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Abstract

With the continuous growth of large language
models, the process of fine-tuning these mod-
els for new tasks has become increasingly
parameter-intensive. Prompt tuning, a method
that involves tuning a small set of soft prompts,
has emerged as an effective and efficient ap-
proach for adapting large pre-trained language
models. However, most existing prompt tuning
approaches only introduce prompts at the input
layer, limiting their performance and leaving
large rooms for improvement. In this work,
we propose a novel Attention Prompt tuning
method, namely APROMPT, for efficient adap-
tation of pre-trained language models. We first
demonstrate that existing prompt tuning can
be considered as a special case of attention
prompt tuning. We then formally introduce
APROMPT, which incorporates query, key, and
value prompts into the attention layer to guide
the attention computation during fine-tuning.
Experimental results on the SuperGLUE bench-
mark consistently demonstrate that our pro-
posed approach outperforms state-of-the-art
baselines and full fine-tuning method with pre-
trained models at different scales. In addition,
a comprehensive set of ablation studies validate
the effectiveness of the prompt design, as well
as the efficiency of our approach.

1 Introduction

Pre-trained Language Models (PLMs) have gained
significant popularity in various natural language
understanding tasks (Devlin et al., 2019; Lewis
et al., 2020; Raffel et al., 2020), exhibiting re-
markable success under the pretrain-then-finetune
paradigm. It has been consistently demonstrated in
recent studies (Aribandi et al., 2022; Zhang et al.,
2022) that scaling up the size of these models leads
to improved performance. Consequently, large
language models such as LLaMA 65B (Touvron
et al., 2023), GPT-3 175B (Brown et al., 2020),
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TunedFrozen

...

...

...

...

...

...

LN

L2

L1

LN

L2

L1

...

...

LN

L2

L1

...

LN

L2

L1

 Fine-Tuning  Prompt Tuning P-Tuning v2 Ours

A
cc

u
ra

cy
 (

%
)

72

77

82

87

92

67
T5-Base (220M) T5-Large (770M) T5-XL (3B)

 Fine-Tuning

  Prompt Tuning

P-Tuning v2

Ours

Figure 1: Illustration of APROMPT (ours) and previous
works, including Fine-Tuning (Aribandi et al., 2022),
Prompt Tuning (Lester et al., 2021), and P-Tuning V2
(Liu et al., 2022) methods. Our method consistently
improves over prompt tuning methods and also outper-
forms fine-tuning method across tasks and model scales.

and PaLM 540B (Chowdhery et al., 2022) are be-
coming increasingly prevalent. Despite their com-
pelling performance, fine-tuning large-scale PLMs
is highly parameter-inefficient due to storing gradi-
ents and updating for all model parameters. This
inefficiency also arises from the requirement to
store and deploy a complete copy of the fine-tuned
model for each individual task, resulting in compu-
tational expenses that hinder fast model adaptation.

To tackle the challenges associated with full
fine-tuning, researchers have proposed parameter-
efficient tuning approaches (Guo et al., 2021; He
et al., 2022a; Hu et al., 2022) involving techniques
such as partial tuning and extra module. Partial
tuning methods (Yosinski et al., 2014) focus on
fine-tuning only a portion of the backbone, such
as the classifier head or the last few layers, while
keeping the remaining layers frozen. On the other
hand, extra module methods introduce learnable
bias terms (Cai et al., 2020) or additional adapters
(Houlsby et al., 2019) to the network for adapta-
tion. These strategies operate within the pretrain-
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then-finetune paradigm and effectively reduce the
number of learnable parameters. However, in gen-
eral, these approaches tend to underperform the full
fine-tuning models with large performance gaps.

Recently, prompt tuning approaches (Lester
et al., 2021; Li and Liang, 2021; He et al., 2022b;
Yang et al., 2023) have been proposed, which uti-
lize a set of learnable soft prompts prepended to
the input. These soft prompts consist of continuous
embeddings that are updated during the tuning pro-
cess while keeping the backbone frozen. Prompt
tuning offers a conceptually simpler and more flex-
ible method compared to other parameter-efficient
tuning approaches. It has been demonstrated to per-
form closer to full model tuning, especially with
large-scale PLMs (Ma et al., 2022; Razdaibiedina
et al., 2023a). Prompt tuning provides a promising
parameter-efficient alternative to fine-tuning, as the
soft prompts used in this approach are typically
orders of magnitude smaller, constituting less than
0.5% of the total model parameters. However, most
existing prompt tuning approaches have mainly fo-
cused on modifying the input layers and have not
thoroughly explored the core architecture of the
Transformer’s self-attention mechanism. There-
fore, they often underperform to full fine-tuning
and leave substantial room for improvement.

