-
hensive than MS MARCO labels (Arabzadeh et al.,
2021). (ii) The specialized DeBERTa model outper-
forms previous state-of-the-art (SOTA) baselines,
monoT5 (3B), on BEIR with an average nDCG of
53.03. This result highlights the potential of dis-
tilling LLMs for IR since it is significantly more
cost-efficient. (iii) The distilled specialized model
also surpasses ChatGPT, its teacher model, on both
datasets. This is probably because the re-rank-
ing stability of specialized models is better than
ChatGPT. As shown in the stability analysis in Ap-
pendix F, ChatGPT is very unstable in generating
permutations.

7.2 Analysis on Model Size and Data Size
In Figure 4, we present the re-ranking performance
of specialized DeBERTa models obtained through
permutation distillation and supervised learning of
different model sizes (ranging from 70M to 435M)
and training data sizes (ranging from 500 to 10K).
Our findings indicate that the permutation-distilled
models consistently outperform their supervised
counterparts across all settings, particularly on the
BEIR datasets. Notably, even with only 1K training
queries, the permutation-distilled DeBERTa model

4Note that all models are trained using the RankNet loss
for a fair comparison.
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achieves superior performance compared to the
previous state-of-the-art monoT5 (3B) model on
BEIR. We also observe that increasing the number
of model parameters yields a greater improvement
in the ranking results than increasing the training
data. Finally, we find that the performance of super-
vised models is unstable for different model sizes
and data sizes. This may be due to the presence
of noise in the MS MARCO labels, which leads to
overfitting problems (Arabzadeh et al., 2021).

8 Conclusion

In this paper, we conduct a comprehensive study
on passage re-ranking with LLMs. We introduce
a novel permutation generation approach to fully
explore the power of LLMs. Our experiments on
three benchmarks have demonstrated the capability
of ChatGPT and GPT-4 in passage re-ranking. To
further validate LLMs on unfamiliar knowledge,
we introduce a new test set called NovelEval. Ad-
ditionally, we propose a permutation distillation
method, which demonstrates superior effectiveness
and efficiency compared to existing supervised ap-
proaches.

Limitations

The limitations of this work include the main
analysis for OpenAI ChatGPT and GPT-4, which
are proprietary models that are not open-source.
Although we also tested on open-source models
such as FLAN-T5, ChatGLM-6B, and Vicuna-13B,
the results still differ significantly from ChatGPT.
How to further exploit the open-source models
is a question worth exploring. Additionally, this
study solely focuses on examining LLMs in the
re-ranking task. Consequently, the upper bound of
the ranking effect is contingent upon the recall of
the initial passage retrieval. Our findings also in-
dicate that the re-ranking effect of LLMs is highly
sensitive to the initial order of passages, which
is usually determined by the first-stage retrieval,
such as BM25. Therefore, there is a need for fur-
ther exploration into effectively utilizing LLMs to
enhance the first-stage retrieval and improve the ro-
bustness of LLMs in relation to the initial passage
retrieval.
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A Instructions

A.1 Query Generation Instruction

The query generation instruction (Sachan et al., 2022) uses the log-probability of the query.

Please write a question based on this passage.
Passage: {{passage}}
Question: {{query}}

A.2 Relevance Generation Instruction (few-shot)

Following HELM (Liang et al., 2022), the relevance generation instruction use 4 in-context examples.

Given a passage and a query, predict whether the passage includes an answer to the query by
producing either ‘Yes‘ or ‘No‘.