In this paper, we present a novel Attention
Prompt tuning approach, APROMPT, for efficient
and effective large language model adaptation. We
begin by reexamining the prompt tuning approach
and establish, both theoretically and empirically,
that its input prompts can be considered as special-
ized key-value prompts. We then formally intro-
duce our APROMPT. Unlike previous prompt tun-
ing methods, APROMPT incorporates three sets of
learnable prompts: query, key, and value prompts.
These prompts are prepended to the respective ma-
trices in the self-attention block within the Trans-
former layer. During model tuning, these attention
prompts are learned alongside the original input
prompts, resulting in more effective guidance of
attention computation for new tasks. Evaluation on
the SuperGLUE benchmark showcases the superior
performance of APROMPT compared to state-of-
the-art methods. The ablation study results provide
strong evidence for the effectiveness and efficiency
of the proposed attention prompts. We summarize
the main contributions as follows:

• We establish a connection between existing
prompt tuning methods and our approach,

demonstrating that input prompts can be
viewed as a specialized form of attention
prompts. This insight serves as valuable
knowledge, enhancing our understanding of
both the existing prompt tuning techniques
and the novelty of our proposed approach.

• We design novel attention prompt tuning by
incorporating query, key, and value prompts
into the self-attention computation along with
the input prompts. By doing so, these atten-
tion prompts play a crucial role in effectively
guiding the model’s fine-tuning process, en-
abling faster and more accurate adjustments
during the adaptation process.

• We conduct comprehensive experiments on
various tasks in the SuperGLUE benchmark,
demonstrating the effectiveness of the pro-
posed approach over several state-of-the-art
prompt tuning and full fine-tuning methods.

2 Related Work

Pre-trained Language Models Pre-trained Lan-
guage Models (PLMs) (Yang et al., 2019; Ainslie
et al., 2020; Zaheer et al., 2020; Zhao et al., 2023)
have demonstrated huge success across various nat-
ural language processing tasks. Pioneering works
such as BERT (Devlin et al., 2019) and RoBERTa
(Liu et al., 2019) learn contextual representations
with masked language model (MLM) and next
sentence prediction tasks. Recently, a range of
large-scale PLMs, including GPT-3 (Brown et al.,
2020), T5 (Raffel et al., 2020), and PaLM (Chowd-
hery et al., 2022), have emerged with diverse pre-
training designs. However, the exponential increase
in the number of parameters poses challenges in
fine-tuning these models. It becomes computation-
ally expensive to store and maintain all fine-tuned
parameters for each tasks.

Parameter-Efficient Tuning As the size of
PLMs becomes larger, it is increasingly unafford-
able to update and save full model copies for each
downstream application. Parameter-efficient tuning
methods (Pfeiffer et al., 2020, 2021) arise in the era
of LLM. Depending on whether new parameters are
introduced, we divide parameter-efficient tuning
methods into categories of partial tuning and extra
module. Partial tuning methods simply update parts
of the model such as the bias term (Zaken et al.,
2022) or the last layers (Lee et al., 2019). Extra
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Figure 2: Input prompts P are specialized key and value
prompts with Pk = HkP and Pv = HvP .

module methods introduce task-specific parameters
to various locations of the model including Side-
Tuning (Zhang et al., 2020) and Adaptors (Hu et al.,
2022; Houlsby et al., 2019). There has also been
effort unifying different parameter-efficient tuning
methods for increased robustness and performance
(Mao et al., 2022; He et al., 2022a).

Prompt Tuning Prompt tuning (Han et al., 2023;
Yan et al., 2023) inserts learnable parameters to
the model as virtual tokens where the insertion can
happen at the model input (Lester et al., 2021) or
each layer (Li and Liang, 2021). Later variants im-
prove prompt tuning methods for NLU (Liu et al.,
2022) and NLG (An et al., 2022) tasks respectively
through a series of optimization and adaptations.
More recent studies add residual connections to
improve the performance and stability of prompt
tuning (Razdaibiedina et al., 2023b) and extend
prompt tuning to the continual learning setting
(Razdaibiedina et al., 2023a). However, most of
these methods only simply add prompts to input
layers, which greatly limited their performances.
Most recently, mixture prompt tuning has been
proposed in MixPrompt (Yang et al., 2023) and
E2VPT (Han et al., 2023), which combines the in-
put prompts with key-value prompts. These meth-
ods can be treated as special cases of our attention
prompt tuning approach.

3 Prompt Tuning Revisit

3.1 Preliminary

Prompt tuning methods (Lester et al., 2021; Liu
et al., 2022) are proposed as a group of parame-
ter efficient models for fast adaptation of large-
scale PLMs to downstream tasks. They intro-
duce a set of task-specific prompts or prompt to-
kens P ∈ Rd×m , and prepend them to the in-
put sequence X ∈ Rd×n to form a new input
Xnew = [P,X] ∈ Rd×(m+n), as shown in left Fig-
ure 2. Here m is the length of prompt tokens, n is
the input sequence length, and d is the dimension of
the embedding vector. These prompts are learned
on the downstream task during fine-tuning with the
backbone frozen. Prompt tuning achieves promis-

T5-Large WSC CB Boolq

Prompt Tuning 78.31 88.41 83.65
Fixed Key-value Prompts 78.31 88.41 83.65

Key-value Prompts 78.88 88.93 84.06
Prompt Tuning + Key-value Prompts 79.12 89.17 84.25

Table 1: Performance (Accuracy) of Prompt Tuning and
different key-value prompts variants on WSC, CB and
Boolq tasks from SuperGLUE with T5-Large model.

ing results compared to other parameter-efficient
tuning methods.