Passage: Its 25 drops per ml, you guys are all wrong. If it is water, the standard was changed 15 -
20 years ago to make 20 drops = 1mL. The viscosity of most things is temperature dependent, so
this would be at room temperature. Hope this helps.
Query: how many eye drops per ml
Does the passage answer the query?
Answer: Yes

Passage: RE: How many eyedrops are there in a 10 ml bottle of Cosopt? My Kaiser pharmacy
insists that 2 bottles should last me 100 days but I run out way before that time when I am using 4
drops per day.In the past other pharmacies have given me 3 10-ml bottles for 100 days.E: How
many eyedrops are there in a 10 ml bottle of Cosopt? My Kaiser pharmacy insists that 2 bottles
should last me 100 days but I run out way before that time when I am using 4 drops per day.
Query: how many eye drops per ml
Does the passage answer the query?
Answer: No

Passage: : You can transfer money to your checking account from other Wells Fargo. accounts
through Wells Fargo Mobile Banking with the mobile app, online, at any. Wells Fargo ATM, or at
a Wells Fargo branch. 1 Money in — deposits.
Query: can you open a wells fargo account online
Does the passage answer the query?
Answer: No

Passage: You can open a Wells Fargo banking account from your home or even online. It is really
easy to do, provided you have all of the appropriate documentation. Wells Fargo has so many bank
account options that you will be sure to find one that works for you. They offer free checking
accounts with free online banking.
Query: can you open a wells fargo account online
Does the passage answer the query?
Answer: Yes

Passage: {{passage}}
Query:{{query}}
Does the passage answer the query?
Answer:
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A.3 Relevance Generation Instruction (zero-shot)

This instruction is used to train LLaMA-7B specialized models.

Given a passage and a query, predict whether the passage includes an answer to the query by
producing either ‘Yes‘ or ‘No‘.

Passage: {{passage}}
Query: {{query}}
Does the passage answer the query?
Answer:

A.4 Permutation Generation Instruction (Text)

Permutation generation (text) is used for text-davinci-003.

This is RankGPT, an intelligent assistant that can rank passages based on their relevancy to the
query.

The following are {{num}} passages, each indicated by number identifier []. I can rank them based
on their relevance to query: {{query}}

[1] {{passage_1}}

[2] {{passage_2}}

(more passages) ...

The search query is: {{query}}

I will rank the {{num}} passages above based on their relevance to the search query. The passages
will be listed in descending order using identifiers, and the most relevant passages should be listed
first, and the output format should be [] > [] > etc, e.g., [1] > [2] > etc.

The ranking results of the {{num}} passages (only identifiers) is:

A.5 Permutation Generation Instruction (Chat)

Permutation generation instruction (chat) is used for gpt-3.5-turbo and gpt-4.
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system:
You are RankGPT, an intelligent assistant that can rank passages based on their relevancy to the
query.

user:
I will provide you with {{num}} passages, each indicated by number identifier []. Rank them
based on their relevance to query: {{query}}.

assistant:
Okay, please provide the passages.

user:
[1] {{passage_1}}

assistant:
Received passage [1]

user:
[2] {{passage_2}}

assistant:
Received passage [2]

(more passages) ...

user
Search Query: {{query}}.
Rank the {{num}} passages above based on their relevance to the search query. The passages
should be listed in descending order using identifiers, and the most relevant passages should be
listed first, and the output format should be [] > [], e.g., [1] > [2]. Only response the ranking results,
do not say any word or explain.

B Instructional Methods on LLMs as Rernaker

This paper focus on re-ranking task, given M passages for a query q, the re-ranking aims to use an agent
f(·) to output their ranking results R = (r1, ..., rM ), where ri ∈ [1, 2, ...,M ] denotes the rank of pi. This
paper studies using the LLMs as f(·).

B.1 Instructional Query Generation
Query generation has been studied in Sachan et al. (2022); Muennighoff (2022), in which the relevance
between a query and a passage is measured by the log-probability of the model to generate the query
based on the passage. Figure 2 (a) shows an example of instructional query generation.

Formally, given query q and a passage pi, their relevance score si is calculated as:

si =
1

|q|
∑

t

log p(qt|q<t, pi, Iquery) (1)

where |q| denotes the number of tokens in q, qt denotes the t-th token of q, and Iquery denotes the
instructions, referring to Figure 2 (a). The passages are then ranked based on relevance score si.

B.2 Instructional Relevance Generation
Relevance generation is employed in HELM (Liang et al., 2022). Figure 2 (b) shows an example of
instructional relevance generation, in which LLMs are instructed to output "Yes" if the query and passage
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are relevant or "No" if they are irrelevant. The relevance score si is measured by the probability of LLMs
generating the word ’Yes’ or ’No’:

si =

{
1 + p(Yes), if output is Yes
1− p(No), if output is No

(2)

where p(Yes/No) denotes the probability of LLMs generating Yes or No, and the relevance score is
normalized into the range [0, 2].

The above two methods rely on the log probability of LLM, which is often unavailable for LLM API.
For example, at the time of writing, OpenAI’s ChatCompletion API does not provide the log-probability
of generation5.

B.3 Instructional Permutation Generation

The proposed instructional permutation generation is a listwise approach, which directly assigns each
passage pi a unique ranking identifier ai (e.g., [1], [2]) and places it at the beginning of pi: p′i =
Concat(ai, pi). Subsequently, a generative LLM is instructed to generate a permutation of these identifiers:
Perm = f(q, p′1, ..., p

′
M ), where the permutation Perm indicates the rank of the identifiers ai (e.g., [1],

[2]). We then simply map the identifiers ai to the passages pi to obtain the ranking of the passages.

Domain Question Reference Answer

Sport What is Messi’s annual income after transferring to Miami? $50M-$60M
Sport How many goals did Haaland scored in the 2023 Champions League Final? 0
Sport Where did Benzema go after leaving Real Madrid? Saudi Arabia
Sport Where was the 2023 Premier League FA Cup Final held? Wembley Stadium
Sport Who won 2023 Laureus World Sportsman Of The Year Award? Lionel Messi
Sport Who wins NBA Finals 2023? Denver Nuggets
Tech What is the screen resolution of vision pro? 4K with one eye
Tech What is the name of the combined Deepmind and Google Brain? Google DeepMind
Tech How much video memory does the DGX GH200 have? 144TB
Tech What are the new features of PyTorch 2? faster, low memory, dynamic shapes
Tech Who will be the CEO of Twitter after Elon Musk is no longer the CEO? Linda Yaccarino
Tech What are the best papers of CVPR 2023? Visual Programming: Compositional [...]
Movie Who sang the theme song of Transformers Rise of the Beasts? Notorious B.I.G
Movie Who is the villain in The Flash? Eobard Thawne/Professor Zoom
Movie How many different Spider-Men are there in Across the Spider-Verse? 280 variations
Movie Who does Momoa play in Fast X? Dante
Movie The Little Mermaid first week box office? $163.8 million worldwide
Movie Which film was the 2023 Palme d’Or winner? Anatomy of a Fall
Other Where will Blackpink’s 2023 world tour concert in France be held? the Stade de France
Other What is the release date of song Middle Ground? May 19, 2023
Other Where did the G7 Summit 2023 take place? Hiroshima

Table 8: Questions and reference answers on NovelEval-2306.

C NovelEval-2306

Table 8 lists the collected 21 questions. These questions come from four domains and include hot topics
from the past few months. For each question, we used Google search to obtain 20 passages. When using
Google search, in order to avoid all pages containing the answer, we used not only the question itself as a
search query, but also the entities that appear in the question as an alternative search query to obtain some
pages that are relevant but do not contain the answer. For example, for the first question "What is Messi’s
annual income after transferring to Miami?", we used "Messi" and "Messi transferring" as search queries
to get some pages that do not contain the answer. When searching, we collected the highest-ranking
web pages, news, and used a paragraph or paragraphs from the web pages related to the search term as
candidate passages. Table 9 shows the statistical information of the data. All of the LLMs (including

5https://platform.openai.com/docs/api-reference/chat/create
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gpt-4-0314 and gpt-4-0613) we tested achieved 0% question-answering accuracy on the obtained test
set.

We searched for 20 candidate passages for each question using Google search. These passages were
manually labeled for relevance by a group of annotators, including the authors and their highly educated
colleagues. To ensure consistency, the annotation process was repeated twice. Each passage was assigned
a relevance score: 0 for not relevant, 1 for partially relevant, and 2 for relevant. When evaluating the latest
LLMs, we found that all non-retrieval-augmented models tested achieved 0% accuracy in answering the
questions on the test set. This test set provides a reasonable evaluation of the latest LLMs at the moment.
Since LLMs may be continuously trained on new data, the proposed test set should be continuously
updated to counteract the contamination of the test set by LLMs.