3.2 Connection with Key-Value Prompts

In this section, we investigate deeper on how the
prompt tuning works and show that traditional
input prompts are equavalent to constrained key-
value prompts. Recall that in prompt tuning, the
prompt tokens are first prepended to the input to-
kens. The new sequence Xnew = [P,X] is then
fed into the Transformer encoder layer to compute
the contextual embeddings of the text tokens for
the next layer. The self-attention is defined as:

Attn([P,X]) = softmax(Q
TKnew√

d
)Vnew

Q = HqX, Knew = HkXnew, Vnew = HvXnew

where Q, Knew and Vnew are the new query, key
and value embedding matrices, with Hq, Hk and
Hv as the pre-trained model parameters that are
frozen. It is worth noting that for the query Q,
there is no need to compute a new one since only
the original text tokens X are updated and used in
the next layer. Then we have:

Knew = HkXnew = [HkP,HkX] = [Pk,K]

Similarly, we have Vnew = [Pv, V ]. Therefore, we
can conclude that adding the prompt tokens P dur-
ing prompt tuning is equivalent of prepending key
prompts Pk and value prompts Pv to the original
key and value matrices respectively, as shown in
Figure 2. Note that these key-value prompts are
constrained or coupled by the input prompts P .

3.3 Empirical Study

To further validate the findings, we conduct an ex-
periment by comparing four methods, Prompt Tun-
ing (Lester et al., 2021), Fixed Key-value Prompt,
Key-value Prompt, and Prompt Tuning + Key-value
Prompt, on three tasks from SuperGLUE with T5-
Large backone. Fixed Key-value Prompt directly
adds fixed key and value prompts computed from
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Figure 3: Overview of our APROMPT model. We introduce three sets of trainable attention prompts, namely query,
key, and value prompts, during the fine-tuning of the model, in addition to the input prompts. These prompts are
incorporated into the query, key, and value matrices within the multi-head attention computation.

the optimal prompts P ∗ learned in Prompt Tun-
ing, i.e., Pk = HkP ∗ and Pv = HvP ∗, without
any tuning. Key-value Prompt learns the optimal
key and value prompts during fine-tuning. Prompt
Tuning + Key-value Prompt learns both the input
prompts and key-value prompts during fine-tuning.

The comparative results of these methods are
presented in Table 1. Firstly, it is clear that the
Fixed Key-value Prompts method achieves identi-
cal results to Prompt Tuning, which aligns with our
expectations and validates the equivalence between
input prompts and constrained key-value prompts.
Secondly, when allowing the key-value prompts to
be learned during fine-tuning, we observe improved
performance compared to fixed key-value prompts.
The reason is that the fixed key-value prompts can
be seen as a special case within the search space
of unconstrained key-value prompts. Lastly, com-
bining both input prompts and key-value prompts
during fine-tuning leads to the highest performance.
Our hypothesis is that while key-value prompts
theoretically have the potential to encompass the
information contained in input prompts, they exist
in different embedding spaces. In practice, input
prompts can provide additional value during the
fine-tuning process. Further analysis and discus-
sion are provided in the experimental section.

4 Attention Prompt Tuning

Drawing inspiration from the insights presented
in Section 3, we propose an attention prompt tun-
ing approach by introducing the attention prompts
in the Transformer layers to facilitate attention

computation. The overall model architecture of
APROMPT is depicted in Figure 3. Fundamen-
tally, our model enables the training of only three
components while keeping all other parameters
frozen. These components are as follows: (1) Input
prompts, denoted as Pi, which are inserted at the be-
ginning of the input sequence for each Transformer
encoder layer. (2) Attention prompts, represented
by Pq, Pk, and Pv, are incorporated into the query,
key, and value matrices within the self-attention
module, respectively. These prompts allow the
model to learn new attention patterns from the fine-
tuning data. (3) A task-specific head, which is a
lightweight module dedicated to the specific task
and can be trained efficiently.

4.1 Input Prompts

In a similar vein to traditional prompt tuning meth-
ods (Lester et al., 2021; Li and Liang, 2021), input
prompts consist of a set of d-dimensional embed-
ding vectors, where the dimensionality matches
that of the text tokens. These prompts are in-
serted at the beginning of the input sequence in
each Transformer encoder layer and interact with
all the text tokens. They facilitate the learning of
task-specific embeddings, effectively guiding the
model’s performance on new tasks.