Number of questions 21
Number of passages 420
Number of relevance annotation 420
Average number words of passage 149

Number of score 0 290
Number of score 1 40
Number of score 2 90

Table 9: Data Statistics of NovelEval.

D Implementation Details

D.1 Training Configuration

We use DeBERTa-V3-base, which concatenates the query and passage with a [SEP] token and utilizes
the representation of the [CLS] token. To generate candidate passages, we randomly sample 10k queries
and use BM25 to retrieve 20 passages for each query. We then re-rank the candidate passages using the
gpt-3.5-turbo API with permutation generation instructions, at a cost of approximately $40. During
training, we employ a batch size of 32 and utilize the AdamW optimizer with a constant learning rate of
5× 10−5. The model is trained for two epochs. Additionally, we implement models using the original
MS MARCO labels for comparison.

The LLaMA-7B model is optimized with the AdamW optimizer, a constant learning rate of 5× 10−5,
and with mixed precision of bf16 and Deepspeed Zero3 strategy. All the experiments are conducted on 8
A100-40G GPUs.

Figure 5 illustrates the detailed model architecture of BERT-like and GPT-like specialized models.

Figure 5: Model architecture of BERT-like and GPT-like specialized models.
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D.2 Training Objective
Using the permutation generated by ChatGPT, we consider the following losses to optimize the student
model:
Listwise Cross-Entropy (CE) (Bruch et al., 2019). Listwise CE is the wide-use loss for passage
ranking, which considers only one positive passage and defines the list-wise softmax cross-entropy on all
candidate’s passages:

LListwise_CE = −
M∑

i=1

1ri=1 log(
exp(si)∑
j exp(sj)

)

where 1 is the indicator function.
RankNet (Burges et al., 2005). RankNet is a pairwise loss that measures the correctness of relative
passage orders:

LRankNet =

M∑

i=1

M∑

j=1

1ri<rj log(1 + exp(si − sj))

when using permutation generated by ChatGPT, we can construct M(M − 1)/2 pairs.
LambdaLoss (Wang et al., 2018). The LambdaLoss further accounts for the nDCG gains of the model
ranks. LambdaLoss uses the student model’s rank, denoted as π = (π1, . . . , πM ), where πi is the model
predicted rank of pi with a similar definition with ChatGPT rank R. The loss function is defined as:

LLambda =
∑

ri<rj

∆NDCG log2(1 + exp(si − sj))

in which ∆NDCG is the delta of NDCG which could be compute as ∆NDCG = |Gi−Gj || 1
D(πi)

− 1
D(πj)

|,
where D(πi) and D(πj) are the position discount functions and Gi and Gj are the gain functions used in
NDCG (Wang et al., 2018).
Pointwise Binary Cross-Entropy (BCE). We also include the Pointwise BCE as the baseline loss for
supervised methods, which is calculated based on each query-document pair independently:

LBCE = −
M∑

i=1

1ri=1 log σ(si) + 1ri ̸=1 log σ(1− si)

where σ(x) = 1
1+exp(−x) is the logistic function.

E Baselines Details

We include state-of-the-art supervised and unsupervised passage re-ranking methods for comparison. The
supervised baselines are:

• monoBERT (Nogueira and Cho, 2019): A cross-encoder re-ranker based on BERT-large, trained on
MS MARCO.

• monoT5 (Nogueira et al., 2020): A sequence-to-sequence re-ranker that uses T5 to calculate the
relevance score6.

• Cohere Rerank: A passage reranking API rerank-english-v2.0 developed by Cohere7. Cohere
does not provide details on the structure and training method of the model.

• mmarcoCE (Bonifacio et al., 2021): A 12-layer mMiniLM-v2 cross-encoder model8 trained on
mmarco, a translated version of MS MARCO. mmarcoCE serves as a baseline for Mr.TyDi.

The unsupervised baselines are:
6https://huggingface.co/castorini/monot5-3b-msmarco-10k
7https://cohere.com/rerank
8https://huggingface.co/cross-encoder/mmarco-mMiniLMv2-L12-H384-v1
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• UPR (Sachan et al., 2022): Unsupervised passage ranking with instructional query generation. Due
to its superior performance, we use the FLAN-T5-XL (Chung et al., 2022) as the LLM of UPR.

• InPars (Bonifacio et al., 2022): monoT5-3B trained on pseudo data generated by GPT-3.
• Promptagator++ (Dai et al., 2023): A 110M cross-encoder re-ranker trained on pseudo queries

generated by FALN 137B.

Method Repetition↓ Missing↓ Rejection RBO↑
text-davinci-003 0 280 0 72.30
gpt-3.5-turbo 14 153 7 81.49
gpt-4 0 1 11 82.08

Table 10: Analysis of model stability on TREC. Repetition refers to the number of times the model generates
duplicate passage identifiers. Missing refers to the number of missing passage identifiers in model output. Rejection
refers to the number of times the model rejects to perform the ranking. RBO, i.e., rank biased overlap, refers to the
consistency of the model in ranking the same group of passages twice.

F Model Behavior Analysis

In the permutation generation method, the ranking of passages is determined by the list of model-output
passage identifiers. However, we have observed that the models do not always produce the desired output,
as evidenced by occasional duplicates or missing identifiers in the generated text. In Table 10, we present
quantitative results of unexpected model behavior observed during experiments with the GPT models.
Repetition. The repetition metric measures the occurrence of duplicate passage identifiers generated by
the model. The results indicate that ChatGPT produced 14 duplicate passage identifiers during re-ranking
97 queries on two TREC datasets, whereas text-davinci-003 and GPT-4 did not exhibit any duplicates.
Missing. We conducted a count of the number of times the model failed to include all passages in the
re-ranked permutation output9. Our findings revealed that text-davinci-003 has the highest number
of missing passages, totaling 280 instances. ChatGPT also misses a considerable number of passages,
occurring 153 times. On the other hand, GPT-4 demonstrates greater stability, with only one missing
passage in total. These results suggest that GPT-4 has higher reliability in generating permutations, which
is critical for effective ranking.
Rejection. We have observed instances where the model refuses to re-rank passages, as evidenced by
responses such as "None of the provided passages is directly relevant to the query ...". To quantify
this behavior, we count the number of times this occurred and find that GPT-4 rejects ranking the most
frequently, followed by ChatGPT, while the Davinci model never refused to rank. This finding suggests
that chat LLMs tend to be more adaptable compared to completion LLMs, and may exhibit more subjective
responses. Note that we do not explicitly prohibit the models from rejecting ranking in the instructions, as
we find that it does not significantly impact the overall ranking performance.
RBO. The sliding windows strategy involves re-ranking the top-ranked passages from the previous
window in the next window. The models are expected to produce consistent rankings in two windows
for the same group of passages. To measure the consistency of the model’s rankings, we use RBO (rank
biased overlap10), which calculates the similarity between the two ranking results. The findings turn out
that ChatGPT and GPT-4 are more consistent in ranking passages compared to the Davinci model. GPT-4
also slightly outperforms ChatGPT in terms of the RBO metric.

G Analysis on Hyperparameters of Sliding Window

To analyze the influence of parameters of the sliding window strategy, we adjust the window size and
set the step size to half of the window size. The main motivation for this setup is to keep the expected

9In our implementation, we append the missing passages in their original order at the end of the re-ranked passages.
10https://github.com/changyaochen/rbo
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API Instruction Tokens Requests $USD

text-curie-001 Relevance generation 52,970 100 0.106
text-curie-001 Query generation 10,954 100 0.022
text-davinci-003 Query generation 11,269 100 0.225
text-davinci-003 Permutation generation 17,370 10 0.347
gpt-3.5-turbo Permutation generation 19,960 10 0.040
gpt-4 Permutation generation 19,890 10 0.596
- rerank top-30 Permutation generation 3,271 1 0.098

Table 11: Average token cost, number API request, and $USD per query on TREC.