Formally, these input prompts are defined as Pi

= {P 1
i , P

2
i , . . . , P

N
i }, where P j

i denotes the learn-
able input prompts in the jth Transformer encoder
layer, and N is the total number of layers. Then
the encoder layers are represented as:

Z1 = L1(P
1
i , E)
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Zj = Lj(P
j
i , Z

j−1) j = 2, 3, . . . , N

where Zj represents the contextual embeddings
of the text tokens computed by the jth encoder
layer. The different colors indicate trainable and
frozen parameters, respectively. E is the text token
embeddings initialized from the backbone.

4.2 Attention Prompts

While input prompts are effective in acquiring
knowledge about the new task, they do not possess
the capability to guide the interaction of informa-
tion within each encoder layer. During fine-tuning
on a new task with new data, the word distribu-
tion may differ significantly from the examples
seen during pre-training. Consequently, it becomes
imperative to enhance the model’s capacity for cap-
turing new information from the fine-tuning data.
This entails enabling better attention among the
input tokens to effectively learn new patterns that
emerge in the task-specific context.

Figure 4: The new query, key and value matricies.

In order to address this, we introduce a novel
set of attention prompts that are integrated into the
attention block within each encoder layer. These at-
tention prompts can be categorized into two groups:
query-key prompts and key-value prompts. The
query-key prompts, denoted as PQK

q and PQK
k ,

consist of small matrices (comprising a few rows)
that are appended to the original query and key
matrices within the attention module. By incor-
porating these query-key prompts, we enhance
the computation of attention maps among the to-
kens, thereby improving the attention mechanism.
The key-value prompts, represented by PKV

k and
PKV
v , which are two supplementary matrices (a

few columns) inserted to the key and value matri-
ces, respectively. These key-value prompts provide
additional information for the input tokens to at-
tend to, thereby enhancing the representation of
the learned embeddings. By incorporating both
query-key prompts and key-value prompts, we aim
to enable more effective information interaction
and capture new patterns during the fine-tuning
process. The new query, key and value matrices
are augmented with these new attention prompts as
shown in Figure 4. It is worth noting that the new
key matrix is appended by both the key prompts
from query-key and key-value prompts. Then the

new attention computations are:

L(·) = MLP ( LN (MSA (·) ) )

MSA(·) = softmax(Q
T
newKnew√

d
)Vnew

where MLP and LN are the frozen multi-layer per-
ceptron and layer norm, and MSA is the multi-head
self-attention inside the Transformer encoder layer.
In this way, the attention prompts can effectively
guide the model adaptation to the new task.

4.3 Task-specific Head
For each downstream task, we also fine-tune a task-
specific head, which is a very small module dedi-
cated to the specific task to generate the predictions.

y = Head(ZN )

where ZN is the output contextual embedding from
the top layer of the encoder.

5 Experiments

5.1 Datasets
Following previous works on prompt tuning (Lester
et al., 2021; Liu et al., 2022), we use NLU tasks
from the SuperGLUE benchmark to evaluate the
performance of the language model (Raffel et al.,
2020; Aribandi et al., 2022). Specifically, we
use the following 8 datasets: BoolQ (Clark et al.,
2019), CB (Jiang and de Marneffe, 2019), COPA
(Roemmele et al., 2011), MRC (Khashabi et al.,
2018), ReC (Zhang et al., 2018), RTE (Giampic-
colo et al., 2007), WiC (Pilehvar and Camacho-
Collados, 2019) and WSC (Levesque et al., 2012).
More details are provided in the Appendix.

5.2 Baselines
Our model is compared with five state-of-the-art
prompt tuning and fine-tuning methods.

Fine-Tuning (Aribandi et al., 2022) is the stan-
dard full fine-tuning approach of T5, where all the
pre-trained parameters are fine-tuned.

Prompt-Tuning (Lester et al., 2021) is the
vanilla prompt tuning approach which adds the
input prompts in the first input layer.

P-Tuning v2 (Liu et al., 2022) builds on top
of Prompt-Tuning by inserting a set of individual
prompts to each Transformer layers.

XPrompt (Ma et al., 2022) designs more efficient
prompts by pruning the least important token-level
and piece-level prompts.