Window size Step size nDCG@1 nDCG@5 nDCG@10

20 10 75.58 70.50 67.05
40 20 78.30 71.32 65.51
60 30 75.97 69.23 65.03
80 40 72.09 70.59 65.57

Table 12: Analysis on Hyperparameters of Sliding Window on TREC-DL19.

overhead of the method (number of tokens required for computation) low; i.e., most tokens in this setup
are used for PG only twice. The experimental results are shown in Table 1211. The results show that the
effect varies over a certain range of arrivals for different values of window size: window size=20 performs
best in terms of nDCG@10, while window size=40 performs best in terms of nDCG@5 and nDCG@1.
We speculate that a larger window size will increase the model’s ranking horizon but will also present
challenges in processing long contexts and large numbers of items.

H API Cost

In Table 11, we provide details on the average token cost, API request times, and USD cost per query.
In terms of average token cost, the relevance generation method is the most expensive, as it requires 4
in-context demonstrations. On the other hand, the permutation generation method incurs higher token
costs compared to the query generation method, as it involves the repeated processing of passages in
sliding windows. Regarding the number of requests, the permutation generation method requires 10
requests for sliding windows, while other methods require 100 requests for re-ranking 100 passages. In
terms of average USD cost, GPT-4 is the most expensive, with a cost of $0.596 per query. However, using
GPT-4 for re-ranking the top-30 passages can result in significant cost savings, with a cost of $0.098
per query for GPT-4 usage, while still achieving good results. As a result, we only utilize GPT-4 for
re-ranking the top 30 passages of ChatGPT on BEIR and Mr.TyDi. The total cost of our experiments with
GPT-4 amounts to $556.

Since the experiments with ChatGPT and GPT-4 are conducted using the OpenAI API, the running
time is contingent on the OpenAI service, e.g., API latency. Besides, the running time can also vary
across different API versions and network environments. In our testing conditions, the average latency
for API calls for gpt-3.5-turbo and gpt-4 was around 1.1 seconds and 3.2 seconds, respectively. Our
proposed sliding window-based permutation generation approach requires 10 API calls per query to
re-rank 100 passages. Consequently, the average running time per query is 11 seconds for gpt-3.5-turbo
and 32 seconds for gpt-4.

I Results of Specialized Models

Table 13 lists the detailed results of specialized models on TREC and BEIR.

11Note that the results are obtained using gpt-3.5-turbo-16k API for managing long context.
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Method DL19 DL20 Covid NFCorpus Touche DBPedia SciFact Signal News Robust04 BEIR (Avg)

BM25 50.58 47.96 59.47 30.75 44.22 31.80 67.89 33.05 39.52 40.70 43.42

Supervised train on MS MRACO

monoBERT (340M) 70.50 67.28 70.01 36.88 31.75 41.87 71.36 31.44 44.62 49.35 47.16
monoT5 (220M) 71.48 66.99 78.34 37.38 30.82 42.42 73.40 31.67 46.83 51.72 49.07
monoT5 (3B) 71.83 68.89 80.71 38.97 32.41 44.45 76.57 32.55 48.49 56.71 51.36
Cohere Rerank-v2 73.22 67.08 81.81 36.36 32.51 42.51 74.44 29.60 47.59 50.78 49.45

Unsupervised instructional permutation generation

ChatGPT 65.80 62.91 76.67 35.62 36.18 44.47 70.43 32.12 48.85 50.62 49.37
GPT-4 75.59 70.56 85.51 38.47 38.57 47.12 74.95 34.40 52.89 57.55 53.68

Specialized Models train on MARCO labels or ChatGPT predicted permutations

MARCO Pointwise BCE 65.57 56.72 70.82 33.10 17.08 32.28 55.37 19.30 41.52 46.00 39.43
MARCO Listwise CE 65.99 57.97 66.31 32.61 20.15 30.79 37.57 18.09 38.11 39.93 35.45
MARCO RankNet 66.34 58.51 70.29 34.23 20.27 29.62 49.01 23.22 39.82 43.87 38.79
MARCO LambdaLoss 64.82 56.16 72.86 34.20 19.51 32.55 51.88 26.22 42.47 45.28 40.62