9151



Method Para Boolq CB COPA MRC ReC RTE WiC WSC Average
Acc F1/Acc Acc F1/EM F1/EM Acc Acc Acc Score

T5-Base (220M)

Fine-Tuning∗ (Aribandi et al., 2022) 100% 82.30 91.30 60.00 58.25 80.55 84.50 69.30 81.70 76.10
Prompt-Tuning (Lester et al., 2021) 0.06% 78.12 84.42 54.37 51.14 71.35 75.27 62.29 67.36 68.04

P-Tuning v2 (Liu et al., 2022) 0.53% 80.81 90.23 61.28 55.64 78.13 81.98 67.56 78.32 74.35
XPrompt (Ma et al., 2022) 0.04% 79.67 86.72 56.95 53.08 74.36 78.29 64.31 73.68 70.88

ResPrompt (Razdaibiedina et al., 2023b) 0.21% 79.25 85.33 58.64 52.91 73.19 77.14 62.36 70.82 69.95
APROMPT (Ours) 0.45% 81.83 91.86 61.54 59.07 81.18 85.76 69.50 81.49 76.84

T5-Large (770M)

Fine-Tuning∗ (Aribandi et al., 2022) 100% 88.30 95.35 87.00 67.25 87.85 90.60 73.50 88.50 84.47
Prompt-Tuning (Lester et al., 2021) 0.03% 83.65 88.41 82.67 63.28 82.46 85.19 71.05 78.31 79.25

P-Tuning v2 (Liu et al., 2022) 0.48% 87.92 95.56 86.20 70.47 89.03 89.14 71.81 86.59 84.59
XPrompt (Ma et al., 2022) 0.02% 85.54 91.39 85.05 67.32 85.47 87.30 73.22 80.28 81.95

ResPrompt (Razdaibiedina et al., 2023b) 0.15% 83.51 90.64 82.79 65.16 84.72 86.97 71.13 80.36 80.66
APROMPT (Ours) 0.37% 90.35 95.83 88.32 71.98 90.64 90.47 74.67 90.13 86.55

T5-XL (3B)

Fine-Tuning∗ (Aribandi et al., 2022) 100% 89.60 94.20 96.00 76.15 92.05 91.70 74.30 95.20 88.65
Prompt-Tuning (Lester et al., 2021) 0.01% 87.58 91.25 91.56 73.49 90.14 89.35 74.21 87.16 85.59

P-Tuning v2 (Liu et al., 2022) 0.45% 90.11 94.08 95.33 75.21 92.39 92.13 75.46 94.25 88.62
XPrompt (Ma et al., 2022) 0.01% 89.14 92.73 95.18 75.01 91.18 92.16 74.85 89.43 87.46

ResPrompt (Razdaibiedina et al., 2023b) 0.04% 88.46 92.54 93.12 75.17 91.20 91.64 75.32 89.15 87.08
APROMPT (Ours) 0.32% 90.72 95.48 95.83 78.68 93.75 93.36 76.43 96.17 90.05

Table 2: Performance comparison result (%) on SuperGLUE development set. ‘∗’ indicates the results reported in
(Aribandi et al., 2022). ‘Para’ is the number of trainable parameters. The best results are in bold with underline
representing the second best ones. For tasks with two metrics, the average score is reported. All scores are averaged
over 5 runs. Results are statistically significant with respect to all baselines on each PLM (all p-value < 0.005).

ResPrompt (Razdaibiedina et al., 2023b) adds
residual connections to improve the performance
and stability of prompt tuning.

5.3 Implementation Details

APROMPT is implemented with the OpenPrompt
library (Ding et al., 2022), which is a unified and
extensible toolkit for prompt tuning research. Our
model is trained on 16 NVIDIA Tesla V100 GPUs.
We translate each SuperGLUE dataset into a text-
to-text format following (Raffel et al., 2020). Three
scales pre-trained models are used: T5-Base, T5-
Large and T5-XL with 200M, 770M and 3B pa-
rameters, respectively. Following previous studies
(Lester et al., 2021; Ma et al., 2022), we train our
prompts for 100 epochs with a constant learning
rate of 0.3 and a batch size of 16. There are three
hyperparameters in our model: the lengthes of in-
put, query-key and key-value prompts. For our
method, we set the number of input prompts to
10 (as we found our model is less sensitive to it),
and linearly search the best prompt length for both
query-key and key-value prompts from {1, 5, 10,
20, 50}. For all prompt tuning baselines, we search
the best input prompt length from {5, 10, 20, 50,
100}. The best checkpoints are selected via early
stopping on the development set. The models are
trained using the Adafactor (Shazeer and Stern,

2018) optimizer with weight decay 1e−5.

5.4 Main Results

The main performance comparison results are pre-
sented in Table 2. There are several key observa-
tions from these results. First, APROMPT con-
sistently outperforms all prompt tuning baselines
across different backbone models, showcasing the
effective design of its attention prompts. For in-
stance, when evaluating on Boolq with T5-Large,
the Acc score of APROMPT demonstrates a signifi-
cant improvement of 5.62% and 2.76% compared
to two strong methods, XPrompt and P-Tuning
v2, respectively. This highlights the limitation of
existing prompt tuning approaches that primarily
focus on designing input prompt tokens, failing
to capture the intricate token interactions within
new data. In contrast, the attention prompts em-
ployed by our approach successfully bridge this
gap, resulting in enhanced performance. Second,
APROMPT outperforms the full fine-tuning method
in most cases, while other prompt tuning baselines
still exhibit certain gaps, particularly when using
smaller backbone models like T5-Base. This obser-
vation highlights the effectiveness of our approach
across a range of natural language understanding
tasks. Moreover, our model achieves these results
while training only around 0.4% of the parame-
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Model Boolq CB RTE WSC

Fine-Tuning 71.31 75.72 70.35 67.52
Prompt-Tuning 69.48 75.16 71.73 67.47

P-Tuning v2 73.36 77.94 73.48 70.50
XPrompt 71.53 76.57 72.68 69.75

ResPrompt 70.38 76.20 70.85 68.35
APROMPT (Ours) 75.66 78.51 75.83 72.30

Table 3: Performance comparision results with few-
shot (32 samples) setting on Boolq, CB, RTE and WSC
tasks for the T5-XL model. APROMPT consistently
outperforms all baselines in low resource scenarios.

ters in the backbone, making it significantly more
parameter-efficient than the full fine-tuned model.
It is worth noting that although APROMPT intro-
duces additional attention prompts, the length of
the input prompts are largely reduced (fixed to 10)
and thus resulting in even less total trainable pa-
rameters compared with P-Tuning v2. Third, it
is worth noting that the gap between fine-tuning
and other prompt tuning methods diminishes as
the size of the backbone models increases. This
finding aligns with previous studies (Lester et al.,
2021; Ma et al., 2022) and underscores the trend
of convergence between fine-tuning and alternative
prompt tuning approaches.

6 Analysis and Discussion

Results on Low-resource Scenario We con-
ducted further evaluations to assess the perfor-
mance of APROMPT and other baseline models
in a low-resource setting. Following (Schick and
Schütze, 2021), we randomly selected 32 exam-
ples for each task as the new training set, using
a fixed random seed. We fine-tuned the prompt
model on this limited training set and reported the
results on the full dev set using the best checkpoint
in Table 3. It is evident that all methods experi-
ence a significant drop in performance due to the
limited data available for training. Nevertheless,
APROMPT consistently outperforms the baseline
models on tasks such as Boolq, CB, RTE, and WSC.
Additionally, we observe that most prompt tuning
approaches achieve better results compared to fine-
tuning, indicating that despite the challenges of
overfitting when training with limited data, prompt
tuning methods exhibit superior generalization ca-
pabilities compared to full fine-tuning.

Impact of Different Prompts To investigate the
impact of different prompts in our model, we
conducted an ablation study by exploring vari-
ous prompt combinations in APROMPT. Specif-
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Figure 5: Ablation study on the impact of different
prompt combinations on four tasks of SuperGLUE.

ically, we experimented with four additional mod-
els: one without input prompts, one without query-
key prompts, one without key-value prompts, and
one without both query-key and key-value prompts.
The Acc scores obtained on four SuperGLUE tasks
with different backbone models are presented in
Figure 5. The results reveal that the model’s perfor-
mance drops when any of the trainable prompts is
removed, which aligns with our expectations. Fur-
thermore, we observed that the performance drop
of APROMPT without input prompts is relatively
small compared to the models without attention
prompts. This suggests the significance of both
query-key and key-value prompts in comparison to
input prompts, thereby validating the analysis pre-
sented in section 3. Once again, it is worth noting
that combining all prompts in APROMPT leads to
the best performance.

Figure 6: Ablation study of query-key and key-value
prompt lengths. We vary the number of prompts for
different combinations, and evaluate (Acc) on RTE and
WSC tasks with T5-XL as the backbone model.

Impact of Prompt Length In APROMPT, the
lengths of query-key prompts and key-value
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Position Boolq CB RTE WSC

First-layer 78.56 85.48 90.28 90.88
First 12-layers 88.35 88.64 92.42 94.32

Last-layer 75.82 84.37 90.75 91.15
Last 12-layers 82.55 88.49 92.67 95.36

Alternative 12-layers 90.31 90.14 92.74 95.21
APROMPT (All) 90.72 95.48 93.36 96.17

Table 4: Performance comparison with different prompt
positions on Boolq, CB, RTE and WSC for T5-XL.

prompts are the only hyperparameters that require
tuning. To further analyze the impact of differ-
ent prompt lengths on model performance, we
conducted an ablation study by modifying both
prompt lengths across {1, 5, 10, 20, 50}. We exper-
iment over all possible length combinations, and
a detailed discussion on how to balance these two
prompts will be provided in later experiments. The
model performance results of all prompt length
combinations on RTE and WSC are shown in Fig-
ure 6. It can be seen that there is no universal op-
timal prompt length that consistently achieves the
best performance across both tasks. For instance,
on RTE, the highest score is obtained with 10 key-
value prompts and 5 query-key prompts, while on
WSC, the best performance is achieved with 20
key-value prompts and 10 query-key prompts. We
hypothesize that different tasks and datasets exhibit
distinct data distributions, with ‘hard’ tasks poten-
tially requiring longer prompts to effectively cap-
ture the underlying patterns and knowledge within
the data. However, this comes with the trade-off
of an increased number of trainable parameters.
Nonetheless, we observed that our model’s perfor-
mance remains relatively stable within a certain
range of prompt lengths.