ChatGPT Listwise CE 65.39 58.80 76.29 35.73 38.19 40.24 64.49 31.37 47.61 48.00 47.74
ChatGPT RankNet 65.75 59.34 81.26 36.57 39.03 42.10 68.77 31.55 52.54 52.44 50.53
ChatGPT LambdaLoss 67.17 60.56 80.63 36.74 36.73 43.75 68.21 32.58 49.00 50.51 49.77

deberta-v3-xsmall (70M) 64.75 55.07 78.21 35.95 35.42 41.37 67.86 30.04 47.68 49.91 48.31
deberta-v3-small (142M) 67.85 58.84 78.88 36.55 36.16 40.99 66.66 30.29 49.17 49.73 48.55
deberta-v3-base (184M) 70.28 62.52 80.81 36.15 37.25 44.06 71.70 32.45 50.84 51.33 50.57
deberta-v3-large (435M) 70.66 67.15 84.64 38.48 39.27 47.36 74.18 32.53 51.19 56.55 53.03
deberta-v3-large 5K 70.93 64.32 84.43 38.66 40.72 46.28 73.88 31.93 52.24 55.89 53.00
deberta-v3-large 3K 70.79 63.91 84.21 38.73 39.83 45.74 74.41 31.92 52.29 57.42 53.07
deberta-v3-large 1K 69.90 64.81 83.38 38.94 36.65 44.46 71.96 30.19 50.73 53.74 51.26
deberta-v3-large 500 69.71 62.00 83.54 37.23 33.68 44.56 70.48 28.70 45.64 42.67 48.31

deberta-v3-large label 10K 66.61 57.26 74.36 33.94 18.09 34.95 35.35 21.38 39.00 44.94 37.75
deberta-v3-large label 5K 68.98 61.38 80.73 35.68 20.48 37.34 54.63 24.25 36.94 51.13 42.64
deberta-v3-large label 3K 67.41 60.42 79.82 35.49 24.54 37.39 47.31 23.29 39.87 50.65 42.29
deberta-v3-large label 1K 65.55 60.93 77.70 33.29 23.36 36.38 31.10 21.71 34.28 38.31 37.01
deberta-v3-large label 500 60.59 54.45 76.20 32.93 19.66 31.54 45.66 13.99 33.48 44.49 37.24

deberta-v3-large monoT5-3B 73.05 68.82 84.78 38.55 34.43 43.61 75.45 30.75 49.85 56.80 51.78
deberta-v3-large chatgpt+label 72.42 67.30 85.96 38.75 35.06 45.43 71.81 28.52 45.91 55.57 50.88

deberta-v3-base label 10k 65.66 59.84 71.63 34.65 16.53 32.59 34.65 22.64 37.60 44.02 36.79
deberta-v3-small label 10k 63.63 52.83 68.17 30.48 18.12 31.72 33.62 18.02 34.57 36.09 33.85
deberta-v3-xsmall label 10k 60.89 51.15 63.58 28.67 14.87 27.12 20.60 18.97 32.61 32.67 29.89

llama-7b 71.33 66.06 78.23 37.60 34.87 45.46 76.13 34.17 51.79 55.22 51.68
vicuna-7b 71.80 66.89 78.32 36.87 31.81 45.40 74.23 34.28 51.13 52.91 50.62

llama-7b 10k label 65.22 56.85 75.36 36.24 20.88 37.34 69.04 25.22 41.21 49.21 44.31
llama-7b 5k label 69.24 58.97 80.49 37.55 28.23 39.66 71.79 26.04 44.09 53.83 47.71

Table 13: Results (nDCG@10) on TREC and BEIR. Best performing specialized and overall system(s) are
marked bold. The specialized models are fine-tined on sampled queries using relevance judgements from MARCO
or ChatGPT.
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