Impact of Prompt Positions This study evalu-
ates the impact of prompt positions to the model
performance. Concretely, we train five additional
models with different prompt locations (applied
to both encoder and decoder), including only first
layer, last layer, first 12 layers, last 12 layers and
alternative 12 layers. The performance compari-
son results on MAVE are reported in Table 4. It
is not surprising to see that inserting prompts to
all encoder and decoder layers achieves the best
performance. We can also observe that only putting
the prompts to the first (input) or last (output) layer
results in large performance drops, which is consis-
tent with the observations in other prompt tuning
works (Liu et al., 2022; Jia et al., 2022).

key-value prompts ratio

88

90

92

94

96

98

0.00 0.25 0.50 0.75 1.00

Boolq CB RTE WSC

Figure 7: Performance comparison of different ratios of
the key-value prompts when fixing the total number of
trainable parameters using T5-XL.

Effect of Attention Prompts Balancing The
query-key and key-value prompts in APROMPT

contribute differently to the model performance.
To further investigate their correlation and ef-
fectiveness, we conduct an experiment by fix-
ing the total number of trainable parameters, and
adjusting the ratio of key-value prompts from
{0, 0.25, 0.5, 0.75, 1}. The model performances
at different ratios on four SuperGLUE tasks are il-
lustrated in Figure 7. We observe slightly different
patterns on different tasks. For example, on WSC,
key-value prompts with 0.75 ratio achieves the best
score, while key-value prompts with 0.5 gives the
best performance on CB. Nevertheless, APROMPT

with ratio 0 (no key-value prompts) or 1 (no query-
key prompts) underperforms other prompt combi-
nations in most cases, indicating the effectiveness
of both attention prompts.

Variants of APROMPT We compare APROMPT

with its two variants to analyze the performance-
scale trade-off. Firstly, we remove the input
prompts, retaining only the attention prompts, re-
sulting in a variant named APROMPT-. Addition-
ally, we apply the pruning technique in XPrompt
(Ma et al., 2022) to eliminate the least important
prompts, creating a variant called APROMPT +.
From the results in Table 5, we observe that the
contribution of input prompts is not particularly
significant, aligning with the findings in section
3. When applying prompt trimming, we note that
while the number of trainable parameters decreases,
the performance behavior varies across different
tasks, leaving a room for further exploration in
terms of finding the optimal balance between the
number of prompts and model performance.

7 Conclusions

This work first connects existing prompt tuning
with attention prompt tuning and show that input
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Model Para Boolq CB RTE WSC

APROMPT- 0.25% 90.41 95.28 93.12 95.82
APROMPT 0.32% 90.72 95.48 93.36 96.17
APROMPT + 0.21% 91.05 95.34 93.51 96.02

Table 5: Different variants of our model with T5-XL.

prompts can be considered as a special case of key-
value prompts in the attention layer. Inspired by
the observation, we introduce three sets of new
prompts, namely query, key, and value prompts,
and incorporate them into the attention layer to
guide the attention computation during fine-tuning.
Experimental results on SuperGLUE demonstrate
the superior performance of our model over several
state-of-the-art baselines.

Limitations

There are two limitations of our APROMPT model.
First, while APROMPT outperforms other prompt
tuning and fine-tuning approaches, identifying the
optimal combination of attention prompts automat-
ically poses a challenge that remains unanswered.
In our experiments, we conduct grid search to
empirically determine the optimal prompt length.
However, in the future, we intend to explore a sys-
tematic solution that can identify either the optimal
combination or a suboptimal one. Second, our cur-
rent model learns task-specific prompts for each
individual task. To address this, we plan to in-
vestigate a parametric network that can guide the
learning of task-agnostic prompts, thereby enhanc-
ing the model’s flexibility and adaptability across
multiple tasks.
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A Dataset Statistics

Table 6 shows details of the eight datasets from
SuperGLUE benchmark (Wang et al., 2019) that we
used for our experiments, along with their training
sizes and evaluation metrics. Following (Raffel
et al., 2020) and (Lester et al., 2021), for tasks that
have two evaluation metrics we use the average of
both scores as the final performance metric.

Dataset Examples Task Domain Metric

Boolq 9,427 QA Wikipedia Acc
CB 250 NLI various F1/Acc

COPA 400 QA blogs, encyclop Acc
MRC 5,100 QA various F1/EM
ReC 101,000 QA various F1/EM
RTE 2,500 NLI news, Wiki Acc
WiC 6,000 WSD lexical databases Acc
WSC 259 coref. fiction books Acc

Table 6: The details of 8 SuperGLUE tasks used in our
experiments. NLI denotes natural language inference,
QA denotes questions and answers task, WSD denotes
word sense disambiguation, EM denotes exact match
scoring, Acc denotes accuracy.

B Training Details

B.1 Settings
Our model is implemented with the OpenPrompt
library (Ding et al., 2022), which is a unified and
extensible toolkit for prompt tuning research. Our
model is trained on 16 NVIDIA Tesla V100 GPUs.
We translate each SuperGLUE dataset into a text-
to-text format following (Raffel et al., 2020). We
train our prompts for 100 epochs with a constant
learning rate of 0.3 and a batch size of 16. There are
three hyperparameters in our model: the lengthes
of input, query-key and key-value prompts. For our
method, we set the number of input prompts to 10
across all tasks, and linearly search the best prompt
length for both query-key and key-value prompts
from {1, 5, 10, 20, 50}. For all prompt tuning
baselines, we search the best input prompt length
from {5, 10, 20, 50, 100}. The best checkpoints
are selected via early stopping on the development
set. Adafactor (Shazeer and Stern, 2018) optimizer
is used in model training with weight decay 1e−5.

B.2 Tokenization and Preprocessing
Following common practice (Lester et al., 2021),
for all our experiments, we set the maximum input
length (including the input prompt) to 512 tokens.
We use padding to maximum length and mask out
the padded tokens. In case of input exceeding

512 tokens, we truncate the input. We do not per-
form any specific text preprocessing (e.g. remov-
ing punctuation) but instead directly tokenize the
raw text from SuperGLUE datasets using the cor-
responding model tokenizer. For all experiments,
we follow T5 (Raffel et al., 2020) formatting. We
feed input examples along with their descriptors
(e.g. ‘sentence1’ and ‘sentence2’), and cast all clas-
sification tasks into text-to-text format (e.g. 0 and
1 classes in Boolq task are cast into ‘True’ and
‘False’) replicating guidelines from T5.

B.3 Prompt initialization
In our experiments, we initialize input prompts us-
ing randomly sampled vocabulary embeddings sim-
ilar to (Lester et al., 2021). We sample uniformly
across the whole vocabulary, without limiting to
top-k most common tokens. The attention prompts
are randomly initialized.

Methods Boolq CB RTE WSC

Fine-Tuning (Aribandi et al., 2022) 89.60 94.20 91.70 95.20
Partial-1 (Yosinski et al., 2014) 83.28 84.66 83.92 87.51
Adapter (Pfeiffer et al., 2020) 85.37 86.54 85.75 89.17

BitFit (Zaken et al., 2022) 85.91 90.53 86.34 90.48
LoRA (Hu et al., 2022) 89.48 94.66 91.91 95.82

APROMPT (Ours) 90.72 95.48 93.36 96.17

Table 7: Performance comparison with other non-
prompt tuning based parameter efficient methods on
Boolq, CB, RTE and WSC for T5-XL.

C Comparison with Other Parameter
Efficient Methods

To conduct a full performance evaluation, we fur-
ther conduct comparision of our approach with
other non-prompt tuning based parameter efficient
methods, including Parial tuning (Yosinski et al.,
2014) (Partial-1 means only fine-tuning the first
layer), Adapter (Pfeiffer et al., 2020), BitFit (Za-
ken et al., 2022) and LoRA (Hu et al., 2022). The
performance comparision results are reported in
Table 7. It can be seen that APROMPT outperforms
all the parameter efficient methods with large mar-
gins. In fact, existing prompt tuning approaches
also achieve better performances compared to these
baselines.

Methods Boolq CB COPA MRC ReC RTE WiC WSC

Prompt-Tuning 2h38m 8m 11m 46m 18h25m 57m 51m 8m
P-Tuning v2 3h36m 10m 14m 1h15m 20h12m 1h28m 1h14m 12m

XPrompt 4h47m 14m 29m 1h53m 28h41m 2h26m 2h19m 19m
ResPrompt 3h47m 10m 23m 1h21m 22h32m 1h51m 1h34m 12m
APROMPT 3h21m 9m 15m 1h7m 21h 1h24m 1h16m 10m

Table 8: Training time of APROMPT on SuperGLUE.
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D Training Time

We further discuss and report the training time of
different methods on all the tasks in SuperGLUE in
Table 8. For Prompt-Tuning, the trainable parame-
ters consist of the prompts designed for the input
layer. In the case of P-Tuning V2, the trainable pa-
rameters encompass the prompts associated with all
layers. XPrompt focuses on trainable parameters
related to the pruned prompts, specifically for the
input layer, following the pruning process. As for
ResPrompt, the trainable parameters include both
the input prompts and the residual network compo-
nents. The total count of trainable parameters for
each approach is detailed in Table 2.
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